xref: /openbmc/qemu/system/memory.c (revision 0d70c5aa1bbfb0f5099d53d6e084337a8246cc0c)
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15 
16 #include "qemu/osdep.h"
17 #include "qemu/log.h"
18 #include "qapi/error.h"
19 #include "system/memory.h"
20 #include "qapi/visitor.h"
21 #include "qemu/bitops.h"
22 #include "qemu/error-report.h"
23 #include "qemu/main-loop.h"
24 #include "qemu/qemu-print.h"
25 #include "qemu/target-info.h"
26 #include "qom/object.h"
27 #include "trace.h"
28 #include "system/ram_addr.h"
29 #include "system/kvm.h"
30 #include "system/runstate.h"
31 #include "system/tcg.h"
32 #include "qemu/accel.h"
33 #include "accel/accel-ops.h"
34 #include "hw/boards.h"
35 #include "migration/vmstate.h"
36 #include "system/address-spaces.h"
37 
38 #include "memory-internal.h"
39 
40 //#define DEBUG_UNASSIGNED
41 
42 static unsigned memory_region_transaction_depth;
43 static bool memory_region_update_pending;
44 static bool ioeventfd_update_pending;
45 unsigned int global_dirty_tracking;
46 
47 static QTAILQ_HEAD(, MemoryListener) memory_listeners
48     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
49 
50 static QTAILQ_HEAD(, AddressSpace) address_spaces
51     = QTAILQ_HEAD_INITIALIZER(address_spaces);
52 
53 static GHashTable *flat_views;
54 
55 typedef struct AddrRange AddrRange;
56 
57 /*
58  * Note that signed integers are needed for negative offsetting in aliases
59  * (large MemoryRegion::alias_offset).
60  */
61 struct AddrRange {
62     Int128 start;
63     Int128 size;
64 };
65 
66 static AddrRange addrrange_make(Int128 start, Int128 size)
67 {
68     return (AddrRange) { start, size };
69 }
70 
71 static bool addrrange_equal(AddrRange r1, AddrRange r2)
72 {
73     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
74 }
75 
76 static Int128 addrrange_end(AddrRange r)
77 {
78     return int128_add(r.start, r.size);
79 }
80 
81 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
82 {
83     int128_addto(&range.start, delta);
84     return range;
85 }
86 
87 static bool addrrange_contains(AddrRange range, Int128 addr)
88 {
89     return int128_ge(addr, range.start)
90         && int128_lt(addr, addrrange_end(range));
91 }
92 
93 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
94 {
95     return addrrange_contains(r1, r2.start)
96         || addrrange_contains(r2, r1.start);
97 }
98 
99 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
100 {
101     Int128 start = int128_max(r1.start, r2.start);
102     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
103     return addrrange_make(start, int128_sub(end, start));
104 }
105 
106 enum ListenerDirection { Forward, Reverse };
107 
108 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
109     do {                                                                \
110         MemoryListener *_listener;                                      \
111                                                                         \
112         switch (_direction) {                                           \
113         case Forward:                                                   \
114             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
115                 if (_listener->_callback) {                             \
116                     _listener->_callback(_listener, ##_args);           \
117                 }                                                       \
118             }                                                           \
119             break;                                                      \
120         case Reverse:                                                   \
121             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
122                 if (_listener->_callback) {                             \
123                     _listener->_callback(_listener, ##_args);           \
124                 }                                                       \
125             }                                                           \
126             break;                                                      \
127         default:                                                        \
128             abort();                                                    \
129         }                                                               \
130     } while (0)
131 
132 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
133     do {                                                                \
134         MemoryListener *_listener;                                      \
135                                                                         \
136         switch (_direction) {                                           \
137         case Forward:                                                   \
138             QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) {     \
139                 if (_listener->_callback) {                             \
140                     _listener->_callback(_listener, _section, ##_args); \
141                 }                                                       \
142             }                                                           \
143             break;                                                      \
144         case Reverse:                                                   \
145             QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
146                 if (_listener->_callback) {                             \
147                     _listener->_callback(_listener, _section, ##_args); \
148                 }                                                       \
149             }                                                           \
150             break;                                                      \
151         default:                                                        \
152             abort();                                                    \
153         }                                                               \
154     } while (0)
155 
156 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
157 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
158     do {                                                                \
159         MemoryRegionSection mrs = section_from_flat_range(fr,           \
160                 address_space_to_flatview(as));                         \
161         MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args);         \
162     } while(0)
163 
164 struct CoalescedMemoryRange {
165     AddrRange addr;
166     QTAILQ_ENTRY(CoalescedMemoryRange) link;
167 };
168 
169 struct MemoryRegionIoeventfd {
170     AddrRange addr;
171     bool match_data;
172     uint64_t data;
173     EventNotifier *e;
174 };
175 
176 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
177                                            MemoryRegionIoeventfd *b)
178 {
179     if (int128_lt(a->addr.start, b->addr.start)) {
180         return true;
181     } else if (int128_gt(a->addr.start, b->addr.start)) {
182         return false;
183     } else if (int128_lt(a->addr.size, b->addr.size)) {
184         return true;
185     } else if (int128_gt(a->addr.size, b->addr.size)) {
186         return false;
187     } else if (a->match_data < b->match_data) {
188         return true;
189     } else  if (a->match_data > b->match_data) {
190         return false;
191     } else if (a->match_data) {
192         if (a->data < b->data) {
193             return true;
194         } else if (a->data > b->data) {
195             return false;
196         }
197     }
198     if (a->e < b->e) {
199         return true;
200     } else if (a->e > b->e) {
201         return false;
202     }
203     return false;
204 }
205 
206 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
207                                           MemoryRegionIoeventfd *b)
208 {
209     if (int128_eq(a->addr.start, b->addr.start) &&
210         (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
211          (int128_eq(a->addr.size, b->addr.size) &&
212           (a->match_data == b->match_data) &&
213           ((a->match_data && (a->data == b->data)) || !a->match_data) &&
214           (a->e == b->e))))
215         return true;
216 
217     return false;
218 }
219 
220 /* Range of memory in the global map.  Addresses are absolute. */
221 struct FlatRange {
222     MemoryRegion *mr;
223     hwaddr offset_in_region;
224     AddrRange addr;
225     uint8_t dirty_log_mask;
226     bool romd_mode;
227     bool readonly;
228     bool nonvolatile;
229     bool unmergeable;
230 };
231 
232 #define FOR_EACH_FLAT_RANGE(var, view)          \
233     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
234 
235 static inline MemoryRegionSection
236 section_from_flat_range(FlatRange *fr, FlatView *fv)
237 {
238     return (MemoryRegionSection) {
239         .mr = fr->mr,
240         .fv = fv,
241         .offset_within_region = fr->offset_in_region,
242         .size = fr->addr.size,
243         .offset_within_address_space = int128_get64(fr->addr.start),
244         .readonly = fr->readonly,
245         .nonvolatile = fr->nonvolatile,
246         .unmergeable = fr->unmergeable,
247     };
248 }
249 
250 static bool flatrange_equal(FlatRange *a, FlatRange *b)
251 {
252     return a->mr == b->mr
253         && addrrange_equal(a->addr, b->addr)
254         && a->offset_in_region == b->offset_in_region
255         && a->romd_mode == b->romd_mode
256         && a->readonly == b->readonly
257         && a->nonvolatile == b->nonvolatile
258         && a->unmergeable == b->unmergeable;
259 }
260 
261 static FlatView *flatview_new(MemoryRegion *mr_root)
262 {
263     FlatView *view;
264 
265     view = g_new0(FlatView, 1);
266     view->ref = 1;
267     view->root = mr_root;
268     memory_region_ref(mr_root);
269     trace_flatview_new(view, mr_root);
270 
271     return view;
272 }
273 
274 /* Insert a range into a given position.  Caller is responsible for maintaining
275  * sorting order.
276  */
277 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
278 {
279     if (view->nr == view->nr_allocated) {
280         view->nr_allocated = MAX(2 * view->nr, 10);
281         view->ranges = g_realloc(view->ranges,
282                                     view->nr_allocated * sizeof(*view->ranges));
283     }
284     memmove(view->ranges + pos + 1, view->ranges + pos,
285             (view->nr - pos) * sizeof(FlatRange));
286     view->ranges[pos] = *range;
287     memory_region_ref(range->mr);
288     ++view->nr;
289 }
290 
291 static void flatview_destroy(FlatView *view)
292 {
293     int i;
294 
295     trace_flatview_destroy(view, view->root);
296     if (view->dispatch) {
297         address_space_dispatch_free(view->dispatch);
298     }
299     for (i = 0; i < view->nr; i++) {
300         memory_region_unref(view->ranges[i].mr);
301     }
302     g_free(view->ranges);
303     memory_region_unref(view->root);
304     g_free(view);
305 }
306 
307 static bool flatview_ref(FlatView *view)
308 {
309     return qatomic_fetch_inc_nonzero(&view->ref) > 0;
310 }
311 
312 void flatview_unref(FlatView *view)
313 {
314     if (qatomic_fetch_dec(&view->ref) == 1) {
315         trace_flatview_destroy_rcu(view, view->root);
316         assert(view->root);
317         call_rcu(view, flatview_destroy, rcu);
318     }
319 }
320 
321 static bool can_merge(FlatRange *r1, FlatRange *r2)
322 {
323     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
324         && r1->mr == r2->mr
325         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
326                                 r1->addr.size),
327                      int128_make64(r2->offset_in_region))
328         && r1->dirty_log_mask == r2->dirty_log_mask
329         && r1->romd_mode == r2->romd_mode
330         && r1->readonly == r2->readonly
331         && r1->nonvolatile == r2->nonvolatile
332         && !r1->unmergeable && !r2->unmergeable;
333 }
334 
335 /* Attempt to simplify a view by merging adjacent ranges */
336 static void flatview_simplify(FlatView *view)
337 {
338     unsigned i, j, k;
339 
340     i = 0;
341     while (i < view->nr) {
342         j = i + 1;
343         while (j < view->nr
344                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
345             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
346             ++j;
347         }
348         ++i;
349         for (k = i; k < j; k++) {
350             memory_region_unref(view->ranges[k].mr);
351         }
352         memmove(&view->ranges[i], &view->ranges[j],
353                 (view->nr - j) * sizeof(view->ranges[j]));
354         view->nr -= j - i;
355     }
356 }
357 
358 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
359 {
360     if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
361         switch (op & MO_SIZE) {
362         case MO_8:
363             break;
364         case MO_16:
365             *data = bswap16(*data);
366             break;
367         case MO_32:
368             *data = bswap32(*data);
369             break;
370         case MO_64:
371             *data = bswap64(*data);
372             break;
373         default:
374             g_assert_not_reached();
375         }
376     }
377 }
378 
379 static inline void memory_region_shift_read_access(uint64_t *value,
380                                                    signed shift,
381                                                    uint64_t mask,
382                                                    uint64_t tmp)
383 {
384     if (shift >= 0) {
385         *value |= (tmp & mask) << shift;
386     } else {
387         *value |= (tmp & mask) >> -shift;
388     }
389 }
390 
391 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
392                                                         signed shift,
393                                                         uint64_t mask)
394 {
395     uint64_t tmp;
396 
397     if (shift >= 0) {
398         tmp = (*value >> shift) & mask;
399     } else {
400         tmp = (*value << -shift) & mask;
401     }
402 
403     return tmp;
404 }
405 
406 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
407 {
408     MemoryRegion *root;
409     hwaddr abs_addr = offset;
410 
411     abs_addr += mr->addr;
412     for (root = mr; root->container; ) {
413         root = root->container;
414         abs_addr += root->addr;
415     }
416 
417     return abs_addr;
418 }
419 
420 static int get_cpu_index(void)
421 {
422     if (current_cpu) {
423         return current_cpu->cpu_index;
424     }
425     return -1;
426 }
427 
428 static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
429                                                 hwaddr addr,
430                                                 uint64_t *value,
431                                                 unsigned size,
432                                                 signed shift,
433                                                 uint64_t mask,
434                                                 MemTxAttrs attrs)
435 {
436     uint64_t tmp;
437 
438     tmp = mr->ops->read(mr->opaque, addr, size);
439     if (mr->subpage) {
440         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
441     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
442         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
443         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
444                                      memory_region_name(mr));
445     }
446     memory_region_shift_read_access(value, shift, mask, tmp);
447     return MEMTX_OK;
448 }
449 
450 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
451                                                           hwaddr addr,
452                                                           uint64_t *value,
453                                                           unsigned size,
454                                                           signed shift,
455                                                           uint64_t mask,
456                                                           MemTxAttrs attrs)
457 {
458     uint64_t tmp = 0;
459     MemTxResult r;
460 
461     r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
462     if (mr->subpage) {
463         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
464     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
465         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
466         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
467                                      memory_region_name(mr));
468     }
469     memory_region_shift_read_access(value, shift, mask, tmp);
470     return r;
471 }
472 
473 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
474                                                 hwaddr addr,
475                                                 uint64_t *value,
476                                                 unsigned size,
477                                                 signed shift,
478                                                 uint64_t mask,
479                                                 MemTxAttrs attrs)
480 {
481     uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
482 
483     if (mr->subpage) {
484         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
485     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
486         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
487         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
488                                       memory_region_name(mr));
489     }
490     mr->ops->write(mr->opaque, addr, tmp, size);
491     return MEMTX_OK;
492 }
493 
494 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
495                                                            hwaddr addr,
496                                                            uint64_t *value,
497                                                            unsigned size,
498                                                            signed shift,
499                                                            uint64_t mask,
500                                                            MemTxAttrs attrs)
501 {
502     uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
503 
504     if (mr->subpage) {
505         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
506     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
507         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
508         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
509                                       memory_region_name(mr));
510     }
511     return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
512 }
513 
514 static MemTxResult access_with_adjusted_size(hwaddr addr,
515                                       uint64_t *value,
516                                       unsigned size,
517                                       unsigned access_size_min,
518                                       unsigned access_size_max,
519                                       MemTxResult (*access_fn)
520                                                   (MemoryRegion *mr,
521                                                    hwaddr addr,
522                                                    uint64_t *value,
523                                                    unsigned size,
524                                                    signed shift,
525                                                    uint64_t mask,
526                                                    MemTxAttrs attrs),
527                                       MemoryRegion *mr,
528                                       MemTxAttrs attrs)
529 {
530     uint64_t access_mask;
531     unsigned access_size;
532     unsigned i;
533     MemTxResult r = MEMTX_OK;
534     bool reentrancy_guard_applied = false;
535 
536     if (!access_size_min) {
537         access_size_min = 1;
538     }
539     if (!access_size_max) {
540         access_size_max = 4;
541     }
542 
543     /* Do not allow more than one simultaneous access to a device's IO Regions */
544     if (mr->dev && !mr->disable_reentrancy_guard &&
545         !mr->ram_device && !mr->ram && !mr->rom_device && !mr->readonly) {
546         if (mr->dev->mem_reentrancy_guard.engaged_in_io) {
547             warn_report_once("Blocked re-entrant IO on MemoryRegion: "
548                              "%s at addr: 0x%" HWADDR_PRIX,
549                              memory_region_name(mr), addr);
550             return MEMTX_ACCESS_ERROR;
551         }
552         mr->dev->mem_reentrancy_guard.engaged_in_io = true;
553         reentrancy_guard_applied = true;
554     }
555 
556     /* FIXME: support unaligned access? */
557     access_size = MAX(MIN(size, access_size_max), access_size_min);
558     access_mask = MAKE_64BIT_MASK(0, access_size * 8);
559     if (devend_big_endian(mr->ops->endianness)) {
560         for (i = 0; i < size; i += access_size) {
561             r |= access_fn(mr, addr + i, value, access_size,
562                         (size - access_size - i) * 8, access_mask, attrs);
563         }
564     } else {
565         for (i = 0; i < size; i += access_size) {
566             r |= access_fn(mr, addr + i, value, access_size, i * 8,
567                         access_mask, attrs);
568         }
569     }
570     if (mr->dev && reentrancy_guard_applied) {
571         mr->dev->mem_reentrancy_guard.engaged_in_io = false;
572     }
573     return r;
574 }
575 
576 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
577 {
578     AddressSpace *as;
579 
580     while (mr->container) {
581         mr = mr->container;
582     }
583     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
584         if (mr == as->root) {
585             return as;
586         }
587     }
588     return NULL;
589 }
590 
591 /* Render a memory region into the global view.  Ranges in @view obscure
592  * ranges in @mr.
593  */
594 static void render_memory_region(FlatView *view,
595                                  MemoryRegion *mr,
596                                  Int128 base,
597                                  AddrRange clip,
598                                  bool readonly,
599                                  bool nonvolatile,
600                                  bool unmergeable)
601 {
602     MemoryRegion *subregion;
603     unsigned i;
604     hwaddr offset_in_region;
605     Int128 remain;
606     Int128 now;
607     FlatRange fr;
608     AddrRange tmp;
609 
610     if (!mr->enabled) {
611         return;
612     }
613 
614     int128_addto(&base, int128_make64(mr->addr));
615     readonly |= mr->readonly;
616     nonvolatile |= mr->nonvolatile;
617     unmergeable |= mr->unmergeable;
618 
619     tmp = addrrange_make(base, mr->size);
620 
621     if (!addrrange_intersects(tmp, clip)) {
622         return;
623     }
624 
625     clip = addrrange_intersection(tmp, clip);
626 
627     if (mr->alias) {
628         int128_subfrom(&base, int128_make64(mr->alias->addr));
629         int128_subfrom(&base, int128_make64(mr->alias_offset));
630         render_memory_region(view, mr->alias, base, clip,
631                              readonly, nonvolatile, unmergeable);
632         return;
633     }
634 
635     /* Render subregions in priority order. */
636     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
637         render_memory_region(view, subregion, base, clip,
638                              readonly, nonvolatile, unmergeable);
639     }
640 
641     if (!mr->terminates) {
642         return;
643     }
644 
645     offset_in_region = int128_get64(int128_sub(clip.start, base));
646     base = clip.start;
647     remain = clip.size;
648 
649     fr.mr = mr;
650     fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
651     fr.romd_mode = mr->romd_mode;
652     fr.readonly = readonly;
653     fr.nonvolatile = nonvolatile;
654     fr.unmergeable = unmergeable;
655 
656     /* Render the region itself into any gaps left by the current view. */
657     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
658         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
659             continue;
660         }
661         if (int128_lt(base, view->ranges[i].addr.start)) {
662             now = int128_min(remain,
663                              int128_sub(view->ranges[i].addr.start, base));
664             fr.offset_in_region = offset_in_region;
665             fr.addr = addrrange_make(base, now);
666             flatview_insert(view, i, &fr);
667             ++i;
668             int128_addto(&base, now);
669             offset_in_region += int128_get64(now);
670             int128_subfrom(&remain, now);
671         }
672         now = int128_sub(int128_min(int128_add(base, remain),
673                                     addrrange_end(view->ranges[i].addr)),
674                          base);
675         int128_addto(&base, now);
676         offset_in_region += int128_get64(now);
677         int128_subfrom(&remain, now);
678     }
679     if (int128_nz(remain)) {
680         fr.offset_in_region = offset_in_region;
681         fr.addr = addrrange_make(base, remain);
682         flatview_insert(view, i, &fr);
683     }
684 }
685 
686 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
687 {
688     FlatRange *fr;
689 
690     assert(fv);
691     assert(cb);
692 
693     FOR_EACH_FLAT_RANGE(fr, fv) {
694         if (cb(fr->addr.start, fr->addr.size, fr->mr,
695                fr->offset_in_region, opaque)) {
696             break;
697         }
698     }
699 }
700 
701 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
702 {
703     while (mr->enabled) {
704         if (mr->alias) {
705             if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
706                 /* The alias is included in its entirety.  Use it as
707                  * the "real" root, so that we can share more FlatViews.
708                  */
709                 mr = mr->alias;
710                 continue;
711             }
712         } else if (!mr->terminates) {
713             unsigned int found = 0;
714             MemoryRegion *child, *next = NULL;
715             QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
716                 if (child->enabled) {
717                     if (++found > 1) {
718                         next = NULL;
719                         break;
720                     }
721                     if (!child->addr && int128_ge(mr->size, child->size)) {
722                         /* A child is included in its entirety.  If it's the only
723                          * enabled one, use it in the hope of finding an alias down the
724                          * way. This will also let us share FlatViews.
725                          */
726                         next = child;
727                     }
728                 }
729             }
730             if (found == 0) {
731                 return NULL;
732             }
733             if (next) {
734                 mr = next;
735                 continue;
736             }
737         }
738 
739         return mr;
740     }
741 
742     return NULL;
743 }
744 
745 /* Render a memory topology into a list of disjoint absolute ranges. */
746 static FlatView *generate_memory_topology(MemoryRegion *mr)
747 {
748     int i;
749     FlatView *view;
750 
751     view = flatview_new(mr);
752 
753     if (mr) {
754         render_memory_region(view, mr, int128_zero(),
755                              addrrange_make(int128_zero(), int128_2_64()),
756                              false, false, false);
757     }
758     flatview_simplify(view);
759 
760     view->dispatch = address_space_dispatch_new(view);
761     for (i = 0; i < view->nr; i++) {
762         MemoryRegionSection mrs =
763             section_from_flat_range(&view->ranges[i], view);
764         flatview_add_to_dispatch(view, &mrs);
765     }
766     address_space_dispatch_compact(view->dispatch);
767     g_hash_table_replace(flat_views, mr, view);
768 
769     return view;
770 }
771 
772 static void address_space_add_del_ioeventfds(AddressSpace *as,
773                                              MemoryRegionIoeventfd *fds_new,
774                                              unsigned fds_new_nb,
775                                              MemoryRegionIoeventfd *fds_old,
776                                              unsigned fds_old_nb)
777 {
778     unsigned iold, inew;
779     MemoryRegionIoeventfd *fd;
780     MemoryRegionSection section;
781 
782     /* Generate a symmetric difference of the old and new fd sets, adding
783      * and deleting as necessary.
784      */
785 
786     iold = inew = 0;
787     while (iold < fds_old_nb || inew < fds_new_nb) {
788         if (iold < fds_old_nb
789             && (inew == fds_new_nb
790                 || memory_region_ioeventfd_before(&fds_old[iold],
791                                                   &fds_new[inew]))) {
792             fd = &fds_old[iold];
793             section = (MemoryRegionSection) {
794                 .fv = address_space_to_flatview(as),
795                 .offset_within_address_space = int128_get64(fd->addr.start),
796                 .size = fd->addr.size,
797             };
798             MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
799                                  fd->match_data, fd->data, fd->e);
800             ++iold;
801         } else if (inew < fds_new_nb
802                    && (iold == fds_old_nb
803                        || memory_region_ioeventfd_before(&fds_new[inew],
804                                                          &fds_old[iold]))) {
805             fd = &fds_new[inew];
806             section = (MemoryRegionSection) {
807                 .fv = address_space_to_flatview(as),
808                 .offset_within_address_space = int128_get64(fd->addr.start),
809                 .size = fd->addr.size,
810             };
811             MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
812                                  fd->match_data, fd->data, fd->e);
813             ++inew;
814         } else {
815             ++iold;
816             ++inew;
817         }
818     }
819 }
820 
821 FlatView *address_space_get_flatview(AddressSpace *as)
822 {
823     FlatView *view;
824 
825     RCU_READ_LOCK_GUARD();
826     do {
827         view = address_space_to_flatview(as);
828         /* If somebody has replaced as->current_map concurrently,
829          * flatview_ref returns false.
830          */
831     } while (!flatview_ref(view));
832     return view;
833 }
834 
835 static void address_space_update_ioeventfds(AddressSpace *as)
836 {
837     FlatView *view;
838     FlatRange *fr;
839     unsigned ioeventfd_nb = 0;
840     unsigned ioeventfd_max;
841     MemoryRegionIoeventfd *ioeventfds;
842     AddrRange tmp;
843     unsigned i;
844 
845     if (!as->ioeventfd_notifiers) {
846         return;
847     }
848 
849     /*
850      * It is likely that the number of ioeventfds hasn't changed much, so use
851      * the previous size as the starting value, with some headroom to avoid
852      * gratuitous reallocations.
853      */
854     ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
855     ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
856 
857     view = address_space_get_flatview(as);
858     FOR_EACH_FLAT_RANGE(fr, view) {
859         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
860             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
861                                   int128_sub(fr->addr.start,
862                                              int128_make64(fr->offset_in_region)));
863             if (addrrange_intersects(fr->addr, tmp)) {
864                 ++ioeventfd_nb;
865                 if (ioeventfd_nb > ioeventfd_max) {
866                     ioeventfd_max = MAX(ioeventfd_max * 2, 4);
867                     ioeventfds = g_realloc(ioeventfds,
868                             ioeventfd_max * sizeof(*ioeventfds));
869                 }
870                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
871                 ioeventfds[ioeventfd_nb-1].addr = tmp;
872             }
873         }
874     }
875 
876     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
877                                      as->ioeventfds, as->ioeventfd_nb);
878 
879     g_free(as->ioeventfds);
880     as->ioeventfds = ioeventfds;
881     as->ioeventfd_nb = ioeventfd_nb;
882     flatview_unref(view);
883 }
884 
885 /*
886  * Notify the memory listeners about the coalesced IO change events of
887  * range `cmr'.  Only the part that has intersection of the specified
888  * FlatRange will be sent.
889  */
890 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
891                                            CoalescedMemoryRange *cmr, bool add)
892 {
893     AddrRange tmp;
894 
895     tmp = addrrange_shift(cmr->addr,
896                           int128_sub(fr->addr.start,
897                                      int128_make64(fr->offset_in_region)));
898     if (!addrrange_intersects(tmp, fr->addr)) {
899         return;
900     }
901     tmp = addrrange_intersection(tmp, fr->addr);
902 
903     if (add) {
904         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
905                                       int128_get64(tmp.start),
906                                       int128_get64(tmp.size));
907     } else {
908         MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
909                                       int128_get64(tmp.start),
910                                       int128_get64(tmp.size));
911     }
912 }
913 
914 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
915 {
916     CoalescedMemoryRange *cmr;
917 
918     QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
919         flat_range_coalesced_io_notify(fr, as, cmr, false);
920     }
921 }
922 
923 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
924 {
925     MemoryRegion *mr = fr->mr;
926     CoalescedMemoryRange *cmr;
927 
928     if (QTAILQ_EMPTY(&mr->coalesced)) {
929         return;
930     }
931 
932     QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
933         flat_range_coalesced_io_notify(fr, as, cmr, true);
934     }
935 }
936 
937 static void
938 flat_range_coalesced_io_notify_listener_add_del(FlatRange *fr,
939                                                 MemoryRegionSection *mrs,
940                                                 MemoryListener *listener,
941                                                 AddressSpace *as, bool add)
942 {
943     CoalescedMemoryRange *cmr;
944     MemoryRegion *mr = fr->mr;
945     AddrRange tmp;
946 
947     QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
948         tmp = addrrange_shift(cmr->addr,
949                               int128_sub(fr->addr.start,
950                                          int128_make64(fr->offset_in_region)));
951 
952         if (!addrrange_intersects(tmp, fr->addr)) {
953             return;
954         }
955         tmp = addrrange_intersection(tmp, fr->addr);
956 
957         if (add && listener->coalesced_io_add) {
958             listener->coalesced_io_add(listener, mrs,
959                                        int128_get64(tmp.start),
960                                        int128_get64(tmp.size));
961         } else if (!add && listener->coalesced_io_del) {
962             listener->coalesced_io_del(listener, mrs,
963                                        int128_get64(tmp.start),
964                                        int128_get64(tmp.size));
965         }
966     }
967 }
968 
969 static void address_space_update_topology_pass(AddressSpace *as,
970                                                const FlatView *old_view,
971                                                const FlatView *new_view,
972                                                bool adding)
973 {
974     unsigned iold, inew;
975     FlatRange *frold, *frnew;
976 
977     /* Generate a symmetric difference of the old and new memory maps.
978      * Kill ranges in the old map, and instantiate ranges in the new map.
979      */
980     iold = inew = 0;
981     while (iold < old_view->nr || inew < new_view->nr) {
982         if (iold < old_view->nr) {
983             frold = &old_view->ranges[iold];
984         } else {
985             frold = NULL;
986         }
987         if (inew < new_view->nr) {
988             frnew = &new_view->ranges[inew];
989         } else {
990             frnew = NULL;
991         }
992 
993         if (frold
994             && (!frnew
995                 || int128_lt(frold->addr.start, frnew->addr.start)
996                 || (int128_eq(frold->addr.start, frnew->addr.start)
997                     && !flatrange_equal(frold, frnew)))) {
998             /* In old but not in new, or in both but attributes changed. */
999 
1000             if (!adding) {
1001                 flat_range_coalesced_io_del(frold, as);
1002                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
1003             }
1004 
1005             ++iold;
1006         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
1007             /* In both and unchanged (except logging may have changed) */
1008 
1009             if (adding) {
1010                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
1011                 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
1012                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
1013                                                   frold->dirty_log_mask,
1014                                                   frnew->dirty_log_mask);
1015                 }
1016                 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
1017                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
1018                                                   frold->dirty_log_mask,
1019                                                   frnew->dirty_log_mask);
1020                 }
1021             }
1022 
1023             ++iold;
1024             ++inew;
1025         } else {
1026             /* In new */
1027 
1028             if (adding) {
1029                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
1030                 flat_range_coalesced_io_add(frnew, as);
1031             }
1032 
1033             ++inew;
1034         }
1035     }
1036 }
1037 
1038 static void flatviews_init(void)
1039 {
1040     static FlatView *empty_view;
1041 
1042     if (flat_views) {
1043         return;
1044     }
1045 
1046     flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
1047                                        (GDestroyNotify) flatview_unref);
1048     if (!empty_view) {
1049         empty_view = generate_memory_topology(NULL);
1050         /* We keep it alive forever in the global variable.  */
1051         flatview_ref(empty_view);
1052     } else {
1053         g_hash_table_replace(flat_views, NULL, empty_view);
1054         flatview_ref(empty_view);
1055     }
1056 }
1057 
1058 static void flatviews_reset(void)
1059 {
1060     AddressSpace *as;
1061 
1062     if (flat_views) {
1063         g_hash_table_unref(flat_views);
1064         flat_views = NULL;
1065     }
1066     flatviews_init();
1067 
1068     /* Render unique FVs */
1069     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1070         MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1071 
1072         if (g_hash_table_lookup(flat_views, physmr)) {
1073             continue;
1074         }
1075 
1076         generate_memory_topology(physmr);
1077     }
1078 }
1079 
1080 static void address_space_set_flatview(AddressSpace *as)
1081 {
1082     FlatView *old_view = address_space_to_flatview(as);
1083     MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1084     FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1085 
1086     assert(new_view);
1087 
1088     if (old_view == new_view) {
1089         return;
1090     }
1091 
1092     if (old_view) {
1093         flatview_ref(old_view);
1094     }
1095 
1096     flatview_ref(new_view);
1097 
1098     if (!QTAILQ_EMPTY(&as->listeners)) {
1099         FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1100 
1101         if (!old_view2) {
1102             old_view2 = &tmpview;
1103         }
1104         address_space_update_topology_pass(as, old_view2, new_view, false);
1105         address_space_update_topology_pass(as, old_view2, new_view, true);
1106     }
1107 
1108     /* Writes are protected by the BQL.  */
1109     qatomic_rcu_set(&as->current_map, new_view);
1110     if (old_view) {
1111         flatview_unref(old_view);
1112     }
1113 
1114     /* Note that all the old MemoryRegions are still alive up to this
1115      * point.  This relieves most MemoryListeners from the need to
1116      * ref/unref the MemoryRegions they get---unless they use them
1117      * outside the iothread mutex, in which case precise reference
1118      * counting is necessary.
1119      */
1120     if (old_view) {
1121         flatview_unref(old_view);
1122     }
1123 }
1124 
1125 static void address_space_update_topology(AddressSpace *as)
1126 {
1127     MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1128 
1129     flatviews_init();
1130     if (!g_hash_table_lookup(flat_views, physmr)) {
1131         generate_memory_topology(physmr);
1132     }
1133     address_space_set_flatview(as);
1134 }
1135 
1136 void memory_region_transaction_begin(void)
1137 {
1138     qemu_flush_coalesced_mmio_buffer();
1139     ++memory_region_transaction_depth;
1140 }
1141 
1142 void memory_region_transaction_commit(void)
1143 {
1144     AddressSpace *as;
1145 
1146     assert(memory_region_transaction_depth);
1147     assert(bql_locked());
1148 
1149     --memory_region_transaction_depth;
1150     if (!memory_region_transaction_depth) {
1151         if (memory_region_update_pending) {
1152             flatviews_reset();
1153 
1154             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1155 
1156             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1157                 address_space_set_flatview(as);
1158                 address_space_update_ioeventfds(as);
1159             }
1160             memory_region_update_pending = false;
1161             ioeventfd_update_pending = false;
1162             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1163         } else if (ioeventfd_update_pending) {
1164             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1165                 address_space_update_ioeventfds(as);
1166             }
1167             ioeventfd_update_pending = false;
1168         }
1169    }
1170 }
1171 
1172 static void memory_region_destructor_none(MemoryRegion *mr)
1173 {
1174 }
1175 
1176 static void memory_region_destructor_ram(MemoryRegion *mr)
1177 {
1178     qemu_ram_free(mr->ram_block);
1179 }
1180 
1181 static bool memory_region_need_escape(char c)
1182 {
1183     return c == '/' || c == '[' || c == '\\' || c == ']';
1184 }
1185 
1186 static char *memory_region_escape_name(const char *name)
1187 {
1188     const char *p;
1189     char *escaped, *q;
1190     uint8_t c;
1191     size_t bytes = 0;
1192 
1193     for (p = name; *p; p++) {
1194         bytes += memory_region_need_escape(*p) ? 4 : 1;
1195     }
1196     if (bytes == p - name) {
1197        return g_memdup(name, bytes + 1);
1198     }
1199 
1200     escaped = g_malloc(bytes + 1);
1201     for (p = name, q = escaped; *p; p++) {
1202         c = *p;
1203         if (unlikely(memory_region_need_escape(c))) {
1204             *q++ = '\\';
1205             *q++ = 'x';
1206             *q++ = "0123456789abcdef"[c >> 4];
1207             c = "0123456789abcdef"[c & 15];
1208         }
1209         *q++ = c;
1210     }
1211     *q = 0;
1212     return escaped;
1213 }
1214 
1215 static void memory_region_do_init(MemoryRegion *mr,
1216                                   Object *owner,
1217                                   const char *name,
1218                                   uint64_t size)
1219 {
1220     mr->size = int128_make64(size);
1221     if (size == UINT64_MAX) {
1222         mr->size = int128_2_64();
1223     }
1224     mr->name = g_strdup(name);
1225     mr->owner = owner;
1226     mr->dev = (DeviceState *) object_dynamic_cast(mr->owner, TYPE_DEVICE);
1227     mr->ram_block = NULL;
1228 
1229     if (name) {
1230         char *escaped_name = memory_region_escape_name(name);
1231         char *name_array = g_strdup_printf("%s[*]", escaped_name);
1232 
1233         if (!owner) {
1234             owner = machine_get_container("unattached");
1235         }
1236 
1237         object_property_add_child(owner, name_array, OBJECT(mr));
1238         object_unref(OBJECT(mr));
1239         g_free(name_array);
1240         g_free(escaped_name);
1241     }
1242 }
1243 
1244 void memory_region_init(MemoryRegion *mr,
1245                         Object *owner,
1246                         const char *name,
1247                         uint64_t size)
1248 {
1249     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1250     memory_region_do_init(mr, owner, name, size);
1251 }
1252 
1253 static void memory_region_get_container(Object *obj, Visitor *v,
1254                                         const char *name, void *opaque,
1255                                         Error **errp)
1256 {
1257     MemoryRegion *mr = MEMORY_REGION(obj);
1258     char *path = (char *)"";
1259 
1260     if (mr->container) {
1261         path = object_get_canonical_path(OBJECT(mr->container));
1262     }
1263     visit_type_str(v, name, &path, errp);
1264     if (mr->container) {
1265         g_free(path);
1266     }
1267 }
1268 
1269 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1270                                                const char *part)
1271 {
1272     MemoryRegion *mr = MEMORY_REGION(obj);
1273 
1274     return OBJECT(mr->container);
1275 }
1276 
1277 static void memory_region_get_priority(Object *obj, Visitor *v,
1278                                        const char *name, void *opaque,
1279                                        Error **errp)
1280 {
1281     MemoryRegion *mr = MEMORY_REGION(obj);
1282     int32_t value = mr->priority;
1283 
1284     visit_type_int32(v, name, &value, errp);
1285 }
1286 
1287 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1288                                    void *opaque, Error **errp)
1289 {
1290     MemoryRegion *mr = MEMORY_REGION(obj);
1291     uint64_t value = memory_region_size(mr);
1292 
1293     visit_type_uint64(v, name, &value, errp);
1294 }
1295 
1296 static void memory_region_initfn(Object *obj)
1297 {
1298     MemoryRegion *mr = MEMORY_REGION(obj);
1299     ObjectProperty *op;
1300 
1301     mr->ops = &unassigned_mem_ops;
1302     mr->enabled = true;
1303     mr->romd_mode = true;
1304     mr->destructor = memory_region_destructor_none;
1305     QTAILQ_INIT(&mr->subregions);
1306     QTAILQ_INIT(&mr->coalesced);
1307 
1308     op = object_property_add(OBJECT(mr), "container",
1309                              "link<" TYPE_MEMORY_REGION ">",
1310                              memory_region_get_container,
1311                              NULL, /* memory_region_set_container */
1312                              NULL, NULL);
1313     op->resolve = memory_region_resolve_container;
1314 
1315     object_property_add_uint64_ptr(OBJECT(mr), "addr",
1316                                    &mr->addr, OBJ_PROP_FLAG_READ);
1317     object_property_add(OBJECT(mr), "priority", "uint32",
1318                         memory_region_get_priority,
1319                         NULL, /* memory_region_set_priority */
1320                         NULL, NULL);
1321     object_property_add(OBJECT(mr), "size", "uint64",
1322                         memory_region_get_size,
1323                         NULL, /* memory_region_set_size, */
1324                         NULL, NULL);
1325 }
1326 
1327 static void iommu_memory_region_initfn(Object *obj)
1328 {
1329     MemoryRegion *mr = MEMORY_REGION(obj);
1330 
1331     mr->is_iommu = true;
1332 }
1333 
1334 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1335                                     unsigned size)
1336 {
1337 #ifdef DEBUG_UNASSIGNED
1338     printf("Unassigned mem read " HWADDR_FMT_plx "\n", addr);
1339 #endif
1340     return 0;
1341 }
1342 
1343 static void unassigned_mem_write(void *opaque, hwaddr addr,
1344                                  uint64_t val, unsigned size)
1345 {
1346 #ifdef DEBUG_UNASSIGNED
1347     printf("Unassigned mem write " HWADDR_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1348 #endif
1349 }
1350 
1351 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1352                                    unsigned size, bool is_write,
1353                                    MemTxAttrs attrs)
1354 {
1355     return false;
1356 }
1357 
1358 const MemoryRegionOps unassigned_mem_ops = {
1359     .valid.accepts = unassigned_mem_accepts,
1360     .endianness = DEVICE_NATIVE_ENDIAN,
1361 };
1362 
1363 static uint64_t memory_region_ram_device_read(void *opaque,
1364                                               hwaddr addr, unsigned size)
1365 {
1366     MemoryRegion *mr = opaque;
1367     uint64_t data = ldn_he_p(mr->ram_block->host + addr, size);
1368 
1369     trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1370 
1371     return data;
1372 }
1373 
1374 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1375                                            uint64_t data, unsigned size)
1376 {
1377     MemoryRegion *mr = opaque;
1378 
1379     trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1380 
1381     stn_he_p(mr->ram_block->host + addr, size, data);
1382 }
1383 
1384 static const MemoryRegionOps ram_device_mem_ops = {
1385     .read = memory_region_ram_device_read,
1386     .write = memory_region_ram_device_write,
1387     .endianness = HOST_BIG_ENDIAN ? DEVICE_BIG_ENDIAN : DEVICE_LITTLE_ENDIAN,
1388     .valid = {
1389         .min_access_size = 1,
1390         .max_access_size = 8,
1391         .unaligned = true,
1392     },
1393     .impl = {
1394         .min_access_size = 1,
1395         .max_access_size = 8,
1396         .unaligned = true,
1397     },
1398 };
1399 
1400 bool memory_region_access_valid(MemoryRegion *mr,
1401                                 hwaddr addr,
1402                                 unsigned size,
1403                                 bool is_write,
1404                                 MemTxAttrs attrs)
1405 {
1406     if (mr->ops->valid.accepts
1407         && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
1408         qemu_log_mask(LOG_INVALID_MEM, "Invalid %s at addr 0x%" HWADDR_PRIX
1409                       ", size %u, region '%s', reason: rejected\n",
1410                       is_write ? "write" : "read",
1411                       addr, size, memory_region_name(mr));
1412         return false;
1413     }
1414 
1415     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1416         qemu_log_mask(LOG_INVALID_MEM, "Invalid %s at addr 0x%" HWADDR_PRIX
1417                       ", size %u, region '%s', reason: unaligned\n",
1418                       is_write ? "write" : "read",
1419                       addr, size, memory_region_name(mr));
1420         return false;
1421     }
1422 
1423     /* Treat zero as compatibility all valid */
1424     if (!mr->ops->valid.max_access_size) {
1425         return true;
1426     }
1427 
1428     if (size > mr->ops->valid.max_access_size
1429         || size < mr->ops->valid.min_access_size) {
1430         qemu_log_mask(LOG_INVALID_MEM, "Invalid %s at addr 0x%" HWADDR_PRIX
1431                       ", size %u, region '%s', reason: invalid size "
1432                       "(min:%u max:%u)\n",
1433                       is_write ? "write" : "read",
1434                       addr, size, memory_region_name(mr),
1435                       mr->ops->valid.min_access_size,
1436                       mr->ops->valid.max_access_size);
1437         return false;
1438     }
1439     return true;
1440 }
1441 
1442 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1443                                                 hwaddr addr,
1444                                                 uint64_t *pval,
1445                                                 unsigned size,
1446                                                 MemTxAttrs attrs)
1447 {
1448     *pval = 0;
1449 
1450     if (mr->ops->read) {
1451         return access_with_adjusted_size(addr, pval, size,
1452                                          mr->ops->impl.min_access_size,
1453                                          mr->ops->impl.max_access_size,
1454                                          memory_region_read_accessor,
1455                                          mr, attrs);
1456     } else {
1457         return access_with_adjusted_size(addr, pval, size,
1458                                          mr->ops->impl.min_access_size,
1459                                          mr->ops->impl.max_access_size,
1460                                          memory_region_read_with_attrs_accessor,
1461                                          mr, attrs);
1462     }
1463 }
1464 
1465 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1466                                         hwaddr addr,
1467                                         uint64_t *pval,
1468                                         MemOp op,
1469                                         MemTxAttrs attrs)
1470 {
1471     unsigned size = memop_size(op);
1472     MemTxResult r;
1473 
1474     if (mr->alias) {
1475         return memory_region_dispatch_read(mr->alias,
1476                                            mr->alias_offset + addr,
1477                                            pval, op, attrs);
1478     }
1479     if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1480         *pval = unassigned_mem_read(mr, addr, size);
1481         return MEMTX_DECODE_ERROR;
1482     }
1483 
1484     r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1485     adjust_endianness(mr, pval, op);
1486     return r;
1487 }
1488 
1489 /* Return true if an eventfd was signalled */
1490 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1491                                                     hwaddr addr,
1492                                                     uint64_t data,
1493                                                     unsigned size,
1494                                                     MemTxAttrs attrs)
1495 {
1496     MemoryRegionIoeventfd ioeventfd = {
1497         .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1498         .data = data,
1499     };
1500     unsigned i;
1501 
1502     for (i = 0; i < mr->ioeventfd_nb; i++) {
1503         ioeventfd.match_data = mr->ioeventfds[i].match_data;
1504         ioeventfd.e = mr->ioeventfds[i].e;
1505 
1506         if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1507             event_notifier_set(ioeventfd.e);
1508             return true;
1509         }
1510     }
1511 
1512     return false;
1513 }
1514 
1515 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1516                                          hwaddr addr,
1517                                          uint64_t data,
1518                                          MemOp op,
1519                                          MemTxAttrs attrs)
1520 {
1521     unsigned size = memop_size(op);
1522 
1523     if (mr->alias) {
1524         return memory_region_dispatch_write(mr->alias,
1525                                             mr->alias_offset + addr,
1526                                             data, op, attrs);
1527     }
1528     if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1529         unassigned_mem_write(mr, addr, data, size);
1530         return MEMTX_DECODE_ERROR;
1531     }
1532 
1533     adjust_endianness(mr, &data, op);
1534 
1535     /*
1536      * FIXME: it's not clear why under KVM the write would be processed
1537      * directly, instead of going through eventfd.  This probably should
1538      * test "tcg_enabled() || qtest_enabled()", or should just go away.
1539      */
1540     if (!kvm_enabled() &&
1541         memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1542         return MEMTX_OK;
1543     }
1544 
1545     if (mr->ops->write) {
1546         return access_with_adjusted_size(addr, &data, size,
1547                                          mr->ops->impl.min_access_size,
1548                                          mr->ops->impl.max_access_size,
1549                                          memory_region_write_accessor, mr,
1550                                          attrs);
1551     } else {
1552         return
1553             access_with_adjusted_size(addr, &data, size,
1554                                       mr->ops->impl.min_access_size,
1555                                       mr->ops->impl.max_access_size,
1556                                       memory_region_write_with_attrs_accessor,
1557                                       mr, attrs);
1558     }
1559 }
1560 
1561 void memory_region_init_io(MemoryRegion *mr,
1562                            Object *owner,
1563                            const MemoryRegionOps *ops,
1564                            void *opaque,
1565                            const char *name,
1566                            uint64_t size)
1567 {
1568     memory_region_init(mr, owner, name, size);
1569     mr->ops = ops ? ops : &unassigned_mem_ops;
1570     mr->opaque = opaque;
1571     mr->terminates = true;
1572 }
1573 
1574 bool memory_region_init_ram_nomigrate(MemoryRegion *mr,
1575                                       Object *owner,
1576                                       const char *name,
1577                                       uint64_t size,
1578                                       Error **errp)
1579 {
1580     return memory_region_init_ram_flags_nomigrate(mr, owner, name,
1581                                                   size, 0, errp);
1582 }
1583 
1584 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1585                                             Object *owner,
1586                                             const char *name,
1587                                             uint64_t size,
1588                                             uint32_t ram_flags,
1589                                             Error **errp)
1590 {
1591     Error *err = NULL;
1592     memory_region_init(mr, owner, name, size);
1593     mr->ram = true;
1594     mr->terminates = true;
1595     mr->destructor = memory_region_destructor_ram;
1596     mr->ram_block = qemu_ram_alloc(size, ram_flags, mr, &err);
1597     if (err) {
1598         mr->size = int128_zero();
1599         object_unparent(OBJECT(mr));
1600         error_propagate(errp, err);
1601         return false;
1602     }
1603     return true;
1604 }
1605 
1606 bool memory_region_init_resizeable_ram(MemoryRegion *mr,
1607                                        Object *owner,
1608                                        const char *name,
1609                                        uint64_t size,
1610                                        uint64_t max_size,
1611                                        void (*resized)(const char*,
1612                                                        uint64_t length,
1613                                                        void *host),
1614                                        Error **errp)
1615 {
1616     Error *err = NULL;
1617     memory_region_init(mr, owner, name, size);
1618     mr->ram = true;
1619     mr->terminates = true;
1620     mr->destructor = memory_region_destructor_ram;
1621     mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1622                                               mr, &err);
1623     if (err) {
1624         mr->size = int128_zero();
1625         object_unparent(OBJECT(mr));
1626         error_propagate(errp, err);
1627         return false;
1628     }
1629     return true;
1630 }
1631 
1632 #if defined(CONFIG_POSIX) && !defined(EMSCRIPTEN)
1633 bool memory_region_init_ram_from_file(MemoryRegion *mr,
1634                                       Object *owner,
1635                                       const char *name,
1636                                       uint64_t size,
1637                                       uint64_t align,
1638                                       uint32_t ram_flags,
1639                                       const char *path,
1640                                       ram_addr_t offset,
1641                                       Error **errp)
1642 {
1643     Error *err = NULL;
1644     memory_region_init(mr, owner, name, size);
1645     mr->ram = true;
1646     mr->readonly = !!(ram_flags & RAM_READONLY);
1647     mr->terminates = true;
1648     mr->destructor = memory_region_destructor_ram;
1649     mr->align = align;
1650     mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path,
1651                                              offset, &err);
1652     if (err) {
1653         mr->size = int128_zero();
1654         object_unparent(OBJECT(mr));
1655         error_propagate(errp, err);
1656         return false;
1657     }
1658     return true;
1659 }
1660 
1661 bool memory_region_init_ram_from_fd(MemoryRegion *mr,
1662                                     Object *owner,
1663                                     const char *name,
1664                                     uint64_t size,
1665                                     uint32_t ram_flags,
1666                                     int fd,
1667                                     ram_addr_t offset,
1668                                     Error **errp)
1669 {
1670     Error *err = NULL;
1671     memory_region_init(mr, owner, name, size);
1672     mr->ram = true;
1673     mr->readonly = !!(ram_flags & RAM_READONLY);
1674     mr->terminates = true;
1675     mr->destructor = memory_region_destructor_ram;
1676     mr->ram_block = qemu_ram_alloc_from_fd(size, size, NULL, mr, ram_flags, fd,
1677                                            offset, false, &err);
1678     if (err) {
1679         mr->size = int128_zero();
1680         object_unparent(OBJECT(mr));
1681         error_propagate(errp, err);
1682         return false;
1683     }
1684     return true;
1685 }
1686 #endif
1687 
1688 void memory_region_init_ram_ptr(MemoryRegion *mr,
1689                                 Object *owner,
1690                                 const char *name,
1691                                 uint64_t size,
1692                                 void *ptr)
1693 {
1694     memory_region_init(mr, owner, name, size);
1695     mr->ram = true;
1696     mr->terminates = true;
1697     mr->destructor = memory_region_destructor_ram;
1698 
1699     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1700     assert(ptr != NULL);
1701     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1702 }
1703 
1704 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1705                                        Object *owner,
1706                                        const char *name,
1707                                        uint64_t size,
1708                                        void *ptr)
1709 {
1710     memory_region_init(mr, owner, name, size);
1711     mr->ram = true;
1712     mr->terminates = true;
1713     mr->ram_device = true;
1714     mr->ops = &ram_device_mem_ops;
1715     mr->opaque = mr;
1716     mr->destructor = memory_region_destructor_ram;
1717 
1718     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1719     assert(ptr != NULL);
1720     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1721 }
1722 
1723 void memory_region_init_alias(MemoryRegion *mr,
1724                               Object *owner,
1725                               const char *name,
1726                               MemoryRegion *orig,
1727                               hwaddr offset,
1728                               uint64_t size)
1729 {
1730     memory_region_init(mr, owner, name, size);
1731     mr->alias = orig;
1732     mr->alias_offset = offset;
1733 }
1734 
1735 bool memory_region_init_rom_nomigrate(MemoryRegion *mr,
1736                                       Object *owner,
1737                                       const char *name,
1738                                       uint64_t size,
1739                                       Error **errp)
1740 {
1741     if (!memory_region_init_ram_flags_nomigrate(mr, owner, name,
1742                                                 size, 0, errp)) {
1743          return false;
1744     }
1745     mr->readonly = true;
1746 
1747     return true;
1748 }
1749 
1750 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1751                                              Object *owner,
1752                                              const MemoryRegionOps *ops,
1753                                              void *opaque,
1754                                              const char *name,
1755                                              uint64_t size,
1756                                              Error **errp)
1757 {
1758     Error *err = NULL;
1759     assert(ops);
1760     memory_region_init(mr, owner, name, size);
1761     mr->ops = ops;
1762     mr->opaque = opaque;
1763     mr->terminates = true;
1764     mr->rom_device = true;
1765     mr->destructor = memory_region_destructor_ram;
1766     mr->ram_block = qemu_ram_alloc(size, 0, mr, &err);
1767     if (err) {
1768         mr->size = int128_zero();
1769         object_unparent(OBJECT(mr));
1770         error_propagate(errp, err);
1771         return false;
1772     }
1773     return true;
1774 }
1775 
1776 void memory_region_init_iommu(void *_iommu_mr,
1777                               size_t instance_size,
1778                               const char *mrtypename,
1779                               Object *owner,
1780                               const char *name,
1781                               uint64_t size)
1782 {
1783     struct IOMMUMemoryRegion *iommu_mr;
1784     struct MemoryRegion *mr;
1785 
1786     object_initialize(_iommu_mr, instance_size, mrtypename);
1787     mr = MEMORY_REGION(_iommu_mr);
1788     memory_region_do_init(mr, owner, name, size);
1789     iommu_mr = IOMMU_MEMORY_REGION(mr);
1790     mr->terminates = true;  /* then re-forwards */
1791     QLIST_INIT(&iommu_mr->iommu_notify);
1792     iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1793 }
1794 
1795 static void memory_region_finalize(Object *obj)
1796 {
1797     MemoryRegion *mr = MEMORY_REGION(obj);
1798 
1799     assert(!mr->container);
1800 
1801     /* We know the region is not visible in any address space (it
1802      * does not have a container and cannot be a root either because
1803      * it has no references, so we can blindly clear mr->enabled.
1804      * memory_region_set_enabled instead could trigger a transaction
1805      * and cause an infinite loop.
1806      */
1807     mr->enabled = false;
1808     memory_region_transaction_begin();
1809     while (!QTAILQ_EMPTY(&mr->subregions)) {
1810         MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1811         memory_region_del_subregion(mr, subregion);
1812     }
1813     memory_region_transaction_commit();
1814 
1815     mr->destructor(mr);
1816     memory_region_clear_coalescing(mr);
1817     g_free((char *)mr->name);
1818     g_free(mr->ioeventfds);
1819 }
1820 
1821 Object *memory_region_owner(MemoryRegion *mr)
1822 {
1823     Object *obj = OBJECT(mr);
1824     return obj->parent;
1825 }
1826 
1827 void memory_region_ref(MemoryRegion *mr)
1828 {
1829     /* MMIO callbacks most likely will access data that belongs
1830      * to the owner, hence the need to ref/unref the owner whenever
1831      * the memory region is in use.
1832      *
1833      * The memory region is a child of its owner.  As long as the
1834      * owner doesn't call unparent itself on the memory region,
1835      * ref-ing the owner will also keep the memory region alive.
1836      * Memory regions without an owner are supposed to never go away;
1837      * we do not ref/unref them because it slows down DMA sensibly.
1838      */
1839     if (mr && mr->owner) {
1840         object_ref(mr->owner);
1841     }
1842 }
1843 
1844 void memory_region_unref(MemoryRegion *mr)
1845 {
1846     if (mr && mr->owner) {
1847         object_unref(mr->owner);
1848     }
1849 }
1850 
1851 uint64_t memory_region_size(MemoryRegion *mr)
1852 {
1853     if (int128_eq(mr->size, int128_2_64())) {
1854         return UINT64_MAX;
1855     }
1856     return int128_get64(mr->size);
1857 }
1858 
1859 const char *memory_region_name(const MemoryRegion *mr)
1860 {
1861     if (!mr->name) {
1862         ((MemoryRegion *)mr)->name =
1863             g_strdup(object_get_canonical_path_component(OBJECT(mr)));
1864     }
1865     return mr->name;
1866 }
1867 
1868 bool memory_region_is_ram_device(MemoryRegion *mr)
1869 {
1870     return mr->ram_device;
1871 }
1872 
1873 bool memory_region_is_protected(MemoryRegion *mr)
1874 {
1875     return mr->ram && (mr->ram_block->flags & RAM_PROTECTED);
1876 }
1877 
1878 bool memory_region_has_guest_memfd(MemoryRegion *mr)
1879 {
1880     return mr->ram_block && mr->ram_block->guest_memfd >= 0;
1881 }
1882 
1883 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1884 {
1885     uint8_t mask = mr->dirty_log_mask;
1886     RAMBlock *rb = mr->ram_block;
1887 
1888     if (global_dirty_tracking && ((rb && qemu_ram_is_migratable(rb)) ||
1889                              memory_region_is_iommu(mr))) {
1890         mask |= (1 << DIRTY_MEMORY_MIGRATION);
1891     }
1892 
1893     if (tcg_enabled() && rb) {
1894         /* TCG only cares about dirty memory logging for RAM, not IOMMU.  */
1895         mask |= (1 << DIRTY_MEMORY_CODE);
1896     }
1897     return mask;
1898 }
1899 
1900 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1901 {
1902     return memory_region_get_dirty_log_mask(mr) & (1 << client);
1903 }
1904 
1905 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1906                                                    Error **errp)
1907 {
1908     IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1909     IOMMUNotifier *iommu_notifier;
1910     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1911     int ret = 0;
1912 
1913     IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1914         flags |= iommu_notifier->notifier_flags;
1915     }
1916 
1917     if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1918         ret = imrc->notify_flag_changed(iommu_mr,
1919                                         iommu_mr->iommu_notify_flags,
1920                                         flags, errp);
1921     }
1922 
1923     if (!ret) {
1924         iommu_mr->iommu_notify_flags = flags;
1925     }
1926     return ret;
1927 }
1928 
1929 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1930                                           IOMMUNotifier *n, Error **errp)
1931 {
1932     IOMMUMemoryRegion *iommu_mr;
1933     int ret;
1934 
1935     if (mr->alias) {
1936         return memory_region_register_iommu_notifier(mr->alias, n, errp);
1937     }
1938 
1939     /* We need to register for at least one bitfield */
1940     iommu_mr = IOMMU_MEMORY_REGION(mr);
1941     assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1942     assert(n->start <= n->end);
1943     assert(n->iommu_idx >= 0 &&
1944            n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1945 
1946     QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1947     ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1948     if (ret) {
1949         QLIST_REMOVE(n, node);
1950     }
1951     return ret;
1952 }
1953 
1954 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1955 {
1956     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1957 
1958     if (imrc->get_min_page_size) {
1959         return imrc->get_min_page_size(iommu_mr);
1960     }
1961     return TARGET_PAGE_SIZE;
1962 }
1963 
1964 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1965 {
1966     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1967     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1968     hwaddr addr, granularity;
1969     IOMMUTLBEntry iotlb;
1970 
1971     /* If the IOMMU has its own replay callback, override */
1972     if (imrc->replay) {
1973         imrc->replay(iommu_mr, n);
1974         return;
1975     }
1976 
1977     granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1978 
1979     for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1980         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1981         if (iotlb.perm != IOMMU_NONE) {
1982             n->notify(n, &iotlb);
1983         }
1984 
1985         /* if (2^64 - MR size) < granularity, it's possible to get an
1986          * infinite loop here.  This should catch such a wraparound */
1987         if ((addr + granularity) < addr) {
1988             break;
1989         }
1990     }
1991 }
1992 
1993 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1994                                              IOMMUNotifier *n)
1995 {
1996     IOMMUMemoryRegion *iommu_mr;
1997 
1998     if (mr->alias) {
1999         memory_region_unregister_iommu_notifier(mr->alias, n);
2000         return;
2001     }
2002     QLIST_REMOVE(n, node);
2003     iommu_mr = IOMMU_MEMORY_REGION(mr);
2004     memory_region_update_iommu_notify_flags(iommu_mr, NULL);
2005 }
2006 
2007 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
2008                                     const IOMMUTLBEvent *event)
2009 {
2010     const IOMMUTLBEntry *entry = &event->entry;
2011     hwaddr entry_end = entry->iova + entry->addr_mask;
2012     IOMMUTLBEntry tmp = *entry;
2013 
2014     if (event->type == IOMMU_NOTIFIER_UNMAP) {
2015         assert(entry->perm == IOMMU_NONE);
2016     }
2017 
2018     /*
2019      * Skip the notification if the notification does not overlap
2020      * with registered range.
2021      */
2022     if (notifier->start > entry_end || notifier->end < entry->iova) {
2023         return;
2024     }
2025 
2026     if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
2027         /* Crop (iova, addr_mask) to range */
2028         tmp.iova = MAX(tmp.iova, notifier->start);
2029         tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
2030     } else {
2031         assert(entry->iova >= notifier->start && entry_end <= notifier->end);
2032     }
2033 
2034     if (event->type & notifier->notifier_flags) {
2035         notifier->notify(notifier, &tmp);
2036     }
2037 }
2038 
2039 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier)
2040 {
2041     IOMMUTLBEvent event;
2042 
2043     event.type = IOMMU_NOTIFIER_UNMAP;
2044     event.entry.target_as = &address_space_memory;
2045     event.entry.iova = notifier->start;
2046     event.entry.perm = IOMMU_NONE;
2047     event.entry.addr_mask = notifier->end - notifier->start;
2048 
2049     memory_region_notify_iommu_one(notifier, &event);
2050 }
2051 
2052 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
2053                                 int iommu_idx,
2054                                 const IOMMUTLBEvent event)
2055 {
2056     IOMMUNotifier *iommu_notifier;
2057 
2058     assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
2059 
2060     IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
2061         if (iommu_notifier->iommu_idx == iommu_idx) {
2062             memory_region_notify_iommu_one(iommu_notifier, &event);
2063         }
2064     }
2065 }
2066 
2067 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
2068                                  enum IOMMUMemoryRegionAttr attr,
2069                                  void *data)
2070 {
2071     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2072 
2073     if (!imrc->get_attr) {
2074         return -EINVAL;
2075     }
2076 
2077     return imrc->get_attr(iommu_mr, attr, data);
2078 }
2079 
2080 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
2081                                        MemTxAttrs attrs)
2082 {
2083     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2084 
2085     if (!imrc->attrs_to_index) {
2086         return 0;
2087     }
2088 
2089     return imrc->attrs_to_index(iommu_mr, attrs);
2090 }
2091 
2092 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2093 {
2094     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2095 
2096     if (!imrc->num_indexes) {
2097         return 1;
2098     }
2099 
2100     return imrc->num_indexes(iommu_mr);
2101 }
2102 
2103 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr)
2104 {
2105     if (!memory_region_is_ram(mr)) {
2106         return NULL;
2107     }
2108     return mr->rdm;
2109 }
2110 
2111 int memory_region_set_ram_discard_manager(MemoryRegion *mr,
2112                                           RamDiscardManager *rdm)
2113 {
2114     g_assert(memory_region_is_ram(mr));
2115     if (mr->rdm && rdm) {
2116         return -EBUSY;
2117     }
2118 
2119     mr->rdm = rdm;
2120     return 0;
2121 }
2122 
2123 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
2124                                                  const MemoryRegion *mr)
2125 {
2126     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2127 
2128     g_assert(rdmc->get_min_granularity);
2129     return rdmc->get_min_granularity(rdm, mr);
2130 }
2131 
2132 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
2133                                       const MemoryRegionSection *section)
2134 {
2135     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2136 
2137     g_assert(rdmc->is_populated);
2138     return rdmc->is_populated(rdm, section);
2139 }
2140 
2141 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
2142                                          MemoryRegionSection *section,
2143                                          ReplayRamDiscardState replay_fn,
2144                                          void *opaque)
2145 {
2146     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2147 
2148     g_assert(rdmc->replay_populated);
2149     return rdmc->replay_populated(rdm, section, replay_fn, opaque);
2150 }
2151 
2152 int ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
2153                                          MemoryRegionSection *section,
2154                                          ReplayRamDiscardState replay_fn,
2155                                          void *opaque)
2156 {
2157     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2158 
2159     g_assert(rdmc->replay_discarded);
2160     return rdmc->replay_discarded(rdm, section, replay_fn, opaque);
2161 }
2162 
2163 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
2164                                            RamDiscardListener *rdl,
2165                                            MemoryRegionSection *section)
2166 {
2167     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2168 
2169     g_assert(rdmc->register_listener);
2170     rdmc->register_listener(rdm, rdl, section);
2171 }
2172 
2173 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
2174                                              RamDiscardListener *rdl)
2175 {
2176     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2177 
2178     g_assert(rdmc->unregister_listener);
2179     rdmc->unregister_listener(rdm, rdl);
2180 }
2181 
2182 /* Called with rcu_read_lock held.  */
2183 MemoryRegion *memory_translate_iotlb(IOMMUTLBEntry *iotlb, hwaddr *xlat_p,
2184                                      Error **errp)
2185 {
2186     MemoryRegion *mr;
2187     hwaddr xlat;
2188     hwaddr len = iotlb->addr_mask + 1;
2189     bool writable = iotlb->perm & IOMMU_WO;
2190 
2191     /*
2192      * The IOMMU TLB entry we have just covers translation through
2193      * this IOMMU to its immediate target.  We need to translate
2194      * it the rest of the way through to memory.
2195      */
2196     mr = address_space_translate(&address_space_memory, iotlb->translated_addr,
2197                                  &xlat, &len, writable, MEMTXATTRS_UNSPECIFIED);
2198     if (!memory_region_is_ram(mr)) {
2199         error_setg(errp, "iommu map to non memory area %" HWADDR_PRIx "", xlat);
2200         return NULL;
2201     } else if (memory_region_has_ram_discard_manager(mr)) {
2202         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(mr);
2203         MemoryRegionSection tmp = {
2204             .mr = mr,
2205             .offset_within_region = xlat,
2206             .size = int128_make64(len),
2207         };
2208         /*
2209          * Malicious VMs can map memory into the IOMMU, which is expected
2210          * to remain discarded. vfio will pin all pages, populating memory.
2211          * Disallow that. vmstate priorities make sure any RamDiscardManager
2212          * were already restored before IOMMUs are restored.
2213          */
2214         if (!ram_discard_manager_is_populated(rdm, &tmp)) {
2215             error_setg(errp, "iommu map to discarded memory (e.g., unplugged"
2216                          " via virtio-mem): %" HWADDR_PRIx "",
2217                          iotlb->translated_addr);
2218             return NULL;
2219         }
2220     }
2221 
2222     /*
2223      * Translation truncates length to the IOMMU page size,
2224      * check that it did not truncate too much.
2225      */
2226     if (len & iotlb->addr_mask) {
2227         error_setg(errp, "iommu has granularity incompatible with target AS");
2228         return NULL;
2229     }
2230 
2231     *xlat_p = xlat;
2232     return mr;
2233 }
2234 
2235 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2236 {
2237     uint8_t mask = 1 << client;
2238     uint8_t old_logging;
2239 
2240     assert(client == DIRTY_MEMORY_VGA);
2241     old_logging = mr->vga_logging_count;
2242     mr->vga_logging_count += log ? 1 : -1;
2243     if (!!old_logging == !!mr->vga_logging_count) {
2244         return;
2245     }
2246 
2247     memory_region_transaction_begin();
2248     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2249     memory_region_update_pending |= mr->enabled;
2250     memory_region_transaction_commit();
2251 }
2252 
2253 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2254                              hwaddr size)
2255 {
2256     assert(mr->ram_block);
2257     cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2258                                         size,
2259                                         memory_region_get_dirty_log_mask(mr));
2260 }
2261 
2262 /*
2263  * If memory region `mr' is NULL, do global sync.  Otherwise, sync
2264  * dirty bitmap for the specified memory region.
2265  */
2266 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr, bool last_stage)
2267 {
2268     MemoryListener *listener;
2269     AddressSpace *as;
2270     FlatView *view;
2271     FlatRange *fr;
2272 
2273     /* If the same address space has multiple log_sync listeners, we
2274      * visit that address space's FlatView multiple times.  But because
2275      * log_sync listeners are rare, it's still cheaper than walking each
2276      * address space once.
2277      */
2278     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2279         if (listener->log_sync) {
2280             as = listener->address_space;
2281             view = address_space_get_flatview(as);
2282             FOR_EACH_FLAT_RANGE(fr, view) {
2283                 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2284                     MemoryRegionSection mrs = section_from_flat_range(fr, view);
2285                     listener->log_sync(listener, &mrs);
2286                 }
2287             }
2288             flatview_unref(view);
2289             trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 0);
2290         } else if (listener->log_sync_global) {
2291             /*
2292              * No matter whether MR is specified, what we can do here
2293              * is to do a global sync, because we are not capable to
2294              * sync in a finer granularity.
2295              */
2296             listener->log_sync_global(listener, last_stage);
2297             trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 1);
2298         }
2299     }
2300 }
2301 
2302 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2303                                       hwaddr len)
2304 {
2305     MemoryRegionSection mrs;
2306     MemoryListener *listener;
2307     AddressSpace *as;
2308     FlatView *view;
2309     FlatRange *fr;
2310     hwaddr sec_start, sec_end, sec_size;
2311 
2312     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2313         if (!listener->log_clear) {
2314             continue;
2315         }
2316         as = listener->address_space;
2317         view = address_space_get_flatview(as);
2318         FOR_EACH_FLAT_RANGE(fr, view) {
2319             if (!fr->dirty_log_mask || fr->mr != mr) {
2320                 /*
2321                  * Clear dirty bitmap operation only applies to those
2322                  * regions whose dirty logging is at least enabled
2323                  */
2324                 continue;
2325             }
2326 
2327             mrs = section_from_flat_range(fr, view);
2328 
2329             sec_start = MAX(mrs.offset_within_region, start);
2330             sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2331             sec_end = MIN(sec_end, start + len);
2332 
2333             if (sec_start >= sec_end) {
2334                 /*
2335                  * If this memory region section has no intersection
2336                  * with the requested range, skip.
2337                  */
2338                 continue;
2339             }
2340 
2341             /* Valid case; shrink the section if needed */
2342             mrs.offset_within_address_space +=
2343                 sec_start - mrs.offset_within_region;
2344             mrs.offset_within_region = sec_start;
2345             sec_size = sec_end - sec_start;
2346             mrs.size = int128_make64(sec_size);
2347             listener->log_clear(listener, &mrs);
2348         }
2349         flatview_unref(view);
2350     }
2351 }
2352 
2353 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2354                                                             hwaddr addr,
2355                                                             hwaddr size,
2356                                                             unsigned client)
2357 {
2358     DirtyBitmapSnapshot *snapshot;
2359     assert(mr->ram_block);
2360     memory_region_sync_dirty_bitmap(mr, false);
2361     snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2362     memory_global_after_dirty_log_sync();
2363     return snapshot;
2364 }
2365 
2366 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2367                                       hwaddr addr, hwaddr size)
2368 {
2369     assert(mr->ram_block);
2370     return cpu_physical_memory_snapshot_get_dirty(snap,
2371                 memory_region_get_ram_addr(mr) + addr, size);
2372 }
2373 
2374 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2375 {
2376     if (mr->readonly != readonly) {
2377         memory_region_transaction_begin();
2378         mr->readonly = readonly;
2379         memory_region_update_pending |= mr->enabled;
2380         memory_region_transaction_commit();
2381     }
2382 }
2383 
2384 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2385 {
2386     if (mr->nonvolatile != nonvolatile) {
2387         memory_region_transaction_begin();
2388         mr->nonvolatile = nonvolatile;
2389         memory_region_update_pending |= mr->enabled;
2390         memory_region_transaction_commit();
2391     }
2392 }
2393 
2394 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2395 {
2396     if (mr->romd_mode != romd_mode) {
2397         memory_region_transaction_begin();
2398         mr->romd_mode = romd_mode;
2399         memory_region_update_pending |= mr->enabled;
2400         memory_region_transaction_commit();
2401     }
2402 }
2403 
2404 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2405                                hwaddr size, unsigned client)
2406 {
2407     assert(mr->ram_block);
2408     cpu_physical_memory_test_and_clear_dirty(
2409         memory_region_get_ram_addr(mr) + addr, size, client);
2410 }
2411 
2412 int memory_region_get_fd(MemoryRegion *mr)
2413 {
2414     RCU_READ_LOCK_GUARD();
2415     while (mr->alias) {
2416         mr = mr->alias;
2417     }
2418     return mr->ram_block->fd;
2419 }
2420 
2421 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2422 {
2423     uint64_t offset = 0;
2424 
2425     RCU_READ_LOCK_GUARD();
2426     while (mr->alias) {
2427         offset += mr->alias_offset;
2428         mr = mr->alias;
2429     }
2430     assert(mr->ram_block);
2431     return qemu_map_ram_ptr(mr->ram_block, offset);
2432 }
2433 
2434 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2435 {
2436     RAMBlock *block;
2437 
2438     block = qemu_ram_block_from_host(ptr, false, offset);
2439     if (!block) {
2440         return NULL;
2441     }
2442 
2443     return block->mr;
2444 }
2445 
2446 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2447 {
2448     return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2449 }
2450 
2451 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2452 {
2453     assert(mr->ram_block);
2454 
2455     qemu_ram_resize(mr->ram_block, newsize, errp);
2456 }
2457 
2458 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
2459 {
2460     if (mr->ram_block) {
2461         qemu_ram_msync(mr->ram_block, addr, size);
2462     }
2463 }
2464 
2465 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2466 {
2467     /*
2468      * Might be extended case needed to cover
2469      * different types of memory regions
2470      */
2471     if (mr->dirty_log_mask) {
2472         memory_region_msync(mr, addr, size);
2473     }
2474 }
2475 
2476 /*
2477  * Call proper memory listeners about the change on the newly
2478  * added/removed CoalescedMemoryRange.
2479  */
2480 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2481                                                  CoalescedMemoryRange *cmr,
2482                                                  bool add)
2483 {
2484     AddressSpace *as;
2485     FlatView *view;
2486     FlatRange *fr;
2487 
2488     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2489         view = address_space_get_flatview(as);
2490         FOR_EACH_FLAT_RANGE(fr, view) {
2491             if (fr->mr == mr) {
2492                 flat_range_coalesced_io_notify(fr, as, cmr, add);
2493             }
2494         }
2495         flatview_unref(view);
2496     }
2497 }
2498 
2499 void memory_region_set_coalescing(MemoryRegion *mr)
2500 {
2501     memory_region_clear_coalescing(mr);
2502     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2503 }
2504 
2505 void memory_region_add_coalescing(MemoryRegion *mr,
2506                                   hwaddr offset,
2507                                   uint64_t size)
2508 {
2509     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2510 
2511     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2512     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2513     memory_region_update_coalesced_range(mr, cmr, true);
2514     memory_region_set_flush_coalesced(mr);
2515 }
2516 
2517 void memory_region_clear_coalescing(MemoryRegion *mr)
2518 {
2519     CoalescedMemoryRange *cmr;
2520 
2521     if (QTAILQ_EMPTY(&mr->coalesced)) {
2522         return;
2523     }
2524 
2525     qemu_flush_coalesced_mmio_buffer();
2526     mr->flush_coalesced_mmio = false;
2527 
2528     while (!QTAILQ_EMPTY(&mr->coalesced)) {
2529         cmr = QTAILQ_FIRST(&mr->coalesced);
2530         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2531         memory_region_update_coalesced_range(mr, cmr, false);
2532         g_free(cmr);
2533     }
2534 }
2535 
2536 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2537 {
2538     mr->flush_coalesced_mmio = true;
2539 }
2540 
2541 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2542 {
2543     qemu_flush_coalesced_mmio_buffer();
2544     if (QTAILQ_EMPTY(&mr->coalesced)) {
2545         mr->flush_coalesced_mmio = false;
2546     }
2547 }
2548 
2549 void memory_region_add_eventfd(MemoryRegion *mr,
2550                                hwaddr addr,
2551                                unsigned size,
2552                                bool match_data,
2553                                uint64_t data,
2554                                EventNotifier *e)
2555 {
2556     MemoryRegionIoeventfd mrfd = {
2557         .addr.start = int128_make64(addr),
2558         .addr.size = int128_make64(size),
2559         .match_data = match_data,
2560         .data = data,
2561         .e = e,
2562     };
2563     unsigned i;
2564 
2565     if (size) {
2566         MemOp mop = (target_big_endian() ? MO_BE : MO_LE) | size_memop(size);
2567         adjust_endianness(mr, &mrfd.data, mop);
2568     }
2569     memory_region_transaction_begin();
2570     for (i = 0; i < mr->ioeventfd_nb; ++i) {
2571         if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2572             break;
2573         }
2574     }
2575     ++mr->ioeventfd_nb;
2576     mr->ioeventfds = g_realloc(mr->ioeventfds,
2577                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2578     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2579             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2580     mr->ioeventfds[i] = mrfd;
2581     ioeventfd_update_pending |= mr->enabled;
2582     memory_region_transaction_commit();
2583 }
2584 
2585 void memory_region_del_eventfd(MemoryRegion *mr,
2586                                hwaddr addr,
2587                                unsigned size,
2588                                bool match_data,
2589                                uint64_t data,
2590                                EventNotifier *e)
2591 {
2592     MemoryRegionIoeventfd mrfd = {
2593         .addr.start = int128_make64(addr),
2594         .addr.size = int128_make64(size),
2595         .match_data = match_data,
2596         .data = data,
2597         .e = e,
2598     };
2599     unsigned i;
2600 
2601     if (size) {
2602         MemOp mop = (target_big_endian() ? MO_BE : MO_LE) | size_memop(size);
2603         adjust_endianness(mr, &mrfd.data, mop);
2604     }
2605     memory_region_transaction_begin();
2606     for (i = 0; i < mr->ioeventfd_nb; ++i) {
2607         if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2608             break;
2609         }
2610     }
2611     assert(i != mr->ioeventfd_nb);
2612     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2613             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2614     --mr->ioeventfd_nb;
2615     mr->ioeventfds = g_realloc(mr->ioeventfds,
2616                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2617     ioeventfd_update_pending |= mr->enabled;
2618     memory_region_transaction_commit();
2619 }
2620 
2621 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2622 {
2623     MemoryRegion *mr = subregion->container;
2624     MemoryRegion *other;
2625 
2626     memory_region_transaction_begin();
2627 
2628     memory_region_ref(subregion);
2629     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2630         if (subregion->priority >= other->priority) {
2631             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2632             goto done;
2633         }
2634     }
2635     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2636 done:
2637     memory_region_update_pending |= mr->enabled && subregion->enabled;
2638     memory_region_transaction_commit();
2639 }
2640 
2641 static void memory_region_add_subregion_common(MemoryRegion *mr,
2642                                                hwaddr offset,
2643                                                MemoryRegion *subregion)
2644 {
2645     MemoryRegion *alias;
2646 
2647     assert(!subregion->container);
2648     subregion->container = mr;
2649     for (alias = subregion->alias; alias; alias = alias->alias) {
2650         alias->mapped_via_alias++;
2651     }
2652     subregion->addr = offset;
2653     memory_region_update_container_subregions(subregion);
2654 }
2655 
2656 void memory_region_add_subregion(MemoryRegion *mr,
2657                                  hwaddr offset,
2658                                  MemoryRegion *subregion)
2659 {
2660     subregion->priority = 0;
2661     memory_region_add_subregion_common(mr, offset, subregion);
2662 }
2663 
2664 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2665                                          hwaddr offset,
2666                                          MemoryRegion *subregion,
2667                                          int priority)
2668 {
2669     subregion->priority = priority;
2670     memory_region_add_subregion_common(mr, offset, subregion);
2671 }
2672 
2673 void memory_region_del_subregion(MemoryRegion *mr,
2674                                  MemoryRegion *subregion)
2675 {
2676     MemoryRegion *alias;
2677 
2678     memory_region_transaction_begin();
2679     assert(subregion->container == mr);
2680     subregion->container = NULL;
2681     for (alias = subregion->alias; alias; alias = alias->alias) {
2682         alias->mapped_via_alias--;
2683         assert(alias->mapped_via_alias >= 0);
2684     }
2685     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2686     memory_region_unref(subregion);
2687     memory_region_update_pending |= mr->enabled && subregion->enabled;
2688     memory_region_transaction_commit();
2689 }
2690 
2691 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2692 {
2693     if (enabled == mr->enabled) {
2694         return;
2695     }
2696     memory_region_transaction_begin();
2697     mr->enabled = enabled;
2698     memory_region_update_pending = true;
2699     memory_region_transaction_commit();
2700 }
2701 
2702 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2703 {
2704     Int128 s = int128_make64(size);
2705 
2706     if (size == UINT64_MAX) {
2707         s = int128_2_64();
2708     }
2709     if (int128_eq(s, mr->size)) {
2710         return;
2711     }
2712     memory_region_transaction_begin();
2713     mr->size = s;
2714     memory_region_update_pending = true;
2715     memory_region_transaction_commit();
2716 }
2717 
2718 static void memory_region_readd_subregion(MemoryRegion *mr)
2719 {
2720     MemoryRegion *container = mr->container;
2721 
2722     if (container) {
2723         memory_region_transaction_begin();
2724         memory_region_ref(mr);
2725         memory_region_del_subregion(container, mr);
2726         memory_region_add_subregion_common(container, mr->addr, mr);
2727         memory_region_unref(mr);
2728         memory_region_transaction_commit();
2729     }
2730 }
2731 
2732 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2733 {
2734     if (addr != mr->addr) {
2735         mr->addr = addr;
2736         memory_region_readd_subregion(mr);
2737     }
2738 }
2739 
2740 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2741 {
2742     assert(mr->alias);
2743 
2744     if (offset == mr->alias_offset) {
2745         return;
2746     }
2747 
2748     memory_region_transaction_begin();
2749     mr->alias_offset = offset;
2750     memory_region_update_pending |= mr->enabled;
2751     memory_region_transaction_commit();
2752 }
2753 
2754 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable)
2755 {
2756     if (unmergeable == mr->unmergeable) {
2757         return;
2758     }
2759 
2760     memory_region_transaction_begin();
2761     mr->unmergeable = unmergeable;
2762     memory_region_update_pending |= mr->enabled;
2763     memory_region_transaction_commit();
2764 }
2765 
2766 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2767 {
2768     return mr->align;
2769 }
2770 
2771 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2772 {
2773     const AddrRange *addr = addr_;
2774     const FlatRange *fr = fr_;
2775 
2776     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2777         return -1;
2778     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2779         return 1;
2780     }
2781     return 0;
2782 }
2783 
2784 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2785 {
2786     return bsearch(&addr, view->ranges, view->nr,
2787                    sizeof(FlatRange), cmp_flatrange_addr);
2788 }
2789 
2790 bool memory_region_is_mapped(MemoryRegion *mr)
2791 {
2792     return !!mr->container || mr->mapped_via_alias;
2793 }
2794 
2795 /* Same as memory_region_find, but it does not add a reference to the
2796  * returned region.  It must be called from an RCU critical section.
2797  */
2798 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2799                                                   hwaddr addr, uint64_t size)
2800 {
2801     MemoryRegionSection ret = { .mr = NULL };
2802     MemoryRegion *root;
2803     AddressSpace *as;
2804     AddrRange range;
2805     FlatView *view;
2806     FlatRange *fr;
2807 
2808     addr += mr->addr;
2809     for (root = mr; root->container; ) {
2810         root = root->container;
2811         addr += root->addr;
2812     }
2813 
2814     as = memory_region_to_address_space(root);
2815     if (!as) {
2816         return ret;
2817     }
2818     range = addrrange_make(int128_make64(addr), int128_make64(size));
2819 
2820     view = address_space_to_flatview(as);
2821     fr = flatview_lookup(view, range);
2822     if (!fr) {
2823         return ret;
2824     }
2825 
2826     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2827         --fr;
2828     }
2829 
2830     ret.mr = fr->mr;
2831     ret.fv = view;
2832     range = addrrange_intersection(range, fr->addr);
2833     ret.offset_within_region = fr->offset_in_region;
2834     ret.offset_within_region += int128_get64(int128_sub(range.start,
2835                                                         fr->addr.start));
2836     ret.size = range.size;
2837     ret.offset_within_address_space = int128_get64(range.start);
2838     ret.readonly = fr->readonly;
2839     ret.nonvolatile = fr->nonvolatile;
2840     return ret;
2841 }
2842 
2843 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2844                                        hwaddr addr, uint64_t size)
2845 {
2846     MemoryRegionSection ret;
2847     RCU_READ_LOCK_GUARD();
2848     ret = memory_region_find_rcu(mr, addr, size);
2849     if (ret.mr) {
2850         memory_region_ref(ret.mr);
2851     }
2852     return ret;
2853 }
2854 
2855 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s)
2856 {
2857     MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1);
2858 
2859     *tmp = *s;
2860     if (tmp->mr) {
2861         memory_region_ref(tmp->mr);
2862     }
2863     if (tmp->fv) {
2864         bool ret  = flatview_ref(tmp->fv);
2865 
2866         g_assert(ret);
2867     }
2868     return tmp;
2869 }
2870 
2871 void memory_region_section_free_copy(MemoryRegionSection *s)
2872 {
2873     if (s->fv) {
2874         flatview_unref(s->fv);
2875     }
2876     if (s->mr) {
2877         memory_region_unref(s->mr);
2878     }
2879     g_free(s);
2880 }
2881 
2882 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2883 {
2884     MemoryRegion *mr;
2885 
2886     RCU_READ_LOCK_GUARD();
2887     mr = memory_region_find_rcu(container, addr, 1).mr;
2888     return mr && mr != container;
2889 }
2890 
2891 void memory_global_dirty_log_sync(bool last_stage)
2892 {
2893     memory_region_sync_dirty_bitmap(NULL, last_stage);
2894 }
2895 
2896 void memory_global_after_dirty_log_sync(void)
2897 {
2898     MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2899 }
2900 
2901 /*
2902  * Dirty track stop flags that are postponed due to VM being stopped.  Should
2903  * only be used within vmstate_change hook.
2904  */
2905 static unsigned int postponed_stop_flags;
2906 static VMChangeStateEntry *vmstate_change;
2907 static void memory_global_dirty_log_stop_postponed_run(void);
2908 
2909 static bool memory_global_dirty_log_do_start(Error **errp)
2910 {
2911     MemoryListener *listener;
2912 
2913     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2914         if (listener->log_global_start) {
2915             if (!listener->log_global_start(listener, errp)) {
2916                 goto err;
2917             }
2918         }
2919     }
2920     return true;
2921 
2922 err:
2923     while ((listener = QTAILQ_PREV(listener, link)) != NULL) {
2924         if (listener->log_global_stop) {
2925             listener->log_global_stop(listener);
2926         }
2927     }
2928 
2929     return false;
2930 }
2931 
2932 bool memory_global_dirty_log_start(unsigned int flags, Error **errp)
2933 {
2934     unsigned int old_flags;
2935 
2936     assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2937 
2938     if (vmstate_change) {
2939         /* If there is postponed stop(), operate on it first */
2940         postponed_stop_flags &= ~flags;
2941         memory_global_dirty_log_stop_postponed_run();
2942     }
2943 
2944     flags &= ~global_dirty_tracking;
2945     if (!flags) {
2946         return true;
2947     }
2948 
2949     old_flags = global_dirty_tracking;
2950     global_dirty_tracking |= flags;
2951     trace_global_dirty_changed(global_dirty_tracking);
2952 
2953     if (!old_flags) {
2954         if (!memory_global_dirty_log_do_start(errp)) {
2955             global_dirty_tracking &= ~flags;
2956             trace_global_dirty_changed(global_dirty_tracking);
2957             return false;
2958         }
2959 
2960         memory_region_transaction_begin();
2961         memory_region_update_pending = true;
2962         memory_region_transaction_commit();
2963     }
2964     return true;
2965 }
2966 
2967 static void memory_global_dirty_log_do_stop(unsigned int flags)
2968 {
2969     assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2970     assert((global_dirty_tracking & flags) == flags);
2971     global_dirty_tracking &= ~flags;
2972 
2973     trace_global_dirty_changed(global_dirty_tracking);
2974 
2975     if (!global_dirty_tracking) {
2976         memory_region_transaction_begin();
2977         memory_region_update_pending = true;
2978         memory_region_transaction_commit();
2979         MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2980     }
2981 }
2982 
2983 /*
2984  * Execute the postponed dirty log stop operations if there is, then reset
2985  * everything (including the flags and the vmstate change hook).
2986  */
2987 static void memory_global_dirty_log_stop_postponed_run(void)
2988 {
2989     /* This must be called with the vmstate handler registered */
2990     assert(vmstate_change);
2991 
2992     /* Note: postponed_stop_flags can be cleared in log start routine */
2993     if (postponed_stop_flags) {
2994         memory_global_dirty_log_do_stop(postponed_stop_flags);
2995         postponed_stop_flags = 0;
2996     }
2997 
2998     qemu_del_vm_change_state_handler(vmstate_change);
2999     vmstate_change = NULL;
3000 }
3001 
3002 static void memory_vm_change_state_handler(void *opaque, bool running,
3003                                            RunState state)
3004 {
3005     if (running) {
3006         memory_global_dirty_log_stop_postponed_run();
3007     }
3008 }
3009 
3010 void memory_global_dirty_log_stop(unsigned int flags)
3011 {
3012     if (!runstate_is_running()) {
3013         /* Postpone the dirty log stop, e.g., to when VM starts again */
3014         if (vmstate_change) {
3015             /* Batch with previous postponed flags */
3016             postponed_stop_flags |= flags;
3017         } else {
3018             postponed_stop_flags = flags;
3019             vmstate_change = qemu_add_vm_change_state_handler(
3020                 memory_vm_change_state_handler, NULL);
3021         }
3022         return;
3023     }
3024 
3025     memory_global_dirty_log_do_stop(flags);
3026 }
3027 
3028 static void listener_add_address_space(MemoryListener *listener,
3029                                        AddressSpace *as)
3030 {
3031     unsigned i;
3032     FlatView *view;
3033     FlatRange *fr;
3034     MemoryRegionIoeventfd *fd;
3035 
3036     if (listener->begin) {
3037         listener->begin(listener);
3038     }
3039     if (global_dirty_tracking) {
3040         /*
3041          * Currently only VFIO can fail log_global_start(), and it's not
3042          * yet allowed to hotplug any PCI device during migration. So this
3043          * should never fail when invoked, guard it with error_abort.  If
3044          * it can start to fail in the future, we need to be able to fail
3045          * the whole listener_add_address_space() and its callers.
3046          */
3047         if (listener->log_global_start) {
3048             listener->log_global_start(listener, &error_abort);
3049         }
3050     }
3051 
3052     view = address_space_get_flatview(as);
3053     FOR_EACH_FLAT_RANGE(fr, view) {
3054         MemoryRegionSection section = section_from_flat_range(fr, view);
3055 
3056         if (listener->region_add) {
3057             listener->region_add(listener, &section);
3058         }
3059 
3060         /* send coalesced io add notifications */
3061         flat_range_coalesced_io_notify_listener_add_del(fr, &section,
3062                                                         listener, as, true);
3063 
3064         if (fr->dirty_log_mask && listener->log_start) {
3065             listener->log_start(listener, &section, 0, fr->dirty_log_mask);
3066         }
3067     }
3068 
3069     /*
3070      * register all eventfds for this address space for the newly registered
3071      * listener.
3072      */
3073     for (i = 0; i < as->ioeventfd_nb; i++) {
3074         fd = &as->ioeventfds[i];
3075         MemoryRegionSection section = (MemoryRegionSection) {
3076             .fv = view,
3077             .offset_within_address_space = int128_get64(fd->addr.start),
3078             .size = fd->addr.size,
3079         };
3080 
3081         if (listener->eventfd_add) {
3082             listener->eventfd_add(listener, &section,
3083                                   fd->match_data, fd->data, fd->e);
3084         }
3085     }
3086 
3087     if (listener->commit) {
3088         listener->commit(listener);
3089     }
3090     flatview_unref(view);
3091 }
3092 
3093 static void listener_del_address_space(MemoryListener *listener,
3094                                        AddressSpace *as)
3095 {
3096     unsigned i;
3097     FlatView *view;
3098     FlatRange *fr;
3099     MemoryRegionIoeventfd *fd;
3100 
3101     if (listener->begin) {
3102         listener->begin(listener);
3103     }
3104     view = address_space_get_flatview(as);
3105     FOR_EACH_FLAT_RANGE(fr, view) {
3106         MemoryRegionSection section = section_from_flat_range(fr, view);
3107 
3108         if (fr->dirty_log_mask && listener->log_stop) {
3109             listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
3110         }
3111 
3112         /* send coalesced io del notifications */
3113         flat_range_coalesced_io_notify_listener_add_del(fr, &section,
3114                                                         listener, as, false);
3115         if (listener->region_del) {
3116             listener->region_del(listener, &section);
3117         }
3118     }
3119 
3120     /*
3121      * de-register all eventfds for this address space for the current
3122      * listener.
3123      */
3124     for (i = 0; i < as->ioeventfd_nb; i++) {
3125         fd = &as->ioeventfds[i];
3126         MemoryRegionSection section = (MemoryRegionSection) {
3127             .fv = view,
3128             .offset_within_address_space = int128_get64(fd->addr.start),
3129             .size = fd->addr.size,
3130         };
3131 
3132         if (listener->eventfd_del) {
3133             listener->eventfd_del(listener, &section,
3134                                   fd->match_data, fd->data, fd->e);
3135         }
3136     }
3137 
3138     if (listener->commit) {
3139         listener->commit(listener);
3140     }
3141     flatview_unref(view);
3142 }
3143 
3144 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
3145 {
3146     MemoryListener *other = NULL;
3147 
3148     /* Only one of them can be defined for a listener */
3149     assert(!(listener->log_sync && listener->log_sync_global));
3150 
3151     listener->address_space = as;
3152     if (QTAILQ_EMPTY(&memory_listeners)
3153         || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
3154         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
3155     } else {
3156         QTAILQ_FOREACH(other, &memory_listeners, link) {
3157             if (listener->priority < other->priority) {
3158                 break;
3159             }
3160         }
3161         QTAILQ_INSERT_BEFORE(other, listener, link);
3162     }
3163 
3164     if (QTAILQ_EMPTY(&as->listeners)
3165         || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
3166         QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
3167     } else {
3168         QTAILQ_FOREACH(other, &as->listeners, link_as) {
3169             if (listener->priority < other->priority) {
3170                 break;
3171             }
3172         }
3173         QTAILQ_INSERT_BEFORE(other, listener, link_as);
3174     }
3175 
3176     listener_add_address_space(listener, as);
3177 
3178     if (listener->eventfd_add || listener->eventfd_del) {
3179         as->ioeventfd_notifiers++;
3180     }
3181 }
3182 
3183 void memory_listener_unregister(MemoryListener *listener)
3184 {
3185     if (!listener->address_space) {
3186         return;
3187     }
3188 
3189     if (listener->eventfd_add || listener->eventfd_del) {
3190         listener->address_space->ioeventfd_notifiers--;
3191     }
3192 
3193     listener_del_address_space(listener, listener->address_space);
3194     QTAILQ_REMOVE(&memory_listeners, listener, link);
3195     QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
3196     listener->address_space = NULL;
3197 }
3198 
3199 void address_space_remove_listeners(AddressSpace *as)
3200 {
3201     while (!QTAILQ_EMPTY(&as->listeners)) {
3202         memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
3203     }
3204 }
3205 
3206 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
3207 {
3208     memory_region_ref(root);
3209     as->root = root;
3210     as->current_map = NULL;
3211     as->ioeventfd_nb = 0;
3212     as->ioeventfds = NULL;
3213     QTAILQ_INIT(&as->listeners);
3214     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
3215     as->max_bounce_buffer_size = DEFAULT_MAX_BOUNCE_BUFFER_SIZE;
3216     as->bounce_buffer_size = 0;
3217     qemu_mutex_init(&as->map_client_list_lock);
3218     QLIST_INIT(&as->map_client_list);
3219     as->name = g_strdup(name ? name : "anonymous");
3220     address_space_update_topology(as);
3221     address_space_update_ioeventfds(as);
3222 }
3223 
3224 static void do_address_space_destroy(AddressSpace *as)
3225 {
3226     assert(qatomic_read(&as->bounce_buffer_size) == 0);
3227     assert(QLIST_EMPTY(&as->map_client_list));
3228     qemu_mutex_destroy(&as->map_client_list_lock);
3229 
3230     assert(QTAILQ_EMPTY(&as->listeners));
3231 
3232     flatview_unref(as->current_map);
3233     g_free(as->name);
3234     g_free(as->ioeventfds);
3235     memory_region_unref(as->root);
3236 }
3237 
3238 void address_space_destroy(AddressSpace *as)
3239 {
3240     MemoryRegion *root = as->root;
3241 
3242     /* Flush out anything from MemoryListeners listening in on this */
3243     memory_region_transaction_begin();
3244     as->root = NULL;
3245     memory_region_transaction_commit();
3246     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
3247 
3248     /* At this point, as->dispatch and as->current_map are dummy
3249      * entries that the guest should never use.  Wait for the old
3250      * values to expire before freeing the data.
3251      */
3252     as->root = root;
3253     call_rcu(as, do_address_space_destroy, rcu);
3254 }
3255 
3256 static const char *memory_region_type(MemoryRegion *mr)
3257 {
3258     if (mr->alias) {
3259         return memory_region_type(mr->alias);
3260     }
3261     if (memory_region_is_ram_device(mr)) {
3262         return "ramd";
3263     } else if (memory_region_is_romd(mr)) {
3264         return "romd";
3265     } else if (memory_region_is_rom(mr)) {
3266         return "rom";
3267     } else if (memory_region_is_ram(mr)) {
3268         return "ram";
3269     } else {
3270         return "i/o";
3271     }
3272 }
3273 
3274 typedef struct MemoryRegionList MemoryRegionList;
3275 
3276 struct MemoryRegionList {
3277     const MemoryRegion *mr;
3278     QTAILQ_ENTRY(MemoryRegionList) mrqueue;
3279 };
3280 
3281 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
3282 
3283 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3284                            int128_sub((size), int128_one())) : 0)
3285 #define MTREE_INDENT "  "
3286 
3287 static void mtree_expand_owner(const char *label, Object *obj)
3288 {
3289     DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
3290 
3291     qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
3292     if (dev && dev->id) {
3293         qemu_printf(" id=%s", dev->id);
3294     } else {
3295         char *canonical_path = object_get_canonical_path(obj);
3296         if (canonical_path) {
3297             qemu_printf(" path=%s", canonical_path);
3298             g_free(canonical_path);
3299         } else {
3300             qemu_printf(" type=%s", object_get_typename(obj));
3301         }
3302     }
3303     qemu_printf("}");
3304 }
3305 
3306 static void mtree_print_mr_owner(const MemoryRegion *mr)
3307 {
3308     Object *owner = mr->owner;
3309     Object *parent = memory_region_owner((MemoryRegion *)mr);
3310 
3311     if (!owner && !parent) {
3312         qemu_printf(" orphan");
3313         return;
3314     }
3315     if (owner) {
3316         mtree_expand_owner("owner", owner);
3317     }
3318     if (parent && parent != owner) {
3319         mtree_expand_owner("parent", parent);
3320     }
3321 }
3322 
3323 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
3324                            hwaddr base,
3325                            MemoryRegionListHead *alias_print_queue,
3326                            bool owner, bool display_disabled)
3327 {
3328     MemoryRegionList *new_ml, *ml, *next_ml;
3329     MemoryRegionListHead submr_print_queue;
3330     const MemoryRegion *submr;
3331     unsigned int i;
3332     hwaddr cur_start, cur_end;
3333 
3334     if (!mr) {
3335         return;
3336     }
3337 
3338     cur_start = base + mr->addr;
3339     cur_end = cur_start + MR_SIZE(mr->size);
3340 
3341     /*
3342      * Try to detect overflow of memory region. This should never
3343      * happen normally. When it happens, we dump something to warn the
3344      * user who is observing this.
3345      */
3346     if (cur_start < base || cur_end < cur_start) {
3347         qemu_printf("[DETECTED OVERFLOW!] ");
3348     }
3349 
3350     if (mr->alias) {
3351         bool found = false;
3352 
3353         /* check if the alias is already in the queue */
3354         QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
3355             if (ml->mr == mr->alias) {
3356                 found = true;
3357             }
3358         }
3359 
3360         if (!found) {
3361             ml = g_new(MemoryRegionList, 1);
3362             ml->mr = mr->alias;
3363             QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
3364         }
3365         if (mr->enabled || display_disabled) {
3366             for (i = 0; i < level; i++) {
3367                 qemu_printf(MTREE_INDENT);
3368             }
3369             qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3370                         " (prio %d, %s%s): alias %s @%s " HWADDR_FMT_plx
3371                         "-" HWADDR_FMT_plx "%s",
3372                         cur_start, cur_end,
3373                         mr->priority,
3374                         mr->nonvolatile ? "nv-" : "",
3375                         memory_region_type((MemoryRegion *)mr),
3376                         memory_region_name(mr),
3377                         memory_region_name(mr->alias),
3378                         mr->alias_offset,
3379                         mr->alias_offset + MR_SIZE(mr->size),
3380                         mr->enabled ? "" : " [disabled]");
3381             if (owner) {
3382                 mtree_print_mr_owner(mr);
3383             }
3384             qemu_printf("\n");
3385         }
3386     } else {
3387         if (mr->enabled || display_disabled) {
3388             for (i = 0; i < level; i++) {
3389                 qemu_printf(MTREE_INDENT);
3390             }
3391             qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3392                         " (prio %d, %s%s): %s%s",
3393                         cur_start, cur_end,
3394                         mr->priority,
3395                         mr->nonvolatile ? "nv-" : "",
3396                         memory_region_type((MemoryRegion *)mr),
3397                         memory_region_name(mr),
3398                         mr->enabled ? "" : " [disabled]");
3399             if (owner) {
3400                 mtree_print_mr_owner(mr);
3401             }
3402             qemu_printf("\n");
3403         }
3404     }
3405 
3406     QTAILQ_INIT(&submr_print_queue);
3407 
3408     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
3409         new_ml = g_new(MemoryRegionList, 1);
3410         new_ml->mr = submr;
3411         QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3412             if (new_ml->mr->addr < ml->mr->addr ||
3413                 (new_ml->mr->addr == ml->mr->addr &&
3414                  new_ml->mr->priority > ml->mr->priority)) {
3415                 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
3416                 new_ml = NULL;
3417                 break;
3418             }
3419         }
3420         if (new_ml) {
3421             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
3422         }
3423     }
3424 
3425     QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3426         mtree_print_mr(ml->mr, level + 1, cur_start,
3427                        alias_print_queue, owner, display_disabled);
3428     }
3429 
3430     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3431         g_free(ml);
3432     }
3433 }
3434 
3435 struct FlatViewInfo {
3436     int counter;
3437     bool dispatch_tree;
3438     bool owner;
3439     AccelClass *ac;
3440 };
3441 
3442 static void mtree_print_flatview(gpointer key, gpointer value,
3443                                  gpointer user_data)
3444 {
3445     FlatView *view = key;
3446     GArray *fv_address_spaces = value;
3447     struct FlatViewInfo *fvi = user_data;
3448     FlatRange *range = &view->ranges[0];
3449     MemoryRegion *mr;
3450     int n = view->nr;
3451     int i;
3452     AddressSpace *as;
3453 
3454     qemu_printf("FlatView #%d\n", fvi->counter);
3455     ++fvi->counter;
3456 
3457     for (i = 0; i < fv_address_spaces->len; ++i) {
3458         as = g_array_index(fv_address_spaces, AddressSpace*, i);
3459         qemu_printf(" AS \"%s\", root: %s",
3460                     as->name, memory_region_name(as->root));
3461         if (as->root->alias) {
3462             qemu_printf(", alias %s", memory_region_name(as->root->alias));
3463         }
3464         qemu_printf("\n");
3465     }
3466 
3467     qemu_printf(" Root memory region: %s\n",
3468       view->root ? memory_region_name(view->root) : "(none)");
3469 
3470     if (n <= 0) {
3471         qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3472         return;
3473     }
3474 
3475     while (n--) {
3476         mr = range->mr;
3477         if (range->offset_in_region) {
3478             qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3479                         " (prio %d, %s%s): %s @" HWADDR_FMT_plx,
3480                         int128_get64(range->addr.start),
3481                         int128_get64(range->addr.start)
3482                         + MR_SIZE(range->addr.size),
3483                         mr->priority,
3484                         range->nonvolatile ? "nv-" : "",
3485                         range->readonly ? "rom" : memory_region_type(mr),
3486                         memory_region_name(mr),
3487                         range->offset_in_region);
3488         } else {
3489             qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3490                         " (prio %d, %s%s): %s",
3491                         int128_get64(range->addr.start),
3492                         int128_get64(range->addr.start)
3493                         + MR_SIZE(range->addr.size),
3494                         mr->priority,
3495                         range->nonvolatile ? "nv-" : "",
3496                         range->readonly ? "rom" : memory_region_type(mr),
3497                         memory_region_name(mr));
3498         }
3499         if (fvi->owner) {
3500             mtree_print_mr_owner(mr);
3501         }
3502 
3503         if (fvi->ac) {
3504             for (i = 0; i < fv_address_spaces->len; ++i) {
3505                 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3506                 if (fvi->ac->has_memory(current_machine->accelerator, as,
3507                                         int128_get64(range->addr.start),
3508                                         MR_SIZE(range->addr.size) + 1)) {
3509                     qemu_printf(" %s", fvi->ac->name);
3510                 }
3511             }
3512         }
3513         qemu_printf("\n");
3514         range++;
3515     }
3516 
3517 #if !defined(CONFIG_USER_ONLY)
3518     if (fvi->dispatch_tree && view->root) {
3519         mtree_print_dispatch(view->dispatch, view->root);
3520     }
3521 #endif
3522 
3523     qemu_printf("\n");
3524 }
3525 
3526 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3527                                       gpointer user_data)
3528 {
3529     FlatView *view = key;
3530     GArray *fv_address_spaces = value;
3531 
3532     g_array_unref(fv_address_spaces);
3533     flatview_unref(view);
3534 
3535     return true;
3536 }
3537 
3538 static void mtree_info_flatview(bool dispatch_tree, bool owner)
3539 {
3540     struct FlatViewInfo fvi = {
3541         .counter = 0,
3542         .dispatch_tree = dispatch_tree,
3543         .owner = owner,
3544     };
3545     AddressSpace *as;
3546     FlatView *view;
3547     GArray *fv_address_spaces;
3548     GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3549     AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3550 
3551     if (ac->has_memory) {
3552         fvi.ac = ac;
3553     }
3554 
3555     /* Gather all FVs in one table */
3556     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3557         view = address_space_get_flatview(as);
3558 
3559         fv_address_spaces = g_hash_table_lookup(views, view);
3560         if (!fv_address_spaces) {
3561             fv_address_spaces = g_array_new(false, false, sizeof(as));
3562             g_hash_table_insert(views, view, fv_address_spaces);
3563         }
3564 
3565         g_array_append_val(fv_address_spaces, as);
3566     }
3567 
3568     /* Print */
3569     g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3570 
3571     /* Free */
3572     g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3573     g_hash_table_unref(views);
3574 }
3575 
3576 struct AddressSpaceInfo {
3577     MemoryRegionListHead *ml_head;
3578     bool owner;
3579     bool disabled;
3580 };
3581 
3582 /* Returns negative value if a < b; zero if a = b; positive value if a > b. */
3583 static gint address_space_compare_name(gconstpointer a, gconstpointer b)
3584 {
3585     const AddressSpace *as_a = a;
3586     const AddressSpace *as_b = b;
3587 
3588     return g_strcmp0(as_a->name, as_b->name);
3589 }
3590 
3591 static void mtree_print_as_name(gpointer data, gpointer user_data)
3592 {
3593     AddressSpace *as = data;
3594 
3595     qemu_printf("address-space: %s\n", as->name);
3596 }
3597 
3598 static void mtree_print_as(gpointer key, gpointer value, gpointer user_data)
3599 {
3600     MemoryRegion *mr = key;
3601     GSList *as_same_root_mr_list = value;
3602     struct AddressSpaceInfo *asi = user_data;
3603 
3604     g_slist_foreach(as_same_root_mr_list, mtree_print_as_name, NULL);
3605     mtree_print_mr(mr, 1, 0, asi->ml_head, asi->owner, asi->disabled);
3606     qemu_printf("\n");
3607 }
3608 
3609 static gboolean mtree_info_as_free(gpointer key, gpointer value,
3610                                    gpointer user_data)
3611 {
3612     GSList *as_same_root_mr_list = value;
3613 
3614     g_slist_free(as_same_root_mr_list);
3615 
3616     return true;
3617 }
3618 
3619 static void mtree_info_as(bool dispatch_tree, bool owner, bool disabled)
3620 {
3621     MemoryRegionListHead ml_head;
3622     MemoryRegionList *ml, *ml2;
3623     AddressSpace *as;
3624     GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3625     GSList *as_same_root_mr_list;
3626     struct AddressSpaceInfo asi = {
3627         .ml_head = &ml_head,
3628         .owner = owner,
3629         .disabled = disabled,
3630     };
3631 
3632     QTAILQ_INIT(&ml_head);
3633 
3634     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3635         /* Create hashtable, key=AS root MR, value = list of AS */
3636         as_same_root_mr_list = g_hash_table_lookup(views, as->root);
3637         as_same_root_mr_list = g_slist_insert_sorted(as_same_root_mr_list, as,
3638                                                      address_space_compare_name);
3639         g_hash_table_insert(views, as->root, as_same_root_mr_list);
3640     }
3641 
3642     /* print address spaces */
3643     g_hash_table_foreach(views, mtree_print_as, &asi);
3644     g_hash_table_foreach_remove(views, mtree_info_as_free, 0);
3645     g_hash_table_unref(views);
3646 
3647     /* print aliased regions */
3648     QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3649         qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3650         mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
3651         qemu_printf("\n");
3652     }
3653 
3654     QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3655         g_free(ml);
3656     }
3657 }
3658 
3659 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
3660 {
3661     if (flatview) {
3662         mtree_info_flatview(dispatch_tree, owner);
3663     } else {
3664         mtree_info_as(dispatch_tree, owner, disabled);
3665     }
3666 }
3667 
3668 bool memory_region_init_ram(MemoryRegion *mr,
3669                             Object *owner,
3670                             const char *name,
3671                             uint64_t size,
3672                             Error **errp)
3673 {
3674     DeviceState *owner_dev;
3675 
3676     if (!memory_region_init_ram_nomigrate(mr, owner, name, size, errp)) {
3677         return false;
3678     }
3679     /* This will assert if owner is neither NULL nor a DeviceState.
3680      * We only want the owner here for the purposes of defining a
3681      * unique name for migration. TODO: Ideally we should implement
3682      * a naming scheme for Objects which are not DeviceStates, in
3683      * which case we can relax this restriction.
3684      */
3685     owner_dev = DEVICE(owner);
3686     vmstate_register_ram(mr, owner_dev);
3687 
3688     return true;
3689 }
3690 
3691 bool memory_region_init_ram_guest_memfd(MemoryRegion *mr,
3692                                         Object *owner,
3693                                         const char *name,
3694                                         uint64_t size,
3695                                         Error **errp)
3696 {
3697     DeviceState *owner_dev;
3698 
3699     if (!memory_region_init_ram_flags_nomigrate(mr, owner, name, size,
3700                                                 RAM_GUEST_MEMFD, errp)) {
3701         return false;
3702     }
3703     /* This will assert if owner is neither NULL nor a DeviceState.
3704      * We only want the owner here for the purposes of defining a
3705      * unique name for migration. TODO: Ideally we should implement
3706      * a naming scheme for Objects which are not DeviceStates, in
3707      * which case we can relax this restriction.
3708      */
3709     owner_dev = DEVICE(owner);
3710     vmstate_register_ram(mr, owner_dev);
3711 
3712     return true;
3713 }
3714 
3715 bool memory_region_init_rom(MemoryRegion *mr,
3716                             Object *owner,
3717                             const char *name,
3718                             uint64_t size,
3719                             Error **errp)
3720 {
3721     DeviceState *owner_dev;
3722 
3723     if (!memory_region_init_rom_nomigrate(mr, owner, name, size, errp)) {
3724         return false;
3725     }
3726     /* This will assert if owner is neither NULL nor a DeviceState.
3727      * We only want the owner here for the purposes of defining a
3728      * unique name for migration. TODO: Ideally we should implement
3729      * a naming scheme for Objects which are not DeviceStates, in
3730      * which case we can relax this restriction.
3731      */
3732     owner_dev = DEVICE(owner);
3733     vmstate_register_ram(mr, owner_dev);
3734 
3735     return true;
3736 }
3737 
3738 bool memory_region_init_rom_device(MemoryRegion *mr,
3739                                    Object *owner,
3740                                    const MemoryRegionOps *ops,
3741                                    void *opaque,
3742                                    const char *name,
3743                                    uint64_t size,
3744                                    Error **errp)
3745 {
3746     DeviceState *owner_dev;
3747 
3748     if (!memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3749                                                  name, size, errp)) {
3750         return false;
3751     }
3752     /* This will assert if owner is neither NULL nor a DeviceState.
3753      * We only want the owner here for the purposes of defining a
3754      * unique name for migration. TODO: Ideally we should implement
3755      * a naming scheme for Objects which are not DeviceStates, in
3756      * which case we can relax this restriction.
3757      */
3758     owner_dev = DEVICE(owner);
3759     vmstate_register_ram(mr, owner_dev);
3760 
3761     return true;
3762 }
3763 
3764 /*
3765  * Support system builds with CONFIG_FUZZ using a weak symbol and a stub for
3766  * the fuzz_dma_read_cb callback
3767  */
3768 #ifdef CONFIG_FUZZ
3769 void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
3770                       size_t len,
3771                       MemoryRegion *mr)
3772 {
3773 }
3774 #endif
3775 
3776 static const TypeInfo memory_region_info = {
3777     .parent             = TYPE_OBJECT,
3778     .name               = TYPE_MEMORY_REGION,
3779     .class_size         = sizeof(MemoryRegionClass),
3780     .instance_size      = sizeof(MemoryRegion),
3781     .instance_init      = memory_region_initfn,
3782     .instance_finalize  = memory_region_finalize,
3783 };
3784 
3785 static const TypeInfo iommu_memory_region_info = {
3786     .parent             = TYPE_MEMORY_REGION,
3787     .name               = TYPE_IOMMU_MEMORY_REGION,
3788     .class_size         = sizeof(IOMMUMemoryRegionClass),
3789     .instance_size      = sizeof(IOMMUMemoryRegion),
3790     .instance_init      = iommu_memory_region_initfn,
3791     .abstract           = true,
3792 };
3793 
3794 static const TypeInfo ram_discard_manager_info = {
3795     .parent             = TYPE_INTERFACE,
3796     .name               = TYPE_RAM_DISCARD_MANAGER,
3797     .class_size         = sizeof(RamDiscardManagerClass),
3798 };
3799 
3800 static void memory_register_types(void)
3801 {
3802     type_register_static(&memory_region_info);
3803     type_register_static(&iommu_memory_region_info);
3804     type_register_static(&ram_discard_manager_info);
3805 }
3806 
3807 type_init(memory_register_types)
3808