1 /* 2 * Physical memory management 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 * Contributions after 2012-01-13 are licensed under the terms of the 13 * GNU GPL, version 2 or (at your option) any later version. 14 */ 15 16 #include "qemu/osdep.h" 17 #include "qemu/log.h" 18 #include "qapi/error.h" 19 #include "exec/memory.h" 20 #include "qapi/visitor.h" 21 #include "qemu/bitops.h" 22 #include "qemu/error-report.h" 23 #include "qemu/main-loop.h" 24 #include "qemu/qemu-print.h" 25 #include "qom/object.h" 26 #include "trace.h" 27 28 #include "exec/memory-internal.h" 29 #include "exec/ram_addr.h" 30 #include "sysemu/kvm.h" 31 #include "sysemu/runstate.h" 32 #include "sysemu/tcg.h" 33 #include "qemu/accel.h" 34 #include "hw/boards.h" 35 #include "migration/vmstate.h" 36 #include "exec/address-spaces.h" 37 38 //#define DEBUG_UNASSIGNED 39 40 static unsigned memory_region_transaction_depth; 41 static bool memory_region_update_pending; 42 static bool ioeventfd_update_pending; 43 unsigned int global_dirty_tracking; 44 45 static QTAILQ_HEAD(, MemoryListener) memory_listeners 46 = QTAILQ_HEAD_INITIALIZER(memory_listeners); 47 48 static QTAILQ_HEAD(, AddressSpace) address_spaces 49 = QTAILQ_HEAD_INITIALIZER(address_spaces); 50 51 static GHashTable *flat_views; 52 53 typedef struct AddrRange AddrRange; 54 55 /* 56 * Note that signed integers are needed for negative offsetting in aliases 57 * (large MemoryRegion::alias_offset). 58 */ 59 struct AddrRange { 60 Int128 start; 61 Int128 size; 62 }; 63 64 static AddrRange addrrange_make(Int128 start, Int128 size) 65 { 66 return (AddrRange) { start, size }; 67 } 68 69 static bool addrrange_equal(AddrRange r1, AddrRange r2) 70 { 71 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size); 72 } 73 74 static Int128 addrrange_end(AddrRange r) 75 { 76 return int128_add(r.start, r.size); 77 } 78 79 static AddrRange addrrange_shift(AddrRange range, Int128 delta) 80 { 81 int128_addto(&range.start, delta); 82 return range; 83 } 84 85 static bool addrrange_contains(AddrRange range, Int128 addr) 86 { 87 return int128_ge(addr, range.start) 88 && int128_lt(addr, addrrange_end(range)); 89 } 90 91 static bool addrrange_intersects(AddrRange r1, AddrRange r2) 92 { 93 return addrrange_contains(r1, r2.start) 94 || addrrange_contains(r2, r1.start); 95 } 96 97 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2) 98 { 99 Int128 start = int128_max(r1.start, r2.start); 100 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2)); 101 return addrrange_make(start, int128_sub(end, start)); 102 } 103 104 enum ListenerDirection { Forward, Reverse }; 105 106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \ 107 do { \ 108 MemoryListener *_listener; \ 109 \ 110 switch (_direction) { \ 111 case Forward: \ 112 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \ 113 if (_listener->_callback) { \ 114 _listener->_callback(_listener, ##_args); \ 115 } \ 116 } \ 117 break; \ 118 case Reverse: \ 119 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \ 120 if (_listener->_callback) { \ 121 _listener->_callback(_listener, ##_args); \ 122 } \ 123 } \ 124 break; \ 125 default: \ 126 abort(); \ 127 } \ 128 } while (0) 129 130 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \ 131 do { \ 132 MemoryListener *_listener; \ 133 \ 134 switch (_direction) { \ 135 case Forward: \ 136 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \ 137 if (_listener->_callback) { \ 138 _listener->_callback(_listener, _section, ##_args); \ 139 } \ 140 } \ 141 break; \ 142 case Reverse: \ 143 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \ 144 if (_listener->_callback) { \ 145 _listener->_callback(_listener, _section, ##_args); \ 146 } \ 147 } \ 148 break; \ 149 default: \ 150 abort(); \ 151 } \ 152 } while (0) 153 154 /* No need to ref/unref .mr, the FlatRange keeps it alive. */ 155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \ 156 do { \ 157 MemoryRegionSection mrs = section_from_flat_range(fr, \ 158 address_space_to_flatview(as)); \ 159 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \ 160 } while(0) 161 162 struct CoalescedMemoryRange { 163 AddrRange addr; 164 QTAILQ_ENTRY(CoalescedMemoryRange) link; 165 }; 166 167 struct MemoryRegionIoeventfd { 168 AddrRange addr; 169 bool match_data; 170 uint64_t data; 171 EventNotifier *e; 172 }; 173 174 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a, 175 MemoryRegionIoeventfd *b) 176 { 177 if (int128_lt(a->addr.start, b->addr.start)) { 178 return true; 179 } else if (int128_gt(a->addr.start, b->addr.start)) { 180 return false; 181 } else if (int128_lt(a->addr.size, b->addr.size)) { 182 return true; 183 } else if (int128_gt(a->addr.size, b->addr.size)) { 184 return false; 185 } else if (a->match_data < b->match_data) { 186 return true; 187 } else if (a->match_data > b->match_data) { 188 return false; 189 } else if (a->match_data) { 190 if (a->data < b->data) { 191 return true; 192 } else if (a->data > b->data) { 193 return false; 194 } 195 } 196 if (a->e < b->e) { 197 return true; 198 } else if (a->e > b->e) { 199 return false; 200 } 201 return false; 202 } 203 204 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a, 205 MemoryRegionIoeventfd *b) 206 { 207 if (int128_eq(a->addr.start, b->addr.start) && 208 (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) || 209 (int128_eq(a->addr.size, b->addr.size) && 210 (a->match_data == b->match_data) && 211 ((a->match_data && (a->data == b->data)) || !a->match_data) && 212 (a->e == b->e)))) 213 return true; 214 215 return false; 216 } 217 218 /* Range of memory in the global map. Addresses are absolute. */ 219 struct FlatRange { 220 MemoryRegion *mr; 221 hwaddr offset_in_region; 222 AddrRange addr; 223 uint8_t dirty_log_mask; 224 bool romd_mode; 225 bool readonly; 226 bool nonvolatile; 227 bool unmergeable; 228 }; 229 230 #define FOR_EACH_FLAT_RANGE(var, view) \ 231 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var) 232 233 static inline MemoryRegionSection 234 section_from_flat_range(FlatRange *fr, FlatView *fv) 235 { 236 return (MemoryRegionSection) { 237 .mr = fr->mr, 238 .fv = fv, 239 .offset_within_region = fr->offset_in_region, 240 .size = fr->addr.size, 241 .offset_within_address_space = int128_get64(fr->addr.start), 242 .readonly = fr->readonly, 243 .nonvolatile = fr->nonvolatile, 244 .unmergeable = fr->unmergeable, 245 }; 246 } 247 248 static bool flatrange_equal(FlatRange *a, FlatRange *b) 249 { 250 return a->mr == b->mr 251 && addrrange_equal(a->addr, b->addr) 252 && a->offset_in_region == b->offset_in_region 253 && a->romd_mode == b->romd_mode 254 && a->readonly == b->readonly 255 && a->nonvolatile == b->nonvolatile 256 && a->unmergeable == b->unmergeable; 257 } 258 259 static FlatView *flatview_new(MemoryRegion *mr_root) 260 { 261 FlatView *view; 262 263 view = g_new0(FlatView, 1); 264 view->ref = 1; 265 view->root = mr_root; 266 memory_region_ref(mr_root); 267 trace_flatview_new(view, mr_root); 268 269 return view; 270 } 271 272 /* Insert a range into a given position. Caller is responsible for maintaining 273 * sorting order. 274 */ 275 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range) 276 { 277 if (view->nr == view->nr_allocated) { 278 view->nr_allocated = MAX(2 * view->nr, 10); 279 view->ranges = g_realloc(view->ranges, 280 view->nr_allocated * sizeof(*view->ranges)); 281 } 282 memmove(view->ranges + pos + 1, view->ranges + pos, 283 (view->nr - pos) * sizeof(FlatRange)); 284 view->ranges[pos] = *range; 285 memory_region_ref(range->mr); 286 ++view->nr; 287 } 288 289 static void flatview_destroy(FlatView *view) 290 { 291 int i; 292 293 trace_flatview_destroy(view, view->root); 294 if (view->dispatch) { 295 address_space_dispatch_free(view->dispatch); 296 } 297 for (i = 0; i < view->nr; i++) { 298 memory_region_unref(view->ranges[i].mr); 299 } 300 g_free(view->ranges); 301 memory_region_unref(view->root); 302 g_free(view); 303 } 304 305 static bool flatview_ref(FlatView *view) 306 { 307 return qatomic_fetch_inc_nonzero(&view->ref) > 0; 308 } 309 310 void flatview_unref(FlatView *view) 311 { 312 if (qatomic_fetch_dec(&view->ref) == 1) { 313 trace_flatview_destroy_rcu(view, view->root); 314 assert(view->root); 315 call_rcu(view, flatview_destroy, rcu); 316 } 317 } 318 319 static bool can_merge(FlatRange *r1, FlatRange *r2) 320 { 321 return int128_eq(addrrange_end(r1->addr), r2->addr.start) 322 && r1->mr == r2->mr 323 && int128_eq(int128_add(int128_make64(r1->offset_in_region), 324 r1->addr.size), 325 int128_make64(r2->offset_in_region)) 326 && r1->dirty_log_mask == r2->dirty_log_mask 327 && r1->romd_mode == r2->romd_mode 328 && r1->readonly == r2->readonly 329 && r1->nonvolatile == r2->nonvolatile 330 && !r1->unmergeable && !r2->unmergeable; 331 } 332 333 /* Attempt to simplify a view by merging adjacent ranges */ 334 static void flatview_simplify(FlatView *view) 335 { 336 unsigned i, j, k; 337 338 i = 0; 339 while (i < view->nr) { 340 j = i + 1; 341 while (j < view->nr 342 && can_merge(&view->ranges[j-1], &view->ranges[j])) { 343 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size); 344 ++j; 345 } 346 ++i; 347 for (k = i; k < j; k++) { 348 memory_region_unref(view->ranges[k].mr); 349 } 350 memmove(&view->ranges[i], &view->ranges[j], 351 (view->nr - j) * sizeof(view->ranges[j])); 352 view->nr -= j - i; 353 } 354 } 355 356 static bool memory_region_big_endian(MemoryRegion *mr) 357 { 358 #if TARGET_BIG_ENDIAN 359 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN; 360 #else 361 return mr->ops->endianness == DEVICE_BIG_ENDIAN; 362 #endif 363 } 364 365 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op) 366 { 367 if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) { 368 switch (op & MO_SIZE) { 369 case MO_8: 370 break; 371 case MO_16: 372 *data = bswap16(*data); 373 break; 374 case MO_32: 375 *data = bswap32(*data); 376 break; 377 case MO_64: 378 *data = bswap64(*data); 379 break; 380 default: 381 g_assert_not_reached(); 382 } 383 } 384 } 385 386 static inline void memory_region_shift_read_access(uint64_t *value, 387 signed shift, 388 uint64_t mask, 389 uint64_t tmp) 390 { 391 if (shift >= 0) { 392 *value |= (tmp & mask) << shift; 393 } else { 394 *value |= (tmp & mask) >> -shift; 395 } 396 } 397 398 static inline uint64_t memory_region_shift_write_access(uint64_t *value, 399 signed shift, 400 uint64_t mask) 401 { 402 uint64_t tmp; 403 404 if (shift >= 0) { 405 tmp = (*value >> shift) & mask; 406 } else { 407 tmp = (*value << -shift) & mask; 408 } 409 410 return tmp; 411 } 412 413 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset) 414 { 415 MemoryRegion *root; 416 hwaddr abs_addr = offset; 417 418 abs_addr += mr->addr; 419 for (root = mr; root->container; ) { 420 root = root->container; 421 abs_addr += root->addr; 422 } 423 424 return abs_addr; 425 } 426 427 static int get_cpu_index(void) 428 { 429 if (current_cpu) { 430 return current_cpu->cpu_index; 431 } 432 return -1; 433 } 434 435 static MemTxResult memory_region_read_accessor(MemoryRegion *mr, 436 hwaddr addr, 437 uint64_t *value, 438 unsigned size, 439 signed shift, 440 uint64_t mask, 441 MemTxAttrs attrs) 442 { 443 uint64_t tmp; 444 445 tmp = mr->ops->read(mr->opaque, addr, size); 446 if (mr->subpage) { 447 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size); 448 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) { 449 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr); 450 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size, 451 memory_region_name(mr)); 452 } 453 memory_region_shift_read_access(value, shift, mask, tmp); 454 return MEMTX_OK; 455 } 456 457 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr, 458 hwaddr addr, 459 uint64_t *value, 460 unsigned size, 461 signed shift, 462 uint64_t mask, 463 MemTxAttrs attrs) 464 { 465 uint64_t tmp = 0; 466 MemTxResult r; 467 468 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs); 469 if (mr->subpage) { 470 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size); 471 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) { 472 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr); 473 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size, 474 memory_region_name(mr)); 475 } 476 memory_region_shift_read_access(value, shift, mask, tmp); 477 return r; 478 } 479 480 static MemTxResult memory_region_write_accessor(MemoryRegion *mr, 481 hwaddr addr, 482 uint64_t *value, 483 unsigned size, 484 signed shift, 485 uint64_t mask, 486 MemTxAttrs attrs) 487 { 488 uint64_t tmp = memory_region_shift_write_access(value, shift, mask); 489 490 if (mr->subpage) { 491 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size); 492 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) { 493 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr); 494 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size, 495 memory_region_name(mr)); 496 } 497 mr->ops->write(mr->opaque, addr, tmp, size); 498 return MEMTX_OK; 499 } 500 501 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr, 502 hwaddr addr, 503 uint64_t *value, 504 unsigned size, 505 signed shift, 506 uint64_t mask, 507 MemTxAttrs attrs) 508 { 509 uint64_t tmp = memory_region_shift_write_access(value, shift, mask); 510 511 if (mr->subpage) { 512 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size); 513 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) { 514 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr); 515 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size, 516 memory_region_name(mr)); 517 } 518 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs); 519 } 520 521 static MemTxResult access_with_adjusted_size(hwaddr addr, 522 uint64_t *value, 523 unsigned size, 524 unsigned access_size_min, 525 unsigned access_size_max, 526 MemTxResult (*access_fn) 527 (MemoryRegion *mr, 528 hwaddr addr, 529 uint64_t *value, 530 unsigned size, 531 signed shift, 532 uint64_t mask, 533 MemTxAttrs attrs), 534 MemoryRegion *mr, 535 MemTxAttrs attrs) 536 { 537 uint64_t access_mask; 538 unsigned access_size; 539 unsigned i; 540 MemTxResult r = MEMTX_OK; 541 bool reentrancy_guard_applied = false; 542 543 if (!access_size_min) { 544 access_size_min = 1; 545 } 546 if (!access_size_max) { 547 access_size_max = 4; 548 } 549 550 /* Do not allow more than one simultaneous access to a device's IO Regions */ 551 if (mr->dev && !mr->disable_reentrancy_guard && 552 !mr->ram_device && !mr->ram && !mr->rom_device && !mr->readonly) { 553 if (mr->dev->mem_reentrancy_guard.engaged_in_io) { 554 warn_report_once("Blocked re-entrant IO on MemoryRegion: " 555 "%s at addr: 0x%" HWADDR_PRIX, 556 memory_region_name(mr), addr); 557 return MEMTX_ACCESS_ERROR; 558 } 559 mr->dev->mem_reentrancy_guard.engaged_in_io = true; 560 reentrancy_guard_applied = true; 561 } 562 563 /* FIXME: support unaligned access? */ 564 access_size = MAX(MIN(size, access_size_max), access_size_min); 565 access_mask = MAKE_64BIT_MASK(0, access_size * 8); 566 if (memory_region_big_endian(mr)) { 567 for (i = 0; i < size; i += access_size) { 568 r |= access_fn(mr, addr + i, value, access_size, 569 (size - access_size - i) * 8, access_mask, attrs); 570 } 571 } else { 572 for (i = 0; i < size; i += access_size) { 573 r |= access_fn(mr, addr + i, value, access_size, i * 8, 574 access_mask, attrs); 575 } 576 } 577 if (mr->dev && reentrancy_guard_applied) { 578 mr->dev->mem_reentrancy_guard.engaged_in_io = false; 579 } 580 return r; 581 } 582 583 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr) 584 { 585 AddressSpace *as; 586 587 while (mr->container) { 588 mr = mr->container; 589 } 590 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) { 591 if (mr == as->root) { 592 return as; 593 } 594 } 595 return NULL; 596 } 597 598 /* Render a memory region into the global view. Ranges in @view obscure 599 * ranges in @mr. 600 */ 601 static void render_memory_region(FlatView *view, 602 MemoryRegion *mr, 603 Int128 base, 604 AddrRange clip, 605 bool readonly, 606 bool nonvolatile, 607 bool unmergeable) 608 { 609 MemoryRegion *subregion; 610 unsigned i; 611 hwaddr offset_in_region; 612 Int128 remain; 613 Int128 now; 614 FlatRange fr; 615 AddrRange tmp; 616 617 if (!mr->enabled) { 618 return; 619 } 620 621 int128_addto(&base, int128_make64(mr->addr)); 622 readonly |= mr->readonly; 623 nonvolatile |= mr->nonvolatile; 624 unmergeable |= mr->unmergeable; 625 626 tmp = addrrange_make(base, mr->size); 627 628 if (!addrrange_intersects(tmp, clip)) { 629 return; 630 } 631 632 clip = addrrange_intersection(tmp, clip); 633 634 if (mr->alias) { 635 int128_subfrom(&base, int128_make64(mr->alias->addr)); 636 int128_subfrom(&base, int128_make64(mr->alias_offset)); 637 render_memory_region(view, mr->alias, base, clip, 638 readonly, nonvolatile, unmergeable); 639 return; 640 } 641 642 /* Render subregions in priority order. */ 643 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) { 644 render_memory_region(view, subregion, base, clip, 645 readonly, nonvolatile, unmergeable); 646 } 647 648 if (!mr->terminates) { 649 return; 650 } 651 652 offset_in_region = int128_get64(int128_sub(clip.start, base)); 653 base = clip.start; 654 remain = clip.size; 655 656 fr.mr = mr; 657 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr); 658 fr.romd_mode = mr->romd_mode; 659 fr.readonly = readonly; 660 fr.nonvolatile = nonvolatile; 661 fr.unmergeable = unmergeable; 662 663 /* Render the region itself into any gaps left by the current view. */ 664 for (i = 0; i < view->nr && int128_nz(remain); ++i) { 665 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) { 666 continue; 667 } 668 if (int128_lt(base, view->ranges[i].addr.start)) { 669 now = int128_min(remain, 670 int128_sub(view->ranges[i].addr.start, base)); 671 fr.offset_in_region = offset_in_region; 672 fr.addr = addrrange_make(base, now); 673 flatview_insert(view, i, &fr); 674 ++i; 675 int128_addto(&base, now); 676 offset_in_region += int128_get64(now); 677 int128_subfrom(&remain, now); 678 } 679 now = int128_sub(int128_min(int128_add(base, remain), 680 addrrange_end(view->ranges[i].addr)), 681 base); 682 int128_addto(&base, now); 683 offset_in_region += int128_get64(now); 684 int128_subfrom(&remain, now); 685 } 686 if (int128_nz(remain)) { 687 fr.offset_in_region = offset_in_region; 688 fr.addr = addrrange_make(base, remain); 689 flatview_insert(view, i, &fr); 690 } 691 } 692 693 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque) 694 { 695 FlatRange *fr; 696 697 assert(fv); 698 assert(cb); 699 700 FOR_EACH_FLAT_RANGE(fr, fv) { 701 if (cb(fr->addr.start, fr->addr.size, fr->mr, 702 fr->offset_in_region, opaque)) { 703 break; 704 } 705 } 706 } 707 708 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr) 709 { 710 while (mr->enabled) { 711 if (mr->alias) { 712 if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) { 713 /* The alias is included in its entirety. Use it as 714 * the "real" root, so that we can share more FlatViews. 715 */ 716 mr = mr->alias; 717 continue; 718 } 719 } else if (!mr->terminates) { 720 unsigned int found = 0; 721 MemoryRegion *child, *next = NULL; 722 QTAILQ_FOREACH(child, &mr->subregions, subregions_link) { 723 if (child->enabled) { 724 if (++found > 1) { 725 next = NULL; 726 break; 727 } 728 if (!child->addr && int128_ge(mr->size, child->size)) { 729 /* A child is included in its entirety. If it's the only 730 * enabled one, use it in the hope of finding an alias down the 731 * way. This will also let us share FlatViews. 732 */ 733 next = child; 734 } 735 } 736 } 737 if (found == 0) { 738 return NULL; 739 } 740 if (next) { 741 mr = next; 742 continue; 743 } 744 } 745 746 return mr; 747 } 748 749 return NULL; 750 } 751 752 /* Render a memory topology into a list of disjoint absolute ranges. */ 753 static FlatView *generate_memory_topology(MemoryRegion *mr) 754 { 755 int i; 756 FlatView *view; 757 758 view = flatview_new(mr); 759 760 if (mr) { 761 render_memory_region(view, mr, int128_zero(), 762 addrrange_make(int128_zero(), int128_2_64()), 763 false, false, false); 764 } 765 flatview_simplify(view); 766 767 view->dispatch = address_space_dispatch_new(view); 768 for (i = 0; i < view->nr; i++) { 769 MemoryRegionSection mrs = 770 section_from_flat_range(&view->ranges[i], view); 771 flatview_add_to_dispatch(view, &mrs); 772 } 773 address_space_dispatch_compact(view->dispatch); 774 g_hash_table_replace(flat_views, mr, view); 775 776 return view; 777 } 778 779 static void address_space_add_del_ioeventfds(AddressSpace *as, 780 MemoryRegionIoeventfd *fds_new, 781 unsigned fds_new_nb, 782 MemoryRegionIoeventfd *fds_old, 783 unsigned fds_old_nb) 784 { 785 unsigned iold, inew; 786 MemoryRegionIoeventfd *fd; 787 MemoryRegionSection section; 788 789 /* Generate a symmetric difference of the old and new fd sets, adding 790 * and deleting as necessary. 791 */ 792 793 iold = inew = 0; 794 while (iold < fds_old_nb || inew < fds_new_nb) { 795 if (iold < fds_old_nb 796 && (inew == fds_new_nb 797 || memory_region_ioeventfd_before(&fds_old[iold], 798 &fds_new[inew]))) { 799 fd = &fds_old[iold]; 800 section = (MemoryRegionSection) { 801 .fv = address_space_to_flatview(as), 802 .offset_within_address_space = int128_get64(fd->addr.start), 803 .size = fd->addr.size, 804 }; 805 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, §ion, 806 fd->match_data, fd->data, fd->e); 807 ++iold; 808 } else if (inew < fds_new_nb 809 && (iold == fds_old_nb 810 || memory_region_ioeventfd_before(&fds_new[inew], 811 &fds_old[iold]))) { 812 fd = &fds_new[inew]; 813 section = (MemoryRegionSection) { 814 .fv = address_space_to_flatview(as), 815 .offset_within_address_space = int128_get64(fd->addr.start), 816 .size = fd->addr.size, 817 }; 818 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, §ion, 819 fd->match_data, fd->data, fd->e); 820 ++inew; 821 } else { 822 ++iold; 823 ++inew; 824 } 825 } 826 } 827 828 FlatView *address_space_get_flatview(AddressSpace *as) 829 { 830 FlatView *view; 831 832 RCU_READ_LOCK_GUARD(); 833 do { 834 view = address_space_to_flatview(as); 835 /* If somebody has replaced as->current_map concurrently, 836 * flatview_ref returns false. 837 */ 838 } while (!flatview_ref(view)); 839 return view; 840 } 841 842 static void address_space_update_ioeventfds(AddressSpace *as) 843 { 844 FlatView *view; 845 FlatRange *fr; 846 unsigned ioeventfd_nb = 0; 847 unsigned ioeventfd_max; 848 MemoryRegionIoeventfd *ioeventfds; 849 AddrRange tmp; 850 unsigned i; 851 852 if (!as->ioeventfd_notifiers) { 853 return; 854 } 855 856 /* 857 * It is likely that the number of ioeventfds hasn't changed much, so use 858 * the previous size as the starting value, with some headroom to avoid 859 * gratuitous reallocations. 860 */ 861 ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4); 862 ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max); 863 864 view = address_space_get_flatview(as); 865 FOR_EACH_FLAT_RANGE(fr, view) { 866 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) { 867 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr, 868 int128_sub(fr->addr.start, 869 int128_make64(fr->offset_in_region))); 870 if (addrrange_intersects(fr->addr, tmp)) { 871 ++ioeventfd_nb; 872 if (ioeventfd_nb > ioeventfd_max) { 873 ioeventfd_max = MAX(ioeventfd_max * 2, 4); 874 ioeventfds = g_realloc(ioeventfds, 875 ioeventfd_max * sizeof(*ioeventfds)); 876 } 877 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i]; 878 ioeventfds[ioeventfd_nb-1].addr = tmp; 879 } 880 } 881 } 882 883 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb, 884 as->ioeventfds, as->ioeventfd_nb); 885 886 g_free(as->ioeventfds); 887 as->ioeventfds = ioeventfds; 888 as->ioeventfd_nb = ioeventfd_nb; 889 flatview_unref(view); 890 } 891 892 /* 893 * Notify the memory listeners about the coalesced IO change events of 894 * range `cmr'. Only the part that has intersection of the specified 895 * FlatRange will be sent. 896 */ 897 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as, 898 CoalescedMemoryRange *cmr, bool add) 899 { 900 AddrRange tmp; 901 902 tmp = addrrange_shift(cmr->addr, 903 int128_sub(fr->addr.start, 904 int128_make64(fr->offset_in_region))); 905 if (!addrrange_intersects(tmp, fr->addr)) { 906 return; 907 } 908 tmp = addrrange_intersection(tmp, fr->addr); 909 910 if (add) { 911 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add, 912 int128_get64(tmp.start), 913 int128_get64(tmp.size)); 914 } else { 915 MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del, 916 int128_get64(tmp.start), 917 int128_get64(tmp.size)); 918 } 919 } 920 921 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as) 922 { 923 CoalescedMemoryRange *cmr; 924 925 QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) { 926 flat_range_coalesced_io_notify(fr, as, cmr, false); 927 } 928 } 929 930 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as) 931 { 932 MemoryRegion *mr = fr->mr; 933 CoalescedMemoryRange *cmr; 934 935 if (QTAILQ_EMPTY(&mr->coalesced)) { 936 return; 937 } 938 939 QTAILQ_FOREACH(cmr, &mr->coalesced, link) { 940 flat_range_coalesced_io_notify(fr, as, cmr, true); 941 } 942 } 943 944 static void 945 flat_range_coalesced_io_notify_listener_add_del(FlatRange *fr, 946 MemoryRegionSection *mrs, 947 MemoryListener *listener, 948 AddressSpace *as, bool add) 949 { 950 CoalescedMemoryRange *cmr; 951 MemoryRegion *mr = fr->mr; 952 AddrRange tmp; 953 954 QTAILQ_FOREACH(cmr, &mr->coalesced, link) { 955 tmp = addrrange_shift(cmr->addr, 956 int128_sub(fr->addr.start, 957 int128_make64(fr->offset_in_region))); 958 959 if (!addrrange_intersects(tmp, fr->addr)) { 960 return; 961 } 962 tmp = addrrange_intersection(tmp, fr->addr); 963 964 if (add && listener->coalesced_io_add) { 965 listener->coalesced_io_add(listener, mrs, 966 int128_get64(tmp.start), 967 int128_get64(tmp.size)); 968 } else if (!add && listener->coalesced_io_del) { 969 listener->coalesced_io_del(listener, mrs, 970 int128_get64(tmp.start), 971 int128_get64(tmp.size)); 972 } 973 } 974 } 975 976 static void address_space_update_topology_pass(AddressSpace *as, 977 const FlatView *old_view, 978 const FlatView *new_view, 979 bool adding) 980 { 981 unsigned iold, inew; 982 FlatRange *frold, *frnew; 983 984 /* Generate a symmetric difference of the old and new memory maps. 985 * Kill ranges in the old map, and instantiate ranges in the new map. 986 */ 987 iold = inew = 0; 988 while (iold < old_view->nr || inew < new_view->nr) { 989 if (iold < old_view->nr) { 990 frold = &old_view->ranges[iold]; 991 } else { 992 frold = NULL; 993 } 994 if (inew < new_view->nr) { 995 frnew = &new_view->ranges[inew]; 996 } else { 997 frnew = NULL; 998 } 999 1000 if (frold 1001 && (!frnew 1002 || int128_lt(frold->addr.start, frnew->addr.start) 1003 || (int128_eq(frold->addr.start, frnew->addr.start) 1004 && !flatrange_equal(frold, frnew)))) { 1005 /* In old but not in new, or in both but attributes changed. */ 1006 1007 if (!adding) { 1008 flat_range_coalesced_io_del(frold, as); 1009 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del); 1010 } 1011 1012 ++iold; 1013 } else if (frold && frnew && flatrange_equal(frold, frnew)) { 1014 /* In both and unchanged (except logging may have changed) */ 1015 1016 if (adding) { 1017 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop); 1018 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) { 1019 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start, 1020 frold->dirty_log_mask, 1021 frnew->dirty_log_mask); 1022 } 1023 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) { 1024 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop, 1025 frold->dirty_log_mask, 1026 frnew->dirty_log_mask); 1027 } 1028 } 1029 1030 ++iold; 1031 ++inew; 1032 } else { 1033 /* In new */ 1034 1035 if (adding) { 1036 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add); 1037 flat_range_coalesced_io_add(frnew, as); 1038 } 1039 1040 ++inew; 1041 } 1042 } 1043 } 1044 1045 static void flatviews_init(void) 1046 { 1047 static FlatView *empty_view; 1048 1049 if (flat_views) { 1050 return; 1051 } 1052 1053 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL, 1054 (GDestroyNotify) flatview_unref); 1055 if (!empty_view) { 1056 empty_view = generate_memory_topology(NULL); 1057 /* We keep it alive forever in the global variable. */ 1058 flatview_ref(empty_view); 1059 } else { 1060 g_hash_table_replace(flat_views, NULL, empty_view); 1061 flatview_ref(empty_view); 1062 } 1063 } 1064 1065 static void flatviews_reset(void) 1066 { 1067 AddressSpace *as; 1068 1069 if (flat_views) { 1070 g_hash_table_unref(flat_views); 1071 flat_views = NULL; 1072 } 1073 flatviews_init(); 1074 1075 /* Render unique FVs */ 1076 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) { 1077 MemoryRegion *physmr = memory_region_get_flatview_root(as->root); 1078 1079 if (g_hash_table_lookup(flat_views, physmr)) { 1080 continue; 1081 } 1082 1083 generate_memory_topology(physmr); 1084 } 1085 } 1086 1087 static void address_space_set_flatview(AddressSpace *as) 1088 { 1089 FlatView *old_view = address_space_to_flatview(as); 1090 MemoryRegion *physmr = memory_region_get_flatview_root(as->root); 1091 FlatView *new_view = g_hash_table_lookup(flat_views, physmr); 1092 1093 assert(new_view); 1094 1095 if (old_view == new_view) { 1096 return; 1097 } 1098 1099 if (old_view) { 1100 flatview_ref(old_view); 1101 } 1102 1103 flatview_ref(new_view); 1104 1105 if (!QTAILQ_EMPTY(&as->listeners)) { 1106 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view; 1107 1108 if (!old_view2) { 1109 old_view2 = &tmpview; 1110 } 1111 address_space_update_topology_pass(as, old_view2, new_view, false); 1112 address_space_update_topology_pass(as, old_view2, new_view, true); 1113 } 1114 1115 /* Writes are protected by the BQL. */ 1116 qatomic_rcu_set(&as->current_map, new_view); 1117 if (old_view) { 1118 flatview_unref(old_view); 1119 } 1120 1121 /* Note that all the old MemoryRegions are still alive up to this 1122 * point. This relieves most MemoryListeners from the need to 1123 * ref/unref the MemoryRegions they get---unless they use them 1124 * outside the iothread mutex, in which case precise reference 1125 * counting is necessary. 1126 */ 1127 if (old_view) { 1128 flatview_unref(old_view); 1129 } 1130 } 1131 1132 static void address_space_update_topology(AddressSpace *as) 1133 { 1134 MemoryRegion *physmr = memory_region_get_flatview_root(as->root); 1135 1136 flatviews_init(); 1137 if (!g_hash_table_lookup(flat_views, physmr)) { 1138 generate_memory_topology(physmr); 1139 } 1140 address_space_set_flatview(as); 1141 } 1142 1143 void memory_region_transaction_begin(void) 1144 { 1145 qemu_flush_coalesced_mmio_buffer(); 1146 ++memory_region_transaction_depth; 1147 } 1148 1149 void memory_region_transaction_commit(void) 1150 { 1151 AddressSpace *as; 1152 1153 assert(memory_region_transaction_depth); 1154 assert(bql_locked()); 1155 1156 --memory_region_transaction_depth; 1157 if (!memory_region_transaction_depth) { 1158 if (memory_region_update_pending) { 1159 flatviews_reset(); 1160 1161 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward); 1162 1163 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) { 1164 address_space_set_flatview(as); 1165 address_space_update_ioeventfds(as); 1166 } 1167 memory_region_update_pending = false; 1168 ioeventfd_update_pending = false; 1169 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward); 1170 } else if (ioeventfd_update_pending) { 1171 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) { 1172 address_space_update_ioeventfds(as); 1173 } 1174 ioeventfd_update_pending = false; 1175 } 1176 } 1177 } 1178 1179 static void memory_region_destructor_none(MemoryRegion *mr) 1180 { 1181 } 1182 1183 static void memory_region_destructor_ram(MemoryRegion *mr) 1184 { 1185 qemu_ram_free(mr->ram_block); 1186 } 1187 1188 static bool memory_region_need_escape(char c) 1189 { 1190 return c == '/' || c == '[' || c == '\\' || c == ']'; 1191 } 1192 1193 static char *memory_region_escape_name(const char *name) 1194 { 1195 const char *p; 1196 char *escaped, *q; 1197 uint8_t c; 1198 size_t bytes = 0; 1199 1200 for (p = name; *p; p++) { 1201 bytes += memory_region_need_escape(*p) ? 4 : 1; 1202 } 1203 if (bytes == p - name) { 1204 return g_memdup(name, bytes + 1); 1205 } 1206 1207 escaped = g_malloc(bytes + 1); 1208 for (p = name, q = escaped; *p; p++) { 1209 c = *p; 1210 if (unlikely(memory_region_need_escape(c))) { 1211 *q++ = '\\'; 1212 *q++ = 'x'; 1213 *q++ = "0123456789abcdef"[c >> 4]; 1214 c = "0123456789abcdef"[c & 15]; 1215 } 1216 *q++ = c; 1217 } 1218 *q = 0; 1219 return escaped; 1220 } 1221 1222 static void memory_region_do_init(MemoryRegion *mr, 1223 Object *owner, 1224 const char *name, 1225 uint64_t size) 1226 { 1227 mr->size = int128_make64(size); 1228 if (size == UINT64_MAX) { 1229 mr->size = int128_2_64(); 1230 } 1231 mr->name = g_strdup(name); 1232 mr->owner = owner; 1233 mr->dev = (DeviceState *) object_dynamic_cast(mr->owner, TYPE_DEVICE); 1234 mr->ram_block = NULL; 1235 1236 if (name) { 1237 char *escaped_name = memory_region_escape_name(name); 1238 char *name_array = g_strdup_printf("%s[*]", escaped_name); 1239 1240 if (!owner) { 1241 owner = container_get(qdev_get_machine(), "/unattached"); 1242 } 1243 1244 object_property_add_child(owner, name_array, OBJECT(mr)); 1245 object_unref(OBJECT(mr)); 1246 g_free(name_array); 1247 g_free(escaped_name); 1248 } 1249 } 1250 1251 void memory_region_init(MemoryRegion *mr, 1252 Object *owner, 1253 const char *name, 1254 uint64_t size) 1255 { 1256 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION); 1257 memory_region_do_init(mr, owner, name, size); 1258 } 1259 1260 static void memory_region_get_container(Object *obj, Visitor *v, 1261 const char *name, void *opaque, 1262 Error **errp) 1263 { 1264 MemoryRegion *mr = MEMORY_REGION(obj); 1265 char *path = (char *)""; 1266 1267 if (mr->container) { 1268 path = object_get_canonical_path(OBJECT(mr->container)); 1269 } 1270 visit_type_str(v, name, &path, errp); 1271 if (mr->container) { 1272 g_free(path); 1273 } 1274 } 1275 1276 static Object *memory_region_resolve_container(Object *obj, void *opaque, 1277 const char *part) 1278 { 1279 MemoryRegion *mr = MEMORY_REGION(obj); 1280 1281 return OBJECT(mr->container); 1282 } 1283 1284 static void memory_region_get_priority(Object *obj, Visitor *v, 1285 const char *name, void *opaque, 1286 Error **errp) 1287 { 1288 MemoryRegion *mr = MEMORY_REGION(obj); 1289 int32_t value = mr->priority; 1290 1291 visit_type_int32(v, name, &value, errp); 1292 } 1293 1294 static void memory_region_get_size(Object *obj, Visitor *v, const char *name, 1295 void *opaque, Error **errp) 1296 { 1297 MemoryRegion *mr = MEMORY_REGION(obj); 1298 uint64_t value = memory_region_size(mr); 1299 1300 visit_type_uint64(v, name, &value, errp); 1301 } 1302 1303 static void memory_region_initfn(Object *obj) 1304 { 1305 MemoryRegion *mr = MEMORY_REGION(obj); 1306 ObjectProperty *op; 1307 1308 mr->ops = &unassigned_mem_ops; 1309 mr->enabled = true; 1310 mr->romd_mode = true; 1311 mr->destructor = memory_region_destructor_none; 1312 QTAILQ_INIT(&mr->subregions); 1313 QTAILQ_INIT(&mr->coalesced); 1314 1315 op = object_property_add(OBJECT(mr), "container", 1316 "link<" TYPE_MEMORY_REGION ">", 1317 memory_region_get_container, 1318 NULL, /* memory_region_set_container */ 1319 NULL, NULL); 1320 op->resolve = memory_region_resolve_container; 1321 1322 object_property_add_uint64_ptr(OBJECT(mr), "addr", 1323 &mr->addr, OBJ_PROP_FLAG_READ); 1324 object_property_add(OBJECT(mr), "priority", "uint32", 1325 memory_region_get_priority, 1326 NULL, /* memory_region_set_priority */ 1327 NULL, NULL); 1328 object_property_add(OBJECT(mr), "size", "uint64", 1329 memory_region_get_size, 1330 NULL, /* memory_region_set_size, */ 1331 NULL, NULL); 1332 } 1333 1334 static void iommu_memory_region_initfn(Object *obj) 1335 { 1336 MemoryRegion *mr = MEMORY_REGION(obj); 1337 1338 mr->is_iommu = true; 1339 } 1340 1341 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr, 1342 unsigned size) 1343 { 1344 #ifdef DEBUG_UNASSIGNED 1345 printf("Unassigned mem read " HWADDR_FMT_plx "\n", addr); 1346 #endif 1347 return 0; 1348 } 1349 1350 static void unassigned_mem_write(void *opaque, hwaddr addr, 1351 uint64_t val, unsigned size) 1352 { 1353 #ifdef DEBUG_UNASSIGNED 1354 printf("Unassigned mem write " HWADDR_FMT_plx " = 0x%"PRIx64"\n", addr, val); 1355 #endif 1356 } 1357 1358 static bool unassigned_mem_accepts(void *opaque, hwaddr addr, 1359 unsigned size, bool is_write, 1360 MemTxAttrs attrs) 1361 { 1362 return false; 1363 } 1364 1365 const MemoryRegionOps unassigned_mem_ops = { 1366 .valid.accepts = unassigned_mem_accepts, 1367 .endianness = DEVICE_NATIVE_ENDIAN, 1368 }; 1369 1370 static uint64_t memory_region_ram_device_read(void *opaque, 1371 hwaddr addr, unsigned size) 1372 { 1373 MemoryRegion *mr = opaque; 1374 uint64_t data = ldn_he_p(mr->ram_block->host + addr, size); 1375 1376 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size); 1377 1378 return data; 1379 } 1380 1381 static void memory_region_ram_device_write(void *opaque, hwaddr addr, 1382 uint64_t data, unsigned size) 1383 { 1384 MemoryRegion *mr = opaque; 1385 1386 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size); 1387 1388 stn_he_p(mr->ram_block->host + addr, size, data); 1389 } 1390 1391 static const MemoryRegionOps ram_device_mem_ops = { 1392 .read = memory_region_ram_device_read, 1393 .write = memory_region_ram_device_write, 1394 .endianness = DEVICE_HOST_ENDIAN, 1395 .valid = { 1396 .min_access_size = 1, 1397 .max_access_size = 8, 1398 .unaligned = true, 1399 }, 1400 .impl = { 1401 .min_access_size = 1, 1402 .max_access_size = 8, 1403 .unaligned = true, 1404 }, 1405 }; 1406 1407 bool memory_region_access_valid(MemoryRegion *mr, 1408 hwaddr addr, 1409 unsigned size, 1410 bool is_write, 1411 MemTxAttrs attrs) 1412 { 1413 if (mr->ops->valid.accepts 1414 && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) { 1415 qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX 1416 ", size %u, region '%s', reason: rejected\n", 1417 is_write ? "write" : "read", 1418 addr, size, memory_region_name(mr)); 1419 return false; 1420 } 1421 1422 if (!mr->ops->valid.unaligned && (addr & (size - 1))) { 1423 qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX 1424 ", size %u, region '%s', reason: unaligned\n", 1425 is_write ? "write" : "read", 1426 addr, size, memory_region_name(mr)); 1427 return false; 1428 } 1429 1430 /* Treat zero as compatibility all valid */ 1431 if (!mr->ops->valid.max_access_size) { 1432 return true; 1433 } 1434 1435 if (size > mr->ops->valid.max_access_size 1436 || size < mr->ops->valid.min_access_size) { 1437 qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX 1438 ", size %u, region '%s', reason: invalid size " 1439 "(min:%u max:%u)\n", 1440 is_write ? "write" : "read", 1441 addr, size, memory_region_name(mr), 1442 mr->ops->valid.min_access_size, 1443 mr->ops->valid.max_access_size); 1444 return false; 1445 } 1446 return true; 1447 } 1448 1449 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr, 1450 hwaddr addr, 1451 uint64_t *pval, 1452 unsigned size, 1453 MemTxAttrs attrs) 1454 { 1455 *pval = 0; 1456 1457 if (mr->ops->read) { 1458 return access_with_adjusted_size(addr, pval, size, 1459 mr->ops->impl.min_access_size, 1460 mr->ops->impl.max_access_size, 1461 memory_region_read_accessor, 1462 mr, attrs); 1463 } else { 1464 return access_with_adjusted_size(addr, pval, size, 1465 mr->ops->impl.min_access_size, 1466 mr->ops->impl.max_access_size, 1467 memory_region_read_with_attrs_accessor, 1468 mr, attrs); 1469 } 1470 } 1471 1472 MemTxResult memory_region_dispatch_read(MemoryRegion *mr, 1473 hwaddr addr, 1474 uint64_t *pval, 1475 MemOp op, 1476 MemTxAttrs attrs) 1477 { 1478 unsigned size = memop_size(op); 1479 MemTxResult r; 1480 1481 if (mr->alias) { 1482 return memory_region_dispatch_read(mr->alias, 1483 mr->alias_offset + addr, 1484 pval, op, attrs); 1485 } 1486 if (!memory_region_access_valid(mr, addr, size, false, attrs)) { 1487 *pval = unassigned_mem_read(mr, addr, size); 1488 return MEMTX_DECODE_ERROR; 1489 } 1490 1491 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs); 1492 adjust_endianness(mr, pval, op); 1493 return r; 1494 } 1495 1496 /* Return true if an eventfd was signalled */ 1497 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr, 1498 hwaddr addr, 1499 uint64_t data, 1500 unsigned size, 1501 MemTxAttrs attrs) 1502 { 1503 MemoryRegionIoeventfd ioeventfd = { 1504 .addr = addrrange_make(int128_make64(addr), int128_make64(size)), 1505 .data = data, 1506 }; 1507 unsigned i; 1508 1509 for (i = 0; i < mr->ioeventfd_nb; i++) { 1510 ioeventfd.match_data = mr->ioeventfds[i].match_data; 1511 ioeventfd.e = mr->ioeventfds[i].e; 1512 1513 if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) { 1514 event_notifier_set(ioeventfd.e); 1515 return true; 1516 } 1517 } 1518 1519 return false; 1520 } 1521 1522 MemTxResult memory_region_dispatch_write(MemoryRegion *mr, 1523 hwaddr addr, 1524 uint64_t data, 1525 MemOp op, 1526 MemTxAttrs attrs) 1527 { 1528 unsigned size = memop_size(op); 1529 1530 if (mr->alias) { 1531 return memory_region_dispatch_write(mr->alias, 1532 mr->alias_offset + addr, 1533 data, op, attrs); 1534 } 1535 if (!memory_region_access_valid(mr, addr, size, true, attrs)) { 1536 unassigned_mem_write(mr, addr, data, size); 1537 return MEMTX_DECODE_ERROR; 1538 } 1539 1540 adjust_endianness(mr, &data, op); 1541 1542 /* 1543 * FIXME: it's not clear why under KVM the write would be processed 1544 * directly, instead of going through eventfd. This probably should 1545 * test "tcg_enabled() || qtest_enabled()", or should just go away. 1546 */ 1547 if (!kvm_enabled() && 1548 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) { 1549 return MEMTX_OK; 1550 } 1551 1552 if (mr->ops->write) { 1553 return access_with_adjusted_size(addr, &data, size, 1554 mr->ops->impl.min_access_size, 1555 mr->ops->impl.max_access_size, 1556 memory_region_write_accessor, mr, 1557 attrs); 1558 } else { 1559 return 1560 access_with_adjusted_size(addr, &data, size, 1561 mr->ops->impl.min_access_size, 1562 mr->ops->impl.max_access_size, 1563 memory_region_write_with_attrs_accessor, 1564 mr, attrs); 1565 } 1566 } 1567 1568 void memory_region_init_io(MemoryRegion *mr, 1569 Object *owner, 1570 const MemoryRegionOps *ops, 1571 void *opaque, 1572 const char *name, 1573 uint64_t size) 1574 { 1575 memory_region_init(mr, owner, name, size); 1576 mr->ops = ops ? ops : &unassigned_mem_ops; 1577 mr->opaque = opaque; 1578 mr->terminates = true; 1579 } 1580 1581 bool memory_region_init_ram_nomigrate(MemoryRegion *mr, 1582 Object *owner, 1583 const char *name, 1584 uint64_t size, 1585 Error **errp) 1586 { 1587 return memory_region_init_ram_flags_nomigrate(mr, owner, name, 1588 size, 0, errp); 1589 } 1590 1591 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr, 1592 Object *owner, 1593 const char *name, 1594 uint64_t size, 1595 uint32_t ram_flags, 1596 Error **errp) 1597 { 1598 Error *err = NULL; 1599 memory_region_init(mr, owner, name, size); 1600 mr->ram = true; 1601 mr->terminates = true; 1602 mr->destructor = memory_region_destructor_ram; 1603 mr->ram_block = qemu_ram_alloc(size, ram_flags, mr, &err); 1604 if (err) { 1605 mr->size = int128_zero(); 1606 object_unparent(OBJECT(mr)); 1607 error_propagate(errp, err); 1608 return false; 1609 } 1610 return true; 1611 } 1612 1613 bool memory_region_init_resizeable_ram(MemoryRegion *mr, 1614 Object *owner, 1615 const char *name, 1616 uint64_t size, 1617 uint64_t max_size, 1618 void (*resized)(const char*, 1619 uint64_t length, 1620 void *host), 1621 Error **errp) 1622 { 1623 Error *err = NULL; 1624 memory_region_init(mr, owner, name, size); 1625 mr->ram = true; 1626 mr->terminates = true; 1627 mr->destructor = memory_region_destructor_ram; 1628 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized, 1629 mr, &err); 1630 if (err) { 1631 mr->size = int128_zero(); 1632 object_unparent(OBJECT(mr)); 1633 error_propagate(errp, err); 1634 return false; 1635 } 1636 return true; 1637 } 1638 1639 #ifdef CONFIG_POSIX 1640 bool memory_region_init_ram_from_file(MemoryRegion *mr, 1641 Object *owner, 1642 const char *name, 1643 uint64_t size, 1644 uint64_t align, 1645 uint32_t ram_flags, 1646 const char *path, 1647 ram_addr_t offset, 1648 Error **errp) 1649 { 1650 Error *err = NULL; 1651 memory_region_init(mr, owner, name, size); 1652 mr->ram = true; 1653 mr->readonly = !!(ram_flags & RAM_READONLY); 1654 mr->terminates = true; 1655 mr->destructor = memory_region_destructor_ram; 1656 mr->align = align; 1657 mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path, 1658 offset, &err); 1659 if (err) { 1660 mr->size = int128_zero(); 1661 object_unparent(OBJECT(mr)); 1662 error_propagate(errp, err); 1663 return false; 1664 } 1665 return true; 1666 } 1667 1668 bool memory_region_init_ram_from_fd(MemoryRegion *mr, 1669 Object *owner, 1670 const char *name, 1671 uint64_t size, 1672 uint32_t ram_flags, 1673 int fd, 1674 ram_addr_t offset, 1675 Error **errp) 1676 { 1677 Error *err = NULL; 1678 memory_region_init(mr, owner, name, size); 1679 mr->ram = true; 1680 mr->readonly = !!(ram_flags & RAM_READONLY); 1681 mr->terminates = true; 1682 mr->destructor = memory_region_destructor_ram; 1683 mr->ram_block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, 1684 &err); 1685 if (err) { 1686 mr->size = int128_zero(); 1687 object_unparent(OBJECT(mr)); 1688 error_propagate(errp, err); 1689 return false; 1690 } 1691 return true; 1692 } 1693 #endif 1694 1695 void memory_region_init_ram_ptr(MemoryRegion *mr, 1696 Object *owner, 1697 const char *name, 1698 uint64_t size, 1699 void *ptr) 1700 { 1701 memory_region_init(mr, owner, name, size); 1702 mr->ram = true; 1703 mr->terminates = true; 1704 mr->destructor = memory_region_destructor_ram; 1705 1706 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */ 1707 assert(ptr != NULL); 1708 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort); 1709 } 1710 1711 void memory_region_init_ram_device_ptr(MemoryRegion *mr, 1712 Object *owner, 1713 const char *name, 1714 uint64_t size, 1715 void *ptr) 1716 { 1717 memory_region_init(mr, owner, name, size); 1718 mr->ram = true; 1719 mr->terminates = true; 1720 mr->ram_device = true; 1721 mr->ops = &ram_device_mem_ops; 1722 mr->opaque = mr; 1723 mr->destructor = memory_region_destructor_ram; 1724 1725 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */ 1726 assert(ptr != NULL); 1727 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort); 1728 } 1729 1730 void memory_region_init_alias(MemoryRegion *mr, 1731 Object *owner, 1732 const char *name, 1733 MemoryRegion *orig, 1734 hwaddr offset, 1735 uint64_t size) 1736 { 1737 memory_region_init(mr, owner, name, size); 1738 mr->alias = orig; 1739 mr->alias_offset = offset; 1740 } 1741 1742 bool memory_region_init_rom_nomigrate(MemoryRegion *mr, 1743 Object *owner, 1744 const char *name, 1745 uint64_t size, 1746 Error **errp) 1747 { 1748 if (!memory_region_init_ram_flags_nomigrate(mr, owner, name, 1749 size, 0, errp)) { 1750 return false; 1751 } 1752 mr->readonly = true; 1753 1754 return true; 1755 } 1756 1757 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr, 1758 Object *owner, 1759 const MemoryRegionOps *ops, 1760 void *opaque, 1761 const char *name, 1762 uint64_t size, 1763 Error **errp) 1764 { 1765 Error *err = NULL; 1766 assert(ops); 1767 memory_region_init(mr, owner, name, size); 1768 mr->ops = ops; 1769 mr->opaque = opaque; 1770 mr->terminates = true; 1771 mr->rom_device = true; 1772 mr->destructor = memory_region_destructor_ram; 1773 mr->ram_block = qemu_ram_alloc(size, 0, mr, &err); 1774 if (err) { 1775 mr->size = int128_zero(); 1776 object_unparent(OBJECT(mr)); 1777 error_propagate(errp, err); 1778 return false; 1779 } 1780 return true; 1781 } 1782 1783 void memory_region_init_iommu(void *_iommu_mr, 1784 size_t instance_size, 1785 const char *mrtypename, 1786 Object *owner, 1787 const char *name, 1788 uint64_t size) 1789 { 1790 struct IOMMUMemoryRegion *iommu_mr; 1791 struct MemoryRegion *mr; 1792 1793 object_initialize(_iommu_mr, instance_size, mrtypename); 1794 mr = MEMORY_REGION(_iommu_mr); 1795 memory_region_do_init(mr, owner, name, size); 1796 iommu_mr = IOMMU_MEMORY_REGION(mr); 1797 mr->terminates = true; /* then re-forwards */ 1798 QLIST_INIT(&iommu_mr->iommu_notify); 1799 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE; 1800 } 1801 1802 static void memory_region_finalize(Object *obj) 1803 { 1804 MemoryRegion *mr = MEMORY_REGION(obj); 1805 1806 assert(!mr->container); 1807 1808 /* We know the region is not visible in any address space (it 1809 * does not have a container and cannot be a root either because 1810 * it has no references, so we can blindly clear mr->enabled. 1811 * memory_region_set_enabled instead could trigger a transaction 1812 * and cause an infinite loop. 1813 */ 1814 mr->enabled = false; 1815 memory_region_transaction_begin(); 1816 while (!QTAILQ_EMPTY(&mr->subregions)) { 1817 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions); 1818 memory_region_del_subregion(mr, subregion); 1819 } 1820 memory_region_transaction_commit(); 1821 1822 mr->destructor(mr); 1823 memory_region_clear_coalescing(mr); 1824 g_free((char *)mr->name); 1825 g_free(mr->ioeventfds); 1826 } 1827 1828 Object *memory_region_owner(MemoryRegion *mr) 1829 { 1830 Object *obj = OBJECT(mr); 1831 return obj->parent; 1832 } 1833 1834 void memory_region_ref(MemoryRegion *mr) 1835 { 1836 /* MMIO callbacks most likely will access data that belongs 1837 * to the owner, hence the need to ref/unref the owner whenever 1838 * the memory region is in use. 1839 * 1840 * The memory region is a child of its owner. As long as the 1841 * owner doesn't call unparent itself on the memory region, 1842 * ref-ing the owner will also keep the memory region alive. 1843 * Memory regions without an owner are supposed to never go away; 1844 * we do not ref/unref them because it slows down DMA sensibly. 1845 */ 1846 if (mr && mr->owner) { 1847 object_ref(mr->owner); 1848 } 1849 } 1850 1851 void memory_region_unref(MemoryRegion *mr) 1852 { 1853 if (mr && mr->owner) { 1854 object_unref(mr->owner); 1855 } 1856 } 1857 1858 uint64_t memory_region_size(MemoryRegion *mr) 1859 { 1860 if (int128_eq(mr->size, int128_2_64())) { 1861 return UINT64_MAX; 1862 } 1863 return int128_get64(mr->size); 1864 } 1865 1866 const char *memory_region_name(const MemoryRegion *mr) 1867 { 1868 if (!mr->name) { 1869 ((MemoryRegion *)mr)->name = 1870 g_strdup(object_get_canonical_path_component(OBJECT(mr))); 1871 } 1872 return mr->name; 1873 } 1874 1875 bool memory_region_is_ram_device(MemoryRegion *mr) 1876 { 1877 return mr->ram_device; 1878 } 1879 1880 bool memory_region_is_protected(MemoryRegion *mr) 1881 { 1882 return mr->ram && (mr->ram_block->flags & RAM_PROTECTED); 1883 } 1884 1885 bool memory_region_has_guest_memfd(MemoryRegion *mr) 1886 { 1887 return mr->ram_block && mr->ram_block->guest_memfd >= 0; 1888 } 1889 1890 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr) 1891 { 1892 uint8_t mask = mr->dirty_log_mask; 1893 RAMBlock *rb = mr->ram_block; 1894 1895 if (global_dirty_tracking && ((rb && qemu_ram_is_migratable(rb)) || 1896 memory_region_is_iommu(mr))) { 1897 mask |= (1 << DIRTY_MEMORY_MIGRATION); 1898 } 1899 1900 if (tcg_enabled() && rb) { 1901 /* TCG only cares about dirty memory logging for RAM, not IOMMU. */ 1902 mask |= (1 << DIRTY_MEMORY_CODE); 1903 } 1904 return mask; 1905 } 1906 1907 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client) 1908 { 1909 return memory_region_get_dirty_log_mask(mr) & (1 << client); 1910 } 1911 1912 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr, 1913 Error **errp) 1914 { 1915 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE; 1916 IOMMUNotifier *iommu_notifier; 1917 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr); 1918 int ret = 0; 1919 1920 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) { 1921 flags |= iommu_notifier->notifier_flags; 1922 } 1923 1924 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) { 1925 ret = imrc->notify_flag_changed(iommu_mr, 1926 iommu_mr->iommu_notify_flags, 1927 flags, errp); 1928 } 1929 1930 if (!ret) { 1931 iommu_mr->iommu_notify_flags = flags; 1932 } 1933 return ret; 1934 } 1935 1936 int memory_region_register_iommu_notifier(MemoryRegion *mr, 1937 IOMMUNotifier *n, Error **errp) 1938 { 1939 IOMMUMemoryRegion *iommu_mr; 1940 int ret; 1941 1942 if (mr->alias) { 1943 return memory_region_register_iommu_notifier(mr->alias, n, errp); 1944 } 1945 1946 /* We need to register for at least one bitfield */ 1947 iommu_mr = IOMMU_MEMORY_REGION(mr); 1948 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE); 1949 assert(n->start <= n->end); 1950 assert(n->iommu_idx >= 0 && 1951 n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr)); 1952 1953 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node); 1954 ret = memory_region_update_iommu_notify_flags(iommu_mr, errp); 1955 if (ret) { 1956 QLIST_REMOVE(n, node); 1957 } 1958 return ret; 1959 } 1960 1961 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr) 1962 { 1963 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr); 1964 1965 if (imrc->get_min_page_size) { 1966 return imrc->get_min_page_size(iommu_mr); 1967 } 1968 return TARGET_PAGE_SIZE; 1969 } 1970 1971 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n) 1972 { 1973 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 1974 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr); 1975 hwaddr addr, granularity; 1976 IOMMUTLBEntry iotlb; 1977 1978 /* If the IOMMU has its own replay callback, override */ 1979 if (imrc->replay) { 1980 imrc->replay(iommu_mr, n); 1981 return; 1982 } 1983 1984 granularity = memory_region_iommu_get_min_page_size(iommu_mr); 1985 1986 for (addr = 0; addr < memory_region_size(mr); addr += granularity) { 1987 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx); 1988 if (iotlb.perm != IOMMU_NONE) { 1989 n->notify(n, &iotlb); 1990 } 1991 1992 /* if (2^64 - MR size) < granularity, it's possible to get an 1993 * infinite loop here. This should catch such a wraparound */ 1994 if ((addr + granularity) < addr) { 1995 break; 1996 } 1997 } 1998 } 1999 2000 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, 2001 IOMMUNotifier *n) 2002 { 2003 IOMMUMemoryRegion *iommu_mr; 2004 2005 if (mr->alias) { 2006 memory_region_unregister_iommu_notifier(mr->alias, n); 2007 return; 2008 } 2009 QLIST_REMOVE(n, node); 2010 iommu_mr = IOMMU_MEMORY_REGION(mr); 2011 memory_region_update_iommu_notify_flags(iommu_mr, NULL); 2012 } 2013 2014 void memory_region_notify_iommu_one(IOMMUNotifier *notifier, 2015 const IOMMUTLBEvent *event) 2016 { 2017 const IOMMUTLBEntry *entry = &event->entry; 2018 hwaddr entry_end = entry->iova + entry->addr_mask; 2019 IOMMUTLBEntry tmp = *entry; 2020 2021 if (event->type == IOMMU_NOTIFIER_UNMAP) { 2022 assert(entry->perm == IOMMU_NONE); 2023 } 2024 2025 /* 2026 * Skip the notification if the notification does not overlap 2027 * with registered range. 2028 */ 2029 if (notifier->start > entry_end || notifier->end < entry->iova) { 2030 return; 2031 } 2032 2033 if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) { 2034 /* Crop (iova, addr_mask) to range */ 2035 tmp.iova = MAX(tmp.iova, notifier->start); 2036 tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova; 2037 } else { 2038 assert(entry->iova >= notifier->start && entry_end <= notifier->end); 2039 } 2040 2041 if (event->type & notifier->notifier_flags) { 2042 notifier->notify(notifier, &tmp); 2043 } 2044 } 2045 2046 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier) 2047 { 2048 IOMMUTLBEvent event; 2049 2050 event.type = IOMMU_NOTIFIER_UNMAP; 2051 event.entry.target_as = &address_space_memory; 2052 event.entry.iova = notifier->start; 2053 event.entry.perm = IOMMU_NONE; 2054 event.entry.addr_mask = notifier->end - notifier->start; 2055 2056 memory_region_notify_iommu_one(notifier, &event); 2057 } 2058 2059 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, 2060 int iommu_idx, 2061 const IOMMUTLBEvent event) 2062 { 2063 IOMMUNotifier *iommu_notifier; 2064 2065 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr))); 2066 2067 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) { 2068 if (iommu_notifier->iommu_idx == iommu_idx) { 2069 memory_region_notify_iommu_one(iommu_notifier, &event); 2070 } 2071 } 2072 } 2073 2074 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, 2075 enum IOMMUMemoryRegionAttr attr, 2076 void *data) 2077 { 2078 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr); 2079 2080 if (!imrc->get_attr) { 2081 return -EINVAL; 2082 } 2083 2084 return imrc->get_attr(iommu_mr, attr, data); 2085 } 2086 2087 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, 2088 MemTxAttrs attrs) 2089 { 2090 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr); 2091 2092 if (!imrc->attrs_to_index) { 2093 return 0; 2094 } 2095 2096 return imrc->attrs_to_index(iommu_mr, attrs); 2097 } 2098 2099 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr) 2100 { 2101 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr); 2102 2103 if (!imrc->num_indexes) { 2104 return 1; 2105 } 2106 2107 return imrc->num_indexes(iommu_mr); 2108 } 2109 2110 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr) 2111 { 2112 if (!memory_region_is_ram(mr)) { 2113 return NULL; 2114 } 2115 return mr->rdm; 2116 } 2117 2118 void memory_region_set_ram_discard_manager(MemoryRegion *mr, 2119 RamDiscardManager *rdm) 2120 { 2121 g_assert(memory_region_is_ram(mr)); 2122 g_assert(!rdm || !mr->rdm); 2123 mr->rdm = rdm; 2124 } 2125 2126 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm, 2127 const MemoryRegion *mr) 2128 { 2129 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm); 2130 2131 g_assert(rdmc->get_min_granularity); 2132 return rdmc->get_min_granularity(rdm, mr); 2133 } 2134 2135 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm, 2136 const MemoryRegionSection *section) 2137 { 2138 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm); 2139 2140 g_assert(rdmc->is_populated); 2141 return rdmc->is_populated(rdm, section); 2142 } 2143 2144 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm, 2145 MemoryRegionSection *section, 2146 ReplayRamPopulate replay_fn, 2147 void *opaque) 2148 { 2149 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm); 2150 2151 g_assert(rdmc->replay_populated); 2152 return rdmc->replay_populated(rdm, section, replay_fn, opaque); 2153 } 2154 2155 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm, 2156 MemoryRegionSection *section, 2157 ReplayRamDiscard replay_fn, 2158 void *opaque) 2159 { 2160 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm); 2161 2162 g_assert(rdmc->replay_discarded); 2163 rdmc->replay_discarded(rdm, section, replay_fn, opaque); 2164 } 2165 2166 void ram_discard_manager_register_listener(RamDiscardManager *rdm, 2167 RamDiscardListener *rdl, 2168 MemoryRegionSection *section) 2169 { 2170 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm); 2171 2172 g_assert(rdmc->register_listener); 2173 rdmc->register_listener(rdm, rdl, section); 2174 } 2175 2176 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm, 2177 RamDiscardListener *rdl) 2178 { 2179 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm); 2180 2181 g_assert(rdmc->unregister_listener); 2182 rdmc->unregister_listener(rdm, rdl); 2183 } 2184 2185 /* Called with rcu_read_lock held. */ 2186 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, 2187 ram_addr_t *ram_addr, bool *read_only, 2188 bool *mr_has_discard_manager, Error **errp) 2189 { 2190 MemoryRegion *mr; 2191 hwaddr xlat; 2192 hwaddr len = iotlb->addr_mask + 1; 2193 bool writable = iotlb->perm & IOMMU_WO; 2194 2195 if (mr_has_discard_manager) { 2196 *mr_has_discard_manager = false; 2197 } 2198 /* 2199 * The IOMMU TLB entry we have just covers translation through 2200 * this IOMMU to its immediate target. We need to translate 2201 * it the rest of the way through to memory. 2202 */ 2203 mr = address_space_translate(&address_space_memory, iotlb->translated_addr, 2204 &xlat, &len, writable, MEMTXATTRS_UNSPECIFIED); 2205 if (!memory_region_is_ram(mr)) { 2206 error_setg(errp, "iommu map to non memory area %" HWADDR_PRIx "", xlat); 2207 return false; 2208 } else if (memory_region_has_ram_discard_manager(mr)) { 2209 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(mr); 2210 MemoryRegionSection tmp = { 2211 .mr = mr, 2212 .offset_within_region = xlat, 2213 .size = int128_make64(len), 2214 }; 2215 if (mr_has_discard_manager) { 2216 *mr_has_discard_manager = true; 2217 } 2218 /* 2219 * Malicious VMs can map memory into the IOMMU, which is expected 2220 * to remain discarded. vfio will pin all pages, populating memory. 2221 * Disallow that. vmstate priorities make sure any RamDiscardManager 2222 * were already restored before IOMMUs are restored. 2223 */ 2224 if (!ram_discard_manager_is_populated(rdm, &tmp)) { 2225 error_setg(errp, "iommu map to discarded memory (e.g., unplugged" 2226 " via virtio-mem): %" HWADDR_PRIx "", 2227 iotlb->translated_addr); 2228 return false; 2229 } 2230 } 2231 2232 /* 2233 * Translation truncates length to the IOMMU page size, 2234 * check that it did not truncate too much. 2235 */ 2236 if (len & iotlb->addr_mask) { 2237 error_setg(errp, "iommu has granularity incompatible with target AS"); 2238 return false; 2239 } 2240 2241 if (vaddr) { 2242 *vaddr = memory_region_get_ram_ptr(mr) + xlat; 2243 } 2244 2245 if (ram_addr) { 2246 *ram_addr = memory_region_get_ram_addr(mr) + xlat; 2247 } 2248 2249 if (read_only) { 2250 *read_only = !writable || mr->readonly; 2251 } 2252 2253 return true; 2254 } 2255 2256 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client) 2257 { 2258 uint8_t mask = 1 << client; 2259 uint8_t old_logging; 2260 2261 assert(client == DIRTY_MEMORY_VGA); 2262 old_logging = mr->vga_logging_count; 2263 mr->vga_logging_count += log ? 1 : -1; 2264 if (!!old_logging == !!mr->vga_logging_count) { 2265 return; 2266 } 2267 2268 memory_region_transaction_begin(); 2269 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask); 2270 memory_region_update_pending |= mr->enabled; 2271 memory_region_transaction_commit(); 2272 } 2273 2274 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 2275 hwaddr size) 2276 { 2277 assert(mr->ram_block); 2278 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr, 2279 size, 2280 memory_region_get_dirty_log_mask(mr)); 2281 } 2282 2283 /* 2284 * If memory region `mr' is NULL, do global sync. Otherwise, sync 2285 * dirty bitmap for the specified memory region. 2286 */ 2287 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr, bool last_stage) 2288 { 2289 MemoryListener *listener; 2290 AddressSpace *as; 2291 FlatView *view; 2292 FlatRange *fr; 2293 2294 /* If the same address space has multiple log_sync listeners, we 2295 * visit that address space's FlatView multiple times. But because 2296 * log_sync listeners are rare, it's still cheaper than walking each 2297 * address space once. 2298 */ 2299 QTAILQ_FOREACH(listener, &memory_listeners, link) { 2300 if (listener->log_sync) { 2301 as = listener->address_space; 2302 view = address_space_get_flatview(as); 2303 FOR_EACH_FLAT_RANGE(fr, view) { 2304 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) { 2305 MemoryRegionSection mrs = section_from_flat_range(fr, view); 2306 listener->log_sync(listener, &mrs); 2307 } 2308 } 2309 flatview_unref(view); 2310 trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 0); 2311 } else if (listener->log_sync_global) { 2312 /* 2313 * No matter whether MR is specified, what we can do here 2314 * is to do a global sync, because we are not capable to 2315 * sync in a finer granularity. 2316 */ 2317 listener->log_sync_global(listener, last_stage); 2318 trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 1); 2319 } 2320 } 2321 } 2322 2323 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, 2324 hwaddr len) 2325 { 2326 MemoryRegionSection mrs; 2327 MemoryListener *listener; 2328 AddressSpace *as; 2329 FlatView *view; 2330 FlatRange *fr; 2331 hwaddr sec_start, sec_end, sec_size; 2332 2333 QTAILQ_FOREACH(listener, &memory_listeners, link) { 2334 if (!listener->log_clear) { 2335 continue; 2336 } 2337 as = listener->address_space; 2338 view = address_space_get_flatview(as); 2339 FOR_EACH_FLAT_RANGE(fr, view) { 2340 if (!fr->dirty_log_mask || fr->mr != mr) { 2341 /* 2342 * Clear dirty bitmap operation only applies to those 2343 * regions whose dirty logging is at least enabled 2344 */ 2345 continue; 2346 } 2347 2348 mrs = section_from_flat_range(fr, view); 2349 2350 sec_start = MAX(mrs.offset_within_region, start); 2351 sec_end = mrs.offset_within_region + int128_get64(mrs.size); 2352 sec_end = MIN(sec_end, start + len); 2353 2354 if (sec_start >= sec_end) { 2355 /* 2356 * If this memory region section has no intersection 2357 * with the requested range, skip. 2358 */ 2359 continue; 2360 } 2361 2362 /* Valid case; shrink the section if needed */ 2363 mrs.offset_within_address_space += 2364 sec_start - mrs.offset_within_region; 2365 mrs.offset_within_region = sec_start; 2366 sec_size = sec_end - sec_start; 2367 mrs.size = int128_make64(sec_size); 2368 listener->log_clear(listener, &mrs); 2369 } 2370 flatview_unref(view); 2371 } 2372 } 2373 2374 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, 2375 hwaddr addr, 2376 hwaddr size, 2377 unsigned client) 2378 { 2379 DirtyBitmapSnapshot *snapshot; 2380 assert(mr->ram_block); 2381 memory_region_sync_dirty_bitmap(mr, false); 2382 snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client); 2383 memory_global_after_dirty_log_sync(); 2384 return snapshot; 2385 } 2386 2387 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap, 2388 hwaddr addr, hwaddr size) 2389 { 2390 assert(mr->ram_block); 2391 return cpu_physical_memory_snapshot_get_dirty(snap, 2392 memory_region_get_ram_addr(mr) + addr, size); 2393 } 2394 2395 void memory_region_set_readonly(MemoryRegion *mr, bool readonly) 2396 { 2397 if (mr->readonly != readonly) { 2398 memory_region_transaction_begin(); 2399 mr->readonly = readonly; 2400 memory_region_update_pending |= mr->enabled; 2401 memory_region_transaction_commit(); 2402 } 2403 } 2404 2405 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile) 2406 { 2407 if (mr->nonvolatile != nonvolatile) { 2408 memory_region_transaction_begin(); 2409 mr->nonvolatile = nonvolatile; 2410 memory_region_update_pending |= mr->enabled; 2411 memory_region_transaction_commit(); 2412 } 2413 } 2414 2415 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode) 2416 { 2417 if (mr->romd_mode != romd_mode) { 2418 memory_region_transaction_begin(); 2419 mr->romd_mode = romd_mode; 2420 memory_region_update_pending |= mr->enabled; 2421 memory_region_transaction_commit(); 2422 } 2423 } 2424 2425 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 2426 hwaddr size, unsigned client) 2427 { 2428 assert(mr->ram_block); 2429 cpu_physical_memory_test_and_clear_dirty( 2430 memory_region_get_ram_addr(mr) + addr, size, client); 2431 } 2432 2433 int memory_region_get_fd(MemoryRegion *mr) 2434 { 2435 RCU_READ_LOCK_GUARD(); 2436 while (mr->alias) { 2437 mr = mr->alias; 2438 } 2439 return mr->ram_block->fd; 2440 } 2441 2442 void *memory_region_get_ram_ptr(MemoryRegion *mr) 2443 { 2444 uint64_t offset = 0; 2445 2446 RCU_READ_LOCK_GUARD(); 2447 while (mr->alias) { 2448 offset += mr->alias_offset; 2449 mr = mr->alias; 2450 } 2451 assert(mr->ram_block); 2452 return qemu_map_ram_ptr(mr->ram_block, offset); 2453 } 2454 2455 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset) 2456 { 2457 RAMBlock *block; 2458 2459 block = qemu_ram_block_from_host(ptr, false, offset); 2460 if (!block) { 2461 return NULL; 2462 } 2463 2464 return block->mr; 2465 } 2466 2467 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr) 2468 { 2469 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID; 2470 } 2471 2472 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp) 2473 { 2474 assert(mr->ram_block); 2475 2476 qemu_ram_resize(mr->ram_block, newsize, errp); 2477 } 2478 2479 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size) 2480 { 2481 if (mr->ram_block) { 2482 qemu_ram_msync(mr->ram_block, addr, size); 2483 } 2484 } 2485 2486 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size) 2487 { 2488 /* 2489 * Might be extended case needed to cover 2490 * different types of memory regions 2491 */ 2492 if (mr->dirty_log_mask) { 2493 memory_region_msync(mr, addr, size); 2494 } 2495 } 2496 2497 /* 2498 * Call proper memory listeners about the change on the newly 2499 * added/removed CoalescedMemoryRange. 2500 */ 2501 static void memory_region_update_coalesced_range(MemoryRegion *mr, 2502 CoalescedMemoryRange *cmr, 2503 bool add) 2504 { 2505 AddressSpace *as; 2506 FlatView *view; 2507 FlatRange *fr; 2508 2509 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) { 2510 view = address_space_get_flatview(as); 2511 FOR_EACH_FLAT_RANGE(fr, view) { 2512 if (fr->mr == mr) { 2513 flat_range_coalesced_io_notify(fr, as, cmr, add); 2514 } 2515 } 2516 flatview_unref(view); 2517 } 2518 } 2519 2520 void memory_region_set_coalescing(MemoryRegion *mr) 2521 { 2522 memory_region_clear_coalescing(mr); 2523 memory_region_add_coalescing(mr, 0, int128_get64(mr->size)); 2524 } 2525 2526 void memory_region_add_coalescing(MemoryRegion *mr, 2527 hwaddr offset, 2528 uint64_t size) 2529 { 2530 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr)); 2531 2532 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size)); 2533 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link); 2534 memory_region_update_coalesced_range(mr, cmr, true); 2535 memory_region_set_flush_coalesced(mr); 2536 } 2537 2538 void memory_region_clear_coalescing(MemoryRegion *mr) 2539 { 2540 CoalescedMemoryRange *cmr; 2541 2542 if (QTAILQ_EMPTY(&mr->coalesced)) { 2543 return; 2544 } 2545 2546 qemu_flush_coalesced_mmio_buffer(); 2547 mr->flush_coalesced_mmio = false; 2548 2549 while (!QTAILQ_EMPTY(&mr->coalesced)) { 2550 cmr = QTAILQ_FIRST(&mr->coalesced); 2551 QTAILQ_REMOVE(&mr->coalesced, cmr, link); 2552 memory_region_update_coalesced_range(mr, cmr, false); 2553 g_free(cmr); 2554 } 2555 } 2556 2557 void memory_region_set_flush_coalesced(MemoryRegion *mr) 2558 { 2559 mr->flush_coalesced_mmio = true; 2560 } 2561 2562 void memory_region_clear_flush_coalesced(MemoryRegion *mr) 2563 { 2564 qemu_flush_coalesced_mmio_buffer(); 2565 if (QTAILQ_EMPTY(&mr->coalesced)) { 2566 mr->flush_coalesced_mmio = false; 2567 } 2568 } 2569 2570 void memory_region_add_eventfd(MemoryRegion *mr, 2571 hwaddr addr, 2572 unsigned size, 2573 bool match_data, 2574 uint64_t data, 2575 EventNotifier *e) 2576 { 2577 MemoryRegionIoeventfd mrfd = { 2578 .addr.start = int128_make64(addr), 2579 .addr.size = int128_make64(size), 2580 .match_data = match_data, 2581 .data = data, 2582 .e = e, 2583 }; 2584 unsigned i; 2585 2586 if (size) { 2587 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE); 2588 } 2589 memory_region_transaction_begin(); 2590 for (i = 0; i < mr->ioeventfd_nb; ++i) { 2591 if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) { 2592 break; 2593 } 2594 } 2595 ++mr->ioeventfd_nb; 2596 mr->ioeventfds = g_realloc(mr->ioeventfds, 2597 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb); 2598 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i], 2599 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i)); 2600 mr->ioeventfds[i] = mrfd; 2601 ioeventfd_update_pending |= mr->enabled; 2602 memory_region_transaction_commit(); 2603 } 2604 2605 void memory_region_del_eventfd(MemoryRegion *mr, 2606 hwaddr addr, 2607 unsigned size, 2608 bool match_data, 2609 uint64_t data, 2610 EventNotifier *e) 2611 { 2612 MemoryRegionIoeventfd mrfd = { 2613 .addr.start = int128_make64(addr), 2614 .addr.size = int128_make64(size), 2615 .match_data = match_data, 2616 .data = data, 2617 .e = e, 2618 }; 2619 unsigned i; 2620 2621 if (size) { 2622 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE); 2623 } 2624 memory_region_transaction_begin(); 2625 for (i = 0; i < mr->ioeventfd_nb; ++i) { 2626 if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) { 2627 break; 2628 } 2629 } 2630 assert(i != mr->ioeventfd_nb); 2631 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1], 2632 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1))); 2633 --mr->ioeventfd_nb; 2634 mr->ioeventfds = g_realloc(mr->ioeventfds, 2635 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1); 2636 ioeventfd_update_pending |= mr->enabled; 2637 memory_region_transaction_commit(); 2638 } 2639 2640 static void memory_region_update_container_subregions(MemoryRegion *subregion) 2641 { 2642 MemoryRegion *mr = subregion->container; 2643 MemoryRegion *other; 2644 2645 memory_region_transaction_begin(); 2646 2647 memory_region_ref(subregion); 2648 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) { 2649 if (subregion->priority >= other->priority) { 2650 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link); 2651 goto done; 2652 } 2653 } 2654 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link); 2655 done: 2656 memory_region_update_pending |= mr->enabled && subregion->enabled; 2657 memory_region_transaction_commit(); 2658 } 2659 2660 static void memory_region_add_subregion_common(MemoryRegion *mr, 2661 hwaddr offset, 2662 MemoryRegion *subregion) 2663 { 2664 MemoryRegion *alias; 2665 2666 assert(!subregion->container); 2667 subregion->container = mr; 2668 for (alias = subregion->alias; alias; alias = alias->alias) { 2669 alias->mapped_via_alias++; 2670 } 2671 subregion->addr = offset; 2672 memory_region_update_container_subregions(subregion); 2673 } 2674 2675 void memory_region_add_subregion(MemoryRegion *mr, 2676 hwaddr offset, 2677 MemoryRegion *subregion) 2678 { 2679 subregion->priority = 0; 2680 memory_region_add_subregion_common(mr, offset, subregion); 2681 } 2682 2683 void memory_region_add_subregion_overlap(MemoryRegion *mr, 2684 hwaddr offset, 2685 MemoryRegion *subregion, 2686 int priority) 2687 { 2688 subregion->priority = priority; 2689 memory_region_add_subregion_common(mr, offset, subregion); 2690 } 2691 2692 void memory_region_del_subregion(MemoryRegion *mr, 2693 MemoryRegion *subregion) 2694 { 2695 MemoryRegion *alias; 2696 2697 memory_region_transaction_begin(); 2698 assert(subregion->container == mr); 2699 subregion->container = NULL; 2700 for (alias = subregion->alias; alias; alias = alias->alias) { 2701 alias->mapped_via_alias--; 2702 assert(alias->mapped_via_alias >= 0); 2703 } 2704 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link); 2705 memory_region_unref(subregion); 2706 memory_region_update_pending |= mr->enabled && subregion->enabled; 2707 memory_region_transaction_commit(); 2708 } 2709 2710 void memory_region_set_enabled(MemoryRegion *mr, bool enabled) 2711 { 2712 if (enabled == mr->enabled) { 2713 return; 2714 } 2715 memory_region_transaction_begin(); 2716 mr->enabled = enabled; 2717 memory_region_update_pending = true; 2718 memory_region_transaction_commit(); 2719 } 2720 2721 void memory_region_set_size(MemoryRegion *mr, uint64_t size) 2722 { 2723 Int128 s = int128_make64(size); 2724 2725 if (size == UINT64_MAX) { 2726 s = int128_2_64(); 2727 } 2728 if (int128_eq(s, mr->size)) { 2729 return; 2730 } 2731 memory_region_transaction_begin(); 2732 mr->size = s; 2733 memory_region_update_pending = true; 2734 memory_region_transaction_commit(); 2735 } 2736 2737 static void memory_region_readd_subregion(MemoryRegion *mr) 2738 { 2739 MemoryRegion *container = mr->container; 2740 2741 if (container) { 2742 memory_region_transaction_begin(); 2743 memory_region_ref(mr); 2744 memory_region_del_subregion(container, mr); 2745 memory_region_add_subregion_common(container, mr->addr, mr); 2746 memory_region_unref(mr); 2747 memory_region_transaction_commit(); 2748 } 2749 } 2750 2751 void memory_region_set_address(MemoryRegion *mr, hwaddr addr) 2752 { 2753 if (addr != mr->addr) { 2754 mr->addr = addr; 2755 memory_region_readd_subregion(mr); 2756 } 2757 } 2758 2759 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset) 2760 { 2761 assert(mr->alias); 2762 2763 if (offset == mr->alias_offset) { 2764 return; 2765 } 2766 2767 memory_region_transaction_begin(); 2768 mr->alias_offset = offset; 2769 memory_region_update_pending |= mr->enabled; 2770 memory_region_transaction_commit(); 2771 } 2772 2773 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable) 2774 { 2775 if (unmergeable == mr->unmergeable) { 2776 return; 2777 } 2778 2779 memory_region_transaction_begin(); 2780 mr->unmergeable = unmergeable; 2781 memory_region_update_pending |= mr->enabled; 2782 memory_region_transaction_commit(); 2783 } 2784 2785 uint64_t memory_region_get_alignment(const MemoryRegion *mr) 2786 { 2787 return mr->align; 2788 } 2789 2790 static int cmp_flatrange_addr(const void *addr_, const void *fr_) 2791 { 2792 const AddrRange *addr = addr_; 2793 const FlatRange *fr = fr_; 2794 2795 if (int128_le(addrrange_end(*addr), fr->addr.start)) { 2796 return -1; 2797 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) { 2798 return 1; 2799 } 2800 return 0; 2801 } 2802 2803 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr) 2804 { 2805 return bsearch(&addr, view->ranges, view->nr, 2806 sizeof(FlatRange), cmp_flatrange_addr); 2807 } 2808 2809 bool memory_region_is_mapped(MemoryRegion *mr) 2810 { 2811 return !!mr->container || mr->mapped_via_alias; 2812 } 2813 2814 /* Same as memory_region_find, but it does not add a reference to the 2815 * returned region. It must be called from an RCU critical section. 2816 */ 2817 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr, 2818 hwaddr addr, uint64_t size) 2819 { 2820 MemoryRegionSection ret = { .mr = NULL }; 2821 MemoryRegion *root; 2822 AddressSpace *as; 2823 AddrRange range; 2824 FlatView *view; 2825 FlatRange *fr; 2826 2827 addr += mr->addr; 2828 for (root = mr; root->container; ) { 2829 root = root->container; 2830 addr += root->addr; 2831 } 2832 2833 as = memory_region_to_address_space(root); 2834 if (!as) { 2835 return ret; 2836 } 2837 range = addrrange_make(int128_make64(addr), int128_make64(size)); 2838 2839 view = address_space_to_flatview(as); 2840 fr = flatview_lookup(view, range); 2841 if (!fr) { 2842 return ret; 2843 } 2844 2845 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) { 2846 --fr; 2847 } 2848 2849 ret.mr = fr->mr; 2850 ret.fv = view; 2851 range = addrrange_intersection(range, fr->addr); 2852 ret.offset_within_region = fr->offset_in_region; 2853 ret.offset_within_region += int128_get64(int128_sub(range.start, 2854 fr->addr.start)); 2855 ret.size = range.size; 2856 ret.offset_within_address_space = int128_get64(range.start); 2857 ret.readonly = fr->readonly; 2858 ret.nonvolatile = fr->nonvolatile; 2859 return ret; 2860 } 2861 2862 MemoryRegionSection memory_region_find(MemoryRegion *mr, 2863 hwaddr addr, uint64_t size) 2864 { 2865 MemoryRegionSection ret; 2866 RCU_READ_LOCK_GUARD(); 2867 ret = memory_region_find_rcu(mr, addr, size); 2868 if (ret.mr) { 2869 memory_region_ref(ret.mr); 2870 } 2871 return ret; 2872 } 2873 2874 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s) 2875 { 2876 MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1); 2877 2878 *tmp = *s; 2879 if (tmp->mr) { 2880 memory_region_ref(tmp->mr); 2881 } 2882 if (tmp->fv) { 2883 bool ret = flatview_ref(tmp->fv); 2884 2885 g_assert(ret); 2886 } 2887 return tmp; 2888 } 2889 2890 void memory_region_section_free_copy(MemoryRegionSection *s) 2891 { 2892 if (s->fv) { 2893 flatview_unref(s->fv); 2894 } 2895 if (s->mr) { 2896 memory_region_unref(s->mr); 2897 } 2898 g_free(s); 2899 } 2900 2901 bool memory_region_present(MemoryRegion *container, hwaddr addr) 2902 { 2903 MemoryRegion *mr; 2904 2905 RCU_READ_LOCK_GUARD(); 2906 mr = memory_region_find_rcu(container, addr, 1).mr; 2907 return mr && mr != container; 2908 } 2909 2910 void memory_global_dirty_log_sync(bool last_stage) 2911 { 2912 memory_region_sync_dirty_bitmap(NULL, last_stage); 2913 } 2914 2915 void memory_global_after_dirty_log_sync(void) 2916 { 2917 MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward); 2918 } 2919 2920 /* 2921 * Dirty track stop flags that are postponed due to VM being stopped. Should 2922 * only be used within vmstate_change hook. 2923 */ 2924 static unsigned int postponed_stop_flags; 2925 static VMChangeStateEntry *vmstate_change; 2926 static void memory_global_dirty_log_stop_postponed_run(void); 2927 2928 static bool memory_global_dirty_log_do_start(Error **errp) 2929 { 2930 MemoryListener *listener; 2931 2932 QTAILQ_FOREACH(listener, &memory_listeners, link) { 2933 if (listener->log_global_start) { 2934 if (!listener->log_global_start(listener, errp)) { 2935 goto err; 2936 } 2937 } 2938 } 2939 return true; 2940 2941 err: 2942 while ((listener = QTAILQ_PREV(listener, link)) != NULL) { 2943 if (listener->log_global_stop) { 2944 listener->log_global_stop(listener); 2945 } 2946 } 2947 2948 return false; 2949 } 2950 2951 bool memory_global_dirty_log_start(unsigned int flags, Error **errp) 2952 { 2953 unsigned int old_flags; 2954 2955 assert(flags && !(flags & (~GLOBAL_DIRTY_MASK))); 2956 2957 if (vmstate_change) { 2958 /* If there is postponed stop(), operate on it first */ 2959 postponed_stop_flags &= ~flags; 2960 memory_global_dirty_log_stop_postponed_run(); 2961 } 2962 2963 flags &= ~global_dirty_tracking; 2964 if (!flags) { 2965 return true; 2966 } 2967 2968 old_flags = global_dirty_tracking; 2969 global_dirty_tracking |= flags; 2970 trace_global_dirty_changed(global_dirty_tracking); 2971 2972 if (!old_flags) { 2973 if (!memory_global_dirty_log_do_start(errp)) { 2974 global_dirty_tracking &= ~flags; 2975 trace_global_dirty_changed(global_dirty_tracking); 2976 return false; 2977 } 2978 2979 memory_region_transaction_begin(); 2980 memory_region_update_pending = true; 2981 memory_region_transaction_commit(); 2982 } 2983 return true; 2984 } 2985 2986 static void memory_global_dirty_log_do_stop(unsigned int flags) 2987 { 2988 assert(flags && !(flags & (~GLOBAL_DIRTY_MASK))); 2989 assert((global_dirty_tracking & flags) == flags); 2990 global_dirty_tracking &= ~flags; 2991 2992 trace_global_dirty_changed(global_dirty_tracking); 2993 2994 if (!global_dirty_tracking) { 2995 memory_region_transaction_begin(); 2996 memory_region_update_pending = true; 2997 memory_region_transaction_commit(); 2998 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse); 2999 } 3000 } 3001 3002 /* 3003 * Execute the postponed dirty log stop operations if there is, then reset 3004 * everything (including the flags and the vmstate change hook). 3005 */ 3006 static void memory_global_dirty_log_stop_postponed_run(void) 3007 { 3008 /* This must be called with the vmstate handler registered */ 3009 assert(vmstate_change); 3010 3011 /* Note: postponed_stop_flags can be cleared in log start routine */ 3012 if (postponed_stop_flags) { 3013 memory_global_dirty_log_do_stop(postponed_stop_flags); 3014 postponed_stop_flags = 0; 3015 } 3016 3017 qemu_del_vm_change_state_handler(vmstate_change); 3018 vmstate_change = NULL; 3019 } 3020 3021 static void memory_vm_change_state_handler(void *opaque, bool running, 3022 RunState state) 3023 { 3024 if (running) { 3025 memory_global_dirty_log_stop_postponed_run(); 3026 } 3027 } 3028 3029 void memory_global_dirty_log_stop(unsigned int flags) 3030 { 3031 if (!runstate_is_running()) { 3032 /* Postpone the dirty log stop, e.g., to when VM starts again */ 3033 if (vmstate_change) { 3034 /* Batch with previous postponed flags */ 3035 postponed_stop_flags |= flags; 3036 } else { 3037 postponed_stop_flags = flags; 3038 vmstate_change = qemu_add_vm_change_state_handler( 3039 memory_vm_change_state_handler, NULL); 3040 } 3041 return; 3042 } 3043 3044 memory_global_dirty_log_do_stop(flags); 3045 } 3046 3047 static void listener_add_address_space(MemoryListener *listener, 3048 AddressSpace *as) 3049 { 3050 unsigned i; 3051 FlatView *view; 3052 FlatRange *fr; 3053 MemoryRegionIoeventfd *fd; 3054 3055 if (listener->begin) { 3056 listener->begin(listener); 3057 } 3058 if (global_dirty_tracking) { 3059 /* 3060 * Currently only VFIO can fail log_global_start(), and it's not 3061 * yet allowed to hotplug any PCI device during migration. So this 3062 * should never fail when invoked, guard it with error_abort. If 3063 * it can start to fail in the future, we need to be able to fail 3064 * the whole listener_add_address_space() and its callers. 3065 */ 3066 if (listener->log_global_start) { 3067 listener->log_global_start(listener, &error_abort); 3068 } 3069 } 3070 3071 view = address_space_get_flatview(as); 3072 FOR_EACH_FLAT_RANGE(fr, view) { 3073 MemoryRegionSection section = section_from_flat_range(fr, view); 3074 3075 if (listener->region_add) { 3076 listener->region_add(listener, §ion); 3077 } 3078 3079 /* send coalesced io add notifications */ 3080 flat_range_coalesced_io_notify_listener_add_del(fr, §ion, 3081 listener, as, true); 3082 3083 if (fr->dirty_log_mask && listener->log_start) { 3084 listener->log_start(listener, §ion, 0, fr->dirty_log_mask); 3085 } 3086 } 3087 3088 /* 3089 * register all eventfds for this address space for the newly registered 3090 * listener. 3091 */ 3092 for (i = 0; i < as->ioeventfd_nb; i++) { 3093 fd = &as->ioeventfds[i]; 3094 MemoryRegionSection section = (MemoryRegionSection) { 3095 .fv = view, 3096 .offset_within_address_space = int128_get64(fd->addr.start), 3097 .size = fd->addr.size, 3098 }; 3099 3100 if (listener->eventfd_add) { 3101 listener->eventfd_add(listener, §ion, 3102 fd->match_data, fd->data, fd->e); 3103 } 3104 } 3105 3106 if (listener->commit) { 3107 listener->commit(listener); 3108 } 3109 flatview_unref(view); 3110 } 3111 3112 static void listener_del_address_space(MemoryListener *listener, 3113 AddressSpace *as) 3114 { 3115 unsigned i; 3116 FlatView *view; 3117 FlatRange *fr; 3118 MemoryRegionIoeventfd *fd; 3119 3120 if (listener->begin) { 3121 listener->begin(listener); 3122 } 3123 view = address_space_get_flatview(as); 3124 FOR_EACH_FLAT_RANGE(fr, view) { 3125 MemoryRegionSection section = section_from_flat_range(fr, view); 3126 3127 if (fr->dirty_log_mask && listener->log_stop) { 3128 listener->log_stop(listener, §ion, fr->dirty_log_mask, 0); 3129 } 3130 3131 /* send coalesced io del notifications */ 3132 flat_range_coalesced_io_notify_listener_add_del(fr, §ion, 3133 listener, as, false); 3134 if (listener->region_del) { 3135 listener->region_del(listener, §ion); 3136 } 3137 } 3138 3139 /* 3140 * de-register all eventfds for this address space for the current 3141 * listener. 3142 */ 3143 for (i = 0; i < as->ioeventfd_nb; i++) { 3144 fd = &as->ioeventfds[i]; 3145 MemoryRegionSection section = (MemoryRegionSection) { 3146 .fv = view, 3147 .offset_within_address_space = int128_get64(fd->addr.start), 3148 .size = fd->addr.size, 3149 }; 3150 3151 if (listener->eventfd_del) { 3152 listener->eventfd_del(listener, §ion, 3153 fd->match_data, fd->data, fd->e); 3154 } 3155 } 3156 3157 if (listener->commit) { 3158 listener->commit(listener); 3159 } 3160 flatview_unref(view); 3161 } 3162 3163 void memory_listener_register(MemoryListener *listener, AddressSpace *as) 3164 { 3165 MemoryListener *other = NULL; 3166 3167 /* Only one of them can be defined for a listener */ 3168 assert(!(listener->log_sync && listener->log_sync_global)); 3169 3170 listener->address_space = as; 3171 if (QTAILQ_EMPTY(&memory_listeners) 3172 || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) { 3173 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link); 3174 } else { 3175 QTAILQ_FOREACH(other, &memory_listeners, link) { 3176 if (listener->priority < other->priority) { 3177 break; 3178 } 3179 } 3180 QTAILQ_INSERT_BEFORE(other, listener, link); 3181 } 3182 3183 if (QTAILQ_EMPTY(&as->listeners) 3184 || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) { 3185 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as); 3186 } else { 3187 QTAILQ_FOREACH(other, &as->listeners, link_as) { 3188 if (listener->priority < other->priority) { 3189 break; 3190 } 3191 } 3192 QTAILQ_INSERT_BEFORE(other, listener, link_as); 3193 } 3194 3195 listener_add_address_space(listener, as); 3196 3197 if (listener->eventfd_add || listener->eventfd_del) { 3198 as->ioeventfd_notifiers++; 3199 } 3200 } 3201 3202 void memory_listener_unregister(MemoryListener *listener) 3203 { 3204 if (!listener->address_space) { 3205 return; 3206 } 3207 3208 if (listener->eventfd_add || listener->eventfd_del) { 3209 listener->address_space->ioeventfd_notifiers--; 3210 } 3211 3212 listener_del_address_space(listener, listener->address_space); 3213 QTAILQ_REMOVE(&memory_listeners, listener, link); 3214 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as); 3215 listener->address_space = NULL; 3216 } 3217 3218 void address_space_remove_listeners(AddressSpace *as) 3219 { 3220 while (!QTAILQ_EMPTY(&as->listeners)) { 3221 memory_listener_unregister(QTAILQ_FIRST(&as->listeners)); 3222 } 3223 } 3224 3225 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name) 3226 { 3227 memory_region_ref(root); 3228 as->root = root; 3229 as->current_map = NULL; 3230 as->ioeventfd_nb = 0; 3231 as->ioeventfds = NULL; 3232 QTAILQ_INIT(&as->listeners); 3233 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link); 3234 as->max_bounce_buffer_size = DEFAULT_MAX_BOUNCE_BUFFER_SIZE; 3235 as->bounce_buffer_size = 0; 3236 qemu_mutex_init(&as->map_client_list_lock); 3237 QLIST_INIT(&as->map_client_list); 3238 as->name = g_strdup(name ? name : "anonymous"); 3239 address_space_update_topology(as); 3240 address_space_update_ioeventfds(as); 3241 } 3242 3243 static void do_address_space_destroy(AddressSpace *as) 3244 { 3245 assert(qatomic_read(&as->bounce_buffer_size) == 0); 3246 assert(QLIST_EMPTY(&as->map_client_list)); 3247 qemu_mutex_destroy(&as->map_client_list_lock); 3248 3249 assert(QTAILQ_EMPTY(&as->listeners)); 3250 3251 flatview_unref(as->current_map); 3252 g_free(as->name); 3253 g_free(as->ioeventfds); 3254 memory_region_unref(as->root); 3255 } 3256 3257 void address_space_destroy(AddressSpace *as) 3258 { 3259 MemoryRegion *root = as->root; 3260 3261 /* Flush out anything from MemoryListeners listening in on this */ 3262 memory_region_transaction_begin(); 3263 as->root = NULL; 3264 memory_region_transaction_commit(); 3265 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link); 3266 3267 /* At this point, as->dispatch and as->current_map are dummy 3268 * entries that the guest should never use. Wait for the old 3269 * values to expire before freeing the data. 3270 */ 3271 as->root = root; 3272 call_rcu(as, do_address_space_destroy, rcu); 3273 } 3274 3275 static const char *memory_region_type(MemoryRegion *mr) 3276 { 3277 if (mr->alias) { 3278 return memory_region_type(mr->alias); 3279 } 3280 if (memory_region_is_ram_device(mr)) { 3281 return "ramd"; 3282 } else if (memory_region_is_romd(mr)) { 3283 return "romd"; 3284 } else if (memory_region_is_rom(mr)) { 3285 return "rom"; 3286 } else if (memory_region_is_ram(mr)) { 3287 return "ram"; 3288 } else { 3289 return "i/o"; 3290 } 3291 } 3292 3293 typedef struct MemoryRegionList MemoryRegionList; 3294 3295 struct MemoryRegionList { 3296 const MemoryRegion *mr; 3297 QTAILQ_ENTRY(MemoryRegionList) mrqueue; 3298 }; 3299 3300 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead; 3301 3302 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3303 int128_sub((size), int128_one())) : 0) 3304 #define MTREE_INDENT " " 3305 3306 static void mtree_expand_owner(const char *label, Object *obj) 3307 { 3308 DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE); 3309 3310 qemu_printf(" %s:{%s", label, dev ? "dev" : "obj"); 3311 if (dev && dev->id) { 3312 qemu_printf(" id=%s", dev->id); 3313 } else { 3314 char *canonical_path = object_get_canonical_path(obj); 3315 if (canonical_path) { 3316 qemu_printf(" path=%s", canonical_path); 3317 g_free(canonical_path); 3318 } else { 3319 qemu_printf(" type=%s", object_get_typename(obj)); 3320 } 3321 } 3322 qemu_printf("}"); 3323 } 3324 3325 static void mtree_print_mr_owner(const MemoryRegion *mr) 3326 { 3327 Object *owner = mr->owner; 3328 Object *parent = memory_region_owner((MemoryRegion *)mr); 3329 3330 if (!owner && !parent) { 3331 qemu_printf(" orphan"); 3332 return; 3333 } 3334 if (owner) { 3335 mtree_expand_owner("owner", owner); 3336 } 3337 if (parent && parent != owner) { 3338 mtree_expand_owner("parent", parent); 3339 } 3340 } 3341 3342 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level, 3343 hwaddr base, 3344 MemoryRegionListHead *alias_print_queue, 3345 bool owner, bool display_disabled) 3346 { 3347 MemoryRegionList *new_ml, *ml, *next_ml; 3348 MemoryRegionListHead submr_print_queue; 3349 const MemoryRegion *submr; 3350 unsigned int i; 3351 hwaddr cur_start, cur_end; 3352 3353 if (!mr) { 3354 return; 3355 } 3356 3357 cur_start = base + mr->addr; 3358 cur_end = cur_start + MR_SIZE(mr->size); 3359 3360 /* 3361 * Try to detect overflow of memory region. This should never 3362 * happen normally. When it happens, we dump something to warn the 3363 * user who is observing this. 3364 */ 3365 if (cur_start < base || cur_end < cur_start) { 3366 qemu_printf("[DETECTED OVERFLOW!] "); 3367 } 3368 3369 if (mr->alias) { 3370 bool found = false; 3371 3372 /* check if the alias is already in the queue */ 3373 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) { 3374 if (ml->mr == mr->alias) { 3375 found = true; 3376 } 3377 } 3378 3379 if (!found) { 3380 ml = g_new(MemoryRegionList, 1); 3381 ml->mr = mr->alias; 3382 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue); 3383 } 3384 if (mr->enabled || display_disabled) { 3385 for (i = 0; i < level; i++) { 3386 qemu_printf(MTREE_INDENT); 3387 } 3388 qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx 3389 " (prio %d, %s%s): alias %s @%s " HWADDR_FMT_plx 3390 "-" HWADDR_FMT_plx "%s", 3391 cur_start, cur_end, 3392 mr->priority, 3393 mr->nonvolatile ? "nv-" : "", 3394 memory_region_type((MemoryRegion *)mr), 3395 memory_region_name(mr), 3396 memory_region_name(mr->alias), 3397 mr->alias_offset, 3398 mr->alias_offset + MR_SIZE(mr->size), 3399 mr->enabled ? "" : " [disabled]"); 3400 if (owner) { 3401 mtree_print_mr_owner(mr); 3402 } 3403 qemu_printf("\n"); 3404 } 3405 } else { 3406 if (mr->enabled || display_disabled) { 3407 for (i = 0; i < level; i++) { 3408 qemu_printf(MTREE_INDENT); 3409 } 3410 qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx 3411 " (prio %d, %s%s): %s%s", 3412 cur_start, cur_end, 3413 mr->priority, 3414 mr->nonvolatile ? "nv-" : "", 3415 memory_region_type((MemoryRegion *)mr), 3416 memory_region_name(mr), 3417 mr->enabled ? "" : " [disabled]"); 3418 if (owner) { 3419 mtree_print_mr_owner(mr); 3420 } 3421 qemu_printf("\n"); 3422 } 3423 } 3424 3425 QTAILQ_INIT(&submr_print_queue); 3426 3427 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) { 3428 new_ml = g_new(MemoryRegionList, 1); 3429 new_ml->mr = submr; 3430 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) { 3431 if (new_ml->mr->addr < ml->mr->addr || 3432 (new_ml->mr->addr == ml->mr->addr && 3433 new_ml->mr->priority > ml->mr->priority)) { 3434 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue); 3435 new_ml = NULL; 3436 break; 3437 } 3438 } 3439 if (new_ml) { 3440 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue); 3441 } 3442 } 3443 3444 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) { 3445 mtree_print_mr(ml->mr, level + 1, cur_start, 3446 alias_print_queue, owner, display_disabled); 3447 } 3448 3449 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) { 3450 g_free(ml); 3451 } 3452 } 3453 3454 struct FlatViewInfo { 3455 int counter; 3456 bool dispatch_tree; 3457 bool owner; 3458 AccelClass *ac; 3459 }; 3460 3461 static void mtree_print_flatview(gpointer key, gpointer value, 3462 gpointer user_data) 3463 { 3464 FlatView *view = key; 3465 GArray *fv_address_spaces = value; 3466 struct FlatViewInfo *fvi = user_data; 3467 FlatRange *range = &view->ranges[0]; 3468 MemoryRegion *mr; 3469 int n = view->nr; 3470 int i; 3471 AddressSpace *as; 3472 3473 qemu_printf("FlatView #%d\n", fvi->counter); 3474 ++fvi->counter; 3475 3476 for (i = 0; i < fv_address_spaces->len; ++i) { 3477 as = g_array_index(fv_address_spaces, AddressSpace*, i); 3478 qemu_printf(" AS \"%s\", root: %s", 3479 as->name, memory_region_name(as->root)); 3480 if (as->root->alias) { 3481 qemu_printf(", alias %s", memory_region_name(as->root->alias)); 3482 } 3483 qemu_printf("\n"); 3484 } 3485 3486 qemu_printf(" Root memory region: %s\n", 3487 view->root ? memory_region_name(view->root) : "(none)"); 3488 3489 if (n <= 0) { 3490 qemu_printf(MTREE_INDENT "No rendered FlatView\n\n"); 3491 return; 3492 } 3493 3494 while (n--) { 3495 mr = range->mr; 3496 if (range->offset_in_region) { 3497 qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx 3498 " (prio %d, %s%s): %s @" HWADDR_FMT_plx, 3499 int128_get64(range->addr.start), 3500 int128_get64(range->addr.start) 3501 + MR_SIZE(range->addr.size), 3502 mr->priority, 3503 range->nonvolatile ? "nv-" : "", 3504 range->readonly ? "rom" : memory_region_type(mr), 3505 memory_region_name(mr), 3506 range->offset_in_region); 3507 } else { 3508 qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx 3509 " (prio %d, %s%s): %s", 3510 int128_get64(range->addr.start), 3511 int128_get64(range->addr.start) 3512 + MR_SIZE(range->addr.size), 3513 mr->priority, 3514 range->nonvolatile ? "nv-" : "", 3515 range->readonly ? "rom" : memory_region_type(mr), 3516 memory_region_name(mr)); 3517 } 3518 if (fvi->owner) { 3519 mtree_print_mr_owner(mr); 3520 } 3521 3522 if (fvi->ac) { 3523 for (i = 0; i < fv_address_spaces->len; ++i) { 3524 as = g_array_index(fv_address_spaces, AddressSpace*, i); 3525 if (fvi->ac->has_memory(current_machine, as, 3526 int128_get64(range->addr.start), 3527 MR_SIZE(range->addr.size) + 1)) { 3528 qemu_printf(" %s", fvi->ac->name); 3529 } 3530 } 3531 } 3532 qemu_printf("\n"); 3533 range++; 3534 } 3535 3536 #if !defined(CONFIG_USER_ONLY) 3537 if (fvi->dispatch_tree && view->root) { 3538 mtree_print_dispatch(view->dispatch, view->root); 3539 } 3540 #endif 3541 3542 qemu_printf("\n"); 3543 } 3544 3545 static gboolean mtree_info_flatview_free(gpointer key, gpointer value, 3546 gpointer user_data) 3547 { 3548 FlatView *view = key; 3549 GArray *fv_address_spaces = value; 3550 3551 g_array_unref(fv_address_spaces); 3552 flatview_unref(view); 3553 3554 return true; 3555 } 3556 3557 static void mtree_info_flatview(bool dispatch_tree, bool owner) 3558 { 3559 struct FlatViewInfo fvi = { 3560 .counter = 0, 3561 .dispatch_tree = dispatch_tree, 3562 .owner = owner, 3563 }; 3564 AddressSpace *as; 3565 FlatView *view; 3566 GArray *fv_address_spaces; 3567 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal); 3568 AccelClass *ac = ACCEL_GET_CLASS(current_accel()); 3569 3570 if (ac->has_memory) { 3571 fvi.ac = ac; 3572 } 3573 3574 /* Gather all FVs in one table */ 3575 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) { 3576 view = address_space_get_flatview(as); 3577 3578 fv_address_spaces = g_hash_table_lookup(views, view); 3579 if (!fv_address_spaces) { 3580 fv_address_spaces = g_array_new(false, false, sizeof(as)); 3581 g_hash_table_insert(views, view, fv_address_spaces); 3582 } 3583 3584 g_array_append_val(fv_address_spaces, as); 3585 } 3586 3587 /* Print */ 3588 g_hash_table_foreach(views, mtree_print_flatview, &fvi); 3589 3590 /* Free */ 3591 g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0); 3592 g_hash_table_unref(views); 3593 } 3594 3595 struct AddressSpaceInfo { 3596 MemoryRegionListHead *ml_head; 3597 bool owner; 3598 bool disabled; 3599 }; 3600 3601 /* Returns negative value if a < b; zero if a = b; positive value if a > b. */ 3602 static gint address_space_compare_name(gconstpointer a, gconstpointer b) 3603 { 3604 const AddressSpace *as_a = a; 3605 const AddressSpace *as_b = b; 3606 3607 return g_strcmp0(as_a->name, as_b->name); 3608 } 3609 3610 static void mtree_print_as_name(gpointer data, gpointer user_data) 3611 { 3612 AddressSpace *as = data; 3613 3614 qemu_printf("address-space: %s\n", as->name); 3615 } 3616 3617 static void mtree_print_as(gpointer key, gpointer value, gpointer user_data) 3618 { 3619 MemoryRegion *mr = key; 3620 GSList *as_same_root_mr_list = value; 3621 struct AddressSpaceInfo *asi = user_data; 3622 3623 g_slist_foreach(as_same_root_mr_list, mtree_print_as_name, NULL); 3624 mtree_print_mr(mr, 1, 0, asi->ml_head, asi->owner, asi->disabled); 3625 qemu_printf("\n"); 3626 } 3627 3628 static gboolean mtree_info_as_free(gpointer key, gpointer value, 3629 gpointer user_data) 3630 { 3631 GSList *as_same_root_mr_list = value; 3632 3633 g_slist_free(as_same_root_mr_list); 3634 3635 return true; 3636 } 3637 3638 static void mtree_info_as(bool dispatch_tree, bool owner, bool disabled) 3639 { 3640 MemoryRegionListHead ml_head; 3641 MemoryRegionList *ml, *ml2; 3642 AddressSpace *as; 3643 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal); 3644 GSList *as_same_root_mr_list; 3645 struct AddressSpaceInfo asi = { 3646 .ml_head = &ml_head, 3647 .owner = owner, 3648 .disabled = disabled, 3649 }; 3650 3651 QTAILQ_INIT(&ml_head); 3652 3653 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) { 3654 /* Create hashtable, key=AS root MR, value = list of AS */ 3655 as_same_root_mr_list = g_hash_table_lookup(views, as->root); 3656 as_same_root_mr_list = g_slist_insert_sorted(as_same_root_mr_list, as, 3657 address_space_compare_name); 3658 g_hash_table_insert(views, as->root, as_same_root_mr_list); 3659 } 3660 3661 /* print address spaces */ 3662 g_hash_table_foreach(views, mtree_print_as, &asi); 3663 g_hash_table_foreach_remove(views, mtree_info_as_free, 0); 3664 g_hash_table_unref(views); 3665 3666 /* print aliased regions */ 3667 QTAILQ_FOREACH(ml, &ml_head, mrqueue) { 3668 qemu_printf("memory-region: %s\n", memory_region_name(ml->mr)); 3669 mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled); 3670 qemu_printf("\n"); 3671 } 3672 3673 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) { 3674 g_free(ml); 3675 } 3676 } 3677 3678 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled) 3679 { 3680 if (flatview) { 3681 mtree_info_flatview(dispatch_tree, owner); 3682 } else { 3683 mtree_info_as(dispatch_tree, owner, disabled); 3684 } 3685 } 3686 3687 bool memory_region_init_ram(MemoryRegion *mr, 3688 Object *owner, 3689 const char *name, 3690 uint64_t size, 3691 Error **errp) 3692 { 3693 DeviceState *owner_dev; 3694 3695 if (!memory_region_init_ram_nomigrate(mr, owner, name, size, errp)) { 3696 return false; 3697 } 3698 /* This will assert if owner is neither NULL nor a DeviceState. 3699 * We only want the owner here for the purposes of defining a 3700 * unique name for migration. TODO: Ideally we should implement 3701 * a naming scheme for Objects which are not DeviceStates, in 3702 * which case we can relax this restriction. 3703 */ 3704 owner_dev = DEVICE(owner); 3705 vmstate_register_ram(mr, owner_dev); 3706 3707 return true; 3708 } 3709 3710 bool memory_region_init_ram_guest_memfd(MemoryRegion *mr, 3711 Object *owner, 3712 const char *name, 3713 uint64_t size, 3714 Error **errp) 3715 { 3716 DeviceState *owner_dev; 3717 3718 if (!memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 3719 RAM_GUEST_MEMFD, errp)) { 3720 return false; 3721 } 3722 /* This will assert if owner is neither NULL nor a DeviceState. 3723 * We only want the owner here for the purposes of defining a 3724 * unique name for migration. TODO: Ideally we should implement 3725 * a naming scheme for Objects which are not DeviceStates, in 3726 * which case we can relax this restriction. 3727 */ 3728 owner_dev = DEVICE(owner); 3729 vmstate_register_ram(mr, owner_dev); 3730 3731 return true; 3732 } 3733 3734 bool memory_region_init_rom(MemoryRegion *mr, 3735 Object *owner, 3736 const char *name, 3737 uint64_t size, 3738 Error **errp) 3739 { 3740 DeviceState *owner_dev; 3741 3742 if (!memory_region_init_rom_nomigrate(mr, owner, name, size, errp)) { 3743 return false; 3744 } 3745 /* This will assert if owner is neither NULL nor a DeviceState. 3746 * We only want the owner here for the purposes of defining a 3747 * unique name for migration. TODO: Ideally we should implement 3748 * a naming scheme for Objects which are not DeviceStates, in 3749 * which case we can relax this restriction. 3750 */ 3751 owner_dev = DEVICE(owner); 3752 vmstate_register_ram(mr, owner_dev); 3753 3754 return true; 3755 } 3756 3757 bool memory_region_init_rom_device(MemoryRegion *mr, 3758 Object *owner, 3759 const MemoryRegionOps *ops, 3760 void *opaque, 3761 const char *name, 3762 uint64_t size, 3763 Error **errp) 3764 { 3765 DeviceState *owner_dev; 3766 3767 if (!memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque, 3768 name, size, errp)) { 3769 return false; 3770 } 3771 /* This will assert if owner is neither NULL nor a DeviceState. 3772 * We only want the owner here for the purposes of defining a 3773 * unique name for migration. TODO: Ideally we should implement 3774 * a naming scheme for Objects which are not DeviceStates, in 3775 * which case we can relax this restriction. 3776 */ 3777 owner_dev = DEVICE(owner); 3778 vmstate_register_ram(mr, owner_dev); 3779 3780 return true; 3781 } 3782 3783 /* 3784 * Support system builds with CONFIG_FUZZ using a weak symbol and a stub for 3785 * the fuzz_dma_read_cb callback 3786 */ 3787 #ifdef CONFIG_FUZZ 3788 void __attribute__((weak)) fuzz_dma_read_cb(size_t addr, 3789 size_t len, 3790 MemoryRegion *mr) 3791 { 3792 } 3793 #endif 3794 3795 static const TypeInfo memory_region_info = { 3796 .parent = TYPE_OBJECT, 3797 .name = TYPE_MEMORY_REGION, 3798 .class_size = sizeof(MemoryRegionClass), 3799 .instance_size = sizeof(MemoryRegion), 3800 .instance_init = memory_region_initfn, 3801 .instance_finalize = memory_region_finalize, 3802 }; 3803 3804 static const TypeInfo iommu_memory_region_info = { 3805 .parent = TYPE_MEMORY_REGION, 3806 .name = TYPE_IOMMU_MEMORY_REGION, 3807 .class_size = sizeof(IOMMUMemoryRegionClass), 3808 .instance_size = sizeof(IOMMUMemoryRegion), 3809 .instance_init = iommu_memory_region_initfn, 3810 .abstract = true, 3811 }; 3812 3813 static const TypeInfo ram_discard_manager_info = { 3814 .parent = TYPE_INTERFACE, 3815 .name = TYPE_RAM_DISCARD_MANAGER, 3816 .class_size = sizeof(RamDiscardManagerClass), 3817 }; 3818 3819 static void memory_register_types(void) 3820 { 3821 type_register_static(&memory_region_info); 3822 type_register_static(&iommu_memory_region_info); 3823 type_register_static(&ram_discard_manager_info); 3824 } 3825 3826 type_init(memory_register_types) 3827