xref: /openbmc/qemu/system/memory.c (revision f25a9fbb)
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15 
16 #include "qemu/osdep.h"
17 #include "qemu/log.h"
18 #include "qapi/error.h"
19 #include "exec/memory.h"
20 #include "qapi/visitor.h"
21 #include "qemu/bitops.h"
22 #include "qemu/error-report.h"
23 #include "qemu/main-loop.h"
24 #include "qemu/qemu-print.h"
25 #include "qom/object.h"
26 #include "trace.h"
27 
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/tcg.h"
33 #include "qemu/accel.h"
34 #include "hw/boards.h"
35 #include "migration/vmstate.h"
36 #include "exec/address-spaces.h"
37 
38 //#define DEBUG_UNASSIGNED
39 
40 static unsigned memory_region_transaction_depth;
41 static bool memory_region_update_pending;
42 static bool ioeventfd_update_pending;
43 unsigned int global_dirty_tracking;
44 
45 static QTAILQ_HEAD(, MemoryListener) memory_listeners
46     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
47 
48 static QTAILQ_HEAD(, AddressSpace) address_spaces
49     = QTAILQ_HEAD_INITIALIZER(address_spaces);
50 
51 static GHashTable *flat_views;
52 
53 typedef struct AddrRange AddrRange;
54 
55 /*
56  * Note that signed integers are needed for negative offsetting in aliases
57  * (large MemoryRegion::alias_offset).
58  */
59 struct AddrRange {
60     Int128 start;
61     Int128 size;
62 };
63 
64 static AddrRange addrrange_make(Int128 start, Int128 size)
65 {
66     return (AddrRange) { start, size };
67 }
68 
69 static bool addrrange_equal(AddrRange r1, AddrRange r2)
70 {
71     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
72 }
73 
74 static Int128 addrrange_end(AddrRange r)
75 {
76     return int128_add(r.start, r.size);
77 }
78 
79 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
80 {
81     int128_addto(&range.start, delta);
82     return range;
83 }
84 
85 static bool addrrange_contains(AddrRange range, Int128 addr)
86 {
87     return int128_ge(addr, range.start)
88         && int128_lt(addr, addrrange_end(range));
89 }
90 
91 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
92 {
93     return addrrange_contains(r1, r2.start)
94         || addrrange_contains(r2, r1.start);
95 }
96 
97 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
98 {
99     Int128 start = int128_max(r1.start, r2.start);
100     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
101     return addrrange_make(start, int128_sub(end, start));
102 }
103 
104 enum ListenerDirection { Forward, Reverse };
105 
106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
107     do {                                                                \
108         MemoryListener *_listener;                                      \
109                                                                         \
110         switch (_direction) {                                           \
111         case Forward:                                                   \
112             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
113                 if (_listener->_callback) {                             \
114                     _listener->_callback(_listener, ##_args);           \
115                 }                                                       \
116             }                                                           \
117             break;                                                      \
118         case Reverse:                                                   \
119             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
120                 if (_listener->_callback) {                             \
121                     _listener->_callback(_listener, ##_args);           \
122                 }                                                       \
123             }                                                           \
124             break;                                                      \
125         default:                                                        \
126             abort();                                                    \
127         }                                                               \
128     } while (0)
129 
130 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
131     do {                                                                \
132         MemoryListener *_listener;                                      \
133                                                                         \
134         switch (_direction) {                                           \
135         case Forward:                                                   \
136             QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) {     \
137                 if (_listener->_callback) {                             \
138                     _listener->_callback(_listener, _section, ##_args); \
139                 }                                                       \
140             }                                                           \
141             break;                                                      \
142         case Reverse:                                                   \
143             QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
144                 if (_listener->_callback) {                             \
145                     _listener->_callback(_listener, _section, ##_args); \
146                 }                                                       \
147             }                                                           \
148             break;                                                      \
149         default:                                                        \
150             abort();                                                    \
151         }                                                               \
152     } while (0)
153 
154 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
156     do {                                                                \
157         MemoryRegionSection mrs = section_from_flat_range(fr,           \
158                 address_space_to_flatview(as));                         \
159         MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args);         \
160     } while(0)
161 
162 struct CoalescedMemoryRange {
163     AddrRange addr;
164     QTAILQ_ENTRY(CoalescedMemoryRange) link;
165 };
166 
167 struct MemoryRegionIoeventfd {
168     AddrRange addr;
169     bool match_data;
170     uint64_t data;
171     EventNotifier *e;
172 };
173 
174 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
175                                            MemoryRegionIoeventfd *b)
176 {
177     if (int128_lt(a->addr.start, b->addr.start)) {
178         return true;
179     } else if (int128_gt(a->addr.start, b->addr.start)) {
180         return false;
181     } else if (int128_lt(a->addr.size, b->addr.size)) {
182         return true;
183     } else if (int128_gt(a->addr.size, b->addr.size)) {
184         return false;
185     } else if (a->match_data < b->match_data) {
186         return true;
187     } else  if (a->match_data > b->match_data) {
188         return false;
189     } else if (a->match_data) {
190         if (a->data < b->data) {
191             return true;
192         } else if (a->data > b->data) {
193             return false;
194         }
195     }
196     if (a->e < b->e) {
197         return true;
198     } else if (a->e > b->e) {
199         return false;
200     }
201     return false;
202 }
203 
204 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
205                                           MemoryRegionIoeventfd *b)
206 {
207     if (int128_eq(a->addr.start, b->addr.start) &&
208         (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
209          (int128_eq(a->addr.size, b->addr.size) &&
210           (a->match_data == b->match_data) &&
211           ((a->match_data && (a->data == b->data)) || !a->match_data) &&
212           (a->e == b->e))))
213         return true;
214 
215     return false;
216 }
217 
218 /* Range of memory in the global map.  Addresses are absolute. */
219 struct FlatRange {
220     MemoryRegion *mr;
221     hwaddr offset_in_region;
222     AddrRange addr;
223     uint8_t dirty_log_mask;
224     bool romd_mode;
225     bool readonly;
226     bool nonvolatile;
227     bool unmergeable;
228 };
229 
230 #define FOR_EACH_FLAT_RANGE(var, view)          \
231     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
232 
233 static inline MemoryRegionSection
234 section_from_flat_range(FlatRange *fr, FlatView *fv)
235 {
236     return (MemoryRegionSection) {
237         .mr = fr->mr,
238         .fv = fv,
239         .offset_within_region = fr->offset_in_region,
240         .size = fr->addr.size,
241         .offset_within_address_space = int128_get64(fr->addr.start),
242         .readonly = fr->readonly,
243         .nonvolatile = fr->nonvolatile,
244         .unmergeable = fr->unmergeable,
245     };
246 }
247 
248 static bool flatrange_equal(FlatRange *a, FlatRange *b)
249 {
250     return a->mr == b->mr
251         && addrrange_equal(a->addr, b->addr)
252         && a->offset_in_region == b->offset_in_region
253         && a->romd_mode == b->romd_mode
254         && a->readonly == b->readonly
255         && a->nonvolatile == b->nonvolatile
256         && a->unmergeable == b->unmergeable;
257 }
258 
259 static FlatView *flatview_new(MemoryRegion *mr_root)
260 {
261     FlatView *view;
262 
263     view = g_new0(FlatView, 1);
264     view->ref = 1;
265     view->root = mr_root;
266     memory_region_ref(mr_root);
267     trace_flatview_new(view, mr_root);
268 
269     return view;
270 }
271 
272 /* Insert a range into a given position.  Caller is responsible for maintaining
273  * sorting order.
274  */
275 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
276 {
277     if (view->nr == view->nr_allocated) {
278         view->nr_allocated = MAX(2 * view->nr, 10);
279         view->ranges = g_realloc(view->ranges,
280                                     view->nr_allocated * sizeof(*view->ranges));
281     }
282     memmove(view->ranges + pos + 1, view->ranges + pos,
283             (view->nr - pos) * sizeof(FlatRange));
284     view->ranges[pos] = *range;
285     memory_region_ref(range->mr);
286     ++view->nr;
287 }
288 
289 static void flatview_destroy(FlatView *view)
290 {
291     int i;
292 
293     trace_flatview_destroy(view, view->root);
294     if (view->dispatch) {
295         address_space_dispatch_free(view->dispatch);
296     }
297     for (i = 0; i < view->nr; i++) {
298         memory_region_unref(view->ranges[i].mr);
299     }
300     g_free(view->ranges);
301     memory_region_unref(view->root);
302     g_free(view);
303 }
304 
305 static bool flatview_ref(FlatView *view)
306 {
307     return qatomic_fetch_inc_nonzero(&view->ref) > 0;
308 }
309 
310 void flatview_unref(FlatView *view)
311 {
312     if (qatomic_fetch_dec(&view->ref) == 1) {
313         trace_flatview_destroy_rcu(view, view->root);
314         assert(view->root);
315         call_rcu(view, flatview_destroy, rcu);
316     }
317 }
318 
319 static bool can_merge(FlatRange *r1, FlatRange *r2)
320 {
321     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
322         && r1->mr == r2->mr
323         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
324                                 r1->addr.size),
325                      int128_make64(r2->offset_in_region))
326         && r1->dirty_log_mask == r2->dirty_log_mask
327         && r1->romd_mode == r2->romd_mode
328         && r1->readonly == r2->readonly
329         && r1->nonvolatile == r2->nonvolatile
330         && !r1->unmergeable && !r2->unmergeable;
331 }
332 
333 /* Attempt to simplify a view by merging adjacent ranges */
334 static void flatview_simplify(FlatView *view)
335 {
336     unsigned i, j, k;
337 
338     i = 0;
339     while (i < view->nr) {
340         j = i + 1;
341         while (j < view->nr
342                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
343             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
344             ++j;
345         }
346         ++i;
347         for (k = i; k < j; k++) {
348             memory_region_unref(view->ranges[k].mr);
349         }
350         memmove(&view->ranges[i], &view->ranges[j],
351                 (view->nr - j) * sizeof(view->ranges[j]));
352         view->nr -= j - i;
353     }
354 }
355 
356 static bool memory_region_big_endian(MemoryRegion *mr)
357 {
358 #if TARGET_BIG_ENDIAN
359     return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
360 #else
361     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
362 #endif
363 }
364 
365 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
366 {
367     if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
368         switch (op & MO_SIZE) {
369         case MO_8:
370             break;
371         case MO_16:
372             *data = bswap16(*data);
373             break;
374         case MO_32:
375             *data = bswap32(*data);
376             break;
377         case MO_64:
378             *data = bswap64(*data);
379             break;
380         default:
381             g_assert_not_reached();
382         }
383     }
384 }
385 
386 static inline void memory_region_shift_read_access(uint64_t *value,
387                                                    signed shift,
388                                                    uint64_t mask,
389                                                    uint64_t tmp)
390 {
391     if (shift >= 0) {
392         *value |= (tmp & mask) << shift;
393     } else {
394         *value |= (tmp & mask) >> -shift;
395     }
396 }
397 
398 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
399                                                         signed shift,
400                                                         uint64_t mask)
401 {
402     uint64_t tmp;
403 
404     if (shift >= 0) {
405         tmp = (*value >> shift) & mask;
406     } else {
407         tmp = (*value << -shift) & mask;
408     }
409 
410     return tmp;
411 }
412 
413 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
414 {
415     MemoryRegion *root;
416     hwaddr abs_addr = offset;
417 
418     abs_addr += mr->addr;
419     for (root = mr; root->container; ) {
420         root = root->container;
421         abs_addr += root->addr;
422     }
423 
424     return abs_addr;
425 }
426 
427 static int get_cpu_index(void)
428 {
429     if (current_cpu) {
430         return current_cpu->cpu_index;
431     }
432     return -1;
433 }
434 
435 static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
436                                                 hwaddr addr,
437                                                 uint64_t *value,
438                                                 unsigned size,
439                                                 signed shift,
440                                                 uint64_t mask,
441                                                 MemTxAttrs attrs)
442 {
443     uint64_t tmp;
444 
445     tmp = mr->ops->read(mr->opaque, addr, size);
446     if (mr->subpage) {
447         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
448     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
449         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
450         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
451                                      memory_region_name(mr));
452     }
453     memory_region_shift_read_access(value, shift, mask, tmp);
454     return MEMTX_OK;
455 }
456 
457 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
458                                                           hwaddr addr,
459                                                           uint64_t *value,
460                                                           unsigned size,
461                                                           signed shift,
462                                                           uint64_t mask,
463                                                           MemTxAttrs attrs)
464 {
465     uint64_t tmp = 0;
466     MemTxResult r;
467 
468     r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
469     if (mr->subpage) {
470         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
471     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
472         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
473         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
474                                      memory_region_name(mr));
475     }
476     memory_region_shift_read_access(value, shift, mask, tmp);
477     return r;
478 }
479 
480 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
481                                                 hwaddr addr,
482                                                 uint64_t *value,
483                                                 unsigned size,
484                                                 signed shift,
485                                                 uint64_t mask,
486                                                 MemTxAttrs attrs)
487 {
488     uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
489 
490     if (mr->subpage) {
491         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
492     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
493         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
494         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
495                                       memory_region_name(mr));
496     }
497     mr->ops->write(mr->opaque, addr, tmp, size);
498     return MEMTX_OK;
499 }
500 
501 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
502                                                            hwaddr addr,
503                                                            uint64_t *value,
504                                                            unsigned size,
505                                                            signed shift,
506                                                            uint64_t mask,
507                                                            MemTxAttrs attrs)
508 {
509     uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
510 
511     if (mr->subpage) {
512         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
513     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
514         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
515         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
516                                       memory_region_name(mr));
517     }
518     return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
519 }
520 
521 static MemTxResult access_with_adjusted_size(hwaddr addr,
522                                       uint64_t *value,
523                                       unsigned size,
524                                       unsigned access_size_min,
525                                       unsigned access_size_max,
526                                       MemTxResult (*access_fn)
527                                                   (MemoryRegion *mr,
528                                                    hwaddr addr,
529                                                    uint64_t *value,
530                                                    unsigned size,
531                                                    signed shift,
532                                                    uint64_t mask,
533                                                    MemTxAttrs attrs),
534                                       MemoryRegion *mr,
535                                       MemTxAttrs attrs)
536 {
537     uint64_t access_mask;
538     unsigned access_size;
539     unsigned i;
540     MemTxResult r = MEMTX_OK;
541     bool reentrancy_guard_applied = false;
542 
543     if (!access_size_min) {
544         access_size_min = 1;
545     }
546     if (!access_size_max) {
547         access_size_max = 4;
548     }
549 
550     /* Do not allow more than one simultaneous access to a device's IO Regions */
551     if (mr->dev && !mr->disable_reentrancy_guard &&
552         !mr->ram_device && !mr->ram && !mr->rom_device && !mr->readonly) {
553         if (mr->dev->mem_reentrancy_guard.engaged_in_io) {
554             warn_report_once("Blocked re-entrant IO on MemoryRegion: "
555                              "%s at addr: 0x%" HWADDR_PRIX,
556                              memory_region_name(mr), addr);
557             return MEMTX_ACCESS_ERROR;
558         }
559         mr->dev->mem_reentrancy_guard.engaged_in_io = true;
560         reentrancy_guard_applied = true;
561     }
562 
563     /* FIXME: support unaligned access? */
564     access_size = MAX(MIN(size, access_size_max), access_size_min);
565     access_mask = MAKE_64BIT_MASK(0, access_size * 8);
566     if (memory_region_big_endian(mr)) {
567         for (i = 0; i < size; i += access_size) {
568             r |= access_fn(mr, addr + i, value, access_size,
569                         (size - access_size - i) * 8, access_mask, attrs);
570         }
571     } else {
572         for (i = 0; i < size; i += access_size) {
573             r |= access_fn(mr, addr + i, value, access_size, i * 8,
574                         access_mask, attrs);
575         }
576     }
577     if (mr->dev && reentrancy_guard_applied) {
578         mr->dev->mem_reentrancy_guard.engaged_in_io = false;
579     }
580     return r;
581 }
582 
583 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
584 {
585     AddressSpace *as;
586 
587     while (mr->container) {
588         mr = mr->container;
589     }
590     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
591         if (mr == as->root) {
592             return as;
593         }
594     }
595     return NULL;
596 }
597 
598 /* Render a memory region into the global view.  Ranges in @view obscure
599  * ranges in @mr.
600  */
601 static void render_memory_region(FlatView *view,
602                                  MemoryRegion *mr,
603                                  Int128 base,
604                                  AddrRange clip,
605                                  bool readonly,
606                                  bool nonvolatile,
607                                  bool unmergeable)
608 {
609     MemoryRegion *subregion;
610     unsigned i;
611     hwaddr offset_in_region;
612     Int128 remain;
613     Int128 now;
614     FlatRange fr;
615     AddrRange tmp;
616 
617     if (!mr->enabled) {
618         return;
619     }
620 
621     int128_addto(&base, int128_make64(mr->addr));
622     readonly |= mr->readonly;
623     nonvolatile |= mr->nonvolatile;
624     unmergeable |= mr->unmergeable;
625 
626     tmp = addrrange_make(base, mr->size);
627 
628     if (!addrrange_intersects(tmp, clip)) {
629         return;
630     }
631 
632     clip = addrrange_intersection(tmp, clip);
633 
634     if (mr->alias) {
635         int128_subfrom(&base, int128_make64(mr->alias->addr));
636         int128_subfrom(&base, int128_make64(mr->alias_offset));
637         render_memory_region(view, mr->alias, base, clip,
638                              readonly, nonvolatile, unmergeable);
639         return;
640     }
641 
642     /* Render subregions in priority order. */
643     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
644         render_memory_region(view, subregion, base, clip,
645                              readonly, nonvolatile, unmergeable);
646     }
647 
648     if (!mr->terminates) {
649         return;
650     }
651 
652     offset_in_region = int128_get64(int128_sub(clip.start, base));
653     base = clip.start;
654     remain = clip.size;
655 
656     fr.mr = mr;
657     fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
658     fr.romd_mode = mr->romd_mode;
659     fr.readonly = readonly;
660     fr.nonvolatile = nonvolatile;
661     fr.unmergeable = unmergeable;
662 
663     /* Render the region itself into any gaps left by the current view. */
664     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
665         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
666             continue;
667         }
668         if (int128_lt(base, view->ranges[i].addr.start)) {
669             now = int128_min(remain,
670                              int128_sub(view->ranges[i].addr.start, base));
671             fr.offset_in_region = offset_in_region;
672             fr.addr = addrrange_make(base, now);
673             flatview_insert(view, i, &fr);
674             ++i;
675             int128_addto(&base, now);
676             offset_in_region += int128_get64(now);
677             int128_subfrom(&remain, now);
678         }
679         now = int128_sub(int128_min(int128_add(base, remain),
680                                     addrrange_end(view->ranges[i].addr)),
681                          base);
682         int128_addto(&base, now);
683         offset_in_region += int128_get64(now);
684         int128_subfrom(&remain, now);
685     }
686     if (int128_nz(remain)) {
687         fr.offset_in_region = offset_in_region;
688         fr.addr = addrrange_make(base, remain);
689         flatview_insert(view, i, &fr);
690     }
691 }
692 
693 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
694 {
695     FlatRange *fr;
696 
697     assert(fv);
698     assert(cb);
699 
700     FOR_EACH_FLAT_RANGE(fr, fv) {
701         if (cb(fr->addr.start, fr->addr.size, fr->mr,
702                fr->offset_in_region, opaque)) {
703             break;
704         }
705     }
706 }
707 
708 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
709 {
710     while (mr->enabled) {
711         if (mr->alias) {
712             if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
713                 /* The alias is included in its entirety.  Use it as
714                  * the "real" root, so that we can share more FlatViews.
715                  */
716                 mr = mr->alias;
717                 continue;
718             }
719         } else if (!mr->terminates) {
720             unsigned int found = 0;
721             MemoryRegion *child, *next = NULL;
722             QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
723                 if (child->enabled) {
724                     if (++found > 1) {
725                         next = NULL;
726                         break;
727                     }
728                     if (!child->addr && int128_ge(mr->size, child->size)) {
729                         /* A child is included in its entirety.  If it's the only
730                          * enabled one, use it in the hope of finding an alias down the
731                          * way. This will also let us share FlatViews.
732                          */
733                         next = child;
734                     }
735                 }
736             }
737             if (found == 0) {
738                 return NULL;
739             }
740             if (next) {
741                 mr = next;
742                 continue;
743             }
744         }
745 
746         return mr;
747     }
748 
749     return NULL;
750 }
751 
752 /* Render a memory topology into a list of disjoint absolute ranges. */
753 static FlatView *generate_memory_topology(MemoryRegion *mr)
754 {
755     int i;
756     FlatView *view;
757 
758     view = flatview_new(mr);
759 
760     if (mr) {
761         render_memory_region(view, mr, int128_zero(),
762                              addrrange_make(int128_zero(), int128_2_64()),
763                              false, false, false);
764     }
765     flatview_simplify(view);
766 
767     view->dispatch = address_space_dispatch_new(view);
768     for (i = 0; i < view->nr; i++) {
769         MemoryRegionSection mrs =
770             section_from_flat_range(&view->ranges[i], view);
771         flatview_add_to_dispatch(view, &mrs);
772     }
773     address_space_dispatch_compact(view->dispatch);
774     g_hash_table_replace(flat_views, mr, view);
775 
776     return view;
777 }
778 
779 static void address_space_add_del_ioeventfds(AddressSpace *as,
780                                              MemoryRegionIoeventfd *fds_new,
781                                              unsigned fds_new_nb,
782                                              MemoryRegionIoeventfd *fds_old,
783                                              unsigned fds_old_nb)
784 {
785     unsigned iold, inew;
786     MemoryRegionIoeventfd *fd;
787     MemoryRegionSection section;
788 
789     /* Generate a symmetric difference of the old and new fd sets, adding
790      * and deleting as necessary.
791      */
792 
793     iold = inew = 0;
794     while (iold < fds_old_nb || inew < fds_new_nb) {
795         if (iold < fds_old_nb
796             && (inew == fds_new_nb
797                 || memory_region_ioeventfd_before(&fds_old[iold],
798                                                   &fds_new[inew]))) {
799             fd = &fds_old[iold];
800             section = (MemoryRegionSection) {
801                 .fv = address_space_to_flatview(as),
802                 .offset_within_address_space = int128_get64(fd->addr.start),
803                 .size = fd->addr.size,
804             };
805             MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
806                                  fd->match_data, fd->data, fd->e);
807             ++iold;
808         } else if (inew < fds_new_nb
809                    && (iold == fds_old_nb
810                        || memory_region_ioeventfd_before(&fds_new[inew],
811                                                          &fds_old[iold]))) {
812             fd = &fds_new[inew];
813             section = (MemoryRegionSection) {
814                 .fv = address_space_to_flatview(as),
815                 .offset_within_address_space = int128_get64(fd->addr.start),
816                 .size = fd->addr.size,
817             };
818             MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
819                                  fd->match_data, fd->data, fd->e);
820             ++inew;
821         } else {
822             ++iold;
823             ++inew;
824         }
825     }
826 }
827 
828 FlatView *address_space_get_flatview(AddressSpace *as)
829 {
830     FlatView *view;
831 
832     RCU_READ_LOCK_GUARD();
833     do {
834         view = address_space_to_flatview(as);
835         /* If somebody has replaced as->current_map concurrently,
836          * flatview_ref returns false.
837          */
838     } while (!flatview_ref(view));
839     return view;
840 }
841 
842 static void address_space_update_ioeventfds(AddressSpace *as)
843 {
844     FlatView *view;
845     FlatRange *fr;
846     unsigned ioeventfd_nb = 0;
847     unsigned ioeventfd_max;
848     MemoryRegionIoeventfd *ioeventfds;
849     AddrRange tmp;
850     unsigned i;
851 
852     if (!as->ioeventfd_notifiers) {
853         return;
854     }
855 
856     /*
857      * It is likely that the number of ioeventfds hasn't changed much, so use
858      * the previous size as the starting value, with some headroom to avoid
859      * gratuitous reallocations.
860      */
861     ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
862     ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
863 
864     view = address_space_get_flatview(as);
865     FOR_EACH_FLAT_RANGE(fr, view) {
866         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
867             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
868                                   int128_sub(fr->addr.start,
869                                              int128_make64(fr->offset_in_region)));
870             if (addrrange_intersects(fr->addr, tmp)) {
871                 ++ioeventfd_nb;
872                 if (ioeventfd_nb > ioeventfd_max) {
873                     ioeventfd_max = MAX(ioeventfd_max * 2, 4);
874                     ioeventfds = g_realloc(ioeventfds,
875                             ioeventfd_max * sizeof(*ioeventfds));
876                 }
877                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
878                 ioeventfds[ioeventfd_nb-1].addr = tmp;
879             }
880         }
881     }
882 
883     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
884                                      as->ioeventfds, as->ioeventfd_nb);
885 
886     g_free(as->ioeventfds);
887     as->ioeventfds = ioeventfds;
888     as->ioeventfd_nb = ioeventfd_nb;
889     flatview_unref(view);
890 }
891 
892 /*
893  * Notify the memory listeners about the coalesced IO change events of
894  * range `cmr'.  Only the part that has intersection of the specified
895  * FlatRange will be sent.
896  */
897 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
898                                            CoalescedMemoryRange *cmr, bool add)
899 {
900     AddrRange tmp;
901 
902     tmp = addrrange_shift(cmr->addr,
903                           int128_sub(fr->addr.start,
904                                      int128_make64(fr->offset_in_region)));
905     if (!addrrange_intersects(tmp, fr->addr)) {
906         return;
907     }
908     tmp = addrrange_intersection(tmp, fr->addr);
909 
910     if (add) {
911         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
912                                       int128_get64(tmp.start),
913                                       int128_get64(tmp.size));
914     } else {
915         MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
916                                       int128_get64(tmp.start),
917                                       int128_get64(tmp.size));
918     }
919 }
920 
921 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
922 {
923     CoalescedMemoryRange *cmr;
924 
925     QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
926         flat_range_coalesced_io_notify(fr, as, cmr, false);
927     }
928 }
929 
930 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
931 {
932     MemoryRegion *mr = fr->mr;
933     CoalescedMemoryRange *cmr;
934 
935     if (QTAILQ_EMPTY(&mr->coalesced)) {
936         return;
937     }
938 
939     QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
940         flat_range_coalesced_io_notify(fr, as, cmr, true);
941     }
942 }
943 
944 static void address_space_update_topology_pass(AddressSpace *as,
945                                                const FlatView *old_view,
946                                                const FlatView *new_view,
947                                                bool adding)
948 {
949     unsigned iold, inew;
950     FlatRange *frold, *frnew;
951 
952     /* Generate a symmetric difference of the old and new memory maps.
953      * Kill ranges in the old map, and instantiate ranges in the new map.
954      */
955     iold = inew = 0;
956     while (iold < old_view->nr || inew < new_view->nr) {
957         if (iold < old_view->nr) {
958             frold = &old_view->ranges[iold];
959         } else {
960             frold = NULL;
961         }
962         if (inew < new_view->nr) {
963             frnew = &new_view->ranges[inew];
964         } else {
965             frnew = NULL;
966         }
967 
968         if (frold
969             && (!frnew
970                 || int128_lt(frold->addr.start, frnew->addr.start)
971                 || (int128_eq(frold->addr.start, frnew->addr.start)
972                     && !flatrange_equal(frold, frnew)))) {
973             /* In old but not in new, or in both but attributes changed. */
974 
975             if (!adding) {
976                 flat_range_coalesced_io_del(frold, as);
977                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
978             }
979 
980             ++iold;
981         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
982             /* In both and unchanged (except logging may have changed) */
983 
984             if (adding) {
985                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
986                 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
987                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
988                                                   frold->dirty_log_mask,
989                                                   frnew->dirty_log_mask);
990                 }
991                 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
992                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
993                                                   frold->dirty_log_mask,
994                                                   frnew->dirty_log_mask);
995                 }
996             }
997 
998             ++iold;
999             ++inew;
1000         } else {
1001             /* In new */
1002 
1003             if (adding) {
1004                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
1005                 flat_range_coalesced_io_add(frnew, as);
1006             }
1007 
1008             ++inew;
1009         }
1010     }
1011 }
1012 
1013 static void flatviews_init(void)
1014 {
1015     static FlatView *empty_view;
1016 
1017     if (flat_views) {
1018         return;
1019     }
1020 
1021     flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
1022                                        (GDestroyNotify) flatview_unref);
1023     if (!empty_view) {
1024         empty_view = generate_memory_topology(NULL);
1025         /* We keep it alive forever in the global variable.  */
1026         flatview_ref(empty_view);
1027     } else {
1028         g_hash_table_replace(flat_views, NULL, empty_view);
1029         flatview_ref(empty_view);
1030     }
1031 }
1032 
1033 static void flatviews_reset(void)
1034 {
1035     AddressSpace *as;
1036 
1037     if (flat_views) {
1038         g_hash_table_unref(flat_views);
1039         flat_views = NULL;
1040     }
1041     flatviews_init();
1042 
1043     /* Render unique FVs */
1044     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1045         MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1046 
1047         if (g_hash_table_lookup(flat_views, physmr)) {
1048             continue;
1049         }
1050 
1051         generate_memory_topology(physmr);
1052     }
1053 }
1054 
1055 static void address_space_set_flatview(AddressSpace *as)
1056 {
1057     FlatView *old_view = address_space_to_flatview(as);
1058     MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1059     FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1060 
1061     assert(new_view);
1062 
1063     if (old_view == new_view) {
1064         return;
1065     }
1066 
1067     if (old_view) {
1068         flatview_ref(old_view);
1069     }
1070 
1071     flatview_ref(new_view);
1072 
1073     if (!QTAILQ_EMPTY(&as->listeners)) {
1074         FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1075 
1076         if (!old_view2) {
1077             old_view2 = &tmpview;
1078         }
1079         address_space_update_topology_pass(as, old_view2, new_view, false);
1080         address_space_update_topology_pass(as, old_view2, new_view, true);
1081     }
1082 
1083     /* Writes are protected by the BQL.  */
1084     qatomic_rcu_set(&as->current_map, new_view);
1085     if (old_view) {
1086         flatview_unref(old_view);
1087     }
1088 
1089     /* Note that all the old MemoryRegions are still alive up to this
1090      * point.  This relieves most MemoryListeners from the need to
1091      * ref/unref the MemoryRegions they get---unless they use them
1092      * outside the iothread mutex, in which case precise reference
1093      * counting is necessary.
1094      */
1095     if (old_view) {
1096         flatview_unref(old_view);
1097     }
1098 }
1099 
1100 static void address_space_update_topology(AddressSpace *as)
1101 {
1102     MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1103 
1104     flatviews_init();
1105     if (!g_hash_table_lookup(flat_views, physmr)) {
1106         generate_memory_topology(physmr);
1107     }
1108     address_space_set_flatview(as);
1109 }
1110 
1111 void memory_region_transaction_begin(void)
1112 {
1113     qemu_flush_coalesced_mmio_buffer();
1114     ++memory_region_transaction_depth;
1115 }
1116 
1117 void memory_region_transaction_commit(void)
1118 {
1119     AddressSpace *as;
1120 
1121     assert(memory_region_transaction_depth);
1122     assert(qemu_mutex_iothread_locked());
1123 
1124     --memory_region_transaction_depth;
1125     if (!memory_region_transaction_depth) {
1126         if (memory_region_update_pending) {
1127             flatviews_reset();
1128 
1129             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1130 
1131             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1132                 address_space_set_flatview(as);
1133                 address_space_update_ioeventfds(as);
1134             }
1135             memory_region_update_pending = false;
1136             ioeventfd_update_pending = false;
1137             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1138         } else if (ioeventfd_update_pending) {
1139             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1140                 address_space_update_ioeventfds(as);
1141             }
1142             ioeventfd_update_pending = false;
1143         }
1144    }
1145 }
1146 
1147 static void memory_region_destructor_none(MemoryRegion *mr)
1148 {
1149 }
1150 
1151 static void memory_region_destructor_ram(MemoryRegion *mr)
1152 {
1153     qemu_ram_free(mr->ram_block);
1154 }
1155 
1156 static bool memory_region_need_escape(char c)
1157 {
1158     return c == '/' || c == '[' || c == '\\' || c == ']';
1159 }
1160 
1161 static char *memory_region_escape_name(const char *name)
1162 {
1163     const char *p;
1164     char *escaped, *q;
1165     uint8_t c;
1166     size_t bytes = 0;
1167 
1168     for (p = name; *p; p++) {
1169         bytes += memory_region_need_escape(*p) ? 4 : 1;
1170     }
1171     if (bytes == p - name) {
1172        return g_memdup(name, bytes + 1);
1173     }
1174 
1175     escaped = g_malloc(bytes + 1);
1176     for (p = name, q = escaped; *p; p++) {
1177         c = *p;
1178         if (unlikely(memory_region_need_escape(c))) {
1179             *q++ = '\\';
1180             *q++ = 'x';
1181             *q++ = "0123456789abcdef"[c >> 4];
1182             c = "0123456789abcdef"[c & 15];
1183         }
1184         *q++ = c;
1185     }
1186     *q = 0;
1187     return escaped;
1188 }
1189 
1190 static void memory_region_do_init(MemoryRegion *mr,
1191                                   Object *owner,
1192                                   const char *name,
1193                                   uint64_t size)
1194 {
1195     mr->size = int128_make64(size);
1196     if (size == UINT64_MAX) {
1197         mr->size = int128_2_64();
1198     }
1199     mr->name = g_strdup(name);
1200     mr->owner = owner;
1201     mr->dev = (DeviceState *) object_dynamic_cast(mr->owner, TYPE_DEVICE);
1202     mr->ram_block = NULL;
1203 
1204     if (name) {
1205         char *escaped_name = memory_region_escape_name(name);
1206         char *name_array = g_strdup_printf("%s[*]", escaped_name);
1207 
1208         if (!owner) {
1209             owner = container_get(qdev_get_machine(), "/unattached");
1210         }
1211 
1212         object_property_add_child(owner, name_array, OBJECT(mr));
1213         object_unref(OBJECT(mr));
1214         g_free(name_array);
1215         g_free(escaped_name);
1216     }
1217 }
1218 
1219 void memory_region_init(MemoryRegion *mr,
1220                         Object *owner,
1221                         const char *name,
1222                         uint64_t size)
1223 {
1224     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1225     memory_region_do_init(mr, owner, name, size);
1226 }
1227 
1228 static void memory_region_get_container(Object *obj, Visitor *v,
1229                                         const char *name, void *opaque,
1230                                         Error **errp)
1231 {
1232     MemoryRegion *mr = MEMORY_REGION(obj);
1233     char *path = (char *)"";
1234 
1235     if (mr->container) {
1236         path = object_get_canonical_path(OBJECT(mr->container));
1237     }
1238     visit_type_str(v, name, &path, errp);
1239     if (mr->container) {
1240         g_free(path);
1241     }
1242 }
1243 
1244 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1245                                                const char *part)
1246 {
1247     MemoryRegion *mr = MEMORY_REGION(obj);
1248 
1249     return OBJECT(mr->container);
1250 }
1251 
1252 static void memory_region_get_priority(Object *obj, Visitor *v,
1253                                        const char *name, void *opaque,
1254                                        Error **errp)
1255 {
1256     MemoryRegion *mr = MEMORY_REGION(obj);
1257     int32_t value = mr->priority;
1258 
1259     visit_type_int32(v, name, &value, errp);
1260 }
1261 
1262 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1263                                    void *opaque, Error **errp)
1264 {
1265     MemoryRegion *mr = MEMORY_REGION(obj);
1266     uint64_t value = memory_region_size(mr);
1267 
1268     visit_type_uint64(v, name, &value, errp);
1269 }
1270 
1271 static void memory_region_initfn(Object *obj)
1272 {
1273     MemoryRegion *mr = MEMORY_REGION(obj);
1274     ObjectProperty *op;
1275 
1276     mr->ops = &unassigned_mem_ops;
1277     mr->enabled = true;
1278     mr->romd_mode = true;
1279     mr->destructor = memory_region_destructor_none;
1280     QTAILQ_INIT(&mr->subregions);
1281     QTAILQ_INIT(&mr->coalesced);
1282 
1283     op = object_property_add(OBJECT(mr), "container",
1284                              "link<" TYPE_MEMORY_REGION ">",
1285                              memory_region_get_container,
1286                              NULL, /* memory_region_set_container */
1287                              NULL, NULL);
1288     op->resolve = memory_region_resolve_container;
1289 
1290     object_property_add_uint64_ptr(OBJECT(mr), "addr",
1291                                    &mr->addr, OBJ_PROP_FLAG_READ);
1292     object_property_add(OBJECT(mr), "priority", "uint32",
1293                         memory_region_get_priority,
1294                         NULL, /* memory_region_set_priority */
1295                         NULL, NULL);
1296     object_property_add(OBJECT(mr), "size", "uint64",
1297                         memory_region_get_size,
1298                         NULL, /* memory_region_set_size, */
1299                         NULL, NULL);
1300 }
1301 
1302 static void iommu_memory_region_initfn(Object *obj)
1303 {
1304     MemoryRegion *mr = MEMORY_REGION(obj);
1305 
1306     mr->is_iommu = true;
1307 }
1308 
1309 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1310                                     unsigned size)
1311 {
1312 #ifdef DEBUG_UNASSIGNED
1313     printf("Unassigned mem read " HWADDR_FMT_plx "\n", addr);
1314 #endif
1315     return 0;
1316 }
1317 
1318 static void unassigned_mem_write(void *opaque, hwaddr addr,
1319                                  uint64_t val, unsigned size)
1320 {
1321 #ifdef DEBUG_UNASSIGNED
1322     printf("Unassigned mem write " HWADDR_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1323 #endif
1324 }
1325 
1326 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1327                                    unsigned size, bool is_write,
1328                                    MemTxAttrs attrs)
1329 {
1330     return false;
1331 }
1332 
1333 const MemoryRegionOps unassigned_mem_ops = {
1334     .valid.accepts = unassigned_mem_accepts,
1335     .endianness = DEVICE_NATIVE_ENDIAN,
1336 };
1337 
1338 static uint64_t memory_region_ram_device_read(void *opaque,
1339                                               hwaddr addr, unsigned size)
1340 {
1341     MemoryRegion *mr = opaque;
1342     uint64_t data = ldn_he_p(mr->ram_block->host + addr, size);
1343 
1344     trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1345 
1346     return data;
1347 }
1348 
1349 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1350                                            uint64_t data, unsigned size)
1351 {
1352     MemoryRegion *mr = opaque;
1353 
1354     trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1355 
1356     stn_he_p(mr->ram_block->host + addr, size, data);
1357 }
1358 
1359 static const MemoryRegionOps ram_device_mem_ops = {
1360     .read = memory_region_ram_device_read,
1361     .write = memory_region_ram_device_write,
1362     .endianness = DEVICE_HOST_ENDIAN,
1363     .valid = {
1364         .min_access_size = 1,
1365         .max_access_size = 8,
1366         .unaligned = true,
1367     },
1368     .impl = {
1369         .min_access_size = 1,
1370         .max_access_size = 8,
1371         .unaligned = true,
1372     },
1373 };
1374 
1375 bool memory_region_access_valid(MemoryRegion *mr,
1376                                 hwaddr addr,
1377                                 unsigned size,
1378                                 bool is_write,
1379                                 MemTxAttrs attrs)
1380 {
1381     if (mr->ops->valid.accepts
1382         && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
1383         qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1384                       ", size %u, region '%s', reason: rejected\n",
1385                       is_write ? "write" : "read",
1386                       addr, size, memory_region_name(mr));
1387         return false;
1388     }
1389 
1390     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1391         qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1392                       ", size %u, region '%s', reason: unaligned\n",
1393                       is_write ? "write" : "read",
1394                       addr, size, memory_region_name(mr));
1395         return false;
1396     }
1397 
1398     /* Treat zero as compatibility all valid */
1399     if (!mr->ops->valid.max_access_size) {
1400         return true;
1401     }
1402 
1403     if (size > mr->ops->valid.max_access_size
1404         || size < mr->ops->valid.min_access_size) {
1405         qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1406                       ", size %u, region '%s', reason: invalid size "
1407                       "(min:%u max:%u)\n",
1408                       is_write ? "write" : "read",
1409                       addr, size, memory_region_name(mr),
1410                       mr->ops->valid.min_access_size,
1411                       mr->ops->valid.max_access_size);
1412         return false;
1413     }
1414     return true;
1415 }
1416 
1417 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1418                                                 hwaddr addr,
1419                                                 uint64_t *pval,
1420                                                 unsigned size,
1421                                                 MemTxAttrs attrs)
1422 {
1423     *pval = 0;
1424 
1425     if (mr->ops->read) {
1426         return access_with_adjusted_size(addr, pval, size,
1427                                          mr->ops->impl.min_access_size,
1428                                          mr->ops->impl.max_access_size,
1429                                          memory_region_read_accessor,
1430                                          mr, attrs);
1431     } else {
1432         return access_with_adjusted_size(addr, pval, size,
1433                                          mr->ops->impl.min_access_size,
1434                                          mr->ops->impl.max_access_size,
1435                                          memory_region_read_with_attrs_accessor,
1436                                          mr, attrs);
1437     }
1438 }
1439 
1440 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1441                                         hwaddr addr,
1442                                         uint64_t *pval,
1443                                         MemOp op,
1444                                         MemTxAttrs attrs)
1445 {
1446     unsigned size = memop_size(op);
1447     MemTxResult r;
1448 
1449     if (mr->alias) {
1450         return memory_region_dispatch_read(mr->alias,
1451                                            mr->alias_offset + addr,
1452                                            pval, op, attrs);
1453     }
1454     if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1455         *pval = unassigned_mem_read(mr, addr, size);
1456         return MEMTX_DECODE_ERROR;
1457     }
1458 
1459     r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1460     adjust_endianness(mr, pval, op);
1461     return r;
1462 }
1463 
1464 /* Return true if an eventfd was signalled */
1465 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1466                                                     hwaddr addr,
1467                                                     uint64_t data,
1468                                                     unsigned size,
1469                                                     MemTxAttrs attrs)
1470 {
1471     MemoryRegionIoeventfd ioeventfd = {
1472         .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1473         .data = data,
1474     };
1475     unsigned i;
1476 
1477     for (i = 0; i < mr->ioeventfd_nb; i++) {
1478         ioeventfd.match_data = mr->ioeventfds[i].match_data;
1479         ioeventfd.e = mr->ioeventfds[i].e;
1480 
1481         if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1482             event_notifier_set(ioeventfd.e);
1483             return true;
1484         }
1485     }
1486 
1487     return false;
1488 }
1489 
1490 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1491                                          hwaddr addr,
1492                                          uint64_t data,
1493                                          MemOp op,
1494                                          MemTxAttrs attrs)
1495 {
1496     unsigned size = memop_size(op);
1497 
1498     if (mr->alias) {
1499         return memory_region_dispatch_write(mr->alias,
1500                                             mr->alias_offset + addr,
1501                                             data, op, attrs);
1502     }
1503     if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1504         unassigned_mem_write(mr, addr, data, size);
1505         return MEMTX_DECODE_ERROR;
1506     }
1507 
1508     adjust_endianness(mr, &data, op);
1509 
1510     /*
1511      * FIXME: it's not clear why under KVM the write would be processed
1512      * directly, instead of going through eventfd.  This probably should
1513      * test "tcg_enabled() || qtest_enabled()", or should just go away.
1514      */
1515     if (!kvm_enabled() &&
1516         memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1517         return MEMTX_OK;
1518     }
1519 
1520     if (mr->ops->write) {
1521         return access_with_adjusted_size(addr, &data, size,
1522                                          mr->ops->impl.min_access_size,
1523                                          mr->ops->impl.max_access_size,
1524                                          memory_region_write_accessor, mr,
1525                                          attrs);
1526     } else {
1527         return
1528             access_with_adjusted_size(addr, &data, size,
1529                                       mr->ops->impl.min_access_size,
1530                                       mr->ops->impl.max_access_size,
1531                                       memory_region_write_with_attrs_accessor,
1532                                       mr, attrs);
1533     }
1534 }
1535 
1536 void memory_region_init_io(MemoryRegion *mr,
1537                            Object *owner,
1538                            const MemoryRegionOps *ops,
1539                            void *opaque,
1540                            const char *name,
1541                            uint64_t size)
1542 {
1543     memory_region_init(mr, owner, name, size);
1544     mr->ops = ops ? ops : &unassigned_mem_ops;
1545     mr->opaque = opaque;
1546     mr->terminates = true;
1547 }
1548 
1549 bool memory_region_init_ram_nomigrate(MemoryRegion *mr,
1550                                       Object *owner,
1551                                       const char *name,
1552                                       uint64_t size,
1553                                       Error **errp)
1554 {
1555     return memory_region_init_ram_flags_nomigrate(mr, owner, name,
1556                                                   size, 0, errp);
1557 }
1558 
1559 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1560                                             Object *owner,
1561                                             const char *name,
1562                                             uint64_t size,
1563                                             uint32_t ram_flags,
1564                                             Error **errp)
1565 {
1566     Error *err = NULL;
1567     memory_region_init(mr, owner, name, size);
1568     mr->ram = true;
1569     mr->terminates = true;
1570     mr->destructor = memory_region_destructor_ram;
1571     mr->ram_block = qemu_ram_alloc(size, ram_flags, mr, &err);
1572     if (err) {
1573         mr->size = int128_zero();
1574         object_unparent(OBJECT(mr));
1575         error_propagate(errp, err);
1576         return false;
1577     }
1578     return true;
1579 }
1580 
1581 bool memory_region_init_resizeable_ram(MemoryRegion *mr,
1582                                        Object *owner,
1583                                        const char *name,
1584                                        uint64_t size,
1585                                        uint64_t max_size,
1586                                        void (*resized)(const char*,
1587                                                        uint64_t length,
1588                                                        void *host),
1589                                        Error **errp)
1590 {
1591     Error *err = NULL;
1592     memory_region_init(mr, owner, name, size);
1593     mr->ram = true;
1594     mr->terminates = true;
1595     mr->destructor = memory_region_destructor_ram;
1596     mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1597                                               mr, &err);
1598     if (err) {
1599         mr->size = int128_zero();
1600         object_unparent(OBJECT(mr));
1601         error_propagate(errp, err);
1602         return false;
1603     }
1604     return true;
1605 }
1606 
1607 #ifdef CONFIG_POSIX
1608 void memory_region_init_ram_from_file(MemoryRegion *mr,
1609                                       Object *owner,
1610                                       const char *name,
1611                                       uint64_t size,
1612                                       uint64_t align,
1613                                       uint32_t ram_flags,
1614                                       const char *path,
1615                                       ram_addr_t offset,
1616                                       Error **errp)
1617 {
1618     Error *err = NULL;
1619     memory_region_init(mr, owner, name, size);
1620     mr->ram = true;
1621     mr->readonly = !!(ram_flags & RAM_READONLY);
1622     mr->terminates = true;
1623     mr->destructor = memory_region_destructor_ram;
1624     mr->align = align;
1625     mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path,
1626                                              offset, &err);
1627     if (err) {
1628         mr->size = int128_zero();
1629         object_unparent(OBJECT(mr));
1630         error_propagate(errp, err);
1631     }
1632 }
1633 
1634 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1635                                     Object *owner,
1636                                     const char *name,
1637                                     uint64_t size,
1638                                     uint32_t ram_flags,
1639                                     int fd,
1640                                     ram_addr_t offset,
1641                                     Error **errp)
1642 {
1643     Error *err = NULL;
1644     memory_region_init(mr, owner, name, size);
1645     mr->ram = true;
1646     mr->readonly = !!(ram_flags & RAM_READONLY);
1647     mr->terminates = true;
1648     mr->destructor = memory_region_destructor_ram;
1649     mr->ram_block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset,
1650                                            &err);
1651     if (err) {
1652         mr->size = int128_zero();
1653         object_unparent(OBJECT(mr));
1654         error_propagate(errp, err);
1655     }
1656 }
1657 #endif
1658 
1659 void memory_region_init_ram_ptr(MemoryRegion *mr,
1660                                 Object *owner,
1661                                 const char *name,
1662                                 uint64_t size,
1663                                 void *ptr)
1664 {
1665     memory_region_init(mr, owner, name, size);
1666     mr->ram = true;
1667     mr->terminates = true;
1668     mr->destructor = memory_region_destructor_ram;
1669 
1670     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1671     assert(ptr != NULL);
1672     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1673 }
1674 
1675 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1676                                        Object *owner,
1677                                        const char *name,
1678                                        uint64_t size,
1679                                        void *ptr)
1680 {
1681     memory_region_init(mr, owner, name, size);
1682     mr->ram = true;
1683     mr->terminates = true;
1684     mr->ram_device = true;
1685     mr->ops = &ram_device_mem_ops;
1686     mr->opaque = mr;
1687     mr->destructor = memory_region_destructor_ram;
1688 
1689     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1690     assert(ptr != NULL);
1691     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1692 }
1693 
1694 void memory_region_init_alias(MemoryRegion *mr,
1695                               Object *owner,
1696                               const char *name,
1697                               MemoryRegion *orig,
1698                               hwaddr offset,
1699                               uint64_t size)
1700 {
1701     memory_region_init(mr, owner, name, size);
1702     mr->alias = orig;
1703     mr->alias_offset = offset;
1704 }
1705 
1706 bool memory_region_init_rom_nomigrate(MemoryRegion *mr,
1707                                       Object *owner,
1708                                       const char *name,
1709                                       uint64_t size,
1710                                       Error **errp)
1711 {
1712     if (!memory_region_init_ram_flags_nomigrate(mr, owner, name,
1713                                                 size, 0, errp)) {
1714          return false;
1715     }
1716     mr->readonly = true;
1717 
1718     return true;
1719 }
1720 
1721 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1722                                              Object *owner,
1723                                              const MemoryRegionOps *ops,
1724                                              void *opaque,
1725                                              const char *name,
1726                                              uint64_t size,
1727                                              Error **errp)
1728 {
1729     Error *err = NULL;
1730     assert(ops);
1731     memory_region_init(mr, owner, name, size);
1732     mr->ops = ops;
1733     mr->opaque = opaque;
1734     mr->terminates = true;
1735     mr->rom_device = true;
1736     mr->destructor = memory_region_destructor_ram;
1737     mr->ram_block = qemu_ram_alloc(size, 0, mr, &err);
1738     if (err) {
1739         mr->size = int128_zero();
1740         object_unparent(OBJECT(mr));
1741         error_propagate(errp, err);
1742         return false;
1743     }
1744     return true;
1745 }
1746 
1747 void memory_region_init_iommu(void *_iommu_mr,
1748                               size_t instance_size,
1749                               const char *mrtypename,
1750                               Object *owner,
1751                               const char *name,
1752                               uint64_t size)
1753 {
1754     struct IOMMUMemoryRegion *iommu_mr;
1755     struct MemoryRegion *mr;
1756 
1757     object_initialize(_iommu_mr, instance_size, mrtypename);
1758     mr = MEMORY_REGION(_iommu_mr);
1759     memory_region_do_init(mr, owner, name, size);
1760     iommu_mr = IOMMU_MEMORY_REGION(mr);
1761     mr->terminates = true;  /* then re-forwards */
1762     QLIST_INIT(&iommu_mr->iommu_notify);
1763     iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1764 }
1765 
1766 static void memory_region_finalize(Object *obj)
1767 {
1768     MemoryRegion *mr = MEMORY_REGION(obj);
1769 
1770     assert(!mr->container);
1771 
1772     /* We know the region is not visible in any address space (it
1773      * does not have a container and cannot be a root either because
1774      * it has no references, so we can blindly clear mr->enabled.
1775      * memory_region_set_enabled instead could trigger a transaction
1776      * and cause an infinite loop.
1777      */
1778     mr->enabled = false;
1779     memory_region_transaction_begin();
1780     while (!QTAILQ_EMPTY(&mr->subregions)) {
1781         MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1782         memory_region_del_subregion(mr, subregion);
1783     }
1784     memory_region_transaction_commit();
1785 
1786     mr->destructor(mr);
1787     memory_region_clear_coalescing(mr);
1788     g_free((char *)mr->name);
1789     g_free(mr->ioeventfds);
1790 }
1791 
1792 Object *memory_region_owner(MemoryRegion *mr)
1793 {
1794     Object *obj = OBJECT(mr);
1795     return obj->parent;
1796 }
1797 
1798 void memory_region_ref(MemoryRegion *mr)
1799 {
1800     /* MMIO callbacks most likely will access data that belongs
1801      * to the owner, hence the need to ref/unref the owner whenever
1802      * the memory region is in use.
1803      *
1804      * The memory region is a child of its owner.  As long as the
1805      * owner doesn't call unparent itself on the memory region,
1806      * ref-ing the owner will also keep the memory region alive.
1807      * Memory regions without an owner are supposed to never go away;
1808      * we do not ref/unref them because it slows down DMA sensibly.
1809      */
1810     if (mr && mr->owner) {
1811         object_ref(mr->owner);
1812     }
1813 }
1814 
1815 void memory_region_unref(MemoryRegion *mr)
1816 {
1817     if (mr && mr->owner) {
1818         object_unref(mr->owner);
1819     }
1820 }
1821 
1822 uint64_t memory_region_size(MemoryRegion *mr)
1823 {
1824     if (int128_eq(mr->size, int128_2_64())) {
1825         return UINT64_MAX;
1826     }
1827     return int128_get64(mr->size);
1828 }
1829 
1830 const char *memory_region_name(const MemoryRegion *mr)
1831 {
1832     if (!mr->name) {
1833         ((MemoryRegion *)mr)->name =
1834             g_strdup(object_get_canonical_path_component(OBJECT(mr)));
1835     }
1836     return mr->name;
1837 }
1838 
1839 bool memory_region_is_ram_device(MemoryRegion *mr)
1840 {
1841     return mr->ram_device;
1842 }
1843 
1844 bool memory_region_is_protected(MemoryRegion *mr)
1845 {
1846     return mr->ram && (mr->ram_block->flags & RAM_PROTECTED);
1847 }
1848 
1849 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1850 {
1851     uint8_t mask = mr->dirty_log_mask;
1852     RAMBlock *rb = mr->ram_block;
1853 
1854     if (global_dirty_tracking && ((rb && qemu_ram_is_migratable(rb)) ||
1855                              memory_region_is_iommu(mr))) {
1856         mask |= (1 << DIRTY_MEMORY_MIGRATION);
1857     }
1858 
1859     if (tcg_enabled() && rb) {
1860         /* TCG only cares about dirty memory logging for RAM, not IOMMU.  */
1861         mask |= (1 << DIRTY_MEMORY_CODE);
1862     }
1863     return mask;
1864 }
1865 
1866 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1867 {
1868     return memory_region_get_dirty_log_mask(mr) & (1 << client);
1869 }
1870 
1871 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1872                                                    Error **errp)
1873 {
1874     IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1875     IOMMUNotifier *iommu_notifier;
1876     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1877     int ret = 0;
1878 
1879     IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1880         flags |= iommu_notifier->notifier_flags;
1881     }
1882 
1883     if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1884         ret = imrc->notify_flag_changed(iommu_mr,
1885                                         iommu_mr->iommu_notify_flags,
1886                                         flags, errp);
1887     }
1888 
1889     if (!ret) {
1890         iommu_mr->iommu_notify_flags = flags;
1891     }
1892     return ret;
1893 }
1894 
1895 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1896                                            uint64_t page_size_mask,
1897                                            Error **errp)
1898 {
1899     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1900     int ret = 0;
1901 
1902     if (imrc->iommu_set_page_size_mask) {
1903         ret = imrc->iommu_set_page_size_mask(iommu_mr, page_size_mask, errp);
1904     }
1905     return ret;
1906 }
1907 
1908 int memory_region_iommu_set_iova_ranges(IOMMUMemoryRegion *iommu_mr,
1909                                         GList *iova_ranges,
1910                                         Error **errp)
1911 {
1912     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1913     int ret = 0;
1914 
1915     if (imrc->iommu_set_iova_ranges) {
1916         ret = imrc->iommu_set_iova_ranges(iommu_mr, iova_ranges, errp);
1917     }
1918     return ret;
1919 }
1920 
1921 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1922                                           IOMMUNotifier *n, Error **errp)
1923 {
1924     IOMMUMemoryRegion *iommu_mr;
1925     int ret;
1926 
1927     if (mr->alias) {
1928         return memory_region_register_iommu_notifier(mr->alias, n, errp);
1929     }
1930 
1931     /* We need to register for at least one bitfield */
1932     iommu_mr = IOMMU_MEMORY_REGION(mr);
1933     assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1934     assert(n->start <= n->end);
1935     assert(n->iommu_idx >= 0 &&
1936            n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1937 
1938     QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1939     ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1940     if (ret) {
1941         QLIST_REMOVE(n, node);
1942     }
1943     return ret;
1944 }
1945 
1946 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1947 {
1948     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1949 
1950     if (imrc->get_min_page_size) {
1951         return imrc->get_min_page_size(iommu_mr);
1952     }
1953     return TARGET_PAGE_SIZE;
1954 }
1955 
1956 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1957 {
1958     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1959     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1960     hwaddr addr, granularity;
1961     IOMMUTLBEntry iotlb;
1962 
1963     /* If the IOMMU has its own replay callback, override */
1964     if (imrc->replay) {
1965         imrc->replay(iommu_mr, n);
1966         return;
1967     }
1968 
1969     granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1970 
1971     for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1972         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1973         if (iotlb.perm != IOMMU_NONE) {
1974             n->notify(n, &iotlb);
1975         }
1976 
1977         /* if (2^64 - MR size) < granularity, it's possible to get an
1978          * infinite loop here.  This should catch such a wraparound */
1979         if ((addr + granularity) < addr) {
1980             break;
1981         }
1982     }
1983 }
1984 
1985 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1986                                              IOMMUNotifier *n)
1987 {
1988     IOMMUMemoryRegion *iommu_mr;
1989 
1990     if (mr->alias) {
1991         memory_region_unregister_iommu_notifier(mr->alias, n);
1992         return;
1993     }
1994     QLIST_REMOVE(n, node);
1995     iommu_mr = IOMMU_MEMORY_REGION(mr);
1996     memory_region_update_iommu_notify_flags(iommu_mr, NULL);
1997 }
1998 
1999 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
2000                                     IOMMUTLBEvent *event)
2001 {
2002     IOMMUTLBEntry *entry = &event->entry;
2003     hwaddr entry_end = entry->iova + entry->addr_mask;
2004     IOMMUTLBEntry tmp = *entry;
2005 
2006     if (event->type == IOMMU_NOTIFIER_UNMAP) {
2007         assert(entry->perm == IOMMU_NONE);
2008     }
2009 
2010     /*
2011      * Skip the notification if the notification does not overlap
2012      * with registered range.
2013      */
2014     if (notifier->start > entry_end || notifier->end < entry->iova) {
2015         return;
2016     }
2017 
2018     if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
2019         /* Crop (iova, addr_mask) to range */
2020         tmp.iova = MAX(tmp.iova, notifier->start);
2021         tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
2022     } else {
2023         assert(entry->iova >= notifier->start && entry_end <= notifier->end);
2024     }
2025 
2026     if (event->type & notifier->notifier_flags) {
2027         notifier->notify(notifier, &tmp);
2028     }
2029 }
2030 
2031 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier)
2032 {
2033     IOMMUTLBEvent event;
2034 
2035     event.type = IOMMU_NOTIFIER_UNMAP;
2036     event.entry.target_as = &address_space_memory;
2037     event.entry.iova = notifier->start;
2038     event.entry.perm = IOMMU_NONE;
2039     event.entry.addr_mask = notifier->end - notifier->start;
2040 
2041     memory_region_notify_iommu_one(notifier, &event);
2042 }
2043 
2044 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
2045                                 int iommu_idx,
2046                                 IOMMUTLBEvent event)
2047 {
2048     IOMMUNotifier *iommu_notifier;
2049 
2050     assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
2051 
2052     IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
2053         if (iommu_notifier->iommu_idx == iommu_idx) {
2054             memory_region_notify_iommu_one(iommu_notifier, &event);
2055         }
2056     }
2057 }
2058 
2059 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
2060                                  enum IOMMUMemoryRegionAttr attr,
2061                                  void *data)
2062 {
2063     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2064 
2065     if (!imrc->get_attr) {
2066         return -EINVAL;
2067     }
2068 
2069     return imrc->get_attr(iommu_mr, attr, data);
2070 }
2071 
2072 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
2073                                        MemTxAttrs attrs)
2074 {
2075     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2076 
2077     if (!imrc->attrs_to_index) {
2078         return 0;
2079     }
2080 
2081     return imrc->attrs_to_index(iommu_mr, attrs);
2082 }
2083 
2084 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2085 {
2086     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2087 
2088     if (!imrc->num_indexes) {
2089         return 1;
2090     }
2091 
2092     return imrc->num_indexes(iommu_mr);
2093 }
2094 
2095 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr)
2096 {
2097     if (!memory_region_is_ram(mr)) {
2098         return NULL;
2099     }
2100     return mr->rdm;
2101 }
2102 
2103 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2104                                            RamDiscardManager *rdm)
2105 {
2106     g_assert(memory_region_is_ram(mr));
2107     g_assert(!rdm || !mr->rdm);
2108     mr->rdm = rdm;
2109 }
2110 
2111 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
2112                                                  const MemoryRegion *mr)
2113 {
2114     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2115 
2116     g_assert(rdmc->get_min_granularity);
2117     return rdmc->get_min_granularity(rdm, mr);
2118 }
2119 
2120 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
2121                                       const MemoryRegionSection *section)
2122 {
2123     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2124 
2125     g_assert(rdmc->is_populated);
2126     return rdmc->is_populated(rdm, section);
2127 }
2128 
2129 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
2130                                          MemoryRegionSection *section,
2131                                          ReplayRamPopulate replay_fn,
2132                                          void *opaque)
2133 {
2134     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2135 
2136     g_assert(rdmc->replay_populated);
2137     return rdmc->replay_populated(rdm, section, replay_fn, opaque);
2138 }
2139 
2140 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
2141                                           MemoryRegionSection *section,
2142                                           ReplayRamDiscard replay_fn,
2143                                           void *opaque)
2144 {
2145     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2146 
2147     g_assert(rdmc->replay_discarded);
2148     rdmc->replay_discarded(rdm, section, replay_fn, opaque);
2149 }
2150 
2151 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
2152                                            RamDiscardListener *rdl,
2153                                            MemoryRegionSection *section)
2154 {
2155     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2156 
2157     g_assert(rdmc->register_listener);
2158     rdmc->register_listener(rdm, rdl, section);
2159 }
2160 
2161 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
2162                                              RamDiscardListener *rdl)
2163 {
2164     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2165 
2166     g_assert(rdmc->unregister_listener);
2167     rdmc->unregister_listener(rdm, rdl);
2168 }
2169 
2170 /* Called with rcu_read_lock held.  */
2171 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
2172                           ram_addr_t *ram_addr, bool *read_only,
2173                           bool *mr_has_discard_manager)
2174 {
2175     MemoryRegion *mr;
2176     hwaddr xlat;
2177     hwaddr len = iotlb->addr_mask + 1;
2178     bool writable = iotlb->perm & IOMMU_WO;
2179 
2180     if (mr_has_discard_manager) {
2181         *mr_has_discard_manager = false;
2182     }
2183     /*
2184      * The IOMMU TLB entry we have just covers translation through
2185      * this IOMMU to its immediate target.  We need to translate
2186      * it the rest of the way through to memory.
2187      */
2188     mr = address_space_translate(&address_space_memory, iotlb->translated_addr,
2189                                  &xlat, &len, writable, MEMTXATTRS_UNSPECIFIED);
2190     if (!memory_region_is_ram(mr)) {
2191         error_report("iommu map to non memory area %" HWADDR_PRIx "", xlat);
2192         return false;
2193     } else if (memory_region_has_ram_discard_manager(mr)) {
2194         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(mr);
2195         MemoryRegionSection tmp = {
2196             .mr = mr,
2197             .offset_within_region = xlat,
2198             .size = int128_make64(len),
2199         };
2200         if (mr_has_discard_manager) {
2201             *mr_has_discard_manager = true;
2202         }
2203         /*
2204          * Malicious VMs can map memory into the IOMMU, which is expected
2205          * to remain discarded. vfio will pin all pages, populating memory.
2206          * Disallow that. vmstate priorities make sure any RamDiscardManager
2207          * were already restored before IOMMUs are restored.
2208          */
2209         if (!ram_discard_manager_is_populated(rdm, &tmp)) {
2210             error_report("iommu map to discarded memory (e.g., unplugged via"
2211                          " virtio-mem): %" HWADDR_PRIx "",
2212                          iotlb->translated_addr);
2213             return false;
2214         }
2215     }
2216 
2217     /*
2218      * Translation truncates length to the IOMMU page size,
2219      * check that it did not truncate too much.
2220      */
2221     if (len & iotlb->addr_mask) {
2222         error_report("iommu has granularity incompatible with target AS");
2223         return false;
2224     }
2225 
2226     if (vaddr) {
2227         *vaddr = memory_region_get_ram_ptr(mr) + xlat;
2228     }
2229 
2230     if (ram_addr) {
2231         *ram_addr = memory_region_get_ram_addr(mr) + xlat;
2232     }
2233 
2234     if (read_only) {
2235         *read_only = !writable || mr->readonly;
2236     }
2237 
2238     return true;
2239 }
2240 
2241 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2242 {
2243     uint8_t mask = 1 << client;
2244     uint8_t old_logging;
2245 
2246     assert(client == DIRTY_MEMORY_VGA);
2247     old_logging = mr->vga_logging_count;
2248     mr->vga_logging_count += log ? 1 : -1;
2249     if (!!old_logging == !!mr->vga_logging_count) {
2250         return;
2251     }
2252 
2253     memory_region_transaction_begin();
2254     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2255     memory_region_update_pending |= mr->enabled;
2256     memory_region_transaction_commit();
2257 }
2258 
2259 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2260                              hwaddr size)
2261 {
2262     assert(mr->ram_block);
2263     cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2264                                         size,
2265                                         memory_region_get_dirty_log_mask(mr));
2266 }
2267 
2268 /*
2269  * If memory region `mr' is NULL, do global sync.  Otherwise, sync
2270  * dirty bitmap for the specified memory region.
2271  */
2272 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr, bool last_stage)
2273 {
2274     MemoryListener *listener;
2275     AddressSpace *as;
2276     FlatView *view;
2277     FlatRange *fr;
2278 
2279     /* If the same address space has multiple log_sync listeners, we
2280      * visit that address space's FlatView multiple times.  But because
2281      * log_sync listeners are rare, it's still cheaper than walking each
2282      * address space once.
2283      */
2284     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2285         if (listener->log_sync) {
2286             as = listener->address_space;
2287             view = address_space_get_flatview(as);
2288             FOR_EACH_FLAT_RANGE(fr, view) {
2289                 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2290                     MemoryRegionSection mrs = section_from_flat_range(fr, view);
2291                     listener->log_sync(listener, &mrs);
2292                 }
2293             }
2294             flatview_unref(view);
2295             trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 0);
2296         } else if (listener->log_sync_global) {
2297             /*
2298              * No matter whether MR is specified, what we can do here
2299              * is to do a global sync, because we are not capable to
2300              * sync in a finer granularity.
2301              */
2302             listener->log_sync_global(listener, last_stage);
2303             trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 1);
2304         }
2305     }
2306 }
2307 
2308 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2309                                       hwaddr len)
2310 {
2311     MemoryRegionSection mrs;
2312     MemoryListener *listener;
2313     AddressSpace *as;
2314     FlatView *view;
2315     FlatRange *fr;
2316     hwaddr sec_start, sec_end, sec_size;
2317 
2318     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2319         if (!listener->log_clear) {
2320             continue;
2321         }
2322         as = listener->address_space;
2323         view = address_space_get_flatview(as);
2324         FOR_EACH_FLAT_RANGE(fr, view) {
2325             if (!fr->dirty_log_mask || fr->mr != mr) {
2326                 /*
2327                  * Clear dirty bitmap operation only applies to those
2328                  * regions whose dirty logging is at least enabled
2329                  */
2330                 continue;
2331             }
2332 
2333             mrs = section_from_flat_range(fr, view);
2334 
2335             sec_start = MAX(mrs.offset_within_region, start);
2336             sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2337             sec_end = MIN(sec_end, start + len);
2338 
2339             if (sec_start >= sec_end) {
2340                 /*
2341                  * If this memory region section has no intersection
2342                  * with the requested range, skip.
2343                  */
2344                 continue;
2345             }
2346 
2347             /* Valid case; shrink the section if needed */
2348             mrs.offset_within_address_space +=
2349                 sec_start - mrs.offset_within_region;
2350             mrs.offset_within_region = sec_start;
2351             sec_size = sec_end - sec_start;
2352             mrs.size = int128_make64(sec_size);
2353             listener->log_clear(listener, &mrs);
2354         }
2355         flatview_unref(view);
2356     }
2357 }
2358 
2359 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2360                                                             hwaddr addr,
2361                                                             hwaddr size,
2362                                                             unsigned client)
2363 {
2364     DirtyBitmapSnapshot *snapshot;
2365     assert(mr->ram_block);
2366     memory_region_sync_dirty_bitmap(mr, false);
2367     snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2368     memory_global_after_dirty_log_sync();
2369     return snapshot;
2370 }
2371 
2372 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2373                                       hwaddr addr, hwaddr size)
2374 {
2375     assert(mr->ram_block);
2376     return cpu_physical_memory_snapshot_get_dirty(snap,
2377                 memory_region_get_ram_addr(mr) + addr, size);
2378 }
2379 
2380 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2381 {
2382     if (mr->readonly != readonly) {
2383         memory_region_transaction_begin();
2384         mr->readonly = readonly;
2385         memory_region_update_pending |= mr->enabled;
2386         memory_region_transaction_commit();
2387     }
2388 }
2389 
2390 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2391 {
2392     if (mr->nonvolatile != nonvolatile) {
2393         memory_region_transaction_begin();
2394         mr->nonvolatile = nonvolatile;
2395         memory_region_update_pending |= mr->enabled;
2396         memory_region_transaction_commit();
2397     }
2398 }
2399 
2400 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2401 {
2402     if (mr->romd_mode != romd_mode) {
2403         memory_region_transaction_begin();
2404         mr->romd_mode = romd_mode;
2405         memory_region_update_pending |= mr->enabled;
2406         memory_region_transaction_commit();
2407     }
2408 }
2409 
2410 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2411                                hwaddr size, unsigned client)
2412 {
2413     assert(mr->ram_block);
2414     cpu_physical_memory_test_and_clear_dirty(
2415         memory_region_get_ram_addr(mr) + addr, size, client);
2416 }
2417 
2418 int memory_region_get_fd(MemoryRegion *mr)
2419 {
2420     RCU_READ_LOCK_GUARD();
2421     while (mr->alias) {
2422         mr = mr->alias;
2423     }
2424     return mr->ram_block->fd;
2425 }
2426 
2427 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2428 {
2429     uint64_t offset = 0;
2430 
2431     RCU_READ_LOCK_GUARD();
2432     while (mr->alias) {
2433         offset += mr->alias_offset;
2434         mr = mr->alias;
2435     }
2436     assert(mr->ram_block);
2437     return qemu_map_ram_ptr(mr->ram_block, offset);
2438 }
2439 
2440 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2441 {
2442     RAMBlock *block;
2443 
2444     block = qemu_ram_block_from_host(ptr, false, offset);
2445     if (!block) {
2446         return NULL;
2447     }
2448 
2449     return block->mr;
2450 }
2451 
2452 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2453 {
2454     return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2455 }
2456 
2457 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2458 {
2459     assert(mr->ram_block);
2460 
2461     qemu_ram_resize(mr->ram_block, newsize, errp);
2462 }
2463 
2464 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
2465 {
2466     if (mr->ram_block) {
2467         qemu_ram_msync(mr->ram_block, addr, size);
2468     }
2469 }
2470 
2471 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2472 {
2473     /*
2474      * Might be extended case needed to cover
2475      * different types of memory regions
2476      */
2477     if (mr->dirty_log_mask) {
2478         memory_region_msync(mr, addr, size);
2479     }
2480 }
2481 
2482 /*
2483  * Call proper memory listeners about the change on the newly
2484  * added/removed CoalescedMemoryRange.
2485  */
2486 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2487                                                  CoalescedMemoryRange *cmr,
2488                                                  bool add)
2489 {
2490     AddressSpace *as;
2491     FlatView *view;
2492     FlatRange *fr;
2493 
2494     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2495         view = address_space_get_flatview(as);
2496         FOR_EACH_FLAT_RANGE(fr, view) {
2497             if (fr->mr == mr) {
2498                 flat_range_coalesced_io_notify(fr, as, cmr, add);
2499             }
2500         }
2501         flatview_unref(view);
2502     }
2503 }
2504 
2505 void memory_region_set_coalescing(MemoryRegion *mr)
2506 {
2507     memory_region_clear_coalescing(mr);
2508     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2509 }
2510 
2511 void memory_region_add_coalescing(MemoryRegion *mr,
2512                                   hwaddr offset,
2513                                   uint64_t size)
2514 {
2515     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2516 
2517     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2518     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2519     memory_region_update_coalesced_range(mr, cmr, true);
2520     memory_region_set_flush_coalesced(mr);
2521 }
2522 
2523 void memory_region_clear_coalescing(MemoryRegion *mr)
2524 {
2525     CoalescedMemoryRange *cmr;
2526 
2527     if (QTAILQ_EMPTY(&mr->coalesced)) {
2528         return;
2529     }
2530 
2531     qemu_flush_coalesced_mmio_buffer();
2532     mr->flush_coalesced_mmio = false;
2533 
2534     while (!QTAILQ_EMPTY(&mr->coalesced)) {
2535         cmr = QTAILQ_FIRST(&mr->coalesced);
2536         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2537         memory_region_update_coalesced_range(mr, cmr, false);
2538         g_free(cmr);
2539     }
2540 }
2541 
2542 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2543 {
2544     mr->flush_coalesced_mmio = true;
2545 }
2546 
2547 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2548 {
2549     qemu_flush_coalesced_mmio_buffer();
2550     if (QTAILQ_EMPTY(&mr->coalesced)) {
2551         mr->flush_coalesced_mmio = false;
2552     }
2553 }
2554 
2555 void memory_region_add_eventfd(MemoryRegion *mr,
2556                                hwaddr addr,
2557                                unsigned size,
2558                                bool match_data,
2559                                uint64_t data,
2560                                EventNotifier *e)
2561 {
2562     MemoryRegionIoeventfd mrfd = {
2563         .addr.start = int128_make64(addr),
2564         .addr.size = int128_make64(size),
2565         .match_data = match_data,
2566         .data = data,
2567         .e = e,
2568     };
2569     unsigned i;
2570 
2571     if (size) {
2572         adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2573     }
2574     memory_region_transaction_begin();
2575     for (i = 0; i < mr->ioeventfd_nb; ++i) {
2576         if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2577             break;
2578         }
2579     }
2580     ++mr->ioeventfd_nb;
2581     mr->ioeventfds = g_realloc(mr->ioeventfds,
2582                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2583     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2584             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2585     mr->ioeventfds[i] = mrfd;
2586     ioeventfd_update_pending |= mr->enabled;
2587     memory_region_transaction_commit();
2588 }
2589 
2590 void memory_region_del_eventfd(MemoryRegion *mr,
2591                                hwaddr addr,
2592                                unsigned size,
2593                                bool match_data,
2594                                uint64_t data,
2595                                EventNotifier *e)
2596 {
2597     MemoryRegionIoeventfd mrfd = {
2598         .addr.start = int128_make64(addr),
2599         .addr.size = int128_make64(size),
2600         .match_data = match_data,
2601         .data = data,
2602         .e = e,
2603     };
2604     unsigned i;
2605 
2606     if (size) {
2607         adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2608     }
2609     memory_region_transaction_begin();
2610     for (i = 0; i < mr->ioeventfd_nb; ++i) {
2611         if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2612             break;
2613         }
2614     }
2615     assert(i != mr->ioeventfd_nb);
2616     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2617             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2618     --mr->ioeventfd_nb;
2619     mr->ioeventfds = g_realloc(mr->ioeventfds,
2620                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2621     ioeventfd_update_pending |= mr->enabled;
2622     memory_region_transaction_commit();
2623 }
2624 
2625 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2626 {
2627     MemoryRegion *mr = subregion->container;
2628     MemoryRegion *other;
2629 
2630     memory_region_transaction_begin();
2631 
2632     memory_region_ref(subregion);
2633     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2634         if (subregion->priority >= other->priority) {
2635             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2636             goto done;
2637         }
2638     }
2639     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2640 done:
2641     memory_region_update_pending |= mr->enabled && subregion->enabled;
2642     memory_region_transaction_commit();
2643 }
2644 
2645 static void memory_region_add_subregion_common(MemoryRegion *mr,
2646                                                hwaddr offset,
2647                                                MemoryRegion *subregion)
2648 {
2649     MemoryRegion *alias;
2650 
2651     assert(!subregion->container);
2652     subregion->container = mr;
2653     for (alias = subregion->alias; alias; alias = alias->alias) {
2654         alias->mapped_via_alias++;
2655     }
2656     subregion->addr = offset;
2657     memory_region_update_container_subregions(subregion);
2658 }
2659 
2660 void memory_region_add_subregion(MemoryRegion *mr,
2661                                  hwaddr offset,
2662                                  MemoryRegion *subregion)
2663 {
2664     subregion->priority = 0;
2665     memory_region_add_subregion_common(mr, offset, subregion);
2666 }
2667 
2668 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2669                                          hwaddr offset,
2670                                          MemoryRegion *subregion,
2671                                          int priority)
2672 {
2673     subregion->priority = priority;
2674     memory_region_add_subregion_common(mr, offset, subregion);
2675 }
2676 
2677 void memory_region_del_subregion(MemoryRegion *mr,
2678                                  MemoryRegion *subregion)
2679 {
2680     MemoryRegion *alias;
2681 
2682     memory_region_transaction_begin();
2683     assert(subregion->container == mr);
2684     subregion->container = NULL;
2685     for (alias = subregion->alias; alias; alias = alias->alias) {
2686         alias->mapped_via_alias--;
2687         assert(alias->mapped_via_alias >= 0);
2688     }
2689     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2690     memory_region_unref(subregion);
2691     memory_region_update_pending |= mr->enabled && subregion->enabled;
2692     memory_region_transaction_commit();
2693 }
2694 
2695 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2696 {
2697     if (enabled == mr->enabled) {
2698         return;
2699     }
2700     memory_region_transaction_begin();
2701     mr->enabled = enabled;
2702     memory_region_update_pending = true;
2703     memory_region_transaction_commit();
2704 }
2705 
2706 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2707 {
2708     Int128 s = int128_make64(size);
2709 
2710     if (size == UINT64_MAX) {
2711         s = int128_2_64();
2712     }
2713     if (int128_eq(s, mr->size)) {
2714         return;
2715     }
2716     memory_region_transaction_begin();
2717     mr->size = s;
2718     memory_region_update_pending = true;
2719     memory_region_transaction_commit();
2720 }
2721 
2722 static void memory_region_readd_subregion(MemoryRegion *mr)
2723 {
2724     MemoryRegion *container = mr->container;
2725 
2726     if (container) {
2727         memory_region_transaction_begin();
2728         memory_region_ref(mr);
2729         memory_region_del_subregion(container, mr);
2730         memory_region_add_subregion_common(container, mr->addr, mr);
2731         memory_region_unref(mr);
2732         memory_region_transaction_commit();
2733     }
2734 }
2735 
2736 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2737 {
2738     if (addr != mr->addr) {
2739         mr->addr = addr;
2740         memory_region_readd_subregion(mr);
2741     }
2742 }
2743 
2744 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2745 {
2746     assert(mr->alias);
2747 
2748     if (offset == mr->alias_offset) {
2749         return;
2750     }
2751 
2752     memory_region_transaction_begin();
2753     mr->alias_offset = offset;
2754     memory_region_update_pending |= mr->enabled;
2755     memory_region_transaction_commit();
2756 }
2757 
2758 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable)
2759 {
2760     if (unmergeable == mr->unmergeable) {
2761         return;
2762     }
2763 
2764     memory_region_transaction_begin();
2765     mr->unmergeable = unmergeable;
2766     memory_region_update_pending |= mr->enabled;
2767     memory_region_transaction_commit();
2768 }
2769 
2770 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2771 {
2772     return mr->align;
2773 }
2774 
2775 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2776 {
2777     const AddrRange *addr = addr_;
2778     const FlatRange *fr = fr_;
2779 
2780     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2781         return -1;
2782     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2783         return 1;
2784     }
2785     return 0;
2786 }
2787 
2788 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2789 {
2790     return bsearch(&addr, view->ranges, view->nr,
2791                    sizeof(FlatRange), cmp_flatrange_addr);
2792 }
2793 
2794 bool memory_region_is_mapped(MemoryRegion *mr)
2795 {
2796     return !!mr->container || mr->mapped_via_alias;
2797 }
2798 
2799 /* Same as memory_region_find, but it does not add a reference to the
2800  * returned region.  It must be called from an RCU critical section.
2801  */
2802 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2803                                                   hwaddr addr, uint64_t size)
2804 {
2805     MemoryRegionSection ret = { .mr = NULL };
2806     MemoryRegion *root;
2807     AddressSpace *as;
2808     AddrRange range;
2809     FlatView *view;
2810     FlatRange *fr;
2811 
2812     addr += mr->addr;
2813     for (root = mr; root->container; ) {
2814         root = root->container;
2815         addr += root->addr;
2816     }
2817 
2818     as = memory_region_to_address_space(root);
2819     if (!as) {
2820         return ret;
2821     }
2822     range = addrrange_make(int128_make64(addr), int128_make64(size));
2823 
2824     view = address_space_to_flatview(as);
2825     fr = flatview_lookup(view, range);
2826     if (!fr) {
2827         return ret;
2828     }
2829 
2830     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2831         --fr;
2832     }
2833 
2834     ret.mr = fr->mr;
2835     ret.fv = view;
2836     range = addrrange_intersection(range, fr->addr);
2837     ret.offset_within_region = fr->offset_in_region;
2838     ret.offset_within_region += int128_get64(int128_sub(range.start,
2839                                                         fr->addr.start));
2840     ret.size = range.size;
2841     ret.offset_within_address_space = int128_get64(range.start);
2842     ret.readonly = fr->readonly;
2843     ret.nonvolatile = fr->nonvolatile;
2844     return ret;
2845 }
2846 
2847 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2848                                        hwaddr addr, uint64_t size)
2849 {
2850     MemoryRegionSection ret;
2851     RCU_READ_LOCK_GUARD();
2852     ret = memory_region_find_rcu(mr, addr, size);
2853     if (ret.mr) {
2854         memory_region_ref(ret.mr);
2855     }
2856     return ret;
2857 }
2858 
2859 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s)
2860 {
2861     MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1);
2862 
2863     *tmp = *s;
2864     if (tmp->mr) {
2865         memory_region_ref(tmp->mr);
2866     }
2867     if (tmp->fv) {
2868         bool ret  = flatview_ref(tmp->fv);
2869 
2870         g_assert(ret);
2871     }
2872     return tmp;
2873 }
2874 
2875 void memory_region_section_free_copy(MemoryRegionSection *s)
2876 {
2877     if (s->fv) {
2878         flatview_unref(s->fv);
2879     }
2880     if (s->mr) {
2881         memory_region_unref(s->mr);
2882     }
2883     g_free(s);
2884 }
2885 
2886 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2887 {
2888     MemoryRegion *mr;
2889 
2890     RCU_READ_LOCK_GUARD();
2891     mr = memory_region_find_rcu(container, addr, 1).mr;
2892     return mr && mr != container;
2893 }
2894 
2895 void memory_global_dirty_log_sync(bool last_stage)
2896 {
2897     memory_region_sync_dirty_bitmap(NULL, last_stage);
2898 }
2899 
2900 void memory_global_after_dirty_log_sync(void)
2901 {
2902     MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2903 }
2904 
2905 /*
2906  * Dirty track stop flags that are postponed due to VM being stopped.  Should
2907  * only be used within vmstate_change hook.
2908  */
2909 static unsigned int postponed_stop_flags;
2910 static VMChangeStateEntry *vmstate_change;
2911 static void memory_global_dirty_log_stop_postponed_run(void);
2912 
2913 void memory_global_dirty_log_start(unsigned int flags)
2914 {
2915     unsigned int old_flags;
2916 
2917     assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2918 
2919     if (vmstate_change) {
2920         /* If there is postponed stop(), operate on it first */
2921         postponed_stop_flags &= ~flags;
2922         memory_global_dirty_log_stop_postponed_run();
2923     }
2924 
2925     flags &= ~global_dirty_tracking;
2926     if (!flags) {
2927         return;
2928     }
2929 
2930     old_flags = global_dirty_tracking;
2931     global_dirty_tracking |= flags;
2932     trace_global_dirty_changed(global_dirty_tracking);
2933 
2934     if (!old_flags) {
2935         MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2936         memory_region_transaction_begin();
2937         memory_region_update_pending = true;
2938         memory_region_transaction_commit();
2939     }
2940 }
2941 
2942 static void memory_global_dirty_log_do_stop(unsigned int flags)
2943 {
2944     assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2945     assert((global_dirty_tracking & flags) == flags);
2946     global_dirty_tracking &= ~flags;
2947 
2948     trace_global_dirty_changed(global_dirty_tracking);
2949 
2950     if (!global_dirty_tracking) {
2951         memory_region_transaction_begin();
2952         memory_region_update_pending = true;
2953         memory_region_transaction_commit();
2954         MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2955     }
2956 }
2957 
2958 /*
2959  * Execute the postponed dirty log stop operations if there is, then reset
2960  * everything (including the flags and the vmstate change hook).
2961  */
2962 static void memory_global_dirty_log_stop_postponed_run(void)
2963 {
2964     /* This must be called with the vmstate handler registered */
2965     assert(vmstate_change);
2966 
2967     /* Note: postponed_stop_flags can be cleared in log start routine */
2968     if (postponed_stop_flags) {
2969         memory_global_dirty_log_do_stop(postponed_stop_flags);
2970         postponed_stop_flags = 0;
2971     }
2972 
2973     qemu_del_vm_change_state_handler(vmstate_change);
2974     vmstate_change = NULL;
2975 }
2976 
2977 static void memory_vm_change_state_handler(void *opaque, bool running,
2978                                            RunState state)
2979 {
2980     if (running) {
2981         memory_global_dirty_log_stop_postponed_run();
2982     }
2983 }
2984 
2985 void memory_global_dirty_log_stop(unsigned int flags)
2986 {
2987     if (!runstate_is_running()) {
2988         /* Postpone the dirty log stop, e.g., to when VM starts again */
2989         if (vmstate_change) {
2990             /* Batch with previous postponed flags */
2991             postponed_stop_flags |= flags;
2992         } else {
2993             postponed_stop_flags = flags;
2994             vmstate_change = qemu_add_vm_change_state_handler(
2995                 memory_vm_change_state_handler, NULL);
2996         }
2997         return;
2998     }
2999 
3000     memory_global_dirty_log_do_stop(flags);
3001 }
3002 
3003 static void listener_add_address_space(MemoryListener *listener,
3004                                        AddressSpace *as)
3005 {
3006     FlatView *view;
3007     FlatRange *fr;
3008 
3009     if (listener->begin) {
3010         listener->begin(listener);
3011     }
3012     if (global_dirty_tracking) {
3013         if (listener->log_global_start) {
3014             listener->log_global_start(listener);
3015         }
3016     }
3017 
3018     view = address_space_get_flatview(as);
3019     FOR_EACH_FLAT_RANGE(fr, view) {
3020         MemoryRegionSection section = section_from_flat_range(fr, view);
3021 
3022         if (listener->region_add) {
3023             listener->region_add(listener, &section);
3024         }
3025         if (fr->dirty_log_mask && listener->log_start) {
3026             listener->log_start(listener, &section, 0, fr->dirty_log_mask);
3027         }
3028     }
3029     if (listener->commit) {
3030         listener->commit(listener);
3031     }
3032     flatview_unref(view);
3033 }
3034 
3035 static void listener_del_address_space(MemoryListener *listener,
3036                                        AddressSpace *as)
3037 {
3038     FlatView *view;
3039     FlatRange *fr;
3040 
3041     if (listener->begin) {
3042         listener->begin(listener);
3043     }
3044     view = address_space_get_flatview(as);
3045     FOR_EACH_FLAT_RANGE(fr, view) {
3046         MemoryRegionSection section = section_from_flat_range(fr, view);
3047 
3048         if (fr->dirty_log_mask && listener->log_stop) {
3049             listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
3050         }
3051         if (listener->region_del) {
3052             listener->region_del(listener, &section);
3053         }
3054     }
3055     if (listener->commit) {
3056         listener->commit(listener);
3057     }
3058     flatview_unref(view);
3059 }
3060 
3061 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
3062 {
3063     MemoryListener *other = NULL;
3064 
3065     /* Only one of them can be defined for a listener */
3066     assert(!(listener->log_sync && listener->log_sync_global));
3067 
3068     listener->address_space = as;
3069     if (QTAILQ_EMPTY(&memory_listeners)
3070         || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
3071         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
3072     } else {
3073         QTAILQ_FOREACH(other, &memory_listeners, link) {
3074             if (listener->priority < other->priority) {
3075                 break;
3076             }
3077         }
3078         QTAILQ_INSERT_BEFORE(other, listener, link);
3079     }
3080 
3081     if (QTAILQ_EMPTY(&as->listeners)
3082         || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
3083         QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
3084     } else {
3085         QTAILQ_FOREACH(other, &as->listeners, link_as) {
3086             if (listener->priority < other->priority) {
3087                 break;
3088             }
3089         }
3090         QTAILQ_INSERT_BEFORE(other, listener, link_as);
3091     }
3092 
3093     listener_add_address_space(listener, as);
3094 
3095     if (listener->eventfd_add || listener->eventfd_del) {
3096         as->ioeventfd_notifiers++;
3097     }
3098 }
3099 
3100 void memory_listener_unregister(MemoryListener *listener)
3101 {
3102     if (!listener->address_space) {
3103         return;
3104     }
3105 
3106     if (listener->eventfd_add || listener->eventfd_del) {
3107         listener->address_space->ioeventfd_notifiers--;
3108     }
3109 
3110     listener_del_address_space(listener, listener->address_space);
3111     QTAILQ_REMOVE(&memory_listeners, listener, link);
3112     QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
3113     listener->address_space = NULL;
3114 }
3115 
3116 void address_space_remove_listeners(AddressSpace *as)
3117 {
3118     while (!QTAILQ_EMPTY(&as->listeners)) {
3119         memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
3120     }
3121 }
3122 
3123 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
3124 {
3125     memory_region_ref(root);
3126     as->root = root;
3127     as->current_map = NULL;
3128     as->ioeventfd_nb = 0;
3129     as->ioeventfds = NULL;
3130     QTAILQ_INIT(&as->listeners);
3131     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
3132     as->name = g_strdup(name ? name : "anonymous");
3133     address_space_update_topology(as);
3134     address_space_update_ioeventfds(as);
3135 }
3136 
3137 static void do_address_space_destroy(AddressSpace *as)
3138 {
3139     assert(QTAILQ_EMPTY(&as->listeners));
3140 
3141     flatview_unref(as->current_map);
3142     g_free(as->name);
3143     g_free(as->ioeventfds);
3144     memory_region_unref(as->root);
3145 }
3146 
3147 void address_space_destroy(AddressSpace *as)
3148 {
3149     MemoryRegion *root = as->root;
3150 
3151     /* Flush out anything from MemoryListeners listening in on this */
3152     memory_region_transaction_begin();
3153     as->root = NULL;
3154     memory_region_transaction_commit();
3155     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
3156 
3157     /* At this point, as->dispatch and as->current_map are dummy
3158      * entries that the guest should never use.  Wait for the old
3159      * values to expire before freeing the data.
3160      */
3161     as->root = root;
3162     call_rcu(as, do_address_space_destroy, rcu);
3163 }
3164 
3165 static const char *memory_region_type(MemoryRegion *mr)
3166 {
3167     if (mr->alias) {
3168         return memory_region_type(mr->alias);
3169     }
3170     if (memory_region_is_ram_device(mr)) {
3171         return "ramd";
3172     } else if (memory_region_is_romd(mr)) {
3173         return "romd";
3174     } else if (memory_region_is_rom(mr)) {
3175         return "rom";
3176     } else if (memory_region_is_ram(mr)) {
3177         return "ram";
3178     } else {
3179         return "i/o";
3180     }
3181 }
3182 
3183 typedef struct MemoryRegionList MemoryRegionList;
3184 
3185 struct MemoryRegionList {
3186     const MemoryRegion *mr;
3187     QTAILQ_ENTRY(MemoryRegionList) mrqueue;
3188 };
3189 
3190 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
3191 
3192 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3193                            int128_sub((size), int128_one())) : 0)
3194 #define MTREE_INDENT "  "
3195 
3196 static void mtree_expand_owner(const char *label, Object *obj)
3197 {
3198     DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
3199 
3200     qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
3201     if (dev && dev->id) {
3202         qemu_printf(" id=%s", dev->id);
3203     } else {
3204         char *canonical_path = object_get_canonical_path(obj);
3205         if (canonical_path) {
3206             qemu_printf(" path=%s", canonical_path);
3207             g_free(canonical_path);
3208         } else {
3209             qemu_printf(" type=%s", object_get_typename(obj));
3210         }
3211     }
3212     qemu_printf("}");
3213 }
3214 
3215 static void mtree_print_mr_owner(const MemoryRegion *mr)
3216 {
3217     Object *owner = mr->owner;
3218     Object *parent = memory_region_owner((MemoryRegion *)mr);
3219 
3220     if (!owner && !parent) {
3221         qemu_printf(" orphan");
3222         return;
3223     }
3224     if (owner) {
3225         mtree_expand_owner("owner", owner);
3226     }
3227     if (parent && parent != owner) {
3228         mtree_expand_owner("parent", parent);
3229     }
3230 }
3231 
3232 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
3233                            hwaddr base,
3234                            MemoryRegionListHead *alias_print_queue,
3235                            bool owner, bool display_disabled)
3236 {
3237     MemoryRegionList *new_ml, *ml, *next_ml;
3238     MemoryRegionListHead submr_print_queue;
3239     const MemoryRegion *submr;
3240     unsigned int i;
3241     hwaddr cur_start, cur_end;
3242 
3243     if (!mr) {
3244         return;
3245     }
3246 
3247     cur_start = base + mr->addr;
3248     cur_end = cur_start + MR_SIZE(mr->size);
3249 
3250     /*
3251      * Try to detect overflow of memory region. This should never
3252      * happen normally. When it happens, we dump something to warn the
3253      * user who is observing this.
3254      */
3255     if (cur_start < base || cur_end < cur_start) {
3256         qemu_printf("[DETECTED OVERFLOW!] ");
3257     }
3258 
3259     if (mr->alias) {
3260         bool found = false;
3261 
3262         /* check if the alias is already in the queue */
3263         QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
3264             if (ml->mr == mr->alias) {
3265                 found = true;
3266             }
3267         }
3268 
3269         if (!found) {
3270             ml = g_new(MemoryRegionList, 1);
3271             ml->mr = mr->alias;
3272             QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
3273         }
3274         if (mr->enabled || display_disabled) {
3275             for (i = 0; i < level; i++) {
3276                 qemu_printf(MTREE_INDENT);
3277             }
3278             qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3279                         " (prio %d, %s%s): alias %s @%s " HWADDR_FMT_plx
3280                         "-" HWADDR_FMT_plx "%s",
3281                         cur_start, cur_end,
3282                         mr->priority,
3283                         mr->nonvolatile ? "nv-" : "",
3284                         memory_region_type((MemoryRegion *)mr),
3285                         memory_region_name(mr),
3286                         memory_region_name(mr->alias),
3287                         mr->alias_offset,
3288                         mr->alias_offset + MR_SIZE(mr->size),
3289                         mr->enabled ? "" : " [disabled]");
3290             if (owner) {
3291                 mtree_print_mr_owner(mr);
3292             }
3293             qemu_printf("\n");
3294         }
3295     } else {
3296         if (mr->enabled || display_disabled) {
3297             for (i = 0; i < level; i++) {
3298                 qemu_printf(MTREE_INDENT);
3299             }
3300             qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3301                         " (prio %d, %s%s): %s%s",
3302                         cur_start, cur_end,
3303                         mr->priority,
3304                         mr->nonvolatile ? "nv-" : "",
3305                         memory_region_type((MemoryRegion *)mr),
3306                         memory_region_name(mr),
3307                         mr->enabled ? "" : " [disabled]");
3308             if (owner) {
3309                 mtree_print_mr_owner(mr);
3310             }
3311             qemu_printf("\n");
3312         }
3313     }
3314 
3315     QTAILQ_INIT(&submr_print_queue);
3316 
3317     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
3318         new_ml = g_new(MemoryRegionList, 1);
3319         new_ml->mr = submr;
3320         QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3321             if (new_ml->mr->addr < ml->mr->addr ||
3322                 (new_ml->mr->addr == ml->mr->addr &&
3323                  new_ml->mr->priority > ml->mr->priority)) {
3324                 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
3325                 new_ml = NULL;
3326                 break;
3327             }
3328         }
3329         if (new_ml) {
3330             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
3331         }
3332     }
3333 
3334     QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3335         mtree_print_mr(ml->mr, level + 1, cur_start,
3336                        alias_print_queue, owner, display_disabled);
3337     }
3338 
3339     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3340         g_free(ml);
3341     }
3342 }
3343 
3344 struct FlatViewInfo {
3345     int counter;
3346     bool dispatch_tree;
3347     bool owner;
3348     AccelClass *ac;
3349 };
3350 
3351 static void mtree_print_flatview(gpointer key, gpointer value,
3352                                  gpointer user_data)
3353 {
3354     FlatView *view = key;
3355     GArray *fv_address_spaces = value;
3356     struct FlatViewInfo *fvi = user_data;
3357     FlatRange *range = &view->ranges[0];
3358     MemoryRegion *mr;
3359     int n = view->nr;
3360     int i;
3361     AddressSpace *as;
3362 
3363     qemu_printf("FlatView #%d\n", fvi->counter);
3364     ++fvi->counter;
3365 
3366     for (i = 0; i < fv_address_spaces->len; ++i) {
3367         as = g_array_index(fv_address_spaces, AddressSpace*, i);
3368         qemu_printf(" AS \"%s\", root: %s",
3369                     as->name, memory_region_name(as->root));
3370         if (as->root->alias) {
3371             qemu_printf(", alias %s", memory_region_name(as->root->alias));
3372         }
3373         qemu_printf("\n");
3374     }
3375 
3376     qemu_printf(" Root memory region: %s\n",
3377       view->root ? memory_region_name(view->root) : "(none)");
3378 
3379     if (n <= 0) {
3380         qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3381         return;
3382     }
3383 
3384     while (n--) {
3385         mr = range->mr;
3386         if (range->offset_in_region) {
3387             qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3388                         " (prio %d, %s%s): %s @" HWADDR_FMT_plx,
3389                         int128_get64(range->addr.start),
3390                         int128_get64(range->addr.start)
3391                         + MR_SIZE(range->addr.size),
3392                         mr->priority,
3393                         range->nonvolatile ? "nv-" : "",
3394                         range->readonly ? "rom" : memory_region_type(mr),
3395                         memory_region_name(mr),
3396                         range->offset_in_region);
3397         } else {
3398             qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3399                         " (prio %d, %s%s): %s",
3400                         int128_get64(range->addr.start),
3401                         int128_get64(range->addr.start)
3402                         + MR_SIZE(range->addr.size),
3403                         mr->priority,
3404                         range->nonvolatile ? "nv-" : "",
3405                         range->readonly ? "rom" : memory_region_type(mr),
3406                         memory_region_name(mr));
3407         }
3408         if (fvi->owner) {
3409             mtree_print_mr_owner(mr);
3410         }
3411 
3412         if (fvi->ac) {
3413             for (i = 0; i < fv_address_spaces->len; ++i) {
3414                 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3415                 if (fvi->ac->has_memory(current_machine, as,
3416                                         int128_get64(range->addr.start),
3417                                         MR_SIZE(range->addr.size) + 1)) {
3418                     qemu_printf(" %s", fvi->ac->name);
3419                 }
3420             }
3421         }
3422         qemu_printf("\n");
3423         range++;
3424     }
3425 
3426 #if !defined(CONFIG_USER_ONLY)
3427     if (fvi->dispatch_tree && view->root) {
3428         mtree_print_dispatch(view->dispatch, view->root);
3429     }
3430 #endif
3431 
3432     qemu_printf("\n");
3433 }
3434 
3435 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3436                                       gpointer user_data)
3437 {
3438     FlatView *view = key;
3439     GArray *fv_address_spaces = value;
3440 
3441     g_array_unref(fv_address_spaces);
3442     flatview_unref(view);
3443 
3444     return true;
3445 }
3446 
3447 static void mtree_info_flatview(bool dispatch_tree, bool owner)
3448 {
3449     struct FlatViewInfo fvi = {
3450         .counter = 0,
3451         .dispatch_tree = dispatch_tree,
3452         .owner = owner,
3453     };
3454     AddressSpace *as;
3455     FlatView *view;
3456     GArray *fv_address_spaces;
3457     GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3458     AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3459 
3460     if (ac->has_memory) {
3461         fvi.ac = ac;
3462     }
3463 
3464     /* Gather all FVs in one table */
3465     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3466         view = address_space_get_flatview(as);
3467 
3468         fv_address_spaces = g_hash_table_lookup(views, view);
3469         if (!fv_address_spaces) {
3470             fv_address_spaces = g_array_new(false, false, sizeof(as));
3471             g_hash_table_insert(views, view, fv_address_spaces);
3472         }
3473 
3474         g_array_append_val(fv_address_spaces, as);
3475     }
3476 
3477     /* Print */
3478     g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3479 
3480     /* Free */
3481     g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3482     g_hash_table_unref(views);
3483 }
3484 
3485 struct AddressSpaceInfo {
3486     MemoryRegionListHead *ml_head;
3487     bool owner;
3488     bool disabled;
3489 };
3490 
3491 /* Returns negative value if a < b; zero if a = b; positive value if a > b. */
3492 static gint address_space_compare_name(gconstpointer a, gconstpointer b)
3493 {
3494     const AddressSpace *as_a = a;
3495     const AddressSpace *as_b = b;
3496 
3497     return g_strcmp0(as_a->name, as_b->name);
3498 }
3499 
3500 static void mtree_print_as_name(gpointer data, gpointer user_data)
3501 {
3502     AddressSpace *as = data;
3503 
3504     qemu_printf("address-space: %s\n", as->name);
3505 }
3506 
3507 static void mtree_print_as(gpointer key, gpointer value, gpointer user_data)
3508 {
3509     MemoryRegion *mr = key;
3510     GSList *as_same_root_mr_list = value;
3511     struct AddressSpaceInfo *asi = user_data;
3512 
3513     g_slist_foreach(as_same_root_mr_list, mtree_print_as_name, NULL);
3514     mtree_print_mr(mr, 1, 0, asi->ml_head, asi->owner, asi->disabled);
3515     qemu_printf("\n");
3516 }
3517 
3518 static gboolean mtree_info_as_free(gpointer key, gpointer value,
3519                                    gpointer user_data)
3520 {
3521     GSList *as_same_root_mr_list = value;
3522 
3523     g_slist_free(as_same_root_mr_list);
3524 
3525     return true;
3526 }
3527 
3528 static void mtree_info_as(bool dispatch_tree, bool owner, bool disabled)
3529 {
3530     MemoryRegionListHead ml_head;
3531     MemoryRegionList *ml, *ml2;
3532     AddressSpace *as;
3533     GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3534     GSList *as_same_root_mr_list;
3535     struct AddressSpaceInfo asi = {
3536         .ml_head = &ml_head,
3537         .owner = owner,
3538         .disabled = disabled,
3539     };
3540 
3541     QTAILQ_INIT(&ml_head);
3542 
3543     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3544         /* Create hashtable, key=AS root MR, value = list of AS */
3545         as_same_root_mr_list = g_hash_table_lookup(views, as->root);
3546         as_same_root_mr_list = g_slist_insert_sorted(as_same_root_mr_list, as,
3547                                                      address_space_compare_name);
3548         g_hash_table_insert(views, as->root, as_same_root_mr_list);
3549     }
3550 
3551     /* print address spaces */
3552     g_hash_table_foreach(views, mtree_print_as, &asi);
3553     g_hash_table_foreach_remove(views, mtree_info_as_free, 0);
3554     g_hash_table_unref(views);
3555 
3556     /* print aliased regions */
3557     QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3558         qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3559         mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
3560         qemu_printf("\n");
3561     }
3562 
3563     QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3564         g_free(ml);
3565     }
3566 }
3567 
3568 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
3569 {
3570     if (flatview) {
3571         mtree_info_flatview(dispatch_tree, owner);
3572     } else {
3573         mtree_info_as(dispatch_tree, owner, disabled);
3574     }
3575 }
3576 
3577 bool memory_region_init_ram(MemoryRegion *mr,
3578                             Object *owner,
3579                             const char *name,
3580                             uint64_t size,
3581                             Error **errp)
3582 {
3583     DeviceState *owner_dev;
3584 
3585     if (!memory_region_init_ram_nomigrate(mr, owner, name, size, errp)) {
3586         return false;
3587     }
3588     /* This will assert if owner is neither NULL nor a DeviceState.
3589      * We only want the owner here for the purposes of defining a
3590      * unique name for migration. TODO: Ideally we should implement
3591      * a naming scheme for Objects which are not DeviceStates, in
3592      * which case we can relax this restriction.
3593      */
3594     owner_dev = DEVICE(owner);
3595     vmstate_register_ram(mr, owner_dev);
3596 
3597     return true;
3598 }
3599 
3600 bool memory_region_init_rom(MemoryRegion *mr,
3601                             Object *owner,
3602                             const char *name,
3603                             uint64_t size,
3604                             Error **errp)
3605 {
3606     DeviceState *owner_dev;
3607 
3608     if (!memory_region_init_rom_nomigrate(mr, owner, name, size, errp)) {
3609         return false;
3610     }
3611     /* This will assert if owner is neither NULL nor a DeviceState.
3612      * We only want the owner here for the purposes of defining a
3613      * unique name for migration. TODO: Ideally we should implement
3614      * a naming scheme for Objects which are not DeviceStates, in
3615      * which case we can relax this restriction.
3616      */
3617     owner_dev = DEVICE(owner);
3618     vmstate_register_ram(mr, owner_dev);
3619 
3620     return true;
3621 }
3622 
3623 bool memory_region_init_rom_device(MemoryRegion *mr,
3624                                    Object *owner,
3625                                    const MemoryRegionOps *ops,
3626                                    void *opaque,
3627                                    const char *name,
3628                                    uint64_t size,
3629                                    Error **errp)
3630 {
3631     DeviceState *owner_dev;
3632 
3633     if (!memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3634                                                  name, size, errp)) {
3635         return false;
3636     }
3637     /* This will assert if owner is neither NULL nor a DeviceState.
3638      * We only want the owner here for the purposes of defining a
3639      * unique name for migration. TODO: Ideally we should implement
3640      * a naming scheme for Objects which are not DeviceStates, in
3641      * which case we can relax this restriction.
3642      */
3643     owner_dev = DEVICE(owner);
3644     vmstate_register_ram(mr, owner_dev);
3645 
3646     return true;
3647 }
3648 
3649 /*
3650  * Support system builds with CONFIG_FUZZ using a weak symbol and a stub for
3651  * the fuzz_dma_read_cb callback
3652  */
3653 #ifdef CONFIG_FUZZ
3654 void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
3655                       size_t len,
3656                       MemoryRegion *mr)
3657 {
3658 }
3659 #endif
3660 
3661 static const TypeInfo memory_region_info = {
3662     .parent             = TYPE_OBJECT,
3663     .name               = TYPE_MEMORY_REGION,
3664     .class_size         = sizeof(MemoryRegionClass),
3665     .instance_size      = sizeof(MemoryRegion),
3666     .instance_init      = memory_region_initfn,
3667     .instance_finalize  = memory_region_finalize,
3668 };
3669 
3670 static const TypeInfo iommu_memory_region_info = {
3671     .parent             = TYPE_MEMORY_REGION,
3672     .name               = TYPE_IOMMU_MEMORY_REGION,
3673     .class_size         = sizeof(IOMMUMemoryRegionClass),
3674     .instance_size      = sizeof(IOMMUMemoryRegion),
3675     .instance_init      = iommu_memory_region_initfn,
3676     .abstract           = true,
3677 };
3678 
3679 static const TypeInfo ram_discard_manager_info = {
3680     .parent             = TYPE_INTERFACE,
3681     .name               = TYPE_RAM_DISCARD_MANAGER,
3682     .class_size         = sizeof(RamDiscardManagerClass),
3683 };
3684 
3685 static void memory_register_types(void)
3686 {
3687     type_register_static(&memory_region_info);
3688     type_register_static(&iommu_memory_region_info);
3689     type_register_static(&ram_discard_manager_info);
3690 }
3691 
3692 type_init(memory_register_types)
3693