1 /* 2 * Physical memory management 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 * Contributions after 2012-01-13 are licensed under the terms of the 13 * GNU GPL, version 2 or (at your option) any later version. 14 */ 15 16 #include "qemu/osdep.h" 17 #include "qemu/log.h" 18 #include "qapi/error.h" 19 #include "exec/memory.h" 20 #include "qapi/visitor.h" 21 #include "qemu/bitops.h" 22 #include "qemu/error-report.h" 23 #include "qemu/main-loop.h" 24 #include "qemu/qemu-print.h" 25 #include "qom/object.h" 26 #include "trace.h" 27 28 #include "exec/memory-internal.h" 29 #include "exec/ram_addr.h" 30 #include "sysemu/kvm.h" 31 #include "sysemu/runstate.h" 32 #include "sysemu/tcg.h" 33 #include "qemu/accel.h" 34 #include "hw/boards.h" 35 #include "migration/vmstate.h" 36 #include "exec/address-spaces.h" 37 38 //#define DEBUG_UNASSIGNED 39 40 static unsigned memory_region_transaction_depth; 41 static bool memory_region_update_pending; 42 static bool ioeventfd_update_pending; 43 unsigned int global_dirty_tracking; 44 45 static QTAILQ_HEAD(, MemoryListener) memory_listeners 46 = QTAILQ_HEAD_INITIALIZER(memory_listeners); 47 48 static QTAILQ_HEAD(, AddressSpace) address_spaces 49 = QTAILQ_HEAD_INITIALIZER(address_spaces); 50 51 static GHashTable *flat_views; 52 53 typedef struct AddrRange AddrRange; 54 55 /* 56 * Note that signed integers are needed for negative offsetting in aliases 57 * (large MemoryRegion::alias_offset). 58 */ 59 struct AddrRange { 60 Int128 start; 61 Int128 size; 62 }; 63 64 static AddrRange addrrange_make(Int128 start, Int128 size) 65 { 66 return (AddrRange) { start, size }; 67 } 68 69 static bool addrrange_equal(AddrRange r1, AddrRange r2) 70 { 71 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size); 72 } 73 74 static Int128 addrrange_end(AddrRange r) 75 { 76 return int128_add(r.start, r.size); 77 } 78 79 static AddrRange addrrange_shift(AddrRange range, Int128 delta) 80 { 81 int128_addto(&range.start, delta); 82 return range; 83 } 84 85 static bool addrrange_contains(AddrRange range, Int128 addr) 86 { 87 return int128_ge(addr, range.start) 88 && int128_lt(addr, addrrange_end(range)); 89 } 90 91 static bool addrrange_intersects(AddrRange r1, AddrRange r2) 92 { 93 return addrrange_contains(r1, r2.start) 94 || addrrange_contains(r2, r1.start); 95 } 96 97 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2) 98 { 99 Int128 start = int128_max(r1.start, r2.start); 100 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2)); 101 return addrrange_make(start, int128_sub(end, start)); 102 } 103 104 enum ListenerDirection { Forward, Reverse }; 105 106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \ 107 do { \ 108 MemoryListener *_listener; \ 109 \ 110 switch (_direction) { \ 111 case Forward: \ 112 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \ 113 if (_listener->_callback) { \ 114 _listener->_callback(_listener, ##_args); \ 115 } \ 116 } \ 117 break; \ 118 case Reverse: \ 119 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \ 120 if (_listener->_callback) { \ 121 _listener->_callback(_listener, ##_args); \ 122 } \ 123 } \ 124 break; \ 125 default: \ 126 abort(); \ 127 } \ 128 } while (0) 129 130 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \ 131 do { \ 132 MemoryListener *_listener; \ 133 \ 134 switch (_direction) { \ 135 case Forward: \ 136 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \ 137 if (_listener->_callback) { \ 138 _listener->_callback(_listener, _section, ##_args); \ 139 } \ 140 } \ 141 break; \ 142 case Reverse: \ 143 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \ 144 if (_listener->_callback) { \ 145 _listener->_callback(_listener, _section, ##_args); \ 146 } \ 147 } \ 148 break; \ 149 default: \ 150 abort(); \ 151 } \ 152 } while (0) 153 154 /* No need to ref/unref .mr, the FlatRange keeps it alive. */ 155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \ 156 do { \ 157 MemoryRegionSection mrs = section_from_flat_range(fr, \ 158 address_space_to_flatview(as)); \ 159 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \ 160 } while(0) 161 162 struct CoalescedMemoryRange { 163 AddrRange addr; 164 QTAILQ_ENTRY(CoalescedMemoryRange) link; 165 }; 166 167 struct MemoryRegionIoeventfd { 168 AddrRange addr; 169 bool match_data; 170 uint64_t data; 171 EventNotifier *e; 172 }; 173 174 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a, 175 MemoryRegionIoeventfd *b) 176 { 177 if (int128_lt(a->addr.start, b->addr.start)) { 178 return true; 179 } else if (int128_gt(a->addr.start, b->addr.start)) { 180 return false; 181 } else if (int128_lt(a->addr.size, b->addr.size)) { 182 return true; 183 } else if (int128_gt(a->addr.size, b->addr.size)) { 184 return false; 185 } else if (a->match_data < b->match_data) { 186 return true; 187 } else if (a->match_data > b->match_data) { 188 return false; 189 } else if (a->match_data) { 190 if (a->data < b->data) { 191 return true; 192 } else if (a->data > b->data) { 193 return false; 194 } 195 } 196 if (a->e < b->e) { 197 return true; 198 } else if (a->e > b->e) { 199 return false; 200 } 201 return false; 202 } 203 204 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a, 205 MemoryRegionIoeventfd *b) 206 { 207 if (int128_eq(a->addr.start, b->addr.start) && 208 (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) || 209 (int128_eq(a->addr.size, b->addr.size) && 210 (a->match_data == b->match_data) && 211 ((a->match_data && (a->data == b->data)) || !a->match_data) && 212 (a->e == b->e)))) 213 return true; 214 215 return false; 216 } 217 218 /* Range of memory in the global map. Addresses are absolute. */ 219 struct FlatRange { 220 MemoryRegion *mr; 221 hwaddr offset_in_region; 222 AddrRange addr; 223 uint8_t dirty_log_mask; 224 bool romd_mode; 225 bool readonly; 226 bool nonvolatile; 227 bool unmergeable; 228 }; 229 230 #define FOR_EACH_FLAT_RANGE(var, view) \ 231 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var) 232 233 static inline MemoryRegionSection 234 section_from_flat_range(FlatRange *fr, FlatView *fv) 235 { 236 return (MemoryRegionSection) { 237 .mr = fr->mr, 238 .fv = fv, 239 .offset_within_region = fr->offset_in_region, 240 .size = fr->addr.size, 241 .offset_within_address_space = int128_get64(fr->addr.start), 242 .readonly = fr->readonly, 243 .nonvolatile = fr->nonvolatile, 244 .unmergeable = fr->unmergeable, 245 }; 246 } 247 248 static bool flatrange_equal(FlatRange *a, FlatRange *b) 249 { 250 return a->mr == b->mr 251 && addrrange_equal(a->addr, b->addr) 252 && a->offset_in_region == b->offset_in_region 253 && a->romd_mode == b->romd_mode 254 && a->readonly == b->readonly 255 && a->nonvolatile == b->nonvolatile 256 && a->unmergeable == b->unmergeable; 257 } 258 259 static FlatView *flatview_new(MemoryRegion *mr_root) 260 { 261 FlatView *view; 262 263 view = g_new0(FlatView, 1); 264 view->ref = 1; 265 view->root = mr_root; 266 memory_region_ref(mr_root); 267 trace_flatview_new(view, mr_root); 268 269 return view; 270 } 271 272 /* Insert a range into a given position. Caller is responsible for maintaining 273 * sorting order. 274 */ 275 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range) 276 { 277 if (view->nr == view->nr_allocated) { 278 view->nr_allocated = MAX(2 * view->nr, 10); 279 view->ranges = g_realloc(view->ranges, 280 view->nr_allocated * sizeof(*view->ranges)); 281 } 282 memmove(view->ranges + pos + 1, view->ranges + pos, 283 (view->nr - pos) * sizeof(FlatRange)); 284 view->ranges[pos] = *range; 285 memory_region_ref(range->mr); 286 ++view->nr; 287 } 288 289 static void flatview_destroy(FlatView *view) 290 { 291 int i; 292 293 trace_flatview_destroy(view, view->root); 294 if (view->dispatch) { 295 address_space_dispatch_free(view->dispatch); 296 } 297 for (i = 0; i < view->nr; i++) { 298 memory_region_unref(view->ranges[i].mr); 299 } 300 g_free(view->ranges); 301 memory_region_unref(view->root); 302 g_free(view); 303 } 304 305 static bool flatview_ref(FlatView *view) 306 { 307 return qatomic_fetch_inc_nonzero(&view->ref) > 0; 308 } 309 310 void flatview_unref(FlatView *view) 311 { 312 if (qatomic_fetch_dec(&view->ref) == 1) { 313 trace_flatview_destroy_rcu(view, view->root); 314 assert(view->root); 315 call_rcu(view, flatview_destroy, rcu); 316 } 317 } 318 319 static bool can_merge(FlatRange *r1, FlatRange *r2) 320 { 321 return int128_eq(addrrange_end(r1->addr), r2->addr.start) 322 && r1->mr == r2->mr 323 && int128_eq(int128_add(int128_make64(r1->offset_in_region), 324 r1->addr.size), 325 int128_make64(r2->offset_in_region)) 326 && r1->dirty_log_mask == r2->dirty_log_mask 327 && r1->romd_mode == r2->romd_mode 328 && r1->readonly == r2->readonly 329 && r1->nonvolatile == r2->nonvolatile 330 && !r1->unmergeable && !r2->unmergeable; 331 } 332 333 /* Attempt to simplify a view by merging adjacent ranges */ 334 static void flatview_simplify(FlatView *view) 335 { 336 unsigned i, j, k; 337 338 i = 0; 339 while (i < view->nr) { 340 j = i + 1; 341 while (j < view->nr 342 && can_merge(&view->ranges[j-1], &view->ranges[j])) { 343 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size); 344 ++j; 345 } 346 ++i; 347 for (k = i; k < j; k++) { 348 memory_region_unref(view->ranges[k].mr); 349 } 350 memmove(&view->ranges[i], &view->ranges[j], 351 (view->nr - j) * sizeof(view->ranges[j])); 352 view->nr -= j - i; 353 } 354 } 355 356 static bool memory_region_big_endian(MemoryRegion *mr) 357 { 358 #if TARGET_BIG_ENDIAN 359 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN; 360 #else 361 return mr->ops->endianness == DEVICE_BIG_ENDIAN; 362 #endif 363 } 364 365 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op) 366 { 367 if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) { 368 switch (op & MO_SIZE) { 369 case MO_8: 370 break; 371 case MO_16: 372 *data = bswap16(*data); 373 break; 374 case MO_32: 375 *data = bswap32(*data); 376 break; 377 case MO_64: 378 *data = bswap64(*data); 379 break; 380 default: 381 g_assert_not_reached(); 382 } 383 } 384 } 385 386 static inline void memory_region_shift_read_access(uint64_t *value, 387 signed shift, 388 uint64_t mask, 389 uint64_t tmp) 390 { 391 if (shift >= 0) { 392 *value |= (tmp & mask) << shift; 393 } else { 394 *value |= (tmp & mask) >> -shift; 395 } 396 } 397 398 static inline uint64_t memory_region_shift_write_access(uint64_t *value, 399 signed shift, 400 uint64_t mask) 401 { 402 uint64_t tmp; 403 404 if (shift >= 0) { 405 tmp = (*value >> shift) & mask; 406 } else { 407 tmp = (*value << -shift) & mask; 408 } 409 410 return tmp; 411 } 412 413 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset) 414 { 415 MemoryRegion *root; 416 hwaddr abs_addr = offset; 417 418 abs_addr += mr->addr; 419 for (root = mr; root->container; ) { 420 root = root->container; 421 abs_addr += root->addr; 422 } 423 424 return abs_addr; 425 } 426 427 static int get_cpu_index(void) 428 { 429 if (current_cpu) { 430 return current_cpu->cpu_index; 431 } 432 return -1; 433 } 434 435 static MemTxResult memory_region_read_accessor(MemoryRegion *mr, 436 hwaddr addr, 437 uint64_t *value, 438 unsigned size, 439 signed shift, 440 uint64_t mask, 441 MemTxAttrs attrs) 442 { 443 uint64_t tmp; 444 445 tmp = mr->ops->read(mr->opaque, addr, size); 446 if (mr->subpage) { 447 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size); 448 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) { 449 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr); 450 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size, 451 memory_region_name(mr)); 452 } 453 memory_region_shift_read_access(value, shift, mask, tmp); 454 return MEMTX_OK; 455 } 456 457 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr, 458 hwaddr addr, 459 uint64_t *value, 460 unsigned size, 461 signed shift, 462 uint64_t mask, 463 MemTxAttrs attrs) 464 { 465 uint64_t tmp = 0; 466 MemTxResult r; 467 468 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs); 469 if (mr->subpage) { 470 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size); 471 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) { 472 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr); 473 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size, 474 memory_region_name(mr)); 475 } 476 memory_region_shift_read_access(value, shift, mask, tmp); 477 return r; 478 } 479 480 static MemTxResult memory_region_write_accessor(MemoryRegion *mr, 481 hwaddr addr, 482 uint64_t *value, 483 unsigned size, 484 signed shift, 485 uint64_t mask, 486 MemTxAttrs attrs) 487 { 488 uint64_t tmp = memory_region_shift_write_access(value, shift, mask); 489 490 if (mr->subpage) { 491 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size); 492 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) { 493 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr); 494 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size, 495 memory_region_name(mr)); 496 } 497 mr->ops->write(mr->opaque, addr, tmp, size); 498 return MEMTX_OK; 499 } 500 501 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr, 502 hwaddr addr, 503 uint64_t *value, 504 unsigned size, 505 signed shift, 506 uint64_t mask, 507 MemTxAttrs attrs) 508 { 509 uint64_t tmp = memory_region_shift_write_access(value, shift, mask); 510 511 if (mr->subpage) { 512 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size); 513 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) { 514 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr); 515 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size, 516 memory_region_name(mr)); 517 } 518 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs); 519 } 520 521 static MemTxResult access_with_adjusted_size(hwaddr addr, 522 uint64_t *value, 523 unsigned size, 524 unsigned access_size_min, 525 unsigned access_size_max, 526 MemTxResult (*access_fn) 527 (MemoryRegion *mr, 528 hwaddr addr, 529 uint64_t *value, 530 unsigned size, 531 signed shift, 532 uint64_t mask, 533 MemTxAttrs attrs), 534 MemoryRegion *mr, 535 MemTxAttrs attrs) 536 { 537 uint64_t access_mask; 538 unsigned access_size; 539 unsigned i; 540 MemTxResult r = MEMTX_OK; 541 bool reentrancy_guard_applied = false; 542 543 if (!access_size_min) { 544 access_size_min = 1; 545 } 546 if (!access_size_max) { 547 access_size_max = 4; 548 } 549 550 /* Do not allow more than one simultaneous access to a device's IO Regions */ 551 if (mr->dev && !mr->disable_reentrancy_guard && 552 !mr->ram_device && !mr->ram && !mr->rom_device && !mr->readonly) { 553 if (mr->dev->mem_reentrancy_guard.engaged_in_io) { 554 warn_report_once("Blocked re-entrant IO on MemoryRegion: " 555 "%s at addr: 0x%" HWADDR_PRIX, 556 memory_region_name(mr), addr); 557 return MEMTX_ACCESS_ERROR; 558 } 559 mr->dev->mem_reentrancy_guard.engaged_in_io = true; 560 reentrancy_guard_applied = true; 561 } 562 563 /* FIXME: support unaligned access? */ 564 access_size = MAX(MIN(size, access_size_max), access_size_min); 565 access_mask = MAKE_64BIT_MASK(0, access_size * 8); 566 if (memory_region_big_endian(mr)) { 567 for (i = 0; i < size; i += access_size) { 568 r |= access_fn(mr, addr + i, value, access_size, 569 (size - access_size - i) * 8, access_mask, attrs); 570 } 571 } else { 572 for (i = 0; i < size; i += access_size) { 573 r |= access_fn(mr, addr + i, value, access_size, i * 8, 574 access_mask, attrs); 575 } 576 } 577 if (mr->dev && reentrancy_guard_applied) { 578 mr->dev->mem_reentrancy_guard.engaged_in_io = false; 579 } 580 return r; 581 } 582 583 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr) 584 { 585 AddressSpace *as; 586 587 while (mr->container) { 588 mr = mr->container; 589 } 590 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) { 591 if (mr == as->root) { 592 return as; 593 } 594 } 595 return NULL; 596 } 597 598 /* Render a memory region into the global view. Ranges in @view obscure 599 * ranges in @mr. 600 */ 601 static void render_memory_region(FlatView *view, 602 MemoryRegion *mr, 603 Int128 base, 604 AddrRange clip, 605 bool readonly, 606 bool nonvolatile, 607 bool unmergeable) 608 { 609 MemoryRegion *subregion; 610 unsigned i; 611 hwaddr offset_in_region; 612 Int128 remain; 613 Int128 now; 614 FlatRange fr; 615 AddrRange tmp; 616 617 if (!mr->enabled) { 618 return; 619 } 620 621 int128_addto(&base, int128_make64(mr->addr)); 622 readonly |= mr->readonly; 623 nonvolatile |= mr->nonvolatile; 624 unmergeable |= mr->unmergeable; 625 626 tmp = addrrange_make(base, mr->size); 627 628 if (!addrrange_intersects(tmp, clip)) { 629 return; 630 } 631 632 clip = addrrange_intersection(tmp, clip); 633 634 if (mr->alias) { 635 int128_subfrom(&base, int128_make64(mr->alias->addr)); 636 int128_subfrom(&base, int128_make64(mr->alias_offset)); 637 render_memory_region(view, mr->alias, base, clip, 638 readonly, nonvolatile, unmergeable); 639 return; 640 } 641 642 /* Render subregions in priority order. */ 643 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) { 644 render_memory_region(view, subregion, base, clip, 645 readonly, nonvolatile, unmergeable); 646 } 647 648 if (!mr->terminates) { 649 return; 650 } 651 652 offset_in_region = int128_get64(int128_sub(clip.start, base)); 653 base = clip.start; 654 remain = clip.size; 655 656 fr.mr = mr; 657 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr); 658 fr.romd_mode = mr->romd_mode; 659 fr.readonly = readonly; 660 fr.nonvolatile = nonvolatile; 661 fr.unmergeable = unmergeable; 662 663 /* Render the region itself into any gaps left by the current view. */ 664 for (i = 0; i < view->nr && int128_nz(remain); ++i) { 665 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) { 666 continue; 667 } 668 if (int128_lt(base, view->ranges[i].addr.start)) { 669 now = int128_min(remain, 670 int128_sub(view->ranges[i].addr.start, base)); 671 fr.offset_in_region = offset_in_region; 672 fr.addr = addrrange_make(base, now); 673 flatview_insert(view, i, &fr); 674 ++i; 675 int128_addto(&base, now); 676 offset_in_region += int128_get64(now); 677 int128_subfrom(&remain, now); 678 } 679 now = int128_sub(int128_min(int128_add(base, remain), 680 addrrange_end(view->ranges[i].addr)), 681 base); 682 int128_addto(&base, now); 683 offset_in_region += int128_get64(now); 684 int128_subfrom(&remain, now); 685 } 686 if (int128_nz(remain)) { 687 fr.offset_in_region = offset_in_region; 688 fr.addr = addrrange_make(base, remain); 689 flatview_insert(view, i, &fr); 690 } 691 } 692 693 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque) 694 { 695 FlatRange *fr; 696 697 assert(fv); 698 assert(cb); 699 700 FOR_EACH_FLAT_RANGE(fr, fv) { 701 if (cb(fr->addr.start, fr->addr.size, fr->mr, 702 fr->offset_in_region, opaque)) { 703 break; 704 } 705 } 706 } 707 708 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr) 709 { 710 while (mr->enabled) { 711 if (mr->alias) { 712 if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) { 713 /* The alias is included in its entirety. Use it as 714 * the "real" root, so that we can share more FlatViews. 715 */ 716 mr = mr->alias; 717 continue; 718 } 719 } else if (!mr->terminates) { 720 unsigned int found = 0; 721 MemoryRegion *child, *next = NULL; 722 QTAILQ_FOREACH(child, &mr->subregions, subregions_link) { 723 if (child->enabled) { 724 if (++found > 1) { 725 next = NULL; 726 break; 727 } 728 if (!child->addr && int128_ge(mr->size, child->size)) { 729 /* A child is included in its entirety. If it's the only 730 * enabled one, use it in the hope of finding an alias down the 731 * way. This will also let us share FlatViews. 732 */ 733 next = child; 734 } 735 } 736 } 737 if (found == 0) { 738 return NULL; 739 } 740 if (next) { 741 mr = next; 742 continue; 743 } 744 } 745 746 return mr; 747 } 748 749 return NULL; 750 } 751 752 /* Render a memory topology into a list of disjoint absolute ranges. */ 753 static FlatView *generate_memory_topology(MemoryRegion *mr) 754 { 755 int i; 756 FlatView *view; 757 758 view = flatview_new(mr); 759 760 if (mr) { 761 render_memory_region(view, mr, int128_zero(), 762 addrrange_make(int128_zero(), int128_2_64()), 763 false, false, false); 764 } 765 flatview_simplify(view); 766 767 view->dispatch = address_space_dispatch_new(view); 768 for (i = 0; i < view->nr; i++) { 769 MemoryRegionSection mrs = 770 section_from_flat_range(&view->ranges[i], view); 771 flatview_add_to_dispatch(view, &mrs); 772 } 773 address_space_dispatch_compact(view->dispatch); 774 g_hash_table_replace(flat_views, mr, view); 775 776 return view; 777 } 778 779 static void address_space_add_del_ioeventfds(AddressSpace *as, 780 MemoryRegionIoeventfd *fds_new, 781 unsigned fds_new_nb, 782 MemoryRegionIoeventfd *fds_old, 783 unsigned fds_old_nb) 784 { 785 unsigned iold, inew; 786 MemoryRegionIoeventfd *fd; 787 MemoryRegionSection section; 788 789 /* Generate a symmetric difference of the old and new fd sets, adding 790 * and deleting as necessary. 791 */ 792 793 iold = inew = 0; 794 while (iold < fds_old_nb || inew < fds_new_nb) { 795 if (iold < fds_old_nb 796 && (inew == fds_new_nb 797 || memory_region_ioeventfd_before(&fds_old[iold], 798 &fds_new[inew]))) { 799 fd = &fds_old[iold]; 800 section = (MemoryRegionSection) { 801 .fv = address_space_to_flatview(as), 802 .offset_within_address_space = int128_get64(fd->addr.start), 803 .size = fd->addr.size, 804 }; 805 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, §ion, 806 fd->match_data, fd->data, fd->e); 807 ++iold; 808 } else if (inew < fds_new_nb 809 && (iold == fds_old_nb 810 || memory_region_ioeventfd_before(&fds_new[inew], 811 &fds_old[iold]))) { 812 fd = &fds_new[inew]; 813 section = (MemoryRegionSection) { 814 .fv = address_space_to_flatview(as), 815 .offset_within_address_space = int128_get64(fd->addr.start), 816 .size = fd->addr.size, 817 }; 818 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, §ion, 819 fd->match_data, fd->data, fd->e); 820 ++inew; 821 } else { 822 ++iold; 823 ++inew; 824 } 825 } 826 } 827 828 FlatView *address_space_get_flatview(AddressSpace *as) 829 { 830 FlatView *view; 831 832 RCU_READ_LOCK_GUARD(); 833 do { 834 view = address_space_to_flatview(as); 835 /* If somebody has replaced as->current_map concurrently, 836 * flatview_ref returns false. 837 */ 838 } while (!flatview_ref(view)); 839 return view; 840 } 841 842 static void address_space_update_ioeventfds(AddressSpace *as) 843 { 844 FlatView *view; 845 FlatRange *fr; 846 unsigned ioeventfd_nb = 0; 847 unsigned ioeventfd_max; 848 MemoryRegionIoeventfd *ioeventfds; 849 AddrRange tmp; 850 unsigned i; 851 852 if (!as->ioeventfd_notifiers) { 853 return; 854 } 855 856 /* 857 * It is likely that the number of ioeventfds hasn't changed much, so use 858 * the previous size as the starting value, with some headroom to avoid 859 * gratuitous reallocations. 860 */ 861 ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4); 862 ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max); 863 864 view = address_space_get_flatview(as); 865 FOR_EACH_FLAT_RANGE(fr, view) { 866 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) { 867 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr, 868 int128_sub(fr->addr.start, 869 int128_make64(fr->offset_in_region))); 870 if (addrrange_intersects(fr->addr, tmp)) { 871 ++ioeventfd_nb; 872 if (ioeventfd_nb > ioeventfd_max) { 873 ioeventfd_max = MAX(ioeventfd_max * 2, 4); 874 ioeventfds = g_realloc(ioeventfds, 875 ioeventfd_max * sizeof(*ioeventfds)); 876 } 877 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i]; 878 ioeventfds[ioeventfd_nb-1].addr = tmp; 879 } 880 } 881 } 882 883 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb, 884 as->ioeventfds, as->ioeventfd_nb); 885 886 g_free(as->ioeventfds); 887 as->ioeventfds = ioeventfds; 888 as->ioeventfd_nb = ioeventfd_nb; 889 flatview_unref(view); 890 } 891 892 /* 893 * Notify the memory listeners about the coalesced IO change events of 894 * range `cmr'. Only the part that has intersection of the specified 895 * FlatRange will be sent. 896 */ 897 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as, 898 CoalescedMemoryRange *cmr, bool add) 899 { 900 AddrRange tmp; 901 902 tmp = addrrange_shift(cmr->addr, 903 int128_sub(fr->addr.start, 904 int128_make64(fr->offset_in_region))); 905 if (!addrrange_intersects(tmp, fr->addr)) { 906 return; 907 } 908 tmp = addrrange_intersection(tmp, fr->addr); 909 910 if (add) { 911 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add, 912 int128_get64(tmp.start), 913 int128_get64(tmp.size)); 914 } else { 915 MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del, 916 int128_get64(tmp.start), 917 int128_get64(tmp.size)); 918 } 919 } 920 921 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as) 922 { 923 CoalescedMemoryRange *cmr; 924 925 QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) { 926 flat_range_coalesced_io_notify(fr, as, cmr, false); 927 } 928 } 929 930 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as) 931 { 932 MemoryRegion *mr = fr->mr; 933 CoalescedMemoryRange *cmr; 934 935 if (QTAILQ_EMPTY(&mr->coalesced)) { 936 return; 937 } 938 939 QTAILQ_FOREACH(cmr, &mr->coalesced, link) { 940 flat_range_coalesced_io_notify(fr, as, cmr, true); 941 } 942 } 943 944 static void address_space_update_topology_pass(AddressSpace *as, 945 const FlatView *old_view, 946 const FlatView *new_view, 947 bool adding) 948 { 949 unsigned iold, inew; 950 FlatRange *frold, *frnew; 951 952 /* Generate a symmetric difference of the old and new memory maps. 953 * Kill ranges in the old map, and instantiate ranges in the new map. 954 */ 955 iold = inew = 0; 956 while (iold < old_view->nr || inew < new_view->nr) { 957 if (iold < old_view->nr) { 958 frold = &old_view->ranges[iold]; 959 } else { 960 frold = NULL; 961 } 962 if (inew < new_view->nr) { 963 frnew = &new_view->ranges[inew]; 964 } else { 965 frnew = NULL; 966 } 967 968 if (frold 969 && (!frnew 970 || int128_lt(frold->addr.start, frnew->addr.start) 971 || (int128_eq(frold->addr.start, frnew->addr.start) 972 && !flatrange_equal(frold, frnew)))) { 973 /* In old but not in new, or in both but attributes changed. */ 974 975 if (!adding) { 976 flat_range_coalesced_io_del(frold, as); 977 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del); 978 } 979 980 ++iold; 981 } else if (frold && frnew && flatrange_equal(frold, frnew)) { 982 /* In both and unchanged (except logging may have changed) */ 983 984 if (adding) { 985 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop); 986 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) { 987 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start, 988 frold->dirty_log_mask, 989 frnew->dirty_log_mask); 990 } 991 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) { 992 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop, 993 frold->dirty_log_mask, 994 frnew->dirty_log_mask); 995 } 996 } 997 998 ++iold; 999 ++inew; 1000 } else { 1001 /* In new */ 1002 1003 if (adding) { 1004 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add); 1005 flat_range_coalesced_io_add(frnew, as); 1006 } 1007 1008 ++inew; 1009 } 1010 } 1011 } 1012 1013 static void flatviews_init(void) 1014 { 1015 static FlatView *empty_view; 1016 1017 if (flat_views) { 1018 return; 1019 } 1020 1021 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL, 1022 (GDestroyNotify) flatview_unref); 1023 if (!empty_view) { 1024 empty_view = generate_memory_topology(NULL); 1025 /* We keep it alive forever in the global variable. */ 1026 flatview_ref(empty_view); 1027 } else { 1028 g_hash_table_replace(flat_views, NULL, empty_view); 1029 flatview_ref(empty_view); 1030 } 1031 } 1032 1033 static void flatviews_reset(void) 1034 { 1035 AddressSpace *as; 1036 1037 if (flat_views) { 1038 g_hash_table_unref(flat_views); 1039 flat_views = NULL; 1040 } 1041 flatviews_init(); 1042 1043 /* Render unique FVs */ 1044 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) { 1045 MemoryRegion *physmr = memory_region_get_flatview_root(as->root); 1046 1047 if (g_hash_table_lookup(flat_views, physmr)) { 1048 continue; 1049 } 1050 1051 generate_memory_topology(physmr); 1052 } 1053 } 1054 1055 static void address_space_set_flatview(AddressSpace *as) 1056 { 1057 FlatView *old_view = address_space_to_flatview(as); 1058 MemoryRegion *physmr = memory_region_get_flatview_root(as->root); 1059 FlatView *new_view = g_hash_table_lookup(flat_views, physmr); 1060 1061 assert(new_view); 1062 1063 if (old_view == new_view) { 1064 return; 1065 } 1066 1067 if (old_view) { 1068 flatview_ref(old_view); 1069 } 1070 1071 flatview_ref(new_view); 1072 1073 if (!QTAILQ_EMPTY(&as->listeners)) { 1074 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view; 1075 1076 if (!old_view2) { 1077 old_view2 = &tmpview; 1078 } 1079 address_space_update_topology_pass(as, old_view2, new_view, false); 1080 address_space_update_topology_pass(as, old_view2, new_view, true); 1081 } 1082 1083 /* Writes are protected by the BQL. */ 1084 qatomic_rcu_set(&as->current_map, new_view); 1085 if (old_view) { 1086 flatview_unref(old_view); 1087 } 1088 1089 /* Note that all the old MemoryRegions are still alive up to this 1090 * point. This relieves most MemoryListeners from the need to 1091 * ref/unref the MemoryRegions they get---unless they use them 1092 * outside the iothread mutex, in which case precise reference 1093 * counting is necessary. 1094 */ 1095 if (old_view) { 1096 flatview_unref(old_view); 1097 } 1098 } 1099 1100 static void address_space_update_topology(AddressSpace *as) 1101 { 1102 MemoryRegion *physmr = memory_region_get_flatview_root(as->root); 1103 1104 flatviews_init(); 1105 if (!g_hash_table_lookup(flat_views, physmr)) { 1106 generate_memory_topology(physmr); 1107 } 1108 address_space_set_flatview(as); 1109 } 1110 1111 void memory_region_transaction_begin(void) 1112 { 1113 qemu_flush_coalesced_mmio_buffer(); 1114 ++memory_region_transaction_depth; 1115 } 1116 1117 void memory_region_transaction_commit(void) 1118 { 1119 AddressSpace *as; 1120 1121 assert(memory_region_transaction_depth); 1122 assert(qemu_mutex_iothread_locked()); 1123 1124 --memory_region_transaction_depth; 1125 if (!memory_region_transaction_depth) { 1126 if (memory_region_update_pending) { 1127 flatviews_reset(); 1128 1129 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward); 1130 1131 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) { 1132 address_space_set_flatview(as); 1133 address_space_update_ioeventfds(as); 1134 } 1135 memory_region_update_pending = false; 1136 ioeventfd_update_pending = false; 1137 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward); 1138 } else if (ioeventfd_update_pending) { 1139 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) { 1140 address_space_update_ioeventfds(as); 1141 } 1142 ioeventfd_update_pending = false; 1143 } 1144 } 1145 } 1146 1147 static void memory_region_destructor_none(MemoryRegion *mr) 1148 { 1149 } 1150 1151 static void memory_region_destructor_ram(MemoryRegion *mr) 1152 { 1153 qemu_ram_free(mr->ram_block); 1154 } 1155 1156 static bool memory_region_need_escape(char c) 1157 { 1158 return c == '/' || c == '[' || c == '\\' || c == ']'; 1159 } 1160 1161 static char *memory_region_escape_name(const char *name) 1162 { 1163 const char *p; 1164 char *escaped, *q; 1165 uint8_t c; 1166 size_t bytes = 0; 1167 1168 for (p = name; *p; p++) { 1169 bytes += memory_region_need_escape(*p) ? 4 : 1; 1170 } 1171 if (bytes == p - name) { 1172 return g_memdup(name, bytes + 1); 1173 } 1174 1175 escaped = g_malloc(bytes + 1); 1176 for (p = name, q = escaped; *p; p++) { 1177 c = *p; 1178 if (unlikely(memory_region_need_escape(c))) { 1179 *q++ = '\\'; 1180 *q++ = 'x'; 1181 *q++ = "0123456789abcdef"[c >> 4]; 1182 c = "0123456789abcdef"[c & 15]; 1183 } 1184 *q++ = c; 1185 } 1186 *q = 0; 1187 return escaped; 1188 } 1189 1190 static void memory_region_do_init(MemoryRegion *mr, 1191 Object *owner, 1192 const char *name, 1193 uint64_t size) 1194 { 1195 mr->size = int128_make64(size); 1196 if (size == UINT64_MAX) { 1197 mr->size = int128_2_64(); 1198 } 1199 mr->name = g_strdup(name); 1200 mr->owner = owner; 1201 mr->dev = (DeviceState *) object_dynamic_cast(mr->owner, TYPE_DEVICE); 1202 mr->ram_block = NULL; 1203 1204 if (name) { 1205 char *escaped_name = memory_region_escape_name(name); 1206 char *name_array = g_strdup_printf("%s[*]", escaped_name); 1207 1208 if (!owner) { 1209 owner = container_get(qdev_get_machine(), "/unattached"); 1210 } 1211 1212 object_property_add_child(owner, name_array, OBJECT(mr)); 1213 object_unref(OBJECT(mr)); 1214 g_free(name_array); 1215 g_free(escaped_name); 1216 } 1217 } 1218 1219 void memory_region_init(MemoryRegion *mr, 1220 Object *owner, 1221 const char *name, 1222 uint64_t size) 1223 { 1224 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION); 1225 memory_region_do_init(mr, owner, name, size); 1226 } 1227 1228 static void memory_region_get_container(Object *obj, Visitor *v, 1229 const char *name, void *opaque, 1230 Error **errp) 1231 { 1232 MemoryRegion *mr = MEMORY_REGION(obj); 1233 char *path = (char *)""; 1234 1235 if (mr->container) { 1236 path = object_get_canonical_path(OBJECT(mr->container)); 1237 } 1238 visit_type_str(v, name, &path, errp); 1239 if (mr->container) { 1240 g_free(path); 1241 } 1242 } 1243 1244 static Object *memory_region_resolve_container(Object *obj, void *opaque, 1245 const char *part) 1246 { 1247 MemoryRegion *mr = MEMORY_REGION(obj); 1248 1249 return OBJECT(mr->container); 1250 } 1251 1252 static void memory_region_get_priority(Object *obj, Visitor *v, 1253 const char *name, void *opaque, 1254 Error **errp) 1255 { 1256 MemoryRegion *mr = MEMORY_REGION(obj); 1257 int32_t value = mr->priority; 1258 1259 visit_type_int32(v, name, &value, errp); 1260 } 1261 1262 static void memory_region_get_size(Object *obj, Visitor *v, const char *name, 1263 void *opaque, Error **errp) 1264 { 1265 MemoryRegion *mr = MEMORY_REGION(obj); 1266 uint64_t value = memory_region_size(mr); 1267 1268 visit_type_uint64(v, name, &value, errp); 1269 } 1270 1271 static void memory_region_initfn(Object *obj) 1272 { 1273 MemoryRegion *mr = MEMORY_REGION(obj); 1274 ObjectProperty *op; 1275 1276 mr->ops = &unassigned_mem_ops; 1277 mr->enabled = true; 1278 mr->romd_mode = true; 1279 mr->destructor = memory_region_destructor_none; 1280 QTAILQ_INIT(&mr->subregions); 1281 QTAILQ_INIT(&mr->coalesced); 1282 1283 op = object_property_add(OBJECT(mr), "container", 1284 "link<" TYPE_MEMORY_REGION ">", 1285 memory_region_get_container, 1286 NULL, /* memory_region_set_container */ 1287 NULL, NULL); 1288 op->resolve = memory_region_resolve_container; 1289 1290 object_property_add_uint64_ptr(OBJECT(mr), "addr", 1291 &mr->addr, OBJ_PROP_FLAG_READ); 1292 object_property_add(OBJECT(mr), "priority", "uint32", 1293 memory_region_get_priority, 1294 NULL, /* memory_region_set_priority */ 1295 NULL, NULL); 1296 object_property_add(OBJECT(mr), "size", "uint64", 1297 memory_region_get_size, 1298 NULL, /* memory_region_set_size, */ 1299 NULL, NULL); 1300 } 1301 1302 static void iommu_memory_region_initfn(Object *obj) 1303 { 1304 MemoryRegion *mr = MEMORY_REGION(obj); 1305 1306 mr->is_iommu = true; 1307 } 1308 1309 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr, 1310 unsigned size) 1311 { 1312 #ifdef DEBUG_UNASSIGNED 1313 printf("Unassigned mem read " HWADDR_FMT_plx "\n", addr); 1314 #endif 1315 return 0; 1316 } 1317 1318 static void unassigned_mem_write(void *opaque, hwaddr addr, 1319 uint64_t val, unsigned size) 1320 { 1321 #ifdef DEBUG_UNASSIGNED 1322 printf("Unassigned mem write " HWADDR_FMT_plx " = 0x%"PRIx64"\n", addr, val); 1323 #endif 1324 } 1325 1326 static bool unassigned_mem_accepts(void *opaque, hwaddr addr, 1327 unsigned size, bool is_write, 1328 MemTxAttrs attrs) 1329 { 1330 return false; 1331 } 1332 1333 const MemoryRegionOps unassigned_mem_ops = { 1334 .valid.accepts = unassigned_mem_accepts, 1335 .endianness = DEVICE_NATIVE_ENDIAN, 1336 }; 1337 1338 static uint64_t memory_region_ram_device_read(void *opaque, 1339 hwaddr addr, unsigned size) 1340 { 1341 MemoryRegion *mr = opaque; 1342 uint64_t data = ldn_he_p(mr->ram_block->host + addr, size); 1343 1344 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size); 1345 1346 return data; 1347 } 1348 1349 static void memory_region_ram_device_write(void *opaque, hwaddr addr, 1350 uint64_t data, unsigned size) 1351 { 1352 MemoryRegion *mr = opaque; 1353 1354 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size); 1355 1356 stn_he_p(mr->ram_block->host + addr, size, data); 1357 } 1358 1359 static const MemoryRegionOps ram_device_mem_ops = { 1360 .read = memory_region_ram_device_read, 1361 .write = memory_region_ram_device_write, 1362 .endianness = DEVICE_HOST_ENDIAN, 1363 .valid = { 1364 .min_access_size = 1, 1365 .max_access_size = 8, 1366 .unaligned = true, 1367 }, 1368 .impl = { 1369 .min_access_size = 1, 1370 .max_access_size = 8, 1371 .unaligned = true, 1372 }, 1373 }; 1374 1375 bool memory_region_access_valid(MemoryRegion *mr, 1376 hwaddr addr, 1377 unsigned size, 1378 bool is_write, 1379 MemTxAttrs attrs) 1380 { 1381 if (mr->ops->valid.accepts 1382 && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) { 1383 qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX 1384 ", size %u, region '%s', reason: rejected\n", 1385 is_write ? "write" : "read", 1386 addr, size, memory_region_name(mr)); 1387 return false; 1388 } 1389 1390 if (!mr->ops->valid.unaligned && (addr & (size - 1))) { 1391 qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX 1392 ", size %u, region '%s', reason: unaligned\n", 1393 is_write ? "write" : "read", 1394 addr, size, memory_region_name(mr)); 1395 return false; 1396 } 1397 1398 /* Treat zero as compatibility all valid */ 1399 if (!mr->ops->valid.max_access_size) { 1400 return true; 1401 } 1402 1403 if (size > mr->ops->valid.max_access_size 1404 || size < mr->ops->valid.min_access_size) { 1405 qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX 1406 ", size %u, region '%s', reason: invalid size " 1407 "(min:%u max:%u)\n", 1408 is_write ? "write" : "read", 1409 addr, size, memory_region_name(mr), 1410 mr->ops->valid.min_access_size, 1411 mr->ops->valid.max_access_size); 1412 return false; 1413 } 1414 return true; 1415 } 1416 1417 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr, 1418 hwaddr addr, 1419 uint64_t *pval, 1420 unsigned size, 1421 MemTxAttrs attrs) 1422 { 1423 *pval = 0; 1424 1425 if (mr->ops->read) { 1426 return access_with_adjusted_size(addr, pval, size, 1427 mr->ops->impl.min_access_size, 1428 mr->ops->impl.max_access_size, 1429 memory_region_read_accessor, 1430 mr, attrs); 1431 } else { 1432 return access_with_adjusted_size(addr, pval, size, 1433 mr->ops->impl.min_access_size, 1434 mr->ops->impl.max_access_size, 1435 memory_region_read_with_attrs_accessor, 1436 mr, attrs); 1437 } 1438 } 1439 1440 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1441 hwaddr addr, 1442 uint64_t *pval, 1443 MemOp op, 1444 MemTxAttrs attrs) 1445 { 1446 unsigned size = memop_size(op); 1447 MemTxResult r; 1448 1449 if (mr->alias) { 1450 return memory_region_dispatch_read(mr->alias, 1451 mr->alias_offset + addr, 1452 pval, op, attrs); 1453 } 1454 if (!memory_region_access_valid(mr, addr, size, false, attrs)) { 1455 *pval = unassigned_mem_read(mr, addr, size); 1456 return MEMTX_DECODE_ERROR; 1457 } 1458 1459 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs); 1460 adjust_endianness(mr, pval, op); 1461 return r; 1462 } 1463 1464 /* Return true if an eventfd was signalled */ 1465 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr, 1466 hwaddr addr, 1467 uint64_t data, 1468 unsigned size, 1469 MemTxAttrs attrs) 1470 { 1471 MemoryRegionIoeventfd ioeventfd = { 1472 .addr = addrrange_make(int128_make64(addr), int128_make64(size)), 1473 .data = data, 1474 }; 1475 unsigned i; 1476 1477 for (i = 0; i < mr->ioeventfd_nb; i++) { 1478 ioeventfd.match_data = mr->ioeventfds[i].match_data; 1479 ioeventfd.e = mr->ioeventfds[i].e; 1480 1481 if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) { 1482 event_notifier_set(ioeventfd.e); 1483 return true; 1484 } 1485 } 1486 1487 return false; 1488 } 1489 1490 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 1491 hwaddr addr, 1492 uint64_t data, 1493 MemOp op, 1494 MemTxAttrs attrs) 1495 { 1496 unsigned size = memop_size(op); 1497 1498 if (mr->alias) { 1499 return memory_region_dispatch_write(mr->alias, 1500 mr->alias_offset + addr, 1501 data, op, attrs); 1502 } 1503 if (!memory_region_access_valid(mr, addr, size, true, attrs)) { 1504 unassigned_mem_write(mr, addr, data, size); 1505 return MEMTX_DECODE_ERROR; 1506 } 1507 1508 adjust_endianness(mr, &data, op); 1509 1510 /* 1511 * FIXME: it's not clear why under KVM the write would be processed 1512 * directly, instead of going through eventfd. This probably should 1513 * test "tcg_enabled() || qtest_enabled()", or should just go away. 1514 */ 1515 if (!kvm_enabled() && 1516 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) { 1517 return MEMTX_OK; 1518 } 1519 1520 if (mr->ops->write) { 1521 return access_with_adjusted_size(addr, &data, size, 1522 mr->ops->impl.min_access_size, 1523 mr->ops->impl.max_access_size, 1524 memory_region_write_accessor, mr, 1525 attrs); 1526 } else { 1527 return 1528 access_with_adjusted_size(addr, &data, size, 1529 mr->ops->impl.min_access_size, 1530 mr->ops->impl.max_access_size, 1531 memory_region_write_with_attrs_accessor, 1532 mr, attrs); 1533 } 1534 } 1535 1536 void memory_region_init_io(MemoryRegion *mr, 1537 Object *owner, 1538 const MemoryRegionOps *ops, 1539 void *opaque, 1540 const char *name, 1541 uint64_t size) 1542 { 1543 memory_region_init(mr, owner, name, size); 1544 mr->ops = ops ? ops : &unassigned_mem_ops; 1545 mr->opaque = opaque; 1546 mr->terminates = true; 1547 } 1548 1549 bool memory_region_init_ram_nomigrate(MemoryRegion *mr, 1550 Object *owner, 1551 const char *name, 1552 uint64_t size, 1553 Error **errp) 1554 { 1555 return memory_region_init_ram_flags_nomigrate(mr, owner, name, 1556 size, 0, errp); 1557 } 1558 1559 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr, 1560 Object *owner, 1561 const char *name, 1562 uint64_t size, 1563 uint32_t ram_flags, 1564 Error **errp) 1565 { 1566 Error *err = NULL; 1567 memory_region_init(mr, owner, name, size); 1568 mr->ram = true; 1569 mr->terminates = true; 1570 mr->destructor = memory_region_destructor_ram; 1571 mr->ram_block = qemu_ram_alloc(size, ram_flags, mr, &err); 1572 if (err) { 1573 mr->size = int128_zero(); 1574 object_unparent(OBJECT(mr)); 1575 error_propagate(errp, err); 1576 return false; 1577 } 1578 return true; 1579 } 1580 1581 void memory_region_init_resizeable_ram(MemoryRegion *mr, 1582 Object *owner, 1583 const char *name, 1584 uint64_t size, 1585 uint64_t max_size, 1586 void (*resized)(const char*, 1587 uint64_t length, 1588 void *host), 1589 Error **errp) 1590 { 1591 Error *err = NULL; 1592 memory_region_init(mr, owner, name, size); 1593 mr->ram = true; 1594 mr->terminates = true; 1595 mr->destructor = memory_region_destructor_ram; 1596 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized, 1597 mr, &err); 1598 if (err) { 1599 mr->size = int128_zero(); 1600 object_unparent(OBJECT(mr)); 1601 error_propagate(errp, err); 1602 } 1603 } 1604 1605 #ifdef CONFIG_POSIX 1606 void memory_region_init_ram_from_file(MemoryRegion *mr, 1607 Object *owner, 1608 const char *name, 1609 uint64_t size, 1610 uint64_t align, 1611 uint32_t ram_flags, 1612 const char *path, 1613 ram_addr_t offset, 1614 Error **errp) 1615 { 1616 Error *err = NULL; 1617 memory_region_init(mr, owner, name, size); 1618 mr->ram = true; 1619 mr->readonly = !!(ram_flags & RAM_READONLY); 1620 mr->terminates = true; 1621 mr->destructor = memory_region_destructor_ram; 1622 mr->align = align; 1623 mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path, 1624 offset, &err); 1625 if (err) { 1626 mr->size = int128_zero(); 1627 object_unparent(OBJECT(mr)); 1628 error_propagate(errp, err); 1629 } 1630 } 1631 1632 void memory_region_init_ram_from_fd(MemoryRegion *mr, 1633 Object *owner, 1634 const char *name, 1635 uint64_t size, 1636 uint32_t ram_flags, 1637 int fd, 1638 ram_addr_t offset, 1639 Error **errp) 1640 { 1641 Error *err = NULL; 1642 memory_region_init(mr, owner, name, size); 1643 mr->ram = true; 1644 mr->readonly = !!(ram_flags & RAM_READONLY); 1645 mr->terminates = true; 1646 mr->destructor = memory_region_destructor_ram; 1647 mr->ram_block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, 1648 &err); 1649 if (err) { 1650 mr->size = int128_zero(); 1651 object_unparent(OBJECT(mr)); 1652 error_propagate(errp, err); 1653 } 1654 } 1655 #endif 1656 1657 void memory_region_init_ram_ptr(MemoryRegion *mr, 1658 Object *owner, 1659 const char *name, 1660 uint64_t size, 1661 void *ptr) 1662 { 1663 memory_region_init(mr, owner, name, size); 1664 mr->ram = true; 1665 mr->terminates = true; 1666 mr->destructor = memory_region_destructor_ram; 1667 1668 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */ 1669 assert(ptr != NULL); 1670 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort); 1671 } 1672 1673 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 1674 Object *owner, 1675 const char *name, 1676 uint64_t size, 1677 void *ptr) 1678 { 1679 memory_region_init(mr, owner, name, size); 1680 mr->ram = true; 1681 mr->terminates = true; 1682 mr->ram_device = true; 1683 mr->ops = &ram_device_mem_ops; 1684 mr->opaque = mr; 1685 mr->destructor = memory_region_destructor_ram; 1686 1687 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */ 1688 assert(ptr != NULL); 1689 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort); 1690 } 1691 1692 void memory_region_init_alias(MemoryRegion *mr, 1693 Object *owner, 1694 const char *name, 1695 MemoryRegion *orig, 1696 hwaddr offset, 1697 uint64_t size) 1698 { 1699 memory_region_init(mr, owner, name, size); 1700 mr->alias = orig; 1701 mr->alias_offset = offset; 1702 } 1703 1704 bool memory_region_init_rom_nomigrate(MemoryRegion *mr, 1705 Object *owner, 1706 const char *name, 1707 uint64_t size, 1708 Error **errp) 1709 { 1710 if (!memory_region_init_ram_flags_nomigrate(mr, owner, name, 1711 size, 0, errp)) { 1712 return false; 1713 } 1714 mr->readonly = true; 1715 1716 return true; 1717 } 1718 1719 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1720 Object *owner, 1721 const MemoryRegionOps *ops, 1722 void *opaque, 1723 const char *name, 1724 uint64_t size, 1725 Error **errp) 1726 { 1727 Error *err = NULL; 1728 assert(ops); 1729 memory_region_init(mr, owner, name, size); 1730 mr->ops = ops; 1731 mr->opaque = opaque; 1732 mr->terminates = true; 1733 mr->rom_device = true; 1734 mr->destructor = memory_region_destructor_ram; 1735 mr->ram_block = qemu_ram_alloc(size, 0, mr, &err); 1736 if (err) { 1737 mr->size = int128_zero(); 1738 object_unparent(OBJECT(mr)); 1739 error_propagate(errp, err); 1740 } 1741 } 1742 1743 void memory_region_init_iommu(void *_iommu_mr, 1744 size_t instance_size, 1745 const char *mrtypename, 1746 Object *owner, 1747 const char *name, 1748 uint64_t size) 1749 { 1750 struct IOMMUMemoryRegion *iommu_mr; 1751 struct MemoryRegion *mr; 1752 1753 object_initialize(_iommu_mr, instance_size, mrtypename); 1754 mr = MEMORY_REGION(_iommu_mr); 1755 memory_region_do_init(mr, owner, name, size); 1756 iommu_mr = IOMMU_MEMORY_REGION(mr); 1757 mr->terminates = true; /* then re-forwards */ 1758 QLIST_INIT(&iommu_mr->iommu_notify); 1759 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE; 1760 } 1761 1762 static void memory_region_finalize(Object *obj) 1763 { 1764 MemoryRegion *mr = MEMORY_REGION(obj); 1765 1766 assert(!mr->container); 1767 1768 /* We know the region is not visible in any address space (it 1769 * does not have a container and cannot be a root either because 1770 * it has no references, so we can blindly clear mr->enabled. 1771 * memory_region_set_enabled instead could trigger a transaction 1772 * and cause an infinite loop. 1773 */ 1774 mr->enabled = false; 1775 memory_region_transaction_begin(); 1776 while (!QTAILQ_EMPTY(&mr->subregions)) { 1777 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions); 1778 memory_region_del_subregion(mr, subregion); 1779 } 1780 memory_region_transaction_commit(); 1781 1782 mr->destructor(mr); 1783 memory_region_clear_coalescing(mr); 1784 g_free((char *)mr->name); 1785 g_free(mr->ioeventfds); 1786 } 1787 1788 Object *memory_region_owner(MemoryRegion *mr) 1789 { 1790 Object *obj = OBJECT(mr); 1791 return obj->parent; 1792 } 1793 1794 void memory_region_ref(MemoryRegion *mr) 1795 { 1796 /* MMIO callbacks most likely will access data that belongs 1797 * to the owner, hence the need to ref/unref the owner whenever 1798 * the memory region is in use. 1799 * 1800 * The memory region is a child of its owner. As long as the 1801 * owner doesn't call unparent itself on the memory region, 1802 * ref-ing the owner will also keep the memory region alive. 1803 * Memory regions without an owner are supposed to never go away; 1804 * we do not ref/unref them because it slows down DMA sensibly. 1805 */ 1806 if (mr && mr->owner) { 1807 object_ref(mr->owner); 1808 } 1809 } 1810 1811 void memory_region_unref(MemoryRegion *mr) 1812 { 1813 if (mr && mr->owner) { 1814 object_unref(mr->owner); 1815 } 1816 } 1817 1818 uint64_t memory_region_size(MemoryRegion *mr) 1819 { 1820 if (int128_eq(mr->size, int128_2_64())) { 1821 return UINT64_MAX; 1822 } 1823 return int128_get64(mr->size); 1824 } 1825 1826 const char *memory_region_name(const MemoryRegion *mr) 1827 { 1828 if (!mr->name) { 1829 ((MemoryRegion *)mr)->name = 1830 g_strdup(object_get_canonical_path_component(OBJECT(mr))); 1831 } 1832 return mr->name; 1833 } 1834 1835 bool memory_region_is_ram_device(MemoryRegion *mr) 1836 { 1837 return mr->ram_device; 1838 } 1839 1840 bool memory_region_is_protected(MemoryRegion *mr) 1841 { 1842 return mr->ram && (mr->ram_block->flags & RAM_PROTECTED); 1843 } 1844 1845 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr) 1846 { 1847 uint8_t mask = mr->dirty_log_mask; 1848 RAMBlock *rb = mr->ram_block; 1849 1850 if (global_dirty_tracking && ((rb && qemu_ram_is_migratable(rb)) || 1851 memory_region_is_iommu(mr))) { 1852 mask |= (1 << DIRTY_MEMORY_MIGRATION); 1853 } 1854 1855 if (tcg_enabled() && rb) { 1856 /* TCG only cares about dirty memory logging for RAM, not IOMMU. */ 1857 mask |= (1 << DIRTY_MEMORY_CODE); 1858 } 1859 return mask; 1860 } 1861 1862 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client) 1863 { 1864 return memory_region_get_dirty_log_mask(mr) & (1 << client); 1865 } 1866 1867 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr, 1868 Error **errp) 1869 { 1870 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE; 1871 IOMMUNotifier *iommu_notifier; 1872 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr); 1873 int ret = 0; 1874 1875 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) { 1876 flags |= iommu_notifier->notifier_flags; 1877 } 1878 1879 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) { 1880 ret = imrc->notify_flag_changed(iommu_mr, 1881 iommu_mr->iommu_notify_flags, 1882 flags, errp); 1883 } 1884 1885 if (!ret) { 1886 iommu_mr->iommu_notify_flags = flags; 1887 } 1888 return ret; 1889 } 1890 1891 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr, 1892 uint64_t page_size_mask, 1893 Error **errp) 1894 { 1895 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr); 1896 int ret = 0; 1897 1898 if (imrc->iommu_set_page_size_mask) { 1899 ret = imrc->iommu_set_page_size_mask(iommu_mr, page_size_mask, errp); 1900 } 1901 return ret; 1902 } 1903 1904 int memory_region_iommu_set_iova_ranges(IOMMUMemoryRegion *iommu_mr, 1905 GList *iova_ranges, 1906 Error **errp) 1907 { 1908 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr); 1909 int ret = 0; 1910 1911 if (imrc->iommu_set_iova_ranges) { 1912 ret = imrc->iommu_set_iova_ranges(iommu_mr, iova_ranges, errp); 1913 } 1914 return ret; 1915 } 1916 1917 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1918 IOMMUNotifier *n, Error **errp) 1919 { 1920 IOMMUMemoryRegion *iommu_mr; 1921 int ret; 1922 1923 if (mr->alias) { 1924 return memory_region_register_iommu_notifier(mr->alias, n, errp); 1925 } 1926 1927 /* We need to register for at least one bitfield */ 1928 iommu_mr = IOMMU_MEMORY_REGION(mr); 1929 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE); 1930 assert(n->start <= n->end); 1931 assert(n->iommu_idx >= 0 && 1932 n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr)); 1933 1934 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node); 1935 ret = memory_region_update_iommu_notify_flags(iommu_mr, errp); 1936 if (ret) { 1937 QLIST_REMOVE(n, node); 1938 } 1939 return ret; 1940 } 1941 1942 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr) 1943 { 1944 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr); 1945 1946 if (imrc->get_min_page_size) { 1947 return imrc->get_min_page_size(iommu_mr); 1948 } 1949 return TARGET_PAGE_SIZE; 1950 } 1951 1952 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n) 1953 { 1954 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 1955 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr); 1956 hwaddr addr, granularity; 1957 IOMMUTLBEntry iotlb; 1958 1959 /* If the IOMMU has its own replay callback, override */ 1960 if (imrc->replay) { 1961 imrc->replay(iommu_mr, n); 1962 return; 1963 } 1964 1965 granularity = memory_region_iommu_get_min_page_size(iommu_mr); 1966 1967 for (addr = 0; addr < memory_region_size(mr); addr += granularity) { 1968 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx); 1969 if (iotlb.perm != IOMMU_NONE) { 1970 n->notify(n, &iotlb); 1971 } 1972 1973 /* if (2^64 - MR size) < granularity, it's possible to get an 1974 * infinite loop here. This should catch such a wraparound */ 1975 if ((addr + granularity) < addr) { 1976 break; 1977 } 1978 } 1979 } 1980 1981 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 1982 IOMMUNotifier *n) 1983 { 1984 IOMMUMemoryRegion *iommu_mr; 1985 1986 if (mr->alias) { 1987 memory_region_unregister_iommu_notifier(mr->alias, n); 1988 return; 1989 } 1990 QLIST_REMOVE(n, node); 1991 iommu_mr = IOMMU_MEMORY_REGION(mr); 1992 memory_region_update_iommu_notify_flags(iommu_mr, NULL); 1993 } 1994 1995 void memory_region_notify_iommu_one(IOMMUNotifier *notifier, 1996 IOMMUTLBEvent *event) 1997 { 1998 IOMMUTLBEntry *entry = &event->entry; 1999 hwaddr entry_end = entry->iova + entry->addr_mask; 2000 IOMMUTLBEntry tmp = *entry; 2001 2002 if (event->type == IOMMU_NOTIFIER_UNMAP) { 2003 assert(entry->perm == IOMMU_NONE); 2004 } 2005 2006 /* 2007 * Skip the notification if the notification does not overlap 2008 * with registered range. 2009 */ 2010 if (notifier->start > entry_end || notifier->end < entry->iova) { 2011 return; 2012 } 2013 2014 if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) { 2015 /* Crop (iova, addr_mask) to range */ 2016 tmp.iova = MAX(tmp.iova, notifier->start); 2017 tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova; 2018 } else { 2019 assert(entry->iova >= notifier->start && entry_end <= notifier->end); 2020 } 2021 2022 if (event->type & notifier->notifier_flags) { 2023 notifier->notify(notifier, &tmp); 2024 } 2025 } 2026 2027 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier) 2028 { 2029 IOMMUTLBEvent event; 2030 2031 event.type = IOMMU_NOTIFIER_UNMAP; 2032 event.entry.target_as = &address_space_memory; 2033 event.entry.iova = notifier->start; 2034 event.entry.perm = IOMMU_NONE; 2035 event.entry.addr_mask = notifier->end - notifier->start; 2036 2037 memory_region_notify_iommu_one(notifier, &event); 2038 } 2039 2040 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 2041 int iommu_idx, 2042 IOMMUTLBEvent event) 2043 { 2044 IOMMUNotifier *iommu_notifier; 2045 2046 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr))); 2047 2048 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) { 2049 if (iommu_notifier->iommu_idx == iommu_idx) { 2050 memory_region_notify_iommu_one(iommu_notifier, &event); 2051 } 2052 } 2053 } 2054 2055 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 2056 enum IOMMUMemoryRegionAttr attr, 2057 void *data) 2058 { 2059 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr); 2060 2061 if (!imrc->get_attr) { 2062 return -EINVAL; 2063 } 2064 2065 return imrc->get_attr(iommu_mr, attr, data); 2066 } 2067 2068 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 2069 MemTxAttrs attrs) 2070 { 2071 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr); 2072 2073 if (!imrc->attrs_to_index) { 2074 return 0; 2075 } 2076 2077 return imrc->attrs_to_index(iommu_mr, attrs); 2078 } 2079 2080 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr) 2081 { 2082 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr); 2083 2084 if (!imrc->num_indexes) { 2085 return 1; 2086 } 2087 2088 return imrc->num_indexes(iommu_mr); 2089 } 2090 2091 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr) 2092 { 2093 if (!memory_region_is_ram(mr)) { 2094 return NULL; 2095 } 2096 return mr->rdm; 2097 } 2098 2099 void memory_region_set_ram_discard_manager(MemoryRegion *mr, 2100 RamDiscardManager *rdm) 2101 { 2102 g_assert(memory_region_is_ram(mr)); 2103 g_assert(!rdm || !mr->rdm); 2104 mr->rdm = rdm; 2105 } 2106 2107 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm, 2108 const MemoryRegion *mr) 2109 { 2110 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm); 2111 2112 g_assert(rdmc->get_min_granularity); 2113 return rdmc->get_min_granularity(rdm, mr); 2114 } 2115 2116 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm, 2117 const MemoryRegionSection *section) 2118 { 2119 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm); 2120 2121 g_assert(rdmc->is_populated); 2122 return rdmc->is_populated(rdm, section); 2123 } 2124 2125 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm, 2126 MemoryRegionSection *section, 2127 ReplayRamPopulate replay_fn, 2128 void *opaque) 2129 { 2130 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm); 2131 2132 g_assert(rdmc->replay_populated); 2133 return rdmc->replay_populated(rdm, section, replay_fn, opaque); 2134 } 2135 2136 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm, 2137 MemoryRegionSection *section, 2138 ReplayRamDiscard replay_fn, 2139 void *opaque) 2140 { 2141 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm); 2142 2143 g_assert(rdmc->replay_discarded); 2144 rdmc->replay_discarded(rdm, section, replay_fn, opaque); 2145 } 2146 2147 void ram_discard_manager_register_listener(RamDiscardManager *rdm, 2148 RamDiscardListener *rdl, 2149 MemoryRegionSection *section) 2150 { 2151 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm); 2152 2153 g_assert(rdmc->register_listener); 2154 rdmc->register_listener(rdm, rdl, section); 2155 } 2156 2157 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm, 2158 RamDiscardListener *rdl) 2159 { 2160 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm); 2161 2162 g_assert(rdmc->unregister_listener); 2163 rdmc->unregister_listener(rdm, rdl); 2164 } 2165 2166 /* Called with rcu_read_lock held. */ 2167 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, 2168 ram_addr_t *ram_addr, bool *read_only, 2169 bool *mr_has_discard_manager) 2170 { 2171 MemoryRegion *mr; 2172 hwaddr xlat; 2173 hwaddr len = iotlb->addr_mask + 1; 2174 bool writable = iotlb->perm & IOMMU_WO; 2175 2176 if (mr_has_discard_manager) { 2177 *mr_has_discard_manager = false; 2178 } 2179 /* 2180 * The IOMMU TLB entry we have just covers translation through 2181 * this IOMMU to its immediate target. We need to translate 2182 * it the rest of the way through to memory. 2183 */ 2184 mr = address_space_translate(&address_space_memory, iotlb->translated_addr, 2185 &xlat, &len, writable, MEMTXATTRS_UNSPECIFIED); 2186 if (!memory_region_is_ram(mr)) { 2187 error_report("iommu map to non memory area %" HWADDR_PRIx "", xlat); 2188 return false; 2189 } else if (memory_region_has_ram_discard_manager(mr)) { 2190 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(mr); 2191 MemoryRegionSection tmp = { 2192 .mr = mr, 2193 .offset_within_region = xlat, 2194 .size = int128_make64(len), 2195 }; 2196 if (mr_has_discard_manager) { 2197 *mr_has_discard_manager = true; 2198 } 2199 /* 2200 * Malicious VMs can map memory into the IOMMU, which is expected 2201 * to remain discarded. vfio will pin all pages, populating memory. 2202 * Disallow that. vmstate priorities make sure any RamDiscardManager 2203 * were already restored before IOMMUs are restored. 2204 */ 2205 if (!ram_discard_manager_is_populated(rdm, &tmp)) { 2206 error_report("iommu map to discarded memory (e.g., unplugged via" 2207 " virtio-mem): %" HWADDR_PRIx "", 2208 iotlb->translated_addr); 2209 return false; 2210 } 2211 } 2212 2213 /* 2214 * Translation truncates length to the IOMMU page size, 2215 * check that it did not truncate too much. 2216 */ 2217 if (len & iotlb->addr_mask) { 2218 error_report("iommu has granularity incompatible with target AS"); 2219 return false; 2220 } 2221 2222 if (vaddr) { 2223 *vaddr = memory_region_get_ram_ptr(mr) + xlat; 2224 } 2225 2226 if (ram_addr) { 2227 *ram_addr = memory_region_get_ram_addr(mr) + xlat; 2228 } 2229 2230 if (read_only) { 2231 *read_only = !writable || mr->readonly; 2232 } 2233 2234 return true; 2235 } 2236 2237 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client) 2238 { 2239 uint8_t mask = 1 << client; 2240 uint8_t old_logging; 2241 2242 assert(client == DIRTY_MEMORY_VGA); 2243 old_logging = mr->vga_logging_count; 2244 mr->vga_logging_count += log ? 1 : -1; 2245 if (!!old_logging == !!mr->vga_logging_count) { 2246 return; 2247 } 2248 2249 memory_region_transaction_begin(); 2250 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask); 2251 memory_region_update_pending |= mr->enabled; 2252 memory_region_transaction_commit(); 2253 } 2254 2255 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 2256 hwaddr size) 2257 { 2258 assert(mr->ram_block); 2259 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr, 2260 size, 2261 memory_region_get_dirty_log_mask(mr)); 2262 } 2263 2264 /* 2265 * If memory region `mr' is NULL, do global sync. Otherwise, sync 2266 * dirty bitmap for the specified memory region. 2267 */ 2268 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr, bool last_stage) 2269 { 2270 MemoryListener *listener; 2271 AddressSpace *as; 2272 FlatView *view; 2273 FlatRange *fr; 2274 2275 /* If the same address space has multiple log_sync listeners, we 2276 * visit that address space's FlatView multiple times. But because 2277 * log_sync listeners are rare, it's still cheaper than walking each 2278 * address space once. 2279 */ 2280 QTAILQ_FOREACH(listener, &memory_listeners, link) { 2281 if (listener->log_sync) { 2282 as = listener->address_space; 2283 view = address_space_get_flatview(as); 2284 FOR_EACH_FLAT_RANGE(fr, view) { 2285 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) { 2286 MemoryRegionSection mrs = section_from_flat_range(fr, view); 2287 listener->log_sync(listener, &mrs); 2288 } 2289 } 2290 flatview_unref(view); 2291 trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 0); 2292 } else if (listener->log_sync_global) { 2293 /* 2294 * No matter whether MR is specified, what we can do here 2295 * is to do a global sync, because we are not capable to 2296 * sync in a finer granularity. 2297 */ 2298 listener->log_sync_global(listener, last_stage); 2299 trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 1); 2300 } 2301 } 2302 } 2303 2304 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 2305 hwaddr len) 2306 { 2307 MemoryRegionSection mrs; 2308 MemoryListener *listener; 2309 AddressSpace *as; 2310 FlatView *view; 2311 FlatRange *fr; 2312 hwaddr sec_start, sec_end, sec_size; 2313 2314 QTAILQ_FOREACH(listener, &memory_listeners, link) { 2315 if (!listener->log_clear) { 2316 continue; 2317 } 2318 as = listener->address_space; 2319 view = address_space_get_flatview(as); 2320 FOR_EACH_FLAT_RANGE(fr, view) { 2321 if (!fr->dirty_log_mask || fr->mr != mr) { 2322 /* 2323 * Clear dirty bitmap operation only applies to those 2324 * regions whose dirty logging is at least enabled 2325 */ 2326 continue; 2327 } 2328 2329 mrs = section_from_flat_range(fr, view); 2330 2331 sec_start = MAX(mrs.offset_within_region, start); 2332 sec_end = mrs.offset_within_region + int128_get64(mrs.size); 2333 sec_end = MIN(sec_end, start + len); 2334 2335 if (sec_start >= sec_end) { 2336 /* 2337 * If this memory region section has no intersection 2338 * with the requested range, skip. 2339 */ 2340 continue; 2341 } 2342 2343 /* Valid case; shrink the section if needed */ 2344 mrs.offset_within_address_space += 2345 sec_start - mrs.offset_within_region; 2346 mrs.offset_within_region = sec_start; 2347 sec_size = sec_end - sec_start; 2348 mrs.size = int128_make64(sec_size); 2349 listener->log_clear(listener, &mrs); 2350 } 2351 flatview_unref(view); 2352 } 2353 } 2354 2355 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 2356 hwaddr addr, 2357 hwaddr size, 2358 unsigned client) 2359 { 2360 DirtyBitmapSnapshot *snapshot; 2361 assert(mr->ram_block); 2362 memory_region_sync_dirty_bitmap(mr, false); 2363 snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client); 2364 memory_global_after_dirty_log_sync(); 2365 return snapshot; 2366 } 2367 2368 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap, 2369 hwaddr addr, hwaddr size) 2370 { 2371 assert(mr->ram_block); 2372 return cpu_physical_memory_snapshot_get_dirty(snap, 2373 memory_region_get_ram_addr(mr) + addr, size); 2374 } 2375 2376 void memory_region_set_readonly(MemoryRegion *mr, bool readonly) 2377 { 2378 if (mr->readonly != readonly) { 2379 memory_region_transaction_begin(); 2380 mr->readonly = readonly; 2381 memory_region_update_pending |= mr->enabled; 2382 memory_region_transaction_commit(); 2383 } 2384 } 2385 2386 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile) 2387 { 2388 if (mr->nonvolatile != nonvolatile) { 2389 memory_region_transaction_begin(); 2390 mr->nonvolatile = nonvolatile; 2391 memory_region_update_pending |= mr->enabled; 2392 memory_region_transaction_commit(); 2393 } 2394 } 2395 2396 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode) 2397 { 2398 if (mr->romd_mode != romd_mode) { 2399 memory_region_transaction_begin(); 2400 mr->romd_mode = romd_mode; 2401 memory_region_update_pending |= mr->enabled; 2402 memory_region_transaction_commit(); 2403 } 2404 } 2405 2406 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 2407 hwaddr size, unsigned client) 2408 { 2409 assert(mr->ram_block); 2410 cpu_physical_memory_test_and_clear_dirty( 2411 memory_region_get_ram_addr(mr) + addr, size, client); 2412 } 2413 2414 int memory_region_get_fd(MemoryRegion *mr) 2415 { 2416 RCU_READ_LOCK_GUARD(); 2417 while (mr->alias) { 2418 mr = mr->alias; 2419 } 2420 return mr->ram_block->fd; 2421 } 2422 2423 void *memory_region_get_ram_ptr(MemoryRegion *mr) 2424 { 2425 uint64_t offset = 0; 2426 2427 RCU_READ_LOCK_GUARD(); 2428 while (mr->alias) { 2429 offset += mr->alias_offset; 2430 mr = mr->alias; 2431 } 2432 assert(mr->ram_block); 2433 return qemu_map_ram_ptr(mr->ram_block, offset); 2434 } 2435 2436 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset) 2437 { 2438 RAMBlock *block; 2439 2440 block = qemu_ram_block_from_host(ptr, false, offset); 2441 if (!block) { 2442 return NULL; 2443 } 2444 2445 return block->mr; 2446 } 2447 2448 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr) 2449 { 2450 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID; 2451 } 2452 2453 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp) 2454 { 2455 assert(mr->ram_block); 2456 2457 qemu_ram_resize(mr->ram_block, newsize, errp); 2458 } 2459 2460 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size) 2461 { 2462 if (mr->ram_block) { 2463 qemu_ram_msync(mr->ram_block, addr, size); 2464 } 2465 } 2466 2467 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size) 2468 { 2469 /* 2470 * Might be extended case needed to cover 2471 * different types of memory regions 2472 */ 2473 if (mr->dirty_log_mask) { 2474 memory_region_msync(mr, addr, size); 2475 } 2476 } 2477 2478 /* 2479 * Call proper memory listeners about the change on the newly 2480 * added/removed CoalescedMemoryRange. 2481 */ 2482 static void memory_region_update_coalesced_range(MemoryRegion *mr, 2483 CoalescedMemoryRange *cmr, 2484 bool add) 2485 { 2486 AddressSpace *as; 2487 FlatView *view; 2488 FlatRange *fr; 2489 2490 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) { 2491 view = address_space_get_flatview(as); 2492 FOR_EACH_FLAT_RANGE(fr, view) { 2493 if (fr->mr == mr) { 2494 flat_range_coalesced_io_notify(fr, as, cmr, add); 2495 } 2496 } 2497 flatview_unref(view); 2498 } 2499 } 2500 2501 void memory_region_set_coalescing(MemoryRegion *mr) 2502 { 2503 memory_region_clear_coalescing(mr); 2504 memory_region_add_coalescing(mr, 0, int128_get64(mr->size)); 2505 } 2506 2507 void memory_region_add_coalescing(MemoryRegion *mr, 2508 hwaddr offset, 2509 uint64_t size) 2510 { 2511 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr)); 2512 2513 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size)); 2514 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link); 2515 memory_region_update_coalesced_range(mr, cmr, true); 2516 memory_region_set_flush_coalesced(mr); 2517 } 2518 2519 void memory_region_clear_coalescing(MemoryRegion *mr) 2520 { 2521 CoalescedMemoryRange *cmr; 2522 2523 if (QTAILQ_EMPTY(&mr->coalesced)) { 2524 return; 2525 } 2526 2527 qemu_flush_coalesced_mmio_buffer(); 2528 mr->flush_coalesced_mmio = false; 2529 2530 while (!QTAILQ_EMPTY(&mr->coalesced)) { 2531 cmr = QTAILQ_FIRST(&mr->coalesced); 2532 QTAILQ_REMOVE(&mr->coalesced, cmr, link); 2533 memory_region_update_coalesced_range(mr, cmr, false); 2534 g_free(cmr); 2535 } 2536 } 2537 2538 void memory_region_set_flush_coalesced(MemoryRegion *mr) 2539 { 2540 mr->flush_coalesced_mmio = true; 2541 } 2542 2543 void memory_region_clear_flush_coalesced(MemoryRegion *mr) 2544 { 2545 qemu_flush_coalesced_mmio_buffer(); 2546 if (QTAILQ_EMPTY(&mr->coalesced)) { 2547 mr->flush_coalesced_mmio = false; 2548 } 2549 } 2550 2551 void memory_region_add_eventfd(MemoryRegion *mr, 2552 hwaddr addr, 2553 unsigned size, 2554 bool match_data, 2555 uint64_t data, 2556 EventNotifier *e) 2557 { 2558 MemoryRegionIoeventfd mrfd = { 2559 .addr.start = int128_make64(addr), 2560 .addr.size = int128_make64(size), 2561 .match_data = match_data, 2562 .data = data, 2563 .e = e, 2564 }; 2565 unsigned i; 2566 2567 if (size) { 2568 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE); 2569 } 2570 memory_region_transaction_begin(); 2571 for (i = 0; i < mr->ioeventfd_nb; ++i) { 2572 if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) { 2573 break; 2574 } 2575 } 2576 ++mr->ioeventfd_nb; 2577 mr->ioeventfds = g_realloc(mr->ioeventfds, 2578 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb); 2579 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i], 2580 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i)); 2581 mr->ioeventfds[i] = mrfd; 2582 ioeventfd_update_pending |= mr->enabled; 2583 memory_region_transaction_commit(); 2584 } 2585 2586 void memory_region_del_eventfd(MemoryRegion *mr, 2587 hwaddr addr, 2588 unsigned size, 2589 bool match_data, 2590 uint64_t data, 2591 EventNotifier *e) 2592 { 2593 MemoryRegionIoeventfd mrfd = { 2594 .addr.start = int128_make64(addr), 2595 .addr.size = int128_make64(size), 2596 .match_data = match_data, 2597 .data = data, 2598 .e = e, 2599 }; 2600 unsigned i; 2601 2602 if (size) { 2603 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE); 2604 } 2605 memory_region_transaction_begin(); 2606 for (i = 0; i < mr->ioeventfd_nb; ++i) { 2607 if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) { 2608 break; 2609 } 2610 } 2611 assert(i != mr->ioeventfd_nb); 2612 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1], 2613 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1))); 2614 --mr->ioeventfd_nb; 2615 mr->ioeventfds = g_realloc(mr->ioeventfds, 2616 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1); 2617 ioeventfd_update_pending |= mr->enabled; 2618 memory_region_transaction_commit(); 2619 } 2620 2621 static void memory_region_update_container_subregions(MemoryRegion *subregion) 2622 { 2623 MemoryRegion *mr = subregion->container; 2624 MemoryRegion *other; 2625 2626 memory_region_transaction_begin(); 2627 2628 memory_region_ref(subregion); 2629 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) { 2630 if (subregion->priority >= other->priority) { 2631 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link); 2632 goto done; 2633 } 2634 } 2635 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link); 2636 done: 2637 memory_region_update_pending |= mr->enabled && subregion->enabled; 2638 memory_region_transaction_commit(); 2639 } 2640 2641 static void memory_region_add_subregion_common(MemoryRegion *mr, 2642 hwaddr offset, 2643 MemoryRegion *subregion) 2644 { 2645 MemoryRegion *alias; 2646 2647 assert(!subregion->container); 2648 subregion->container = mr; 2649 for (alias = subregion->alias; alias; alias = alias->alias) { 2650 alias->mapped_via_alias++; 2651 } 2652 subregion->addr = offset; 2653 memory_region_update_container_subregions(subregion); 2654 } 2655 2656 void memory_region_add_subregion(MemoryRegion *mr, 2657 hwaddr offset, 2658 MemoryRegion *subregion) 2659 { 2660 subregion->priority = 0; 2661 memory_region_add_subregion_common(mr, offset, subregion); 2662 } 2663 2664 void memory_region_add_subregion_overlap(MemoryRegion *mr, 2665 hwaddr offset, 2666 MemoryRegion *subregion, 2667 int priority) 2668 { 2669 subregion->priority = priority; 2670 memory_region_add_subregion_common(mr, offset, subregion); 2671 } 2672 2673 void memory_region_del_subregion(MemoryRegion *mr, 2674 MemoryRegion *subregion) 2675 { 2676 MemoryRegion *alias; 2677 2678 memory_region_transaction_begin(); 2679 assert(subregion->container == mr); 2680 subregion->container = NULL; 2681 for (alias = subregion->alias; alias; alias = alias->alias) { 2682 alias->mapped_via_alias--; 2683 assert(alias->mapped_via_alias >= 0); 2684 } 2685 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link); 2686 memory_region_unref(subregion); 2687 memory_region_update_pending |= mr->enabled && subregion->enabled; 2688 memory_region_transaction_commit(); 2689 } 2690 2691 void memory_region_set_enabled(MemoryRegion *mr, bool enabled) 2692 { 2693 if (enabled == mr->enabled) { 2694 return; 2695 } 2696 memory_region_transaction_begin(); 2697 mr->enabled = enabled; 2698 memory_region_update_pending = true; 2699 memory_region_transaction_commit(); 2700 } 2701 2702 void memory_region_set_size(MemoryRegion *mr, uint64_t size) 2703 { 2704 Int128 s = int128_make64(size); 2705 2706 if (size == UINT64_MAX) { 2707 s = int128_2_64(); 2708 } 2709 if (int128_eq(s, mr->size)) { 2710 return; 2711 } 2712 memory_region_transaction_begin(); 2713 mr->size = s; 2714 memory_region_update_pending = true; 2715 memory_region_transaction_commit(); 2716 } 2717 2718 static void memory_region_readd_subregion(MemoryRegion *mr) 2719 { 2720 MemoryRegion *container = mr->container; 2721 2722 if (container) { 2723 memory_region_transaction_begin(); 2724 memory_region_ref(mr); 2725 memory_region_del_subregion(container, mr); 2726 memory_region_add_subregion_common(container, mr->addr, mr); 2727 memory_region_unref(mr); 2728 memory_region_transaction_commit(); 2729 } 2730 } 2731 2732 void memory_region_set_address(MemoryRegion *mr, hwaddr addr) 2733 { 2734 if (addr != mr->addr) { 2735 mr->addr = addr; 2736 memory_region_readd_subregion(mr); 2737 } 2738 } 2739 2740 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset) 2741 { 2742 assert(mr->alias); 2743 2744 if (offset == mr->alias_offset) { 2745 return; 2746 } 2747 2748 memory_region_transaction_begin(); 2749 mr->alias_offset = offset; 2750 memory_region_update_pending |= mr->enabled; 2751 memory_region_transaction_commit(); 2752 } 2753 2754 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable) 2755 { 2756 if (unmergeable == mr->unmergeable) { 2757 return; 2758 } 2759 2760 memory_region_transaction_begin(); 2761 mr->unmergeable = unmergeable; 2762 memory_region_update_pending |= mr->enabled; 2763 memory_region_transaction_commit(); 2764 } 2765 2766 uint64_t memory_region_get_alignment(const MemoryRegion *mr) 2767 { 2768 return mr->align; 2769 } 2770 2771 static int cmp_flatrange_addr(const void *addr_, const void *fr_) 2772 { 2773 const AddrRange *addr = addr_; 2774 const FlatRange *fr = fr_; 2775 2776 if (int128_le(addrrange_end(*addr), fr->addr.start)) { 2777 return -1; 2778 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) { 2779 return 1; 2780 } 2781 return 0; 2782 } 2783 2784 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr) 2785 { 2786 return bsearch(&addr, view->ranges, view->nr, 2787 sizeof(FlatRange), cmp_flatrange_addr); 2788 } 2789 2790 bool memory_region_is_mapped(MemoryRegion *mr) 2791 { 2792 return !!mr->container || mr->mapped_via_alias; 2793 } 2794 2795 /* Same as memory_region_find, but it does not add a reference to the 2796 * returned region. It must be called from an RCU critical section. 2797 */ 2798 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr, 2799 hwaddr addr, uint64_t size) 2800 { 2801 MemoryRegionSection ret = { .mr = NULL }; 2802 MemoryRegion *root; 2803 AddressSpace *as; 2804 AddrRange range; 2805 FlatView *view; 2806 FlatRange *fr; 2807 2808 addr += mr->addr; 2809 for (root = mr; root->container; ) { 2810 root = root->container; 2811 addr += root->addr; 2812 } 2813 2814 as = memory_region_to_address_space(root); 2815 if (!as) { 2816 return ret; 2817 } 2818 range = addrrange_make(int128_make64(addr), int128_make64(size)); 2819 2820 view = address_space_to_flatview(as); 2821 fr = flatview_lookup(view, range); 2822 if (!fr) { 2823 return ret; 2824 } 2825 2826 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) { 2827 --fr; 2828 } 2829 2830 ret.mr = fr->mr; 2831 ret.fv = view; 2832 range = addrrange_intersection(range, fr->addr); 2833 ret.offset_within_region = fr->offset_in_region; 2834 ret.offset_within_region += int128_get64(int128_sub(range.start, 2835 fr->addr.start)); 2836 ret.size = range.size; 2837 ret.offset_within_address_space = int128_get64(range.start); 2838 ret.readonly = fr->readonly; 2839 ret.nonvolatile = fr->nonvolatile; 2840 return ret; 2841 } 2842 2843 MemoryRegionSection memory_region_find(MemoryRegion *mr, 2844 hwaddr addr, uint64_t size) 2845 { 2846 MemoryRegionSection ret; 2847 RCU_READ_LOCK_GUARD(); 2848 ret = memory_region_find_rcu(mr, addr, size); 2849 if (ret.mr) { 2850 memory_region_ref(ret.mr); 2851 } 2852 return ret; 2853 } 2854 2855 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s) 2856 { 2857 MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1); 2858 2859 *tmp = *s; 2860 if (tmp->mr) { 2861 memory_region_ref(tmp->mr); 2862 } 2863 if (tmp->fv) { 2864 bool ret = flatview_ref(tmp->fv); 2865 2866 g_assert(ret); 2867 } 2868 return tmp; 2869 } 2870 2871 void memory_region_section_free_copy(MemoryRegionSection *s) 2872 { 2873 if (s->fv) { 2874 flatview_unref(s->fv); 2875 } 2876 if (s->mr) { 2877 memory_region_unref(s->mr); 2878 } 2879 g_free(s); 2880 } 2881 2882 bool memory_region_present(MemoryRegion *container, hwaddr addr) 2883 { 2884 MemoryRegion *mr; 2885 2886 RCU_READ_LOCK_GUARD(); 2887 mr = memory_region_find_rcu(container, addr, 1).mr; 2888 return mr && mr != container; 2889 } 2890 2891 void memory_global_dirty_log_sync(bool last_stage) 2892 { 2893 memory_region_sync_dirty_bitmap(NULL, last_stage); 2894 } 2895 2896 void memory_global_after_dirty_log_sync(void) 2897 { 2898 MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward); 2899 } 2900 2901 /* 2902 * Dirty track stop flags that are postponed due to VM being stopped. Should 2903 * only be used within vmstate_change hook. 2904 */ 2905 static unsigned int postponed_stop_flags; 2906 static VMChangeStateEntry *vmstate_change; 2907 static void memory_global_dirty_log_stop_postponed_run(void); 2908 2909 void memory_global_dirty_log_start(unsigned int flags) 2910 { 2911 unsigned int old_flags; 2912 2913 assert(flags && !(flags & (~GLOBAL_DIRTY_MASK))); 2914 2915 if (vmstate_change) { 2916 /* If there is postponed stop(), operate on it first */ 2917 postponed_stop_flags &= ~flags; 2918 memory_global_dirty_log_stop_postponed_run(); 2919 } 2920 2921 flags &= ~global_dirty_tracking; 2922 if (!flags) { 2923 return; 2924 } 2925 2926 old_flags = global_dirty_tracking; 2927 global_dirty_tracking |= flags; 2928 trace_global_dirty_changed(global_dirty_tracking); 2929 2930 if (!old_flags) { 2931 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward); 2932 memory_region_transaction_begin(); 2933 memory_region_update_pending = true; 2934 memory_region_transaction_commit(); 2935 } 2936 } 2937 2938 static void memory_global_dirty_log_do_stop(unsigned int flags) 2939 { 2940 assert(flags && !(flags & (~GLOBAL_DIRTY_MASK))); 2941 assert((global_dirty_tracking & flags) == flags); 2942 global_dirty_tracking &= ~flags; 2943 2944 trace_global_dirty_changed(global_dirty_tracking); 2945 2946 if (!global_dirty_tracking) { 2947 memory_region_transaction_begin(); 2948 memory_region_update_pending = true; 2949 memory_region_transaction_commit(); 2950 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse); 2951 } 2952 } 2953 2954 /* 2955 * Execute the postponed dirty log stop operations if there is, then reset 2956 * everything (including the flags and the vmstate change hook). 2957 */ 2958 static void memory_global_dirty_log_stop_postponed_run(void) 2959 { 2960 /* This must be called with the vmstate handler registered */ 2961 assert(vmstate_change); 2962 2963 /* Note: postponed_stop_flags can be cleared in log start routine */ 2964 if (postponed_stop_flags) { 2965 memory_global_dirty_log_do_stop(postponed_stop_flags); 2966 postponed_stop_flags = 0; 2967 } 2968 2969 qemu_del_vm_change_state_handler(vmstate_change); 2970 vmstate_change = NULL; 2971 } 2972 2973 static void memory_vm_change_state_handler(void *opaque, bool running, 2974 RunState state) 2975 { 2976 if (running) { 2977 memory_global_dirty_log_stop_postponed_run(); 2978 } 2979 } 2980 2981 void memory_global_dirty_log_stop(unsigned int flags) 2982 { 2983 if (!runstate_is_running()) { 2984 /* Postpone the dirty log stop, e.g., to when VM starts again */ 2985 if (vmstate_change) { 2986 /* Batch with previous postponed flags */ 2987 postponed_stop_flags |= flags; 2988 } else { 2989 postponed_stop_flags = flags; 2990 vmstate_change = qemu_add_vm_change_state_handler( 2991 memory_vm_change_state_handler, NULL); 2992 } 2993 return; 2994 } 2995 2996 memory_global_dirty_log_do_stop(flags); 2997 } 2998 2999 static void listener_add_address_space(MemoryListener *listener, 3000 AddressSpace *as) 3001 { 3002 FlatView *view; 3003 FlatRange *fr; 3004 3005 if (listener->begin) { 3006 listener->begin(listener); 3007 } 3008 if (global_dirty_tracking) { 3009 if (listener->log_global_start) { 3010 listener->log_global_start(listener); 3011 } 3012 } 3013 3014 view = address_space_get_flatview(as); 3015 FOR_EACH_FLAT_RANGE(fr, view) { 3016 MemoryRegionSection section = section_from_flat_range(fr, view); 3017 3018 if (listener->region_add) { 3019 listener->region_add(listener, §ion); 3020 } 3021 if (fr->dirty_log_mask && listener->log_start) { 3022 listener->log_start(listener, §ion, 0, fr->dirty_log_mask); 3023 } 3024 } 3025 if (listener->commit) { 3026 listener->commit(listener); 3027 } 3028 flatview_unref(view); 3029 } 3030 3031 static void listener_del_address_space(MemoryListener *listener, 3032 AddressSpace *as) 3033 { 3034 FlatView *view; 3035 FlatRange *fr; 3036 3037 if (listener->begin) { 3038 listener->begin(listener); 3039 } 3040 view = address_space_get_flatview(as); 3041 FOR_EACH_FLAT_RANGE(fr, view) { 3042 MemoryRegionSection section = section_from_flat_range(fr, view); 3043 3044 if (fr->dirty_log_mask && listener->log_stop) { 3045 listener->log_stop(listener, §ion, fr->dirty_log_mask, 0); 3046 } 3047 if (listener->region_del) { 3048 listener->region_del(listener, §ion); 3049 } 3050 } 3051 if (listener->commit) { 3052 listener->commit(listener); 3053 } 3054 flatview_unref(view); 3055 } 3056 3057 void memory_listener_register(MemoryListener *listener, AddressSpace *as) 3058 { 3059 MemoryListener *other = NULL; 3060 3061 /* Only one of them can be defined for a listener */ 3062 assert(!(listener->log_sync && listener->log_sync_global)); 3063 3064 listener->address_space = as; 3065 if (QTAILQ_EMPTY(&memory_listeners) 3066 || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) { 3067 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link); 3068 } else { 3069 QTAILQ_FOREACH(other, &memory_listeners, link) { 3070 if (listener->priority < other->priority) { 3071 break; 3072 } 3073 } 3074 QTAILQ_INSERT_BEFORE(other, listener, link); 3075 } 3076 3077 if (QTAILQ_EMPTY(&as->listeners) 3078 || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) { 3079 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as); 3080 } else { 3081 QTAILQ_FOREACH(other, &as->listeners, link_as) { 3082 if (listener->priority < other->priority) { 3083 break; 3084 } 3085 } 3086 QTAILQ_INSERT_BEFORE(other, listener, link_as); 3087 } 3088 3089 listener_add_address_space(listener, as); 3090 3091 if (listener->eventfd_add || listener->eventfd_del) { 3092 as->ioeventfd_notifiers++; 3093 } 3094 } 3095 3096 void memory_listener_unregister(MemoryListener *listener) 3097 { 3098 if (!listener->address_space) { 3099 return; 3100 } 3101 3102 if (listener->eventfd_add || listener->eventfd_del) { 3103 listener->address_space->ioeventfd_notifiers--; 3104 } 3105 3106 listener_del_address_space(listener, listener->address_space); 3107 QTAILQ_REMOVE(&memory_listeners, listener, link); 3108 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as); 3109 listener->address_space = NULL; 3110 } 3111 3112 void address_space_remove_listeners(AddressSpace *as) 3113 { 3114 while (!QTAILQ_EMPTY(&as->listeners)) { 3115 memory_listener_unregister(QTAILQ_FIRST(&as->listeners)); 3116 } 3117 } 3118 3119 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name) 3120 { 3121 memory_region_ref(root); 3122 as->root = root; 3123 as->current_map = NULL; 3124 as->ioeventfd_nb = 0; 3125 as->ioeventfds = NULL; 3126 QTAILQ_INIT(&as->listeners); 3127 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link); 3128 as->name = g_strdup(name ? name : "anonymous"); 3129 address_space_update_topology(as); 3130 address_space_update_ioeventfds(as); 3131 } 3132 3133 static void do_address_space_destroy(AddressSpace *as) 3134 { 3135 assert(QTAILQ_EMPTY(&as->listeners)); 3136 3137 flatview_unref(as->current_map); 3138 g_free(as->name); 3139 g_free(as->ioeventfds); 3140 memory_region_unref(as->root); 3141 } 3142 3143 void address_space_destroy(AddressSpace *as) 3144 { 3145 MemoryRegion *root = as->root; 3146 3147 /* Flush out anything from MemoryListeners listening in on this */ 3148 memory_region_transaction_begin(); 3149 as->root = NULL; 3150 memory_region_transaction_commit(); 3151 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link); 3152 3153 /* At this point, as->dispatch and as->current_map are dummy 3154 * entries that the guest should never use. Wait for the old 3155 * values to expire before freeing the data. 3156 */ 3157 as->root = root; 3158 call_rcu(as, do_address_space_destroy, rcu); 3159 } 3160 3161 static const char *memory_region_type(MemoryRegion *mr) 3162 { 3163 if (mr->alias) { 3164 return memory_region_type(mr->alias); 3165 } 3166 if (memory_region_is_ram_device(mr)) { 3167 return "ramd"; 3168 } else if (memory_region_is_romd(mr)) { 3169 return "romd"; 3170 } else if (memory_region_is_rom(mr)) { 3171 return "rom"; 3172 } else if (memory_region_is_ram(mr)) { 3173 return "ram"; 3174 } else { 3175 return "i/o"; 3176 } 3177 } 3178 3179 typedef struct MemoryRegionList MemoryRegionList; 3180 3181 struct MemoryRegionList { 3182 const MemoryRegion *mr; 3183 QTAILQ_ENTRY(MemoryRegionList) mrqueue; 3184 }; 3185 3186 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead; 3187 3188 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3189 int128_sub((size), int128_one())) : 0) 3190 #define MTREE_INDENT " " 3191 3192 static void mtree_expand_owner(const char *label, Object *obj) 3193 { 3194 DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE); 3195 3196 qemu_printf(" %s:{%s", label, dev ? "dev" : "obj"); 3197 if (dev && dev->id) { 3198 qemu_printf(" id=%s", dev->id); 3199 } else { 3200 char *canonical_path = object_get_canonical_path(obj); 3201 if (canonical_path) { 3202 qemu_printf(" path=%s", canonical_path); 3203 g_free(canonical_path); 3204 } else { 3205 qemu_printf(" type=%s", object_get_typename(obj)); 3206 } 3207 } 3208 qemu_printf("}"); 3209 } 3210 3211 static void mtree_print_mr_owner(const MemoryRegion *mr) 3212 { 3213 Object *owner = mr->owner; 3214 Object *parent = memory_region_owner((MemoryRegion *)mr); 3215 3216 if (!owner && !parent) { 3217 qemu_printf(" orphan"); 3218 return; 3219 } 3220 if (owner) { 3221 mtree_expand_owner("owner", owner); 3222 } 3223 if (parent && parent != owner) { 3224 mtree_expand_owner("parent", parent); 3225 } 3226 } 3227 3228 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level, 3229 hwaddr base, 3230 MemoryRegionListHead *alias_print_queue, 3231 bool owner, bool display_disabled) 3232 { 3233 MemoryRegionList *new_ml, *ml, *next_ml; 3234 MemoryRegionListHead submr_print_queue; 3235 const MemoryRegion *submr; 3236 unsigned int i; 3237 hwaddr cur_start, cur_end; 3238 3239 if (!mr) { 3240 return; 3241 } 3242 3243 cur_start = base + mr->addr; 3244 cur_end = cur_start + MR_SIZE(mr->size); 3245 3246 /* 3247 * Try to detect overflow of memory region. This should never 3248 * happen normally. When it happens, we dump something to warn the 3249 * user who is observing this. 3250 */ 3251 if (cur_start < base || cur_end < cur_start) { 3252 qemu_printf("[DETECTED OVERFLOW!] "); 3253 } 3254 3255 if (mr->alias) { 3256 bool found = false; 3257 3258 /* check if the alias is already in the queue */ 3259 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) { 3260 if (ml->mr == mr->alias) { 3261 found = true; 3262 } 3263 } 3264 3265 if (!found) { 3266 ml = g_new(MemoryRegionList, 1); 3267 ml->mr = mr->alias; 3268 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue); 3269 } 3270 if (mr->enabled || display_disabled) { 3271 for (i = 0; i < level; i++) { 3272 qemu_printf(MTREE_INDENT); 3273 } 3274 qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx 3275 " (prio %d, %s%s): alias %s @%s " HWADDR_FMT_plx 3276 "-" HWADDR_FMT_plx "%s", 3277 cur_start, cur_end, 3278 mr->priority, 3279 mr->nonvolatile ? "nv-" : "", 3280 memory_region_type((MemoryRegion *)mr), 3281 memory_region_name(mr), 3282 memory_region_name(mr->alias), 3283 mr->alias_offset, 3284 mr->alias_offset + MR_SIZE(mr->size), 3285 mr->enabled ? "" : " [disabled]"); 3286 if (owner) { 3287 mtree_print_mr_owner(mr); 3288 } 3289 qemu_printf("\n"); 3290 } 3291 } else { 3292 if (mr->enabled || display_disabled) { 3293 for (i = 0; i < level; i++) { 3294 qemu_printf(MTREE_INDENT); 3295 } 3296 qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx 3297 " (prio %d, %s%s): %s%s", 3298 cur_start, cur_end, 3299 mr->priority, 3300 mr->nonvolatile ? "nv-" : "", 3301 memory_region_type((MemoryRegion *)mr), 3302 memory_region_name(mr), 3303 mr->enabled ? "" : " [disabled]"); 3304 if (owner) { 3305 mtree_print_mr_owner(mr); 3306 } 3307 qemu_printf("\n"); 3308 } 3309 } 3310 3311 QTAILQ_INIT(&submr_print_queue); 3312 3313 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) { 3314 new_ml = g_new(MemoryRegionList, 1); 3315 new_ml->mr = submr; 3316 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) { 3317 if (new_ml->mr->addr < ml->mr->addr || 3318 (new_ml->mr->addr == ml->mr->addr && 3319 new_ml->mr->priority > ml->mr->priority)) { 3320 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue); 3321 new_ml = NULL; 3322 break; 3323 } 3324 } 3325 if (new_ml) { 3326 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue); 3327 } 3328 } 3329 3330 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) { 3331 mtree_print_mr(ml->mr, level + 1, cur_start, 3332 alias_print_queue, owner, display_disabled); 3333 } 3334 3335 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) { 3336 g_free(ml); 3337 } 3338 } 3339 3340 struct FlatViewInfo { 3341 int counter; 3342 bool dispatch_tree; 3343 bool owner; 3344 AccelClass *ac; 3345 }; 3346 3347 static void mtree_print_flatview(gpointer key, gpointer value, 3348 gpointer user_data) 3349 { 3350 FlatView *view = key; 3351 GArray *fv_address_spaces = value; 3352 struct FlatViewInfo *fvi = user_data; 3353 FlatRange *range = &view->ranges[0]; 3354 MemoryRegion *mr; 3355 int n = view->nr; 3356 int i; 3357 AddressSpace *as; 3358 3359 qemu_printf("FlatView #%d\n", fvi->counter); 3360 ++fvi->counter; 3361 3362 for (i = 0; i < fv_address_spaces->len; ++i) { 3363 as = g_array_index(fv_address_spaces, AddressSpace*, i); 3364 qemu_printf(" AS \"%s\", root: %s", 3365 as->name, memory_region_name(as->root)); 3366 if (as->root->alias) { 3367 qemu_printf(", alias %s", memory_region_name(as->root->alias)); 3368 } 3369 qemu_printf("\n"); 3370 } 3371 3372 qemu_printf(" Root memory region: %s\n", 3373 view->root ? memory_region_name(view->root) : "(none)"); 3374 3375 if (n <= 0) { 3376 qemu_printf(MTREE_INDENT "No rendered FlatView\n\n"); 3377 return; 3378 } 3379 3380 while (n--) { 3381 mr = range->mr; 3382 if (range->offset_in_region) { 3383 qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx 3384 " (prio %d, %s%s): %s @" HWADDR_FMT_plx, 3385 int128_get64(range->addr.start), 3386 int128_get64(range->addr.start) 3387 + MR_SIZE(range->addr.size), 3388 mr->priority, 3389 range->nonvolatile ? "nv-" : "", 3390 range->readonly ? "rom" : memory_region_type(mr), 3391 memory_region_name(mr), 3392 range->offset_in_region); 3393 } else { 3394 qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx 3395 " (prio %d, %s%s): %s", 3396 int128_get64(range->addr.start), 3397 int128_get64(range->addr.start) 3398 + MR_SIZE(range->addr.size), 3399 mr->priority, 3400 range->nonvolatile ? "nv-" : "", 3401 range->readonly ? "rom" : memory_region_type(mr), 3402 memory_region_name(mr)); 3403 } 3404 if (fvi->owner) { 3405 mtree_print_mr_owner(mr); 3406 } 3407 3408 if (fvi->ac) { 3409 for (i = 0; i < fv_address_spaces->len; ++i) { 3410 as = g_array_index(fv_address_spaces, AddressSpace*, i); 3411 if (fvi->ac->has_memory(current_machine, as, 3412 int128_get64(range->addr.start), 3413 MR_SIZE(range->addr.size) + 1)) { 3414 qemu_printf(" %s", fvi->ac->name); 3415 } 3416 } 3417 } 3418 qemu_printf("\n"); 3419 range++; 3420 } 3421 3422 #if !defined(CONFIG_USER_ONLY) 3423 if (fvi->dispatch_tree && view->root) { 3424 mtree_print_dispatch(view->dispatch, view->root); 3425 } 3426 #endif 3427 3428 qemu_printf("\n"); 3429 } 3430 3431 static gboolean mtree_info_flatview_free(gpointer key, gpointer value, 3432 gpointer user_data) 3433 { 3434 FlatView *view = key; 3435 GArray *fv_address_spaces = value; 3436 3437 g_array_unref(fv_address_spaces); 3438 flatview_unref(view); 3439 3440 return true; 3441 } 3442 3443 static void mtree_info_flatview(bool dispatch_tree, bool owner) 3444 { 3445 struct FlatViewInfo fvi = { 3446 .counter = 0, 3447 .dispatch_tree = dispatch_tree, 3448 .owner = owner, 3449 }; 3450 AddressSpace *as; 3451 FlatView *view; 3452 GArray *fv_address_spaces; 3453 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal); 3454 AccelClass *ac = ACCEL_GET_CLASS(current_accel()); 3455 3456 if (ac->has_memory) { 3457 fvi.ac = ac; 3458 } 3459 3460 /* Gather all FVs in one table */ 3461 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) { 3462 view = address_space_get_flatview(as); 3463 3464 fv_address_spaces = g_hash_table_lookup(views, view); 3465 if (!fv_address_spaces) { 3466 fv_address_spaces = g_array_new(false, false, sizeof(as)); 3467 g_hash_table_insert(views, view, fv_address_spaces); 3468 } 3469 3470 g_array_append_val(fv_address_spaces, as); 3471 } 3472 3473 /* Print */ 3474 g_hash_table_foreach(views, mtree_print_flatview, &fvi); 3475 3476 /* Free */ 3477 g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0); 3478 g_hash_table_unref(views); 3479 } 3480 3481 struct AddressSpaceInfo { 3482 MemoryRegionListHead *ml_head; 3483 bool owner; 3484 bool disabled; 3485 }; 3486 3487 /* Returns negative value if a < b; zero if a = b; positive value if a > b. */ 3488 static gint address_space_compare_name(gconstpointer a, gconstpointer b) 3489 { 3490 const AddressSpace *as_a = a; 3491 const AddressSpace *as_b = b; 3492 3493 return g_strcmp0(as_a->name, as_b->name); 3494 } 3495 3496 static void mtree_print_as_name(gpointer data, gpointer user_data) 3497 { 3498 AddressSpace *as = data; 3499 3500 qemu_printf("address-space: %s\n", as->name); 3501 } 3502 3503 static void mtree_print_as(gpointer key, gpointer value, gpointer user_data) 3504 { 3505 MemoryRegion *mr = key; 3506 GSList *as_same_root_mr_list = value; 3507 struct AddressSpaceInfo *asi = user_data; 3508 3509 g_slist_foreach(as_same_root_mr_list, mtree_print_as_name, NULL); 3510 mtree_print_mr(mr, 1, 0, asi->ml_head, asi->owner, asi->disabled); 3511 qemu_printf("\n"); 3512 } 3513 3514 static gboolean mtree_info_as_free(gpointer key, gpointer value, 3515 gpointer user_data) 3516 { 3517 GSList *as_same_root_mr_list = value; 3518 3519 g_slist_free(as_same_root_mr_list); 3520 3521 return true; 3522 } 3523 3524 static void mtree_info_as(bool dispatch_tree, bool owner, bool disabled) 3525 { 3526 MemoryRegionListHead ml_head; 3527 MemoryRegionList *ml, *ml2; 3528 AddressSpace *as; 3529 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal); 3530 GSList *as_same_root_mr_list; 3531 struct AddressSpaceInfo asi = { 3532 .ml_head = &ml_head, 3533 .owner = owner, 3534 .disabled = disabled, 3535 }; 3536 3537 QTAILQ_INIT(&ml_head); 3538 3539 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) { 3540 /* Create hashtable, key=AS root MR, value = list of AS */ 3541 as_same_root_mr_list = g_hash_table_lookup(views, as->root); 3542 as_same_root_mr_list = g_slist_insert_sorted(as_same_root_mr_list, as, 3543 address_space_compare_name); 3544 g_hash_table_insert(views, as->root, as_same_root_mr_list); 3545 } 3546 3547 /* print address spaces */ 3548 g_hash_table_foreach(views, mtree_print_as, &asi); 3549 g_hash_table_foreach_remove(views, mtree_info_as_free, 0); 3550 g_hash_table_unref(views); 3551 3552 /* print aliased regions */ 3553 QTAILQ_FOREACH(ml, &ml_head, mrqueue) { 3554 qemu_printf("memory-region: %s\n", memory_region_name(ml->mr)); 3555 mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled); 3556 qemu_printf("\n"); 3557 } 3558 3559 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) { 3560 g_free(ml); 3561 } 3562 } 3563 3564 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled) 3565 { 3566 if (flatview) { 3567 mtree_info_flatview(dispatch_tree, owner); 3568 } else { 3569 mtree_info_as(dispatch_tree, owner, disabled); 3570 } 3571 } 3572 3573 void memory_region_init_ram(MemoryRegion *mr, 3574 Object *owner, 3575 const char *name, 3576 uint64_t size, 3577 Error **errp) 3578 { 3579 DeviceState *owner_dev; 3580 3581 if (!memory_region_init_ram_nomigrate(mr, owner, name, size, errp)) { 3582 return; 3583 } 3584 /* This will assert if owner is neither NULL nor a DeviceState. 3585 * We only want the owner here for the purposes of defining a 3586 * unique name for migration. TODO: Ideally we should implement 3587 * a naming scheme for Objects which are not DeviceStates, in 3588 * which case we can relax this restriction. 3589 */ 3590 owner_dev = DEVICE(owner); 3591 vmstate_register_ram(mr, owner_dev); 3592 } 3593 3594 void memory_region_init_rom(MemoryRegion *mr, 3595 Object *owner, 3596 const char *name, 3597 uint64_t size, 3598 Error **errp) 3599 { 3600 DeviceState *owner_dev; 3601 3602 if (!memory_region_init_rom_nomigrate(mr, owner, name, size, errp)) { 3603 return; 3604 } 3605 /* This will assert if owner is neither NULL nor a DeviceState. 3606 * We only want the owner here for the purposes of defining a 3607 * unique name for migration. TODO: Ideally we should implement 3608 * a naming scheme for Objects which are not DeviceStates, in 3609 * which case we can relax this restriction. 3610 */ 3611 owner_dev = DEVICE(owner); 3612 vmstate_register_ram(mr, owner_dev); 3613 } 3614 3615 void memory_region_init_rom_device(MemoryRegion *mr, 3616 Object *owner, 3617 const MemoryRegionOps *ops, 3618 void *opaque, 3619 const char *name, 3620 uint64_t size, 3621 Error **errp) 3622 { 3623 DeviceState *owner_dev; 3624 Error *err = NULL; 3625 3626 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque, 3627 name, size, &err); 3628 if (err) { 3629 error_propagate(errp, err); 3630 return; 3631 } 3632 /* This will assert if owner is neither NULL nor a DeviceState. 3633 * We only want the owner here for the purposes of defining a 3634 * unique name for migration. TODO: Ideally we should implement 3635 * a naming scheme for Objects which are not DeviceStates, in 3636 * which case we can relax this restriction. 3637 */ 3638 owner_dev = DEVICE(owner); 3639 vmstate_register_ram(mr, owner_dev); 3640 } 3641 3642 /* 3643 * Support system builds with CONFIG_FUZZ using a weak symbol and a stub for 3644 * the fuzz_dma_read_cb callback 3645 */ 3646 #ifdef CONFIG_FUZZ 3647 void __attribute__((weak)) fuzz_dma_read_cb(size_t addr, 3648 size_t len, 3649 MemoryRegion *mr) 3650 { 3651 } 3652 #endif 3653 3654 static const TypeInfo memory_region_info = { 3655 .parent = TYPE_OBJECT, 3656 .name = TYPE_MEMORY_REGION, 3657 .class_size = sizeof(MemoryRegionClass), 3658 .instance_size = sizeof(MemoryRegion), 3659 .instance_init = memory_region_initfn, 3660 .instance_finalize = memory_region_finalize, 3661 }; 3662 3663 static const TypeInfo iommu_memory_region_info = { 3664 .parent = TYPE_MEMORY_REGION, 3665 .name = TYPE_IOMMU_MEMORY_REGION, 3666 .class_size = sizeof(IOMMUMemoryRegionClass), 3667 .instance_size = sizeof(IOMMUMemoryRegion), 3668 .instance_init = iommu_memory_region_initfn, 3669 .abstract = true, 3670 }; 3671 3672 static const TypeInfo ram_discard_manager_info = { 3673 .parent = TYPE_INTERFACE, 3674 .name = TYPE_RAM_DISCARD_MANAGER, 3675 .class_size = sizeof(RamDiscardManagerClass), 3676 }; 3677 3678 static void memory_register_types(void) 3679 { 3680 type_register_static(&memory_region_info); 3681 type_register_static(&iommu_memory_region_info); 3682 type_register_static(&ram_discard_manager_info); 3683 } 3684 3685 type_init(memory_register_types) 3686