1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "monitor/monitor.h" 27 #include "qemu/coroutine-tls.h" 28 #include "qapi/error.h" 29 #include "qapi/qapi-commands-machine.h" 30 #include "qapi/qapi-commands-misc.h" 31 #include "qapi/qapi-events-run-state.h" 32 #include "qapi/qmp/qerror.h" 33 #include "exec/gdbstub.h" 34 #include "sysemu/hw_accel.h" 35 #include "exec/cpu-common.h" 36 #include "qemu/thread.h" 37 #include "qemu/main-loop.h" 38 #include "qemu/plugin.h" 39 #include "sysemu/cpus.h" 40 #include "qemu/guest-random.h" 41 #include "hw/nmi.h" 42 #include "sysemu/replay.h" 43 #include "sysemu/runstate.h" 44 #include "sysemu/cpu-timers.h" 45 #include "sysemu/whpx.h" 46 #include "hw/boards.h" 47 #include "hw/hw.h" 48 #include "trace.h" 49 50 #ifdef CONFIG_LINUX 51 52 #include <sys/prctl.h> 53 54 #ifndef PR_MCE_KILL 55 #define PR_MCE_KILL 33 56 #endif 57 58 #ifndef PR_MCE_KILL_SET 59 #define PR_MCE_KILL_SET 1 60 #endif 61 62 #ifndef PR_MCE_KILL_EARLY 63 #define PR_MCE_KILL_EARLY 1 64 #endif 65 66 #endif /* CONFIG_LINUX */ 67 68 static QemuMutex qemu_global_mutex; 69 70 /* 71 * The chosen accelerator is supposed to register this. 72 */ 73 static const AccelOpsClass *cpus_accel; 74 75 bool cpu_is_stopped(CPUState *cpu) 76 { 77 return cpu->stopped || !runstate_is_running(); 78 } 79 80 bool cpu_work_list_empty(CPUState *cpu) 81 { 82 return QSIMPLEQ_EMPTY_ATOMIC(&cpu->work_list); 83 } 84 85 bool cpu_thread_is_idle(CPUState *cpu) 86 { 87 if (cpu->stop || !cpu_work_list_empty(cpu)) { 88 return false; 89 } 90 if (cpu_is_stopped(cpu)) { 91 return true; 92 } 93 if (!cpu->halted || cpu_has_work(cpu)) { 94 return false; 95 } 96 if (cpus_accel->cpu_thread_is_idle) { 97 return cpus_accel->cpu_thread_is_idle(cpu); 98 } 99 return true; 100 } 101 102 bool all_cpu_threads_idle(void) 103 { 104 CPUState *cpu; 105 106 CPU_FOREACH(cpu) { 107 if (!cpu_thread_is_idle(cpu)) { 108 return false; 109 } 110 } 111 return true; 112 } 113 114 /***********************************************************/ 115 void hw_error(const char *fmt, ...) 116 { 117 va_list ap; 118 CPUState *cpu; 119 120 va_start(ap, fmt); 121 fprintf(stderr, "qemu: hardware error: "); 122 vfprintf(stderr, fmt, ap); 123 fprintf(stderr, "\n"); 124 CPU_FOREACH(cpu) { 125 fprintf(stderr, "CPU #%d:\n", cpu->cpu_index); 126 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU); 127 } 128 va_end(ap); 129 abort(); 130 } 131 132 void cpu_synchronize_all_states(void) 133 { 134 CPUState *cpu; 135 136 CPU_FOREACH(cpu) { 137 cpu_synchronize_state(cpu); 138 } 139 } 140 141 void cpu_synchronize_all_post_reset(void) 142 { 143 CPUState *cpu; 144 145 CPU_FOREACH(cpu) { 146 cpu_synchronize_post_reset(cpu); 147 } 148 } 149 150 void cpu_synchronize_all_post_init(void) 151 { 152 CPUState *cpu; 153 154 CPU_FOREACH(cpu) { 155 cpu_synchronize_post_init(cpu); 156 } 157 } 158 159 void cpu_synchronize_all_pre_loadvm(void) 160 { 161 CPUState *cpu; 162 163 CPU_FOREACH(cpu) { 164 cpu_synchronize_pre_loadvm(cpu); 165 } 166 } 167 168 void cpu_synchronize_state(CPUState *cpu) 169 { 170 if (cpus_accel->synchronize_state) { 171 cpus_accel->synchronize_state(cpu); 172 } 173 } 174 175 void cpu_synchronize_post_reset(CPUState *cpu) 176 { 177 if (cpus_accel->synchronize_post_reset) { 178 cpus_accel->synchronize_post_reset(cpu); 179 } 180 } 181 182 void cpu_synchronize_post_init(CPUState *cpu) 183 { 184 if (cpus_accel->synchronize_post_init) { 185 cpus_accel->synchronize_post_init(cpu); 186 } 187 } 188 189 void cpu_synchronize_pre_loadvm(CPUState *cpu) 190 { 191 if (cpus_accel->synchronize_pre_loadvm) { 192 cpus_accel->synchronize_pre_loadvm(cpu); 193 } 194 } 195 196 bool cpus_are_resettable(void) 197 { 198 if (cpus_accel->cpus_are_resettable) { 199 return cpus_accel->cpus_are_resettable(); 200 } 201 return true; 202 } 203 204 void cpu_exec_reset_hold(CPUState *cpu) 205 { 206 if (cpus_accel->cpu_reset_hold) { 207 cpus_accel->cpu_reset_hold(cpu); 208 } 209 } 210 211 int64_t cpus_get_virtual_clock(void) 212 { 213 /* 214 * XXX 215 * 216 * need to check that cpus_accel is not NULL, because qcow2 calls 217 * qemu_get_clock_ns(CLOCK_VIRTUAL) without any accel initialized and 218 * with ticks disabled in some io-tests: 219 * 030 040 041 060 099 120 127 140 156 161 172 181 191 192 195 203 229 249 256 267 220 * 221 * is this expected? 222 * 223 * XXX 224 */ 225 if (cpus_accel && cpus_accel->get_virtual_clock) { 226 return cpus_accel->get_virtual_clock(); 227 } 228 return cpu_get_clock(); 229 } 230 231 /* 232 * return the time elapsed in VM between vm_start and vm_stop. Unless 233 * icount is active, cpus_get_elapsed_ticks() uses units of the host CPU cycle 234 * counter. 235 */ 236 int64_t cpus_get_elapsed_ticks(void) 237 { 238 if (cpus_accel->get_elapsed_ticks) { 239 return cpus_accel->get_elapsed_ticks(); 240 } 241 return cpu_get_ticks(); 242 } 243 244 static void generic_handle_interrupt(CPUState *cpu, int mask) 245 { 246 cpu->interrupt_request |= mask; 247 248 if (!qemu_cpu_is_self(cpu)) { 249 qemu_cpu_kick(cpu); 250 } 251 } 252 253 void cpu_interrupt(CPUState *cpu, int mask) 254 { 255 if (cpus_accel->handle_interrupt) { 256 cpus_accel->handle_interrupt(cpu, mask); 257 } else { 258 generic_handle_interrupt(cpu, mask); 259 } 260 } 261 262 static int do_vm_stop(RunState state, bool send_stop) 263 { 264 int ret = 0; 265 266 if (runstate_is_running()) { 267 runstate_set(state); 268 cpu_disable_ticks(); 269 pause_all_vcpus(); 270 vm_state_notify(0, state); 271 if (send_stop) { 272 qapi_event_send_stop(); 273 } 274 } 275 276 bdrv_drain_all(); 277 ret = bdrv_flush_all(); 278 trace_vm_stop_flush_all(ret); 279 280 return ret; 281 } 282 283 /* Special vm_stop() variant for terminating the process. Historically clients 284 * did not expect a QMP STOP event and so we need to retain compatibility. 285 */ 286 int vm_shutdown(void) 287 { 288 return do_vm_stop(RUN_STATE_SHUTDOWN, false); 289 } 290 291 bool cpu_can_run(CPUState *cpu) 292 { 293 if (cpu->stop) { 294 return false; 295 } 296 if (cpu_is_stopped(cpu)) { 297 return false; 298 } 299 return true; 300 } 301 302 void cpu_handle_guest_debug(CPUState *cpu) 303 { 304 if (replay_running_debug()) { 305 if (!cpu->singlestep_enabled) { 306 /* 307 * Report about the breakpoint and 308 * make a single step to skip it 309 */ 310 replay_breakpoint(); 311 cpu_single_step(cpu, SSTEP_ENABLE); 312 } else { 313 cpu_single_step(cpu, 0); 314 } 315 } else { 316 gdb_set_stop_cpu(cpu); 317 qemu_system_debug_request(); 318 cpu->stopped = true; 319 } 320 } 321 322 #ifdef CONFIG_LINUX 323 static void sigbus_reraise(void) 324 { 325 sigset_t set; 326 struct sigaction action; 327 328 memset(&action, 0, sizeof(action)); 329 action.sa_handler = SIG_DFL; 330 if (!sigaction(SIGBUS, &action, NULL)) { 331 raise(SIGBUS); 332 sigemptyset(&set); 333 sigaddset(&set, SIGBUS); 334 pthread_sigmask(SIG_UNBLOCK, &set, NULL); 335 } 336 perror("Failed to re-raise SIGBUS!"); 337 abort(); 338 } 339 340 static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx) 341 { 342 if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) { 343 sigbus_reraise(); 344 } 345 346 if (current_cpu) { 347 /* Called asynchronously in VCPU thread. */ 348 if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) { 349 sigbus_reraise(); 350 } 351 } else { 352 /* Called synchronously (via signalfd) in main thread. */ 353 if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) { 354 sigbus_reraise(); 355 } 356 } 357 } 358 359 static void qemu_init_sigbus(void) 360 { 361 struct sigaction action; 362 363 /* 364 * ALERT: when modifying this, take care that SIGBUS forwarding in 365 * qemu_prealloc_mem() will continue working as expected. 366 */ 367 memset(&action, 0, sizeof(action)); 368 action.sa_flags = SA_SIGINFO; 369 action.sa_sigaction = sigbus_handler; 370 sigaction(SIGBUS, &action, NULL); 371 372 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0); 373 } 374 #else /* !CONFIG_LINUX */ 375 static void qemu_init_sigbus(void) 376 { 377 } 378 #endif /* !CONFIG_LINUX */ 379 380 static QemuThread io_thread; 381 382 /* cpu creation */ 383 static QemuCond qemu_cpu_cond; 384 /* system init */ 385 static QemuCond qemu_pause_cond; 386 387 void qemu_init_cpu_loop(void) 388 { 389 qemu_init_sigbus(); 390 qemu_cond_init(&qemu_cpu_cond); 391 qemu_cond_init(&qemu_pause_cond); 392 qemu_mutex_init(&qemu_global_mutex); 393 394 qemu_thread_get_self(&io_thread); 395 } 396 397 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data) 398 { 399 do_run_on_cpu(cpu, func, data, &qemu_global_mutex); 400 } 401 402 static void qemu_cpu_stop(CPUState *cpu, bool exit) 403 { 404 g_assert(qemu_cpu_is_self(cpu)); 405 cpu->stop = false; 406 cpu->stopped = true; 407 if (exit) { 408 cpu_exit(cpu); 409 } 410 qemu_cond_broadcast(&qemu_pause_cond); 411 } 412 413 void qemu_wait_io_event_common(CPUState *cpu) 414 { 415 qatomic_set_mb(&cpu->thread_kicked, false); 416 if (cpu->stop) { 417 qemu_cpu_stop(cpu, false); 418 } 419 process_queued_cpu_work(cpu); 420 } 421 422 void qemu_wait_io_event(CPUState *cpu) 423 { 424 bool slept = false; 425 426 while (cpu_thread_is_idle(cpu)) { 427 if (!slept) { 428 slept = true; 429 qemu_plugin_vcpu_idle_cb(cpu); 430 } 431 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex); 432 } 433 if (slept) { 434 qemu_plugin_vcpu_resume_cb(cpu); 435 } 436 437 qemu_wait_io_event_common(cpu); 438 } 439 440 void cpus_kick_thread(CPUState *cpu) 441 { 442 if (cpu->thread_kicked) { 443 return; 444 } 445 cpu->thread_kicked = true; 446 447 #ifndef _WIN32 448 int err = pthread_kill(cpu->thread->thread, SIG_IPI); 449 if (err && err != ESRCH) { 450 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err)); 451 exit(1); 452 } 453 #else 454 qemu_sem_post(&cpu->sem); 455 #endif 456 } 457 458 void qemu_cpu_kick(CPUState *cpu) 459 { 460 qemu_cond_broadcast(cpu->halt_cond); 461 if (cpus_accel->kick_vcpu_thread) { 462 cpus_accel->kick_vcpu_thread(cpu); 463 } else { /* default */ 464 cpus_kick_thread(cpu); 465 } 466 } 467 468 void qemu_cpu_kick_self(void) 469 { 470 assert(current_cpu); 471 cpus_kick_thread(current_cpu); 472 } 473 474 bool qemu_cpu_is_self(CPUState *cpu) 475 { 476 return qemu_thread_is_self(cpu->thread); 477 } 478 479 bool qemu_in_vcpu_thread(void) 480 { 481 return current_cpu && qemu_cpu_is_self(current_cpu); 482 } 483 484 QEMU_DEFINE_STATIC_CO_TLS(bool, iothread_locked) 485 486 bool qemu_mutex_iothread_locked(void) 487 { 488 return get_iothread_locked(); 489 } 490 491 bool qemu_in_main_thread(void) 492 { 493 return qemu_mutex_iothread_locked(); 494 } 495 496 /* 497 * The BQL is taken from so many places that it is worth profiling the 498 * callers directly, instead of funneling them all through a single function. 499 */ 500 void qemu_mutex_lock_iothread_impl(const char *file, int line) 501 { 502 QemuMutexLockFunc bql_lock = qatomic_read(&qemu_bql_mutex_lock_func); 503 504 g_assert(!qemu_mutex_iothread_locked()); 505 bql_lock(&qemu_global_mutex, file, line); 506 set_iothread_locked(true); 507 } 508 509 void qemu_mutex_unlock_iothread(void) 510 { 511 g_assert(qemu_mutex_iothread_locked()); 512 set_iothread_locked(false); 513 qemu_mutex_unlock(&qemu_global_mutex); 514 } 515 516 void qemu_cond_wait_iothread(QemuCond *cond) 517 { 518 qemu_cond_wait(cond, &qemu_global_mutex); 519 } 520 521 void qemu_cond_timedwait_iothread(QemuCond *cond, int ms) 522 { 523 qemu_cond_timedwait(cond, &qemu_global_mutex, ms); 524 } 525 526 /* signal CPU creation */ 527 void cpu_thread_signal_created(CPUState *cpu) 528 { 529 cpu->created = true; 530 qemu_cond_signal(&qemu_cpu_cond); 531 } 532 533 /* signal CPU destruction */ 534 void cpu_thread_signal_destroyed(CPUState *cpu) 535 { 536 cpu->created = false; 537 qemu_cond_signal(&qemu_cpu_cond); 538 } 539 540 541 static bool all_vcpus_paused(void) 542 { 543 CPUState *cpu; 544 545 CPU_FOREACH(cpu) { 546 if (!cpu->stopped) { 547 return false; 548 } 549 } 550 551 return true; 552 } 553 554 void pause_all_vcpus(void) 555 { 556 CPUState *cpu; 557 558 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false); 559 CPU_FOREACH(cpu) { 560 if (qemu_cpu_is_self(cpu)) { 561 qemu_cpu_stop(cpu, true); 562 } else { 563 cpu->stop = true; 564 qemu_cpu_kick(cpu); 565 } 566 } 567 568 /* We need to drop the replay_lock so any vCPU threads woken up 569 * can finish their replay tasks 570 */ 571 replay_mutex_unlock(); 572 573 while (!all_vcpus_paused()) { 574 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex); 575 CPU_FOREACH(cpu) { 576 qemu_cpu_kick(cpu); 577 } 578 } 579 580 qemu_mutex_unlock_iothread(); 581 replay_mutex_lock(); 582 qemu_mutex_lock_iothread(); 583 } 584 585 void cpu_resume(CPUState *cpu) 586 { 587 cpu->stop = false; 588 cpu->stopped = false; 589 qemu_cpu_kick(cpu); 590 } 591 592 void resume_all_vcpus(void) 593 { 594 CPUState *cpu; 595 596 if (!runstate_is_running()) { 597 return; 598 } 599 600 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true); 601 CPU_FOREACH(cpu) { 602 cpu_resume(cpu); 603 } 604 } 605 606 void cpu_remove_sync(CPUState *cpu) 607 { 608 cpu->stop = true; 609 cpu->unplug = true; 610 qemu_cpu_kick(cpu); 611 qemu_mutex_unlock_iothread(); 612 qemu_thread_join(cpu->thread); 613 qemu_mutex_lock_iothread(); 614 } 615 616 void cpus_register_accel(const AccelOpsClass *ops) 617 { 618 assert(ops != NULL); 619 assert(ops->create_vcpu_thread != NULL); /* mandatory */ 620 cpus_accel = ops; 621 } 622 623 const AccelOpsClass *cpus_get_accel(void) 624 { 625 /* broken if we call this early */ 626 assert(cpus_accel); 627 return cpus_accel; 628 } 629 630 void qemu_init_vcpu(CPUState *cpu) 631 { 632 MachineState *ms = MACHINE(qdev_get_machine()); 633 634 cpu->nr_cores = machine_topo_get_cores_per_socket(ms); 635 cpu->nr_threads = ms->smp.threads; 636 cpu->stopped = true; 637 cpu->random_seed = qemu_guest_random_seed_thread_part1(); 638 639 if (!cpu->as) { 640 /* If the target cpu hasn't set up any address spaces itself, 641 * give it the default one. 642 */ 643 cpu->num_ases = 1; 644 cpu_address_space_init(cpu, 0, "cpu-memory", cpu->memory); 645 } 646 647 /* accelerators all implement the AccelOpsClass */ 648 g_assert(cpus_accel != NULL && cpus_accel->create_vcpu_thread != NULL); 649 cpus_accel->create_vcpu_thread(cpu); 650 651 while (!cpu->created) { 652 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); 653 } 654 } 655 656 void cpu_stop_current(void) 657 { 658 if (current_cpu) { 659 current_cpu->stop = true; 660 cpu_exit(current_cpu); 661 } 662 } 663 664 int vm_stop(RunState state) 665 { 666 if (qemu_in_vcpu_thread()) { 667 qemu_system_vmstop_request_prepare(); 668 qemu_system_vmstop_request(state); 669 /* 670 * FIXME: should not return to device code in case 671 * vm_stop() has been requested. 672 */ 673 cpu_stop_current(); 674 return 0; 675 } 676 677 return do_vm_stop(state, true); 678 } 679 680 /** 681 * Prepare for (re)starting the VM. 682 * Returns -1 if the vCPUs are not to be restarted (e.g. if they are already 683 * running or in case of an error condition), 0 otherwise. 684 */ 685 int vm_prepare_start(bool step_pending) 686 { 687 RunState requested; 688 689 qemu_vmstop_requested(&requested); 690 if (runstate_is_running() && requested == RUN_STATE__MAX) { 691 return -1; 692 } 693 694 /* Ensure that a STOP/RESUME pair of events is emitted if a 695 * vmstop request was pending. The BLOCK_IO_ERROR event, for 696 * example, according to documentation is always followed by 697 * the STOP event. 698 */ 699 if (runstate_is_running()) { 700 qapi_event_send_stop(); 701 qapi_event_send_resume(); 702 return -1; 703 } 704 705 /* 706 * WHPX accelerator needs to know whether we are going to step 707 * any CPUs, before starting the first one. 708 */ 709 if (cpus_accel->synchronize_pre_resume) { 710 cpus_accel->synchronize_pre_resume(step_pending); 711 } 712 713 /* We are sending this now, but the CPUs will be resumed shortly later */ 714 qapi_event_send_resume(); 715 716 cpu_enable_ticks(); 717 runstate_set(RUN_STATE_RUNNING); 718 vm_state_notify(1, RUN_STATE_RUNNING); 719 return 0; 720 } 721 722 void vm_start(void) 723 { 724 if (!vm_prepare_start(false)) { 725 resume_all_vcpus(); 726 } 727 } 728 729 /* does a state transition even if the VM is already stopped, 730 current state is forgotten forever */ 731 int vm_stop_force_state(RunState state) 732 { 733 if (runstate_is_running()) { 734 return vm_stop(state); 735 } else { 736 int ret; 737 runstate_set(state); 738 739 bdrv_drain_all(); 740 /* Make sure to return an error if the flush in a previous vm_stop() 741 * failed. */ 742 ret = bdrv_flush_all(); 743 trace_vm_stop_flush_all(ret); 744 return ret; 745 } 746 } 747 748 void qmp_memsave(int64_t addr, int64_t size, const char *filename, 749 bool has_cpu, int64_t cpu_index, Error **errp) 750 { 751 FILE *f; 752 uint32_t l; 753 CPUState *cpu; 754 uint8_t buf[1024]; 755 int64_t orig_addr = addr, orig_size = size; 756 757 if (!has_cpu) { 758 cpu_index = 0; 759 } 760 761 cpu = qemu_get_cpu(cpu_index); 762 if (cpu == NULL) { 763 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index", 764 "a CPU number"); 765 return; 766 } 767 768 f = fopen(filename, "wb"); 769 if (!f) { 770 error_setg_file_open(errp, errno, filename); 771 return; 772 } 773 774 while (size != 0) { 775 l = sizeof(buf); 776 if (l > size) 777 l = size; 778 if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) { 779 error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64 780 " specified", orig_addr, orig_size); 781 goto exit; 782 } 783 if (fwrite(buf, 1, l, f) != l) { 784 error_setg(errp, QERR_IO_ERROR); 785 goto exit; 786 } 787 addr += l; 788 size -= l; 789 } 790 791 exit: 792 fclose(f); 793 } 794 795 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename, 796 Error **errp) 797 { 798 FILE *f; 799 uint32_t l; 800 uint8_t buf[1024]; 801 802 f = fopen(filename, "wb"); 803 if (!f) { 804 error_setg_file_open(errp, errno, filename); 805 return; 806 } 807 808 while (size != 0) { 809 l = sizeof(buf); 810 if (l > size) 811 l = size; 812 cpu_physical_memory_read(addr, buf, l); 813 if (fwrite(buf, 1, l, f) != l) { 814 error_setg(errp, QERR_IO_ERROR); 815 goto exit; 816 } 817 addr += l; 818 size -= l; 819 } 820 821 exit: 822 fclose(f); 823 } 824 825 void qmp_inject_nmi(Error **errp) 826 { 827 nmi_monitor_handle(monitor_get_cpu_index(monitor_cur()), errp); 828 } 829 830