1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "monitor/monitor.h" 27 #include "qemu/coroutine-tls.h" 28 #include "qapi/error.h" 29 #include "qapi/qapi-commands-machine.h" 30 #include "qapi/qapi-commands-misc.h" 31 #include "qapi/qapi-events-run-state.h" 32 #include "qapi/qmp/qerror.h" 33 #include "exec/gdbstub.h" 34 #include "sysemu/hw_accel.h" 35 #include "exec/cpu-common.h" 36 #include "qemu/thread.h" 37 #include "qemu/main-loop.h" 38 #include "qemu/plugin.h" 39 #include "sysemu/cpus.h" 40 #include "qemu/guest-random.h" 41 #include "hw/nmi.h" 42 #include "sysemu/replay.h" 43 #include "sysemu/runstate.h" 44 #include "sysemu/cpu-timers.h" 45 #include "sysemu/whpx.h" 46 #include "hw/boards.h" 47 #include "hw/hw.h" 48 #include "trace.h" 49 50 #ifdef CONFIG_LINUX 51 52 #include <sys/prctl.h> 53 54 #ifndef PR_MCE_KILL 55 #define PR_MCE_KILL 33 56 #endif 57 58 #ifndef PR_MCE_KILL_SET 59 #define PR_MCE_KILL_SET 1 60 #endif 61 62 #ifndef PR_MCE_KILL_EARLY 63 #define PR_MCE_KILL_EARLY 1 64 #endif 65 66 #endif /* CONFIG_LINUX */ 67 68 /* The Big QEMU Lock (BQL) */ 69 static QemuMutex bql; 70 71 /* 72 * The chosen accelerator is supposed to register this. 73 */ 74 static const AccelOpsClass *cpus_accel; 75 76 bool cpu_is_stopped(CPUState *cpu) 77 { 78 return cpu->stopped || !runstate_is_running(); 79 } 80 81 bool cpu_work_list_empty(CPUState *cpu) 82 { 83 return QSIMPLEQ_EMPTY_ATOMIC(&cpu->work_list); 84 } 85 86 bool cpu_thread_is_idle(CPUState *cpu) 87 { 88 if (cpu->stop || !cpu_work_list_empty(cpu)) { 89 return false; 90 } 91 if (cpu_is_stopped(cpu)) { 92 return true; 93 } 94 if (!cpu->halted || cpu_has_work(cpu)) { 95 return false; 96 } 97 if (cpus_accel->cpu_thread_is_idle) { 98 return cpus_accel->cpu_thread_is_idle(cpu); 99 } 100 return true; 101 } 102 103 bool all_cpu_threads_idle(void) 104 { 105 CPUState *cpu; 106 107 CPU_FOREACH(cpu) { 108 if (!cpu_thread_is_idle(cpu)) { 109 return false; 110 } 111 } 112 return true; 113 } 114 115 /***********************************************************/ 116 void hw_error(const char *fmt, ...) 117 { 118 va_list ap; 119 CPUState *cpu; 120 121 va_start(ap, fmt); 122 fprintf(stderr, "qemu: hardware error: "); 123 vfprintf(stderr, fmt, ap); 124 fprintf(stderr, "\n"); 125 CPU_FOREACH(cpu) { 126 fprintf(stderr, "CPU #%d:\n", cpu->cpu_index); 127 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU); 128 } 129 va_end(ap); 130 abort(); 131 } 132 133 void cpu_synchronize_all_states(void) 134 { 135 CPUState *cpu; 136 137 CPU_FOREACH(cpu) { 138 cpu_synchronize_state(cpu); 139 } 140 } 141 142 void cpu_synchronize_all_post_reset(void) 143 { 144 CPUState *cpu; 145 146 CPU_FOREACH(cpu) { 147 cpu_synchronize_post_reset(cpu); 148 } 149 } 150 151 void cpu_synchronize_all_post_init(void) 152 { 153 CPUState *cpu; 154 155 CPU_FOREACH(cpu) { 156 cpu_synchronize_post_init(cpu); 157 } 158 } 159 160 void cpu_synchronize_all_pre_loadvm(void) 161 { 162 CPUState *cpu; 163 164 CPU_FOREACH(cpu) { 165 cpu_synchronize_pre_loadvm(cpu); 166 } 167 } 168 169 void cpu_synchronize_state(CPUState *cpu) 170 { 171 if (cpus_accel->synchronize_state) { 172 cpus_accel->synchronize_state(cpu); 173 } 174 } 175 176 void cpu_synchronize_post_reset(CPUState *cpu) 177 { 178 if (cpus_accel->synchronize_post_reset) { 179 cpus_accel->synchronize_post_reset(cpu); 180 } 181 } 182 183 void cpu_synchronize_post_init(CPUState *cpu) 184 { 185 if (cpus_accel->synchronize_post_init) { 186 cpus_accel->synchronize_post_init(cpu); 187 } 188 } 189 190 void cpu_synchronize_pre_loadvm(CPUState *cpu) 191 { 192 if (cpus_accel->synchronize_pre_loadvm) { 193 cpus_accel->synchronize_pre_loadvm(cpu); 194 } 195 } 196 197 bool cpus_are_resettable(void) 198 { 199 if (cpus_accel->cpus_are_resettable) { 200 return cpus_accel->cpus_are_resettable(); 201 } 202 return true; 203 } 204 205 void cpu_exec_reset_hold(CPUState *cpu) 206 { 207 if (cpus_accel->cpu_reset_hold) { 208 cpus_accel->cpu_reset_hold(cpu); 209 } 210 } 211 212 int64_t cpus_get_virtual_clock(void) 213 { 214 /* 215 * XXX 216 * 217 * need to check that cpus_accel is not NULL, because qcow2 calls 218 * qemu_get_clock_ns(CLOCK_VIRTUAL) without any accel initialized and 219 * with ticks disabled in some io-tests: 220 * 030 040 041 060 099 120 127 140 156 161 172 181 191 192 195 203 229 249 256 267 221 * 222 * is this expected? 223 * 224 * XXX 225 */ 226 if (cpus_accel && cpus_accel->get_virtual_clock) { 227 return cpus_accel->get_virtual_clock(); 228 } 229 return cpu_get_clock(); 230 } 231 232 /* 233 * Signal the new virtual time to the accelerator. This is only needed 234 * by accelerators that need to track the changes as we warp time. 235 */ 236 void cpus_set_virtual_clock(int64_t new_time) 237 { 238 if (cpus_accel && cpus_accel->set_virtual_clock) { 239 cpus_accel->set_virtual_clock(new_time); 240 } 241 } 242 243 /* 244 * return the time elapsed in VM between vm_start and vm_stop. Unless 245 * icount is active, cpus_get_elapsed_ticks() uses units of the host CPU cycle 246 * counter. 247 */ 248 int64_t cpus_get_elapsed_ticks(void) 249 { 250 if (cpus_accel->get_elapsed_ticks) { 251 return cpus_accel->get_elapsed_ticks(); 252 } 253 return cpu_get_ticks(); 254 } 255 256 static void generic_handle_interrupt(CPUState *cpu, int mask) 257 { 258 cpu->interrupt_request |= mask; 259 260 if (!qemu_cpu_is_self(cpu)) { 261 qemu_cpu_kick(cpu); 262 } 263 } 264 265 void cpu_interrupt(CPUState *cpu, int mask) 266 { 267 if (cpus_accel->handle_interrupt) { 268 cpus_accel->handle_interrupt(cpu, mask); 269 } else { 270 generic_handle_interrupt(cpu, mask); 271 } 272 } 273 274 /* 275 * True if the vm was previously suspended, and has not been woken or reset. 276 */ 277 static int vm_was_suspended; 278 279 void vm_set_suspended(bool suspended) 280 { 281 vm_was_suspended = suspended; 282 } 283 284 bool vm_get_suspended(void) 285 { 286 return vm_was_suspended; 287 } 288 289 static int do_vm_stop(RunState state, bool send_stop) 290 { 291 int ret = 0; 292 RunState oldstate = runstate_get(); 293 294 if (runstate_is_live(oldstate)) { 295 vm_was_suspended = (oldstate == RUN_STATE_SUSPENDED); 296 runstate_set(state); 297 cpu_disable_ticks(); 298 if (oldstate == RUN_STATE_RUNNING) { 299 pause_all_vcpus(); 300 } 301 vm_state_notify(0, state); 302 if (send_stop) { 303 qapi_event_send_stop(); 304 } 305 } 306 307 bdrv_drain_all(); 308 ret = bdrv_flush_all(); 309 trace_vm_stop_flush_all(ret); 310 311 return ret; 312 } 313 314 /* Special vm_stop() variant for terminating the process. Historically clients 315 * did not expect a QMP STOP event and so we need to retain compatibility. 316 */ 317 int vm_shutdown(void) 318 { 319 return do_vm_stop(RUN_STATE_SHUTDOWN, false); 320 } 321 322 bool cpu_can_run(CPUState *cpu) 323 { 324 if (cpu->stop) { 325 return false; 326 } 327 if (cpu_is_stopped(cpu)) { 328 return false; 329 } 330 return true; 331 } 332 333 void cpu_handle_guest_debug(CPUState *cpu) 334 { 335 if (replay_running_debug()) { 336 if (!cpu->singlestep_enabled) { 337 /* 338 * Report about the breakpoint and 339 * make a single step to skip it 340 */ 341 replay_breakpoint(); 342 cpu_single_step(cpu, SSTEP_ENABLE); 343 } else { 344 cpu_single_step(cpu, 0); 345 } 346 } else { 347 gdb_set_stop_cpu(cpu); 348 qemu_system_debug_request(); 349 cpu->stopped = true; 350 } 351 } 352 353 #ifdef CONFIG_LINUX 354 static void sigbus_reraise(void) 355 { 356 sigset_t set; 357 struct sigaction action; 358 359 memset(&action, 0, sizeof(action)); 360 action.sa_handler = SIG_DFL; 361 if (!sigaction(SIGBUS, &action, NULL)) { 362 raise(SIGBUS); 363 sigemptyset(&set); 364 sigaddset(&set, SIGBUS); 365 pthread_sigmask(SIG_UNBLOCK, &set, NULL); 366 } 367 perror("Failed to re-raise SIGBUS!"); 368 abort(); 369 } 370 371 static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx) 372 { 373 if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) { 374 sigbus_reraise(); 375 } 376 377 if (current_cpu) { 378 /* Called asynchronously in VCPU thread. */ 379 if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) { 380 sigbus_reraise(); 381 } 382 } else { 383 /* Called synchronously (via signalfd) in main thread. */ 384 if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) { 385 sigbus_reraise(); 386 } 387 } 388 } 389 390 static void qemu_init_sigbus(void) 391 { 392 struct sigaction action; 393 394 /* 395 * ALERT: when modifying this, take care that SIGBUS forwarding in 396 * qemu_prealloc_mem() will continue working as expected. 397 */ 398 memset(&action, 0, sizeof(action)); 399 action.sa_flags = SA_SIGINFO; 400 action.sa_sigaction = sigbus_handler; 401 sigaction(SIGBUS, &action, NULL); 402 403 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0); 404 } 405 #else /* !CONFIG_LINUX */ 406 static void qemu_init_sigbus(void) 407 { 408 } 409 #endif /* !CONFIG_LINUX */ 410 411 static QemuThread io_thread; 412 413 /* cpu creation */ 414 static QemuCond qemu_cpu_cond; 415 /* system init */ 416 static QemuCond qemu_pause_cond; 417 418 void qemu_init_cpu_loop(void) 419 { 420 qemu_init_sigbus(); 421 qemu_cond_init(&qemu_cpu_cond); 422 qemu_cond_init(&qemu_pause_cond); 423 qemu_mutex_init(&bql); 424 425 qemu_thread_get_self(&io_thread); 426 } 427 428 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data) 429 { 430 do_run_on_cpu(cpu, func, data, &bql); 431 } 432 433 static void qemu_cpu_stop(CPUState *cpu, bool exit) 434 { 435 g_assert(qemu_cpu_is_self(cpu)); 436 cpu->stop = false; 437 cpu->stopped = true; 438 if (exit) { 439 cpu_exit(cpu); 440 } 441 qemu_cond_broadcast(&qemu_pause_cond); 442 } 443 444 void qemu_wait_io_event_common(CPUState *cpu) 445 { 446 qatomic_set_mb(&cpu->thread_kicked, false); 447 if (cpu->stop) { 448 qemu_cpu_stop(cpu, false); 449 } 450 process_queued_cpu_work(cpu); 451 } 452 453 void qemu_wait_io_event(CPUState *cpu) 454 { 455 bool slept = false; 456 457 while (cpu_thread_is_idle(cpu)) { 458 if (!slept) { 459 slept = true; 460 qemu_plugin_vcpu_idle_cb(cpu); 461 } 462 qemu_cond_wait(cpu->halt_cond, &bql); 463 } 464 if (slept) { 465 qemu_plugin_vcpu_resume_cb(cpu); 466 } 467 468 qemu_wait_io_event_common(cpu); 469 } 470 471 void cpus_kick_thread(CPUState *cpu) 472 { 473 if (cpu->thread_kicked) { 474 return; 475 } 476 cpu->thread_kicked = true; 477 478 #ifndef _WIN32 479 int err = pthread_kill(cpu->thread->thread, SIG_IPI); 480 if (err && err != ESRCH) { 481 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err)); 482 exit(1); 483 } 484 #else 485 qemu_sem_post(&cpu->sem); 486 #endif 487 } 488 489 void qemu_cpu_kick(CPUState *cpu) 490 { 491 qemu_cond_broadcast(cpu->halt_cond); 492 if (cpus_accel->kick_vcpu_thread) { 493 cpus_accel->kick_vcpu_thread(cpu); 494 } else { /* default */ 495 cpus_kick_thread(cpu); 496 } 497 } 498 499 void qemu_cpu_kick_self(void) 500 { 501 assert(current_cpu); 502 cpus_kick_thread(current_cpu); 503 } 504 505 bool qemu_cpu_is_self(CPUState *cpu) 506 { 507 return qemu_thread_is_self(cpu->thread); 508 } 509 510 bool qemu_in_vcpu_thread(void) 511 { 512 return current_cpu && qemu_cpu_is_self(current_cpu); 513 } 514 515 QEMU_DEFINE_STATIC_CO_TLS(bool, bql_locked) 516 517 bool bql_locked(void) 518 { 519 return get_bql_locked(); 520 } 521 522 bool qemu_in_main_thread(void) 523 { 524 return bql_locked(); 525 } 526 527 /* 528 * The BQL is taken from so many places that it is worth profiling the 529 * callers directly, instead of funneling them all through a single function. 530 */ 531 void bql_lock_impl(const char *file, int line) 532 { 533 QemuMutexLockFunc bql_lock_fn = qatomic_read(&bql_mutex_lock_func); 534 535 g_assert(!bql_locked()); 536 bql_lock_fn(&bql, file, line); 537 set_bql_locked(true); 538 } 539 540 void bql_unlock(void) 541 { 542 g_assert(bql_locked()); 543 set_bql_locked(false); 544 qemu_mutex_unlock(&bql); 545 } 546 547 void qemu_cond_wait_bql(QemuCond *cond) 548 { 549 qemu_cond_wait(cond, &bql); 550 } 551 552 void qemu_cond_timedwait_bql(QemuCond *cond, int ms) 553 { 554 qemu_cond_timedwait(cond, &bql, ms); 555 } 556 557 /* signal CPU creation */ 558 void cpu_thread_signal_created(CPUState *cpu) 559 { 560 cpu->created = true; 561 qemu_cond_signal(&qemu_cpu_cond); 562 } 563 564 /* signal CPU destruction */ 565 void cpu_thread_signal_destroyed(CPUState *cpu) 566 { 567 cpu->created = false; 568 qemu_cond_signal(&qemu_cpu_cond); 569 } 570 571 572 static bool all_vcpus_paused(void) 573 { 574 CPUState *cpu; 575 576 CPU_FOREACH(cpu) { 577 if (!cpu->stopped) { 578 return false; 579 } 580 } 581 582 return true; 583 } 584 585 void pause_all_vcpus(void) 586 { 587 CPUState *cpu; 588 589 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false); 590 CPU_FOREACH(cpu) { 591 if (qemu_cpu_is_self(cpu)) { 592 qemu_cpu_stop(cpu, true); 593 } else { 594 cpu->stop = true; 595 qemu_cpu_kick(cpu); 596 } 597 } 598 599 /* We need to drop the replay_lock so any vCPU threads woken up 600 * can finish their replay tasks 601 */ 602 replay_mutex_unlock(); 603 604 while (!all_vcpus_paused()) { 605 qemu_cond_wait(&qemu_pause_cond, &bql); 606 CPU_FOREACH(cpu) { 607 qemu_cpu_kick(cpu); 608 } 609 } 610 611 bql_unlock(); 612 replay_mutex_lock(); 613 bql_lock(); 614 } 615 616 void cpu_resume(CPUState *cpu) 617 { 618 cpu->stop = false; 619 cpu->stopped = false; 620 qemu_cpu_kick(cpu); 621 } 622 623 void resume_all_vcpus(void) 624 { 625 CPUState *cpu; 626 627 if (!runstate_is_running()) { 628 return; 629 } 630 631 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true); 632 CPU_FOREACH(cpu) { 633 cpu_resume(cpu); 634 } 635 } 636 637 void cpu_remove_sync(CPUState *cpu) 638 { 639 cpu->stop = true; 640 cpu->unplug = true; 641 qemu_cpu_kick(cpu); 642 bql_unlock(); 643 qemu_thread_join(cpu->thread); 644 bql_lock(); 645 } 646 647 void cpus_register_accel(const AccelOpsClass *ops) 648 { 649 assert(ops != NULL); 650 assert(ops->create_vcpu_thread != NULL); /* mandatory */ 651 cpus_accel = ops; 652 } 653 654 const AccelOpsClass *cpus_get_accel(void) 655 { 656 /* broken if we call this early */ 657 assert(cpus_accel); 658 return cpus_accel; 659 } 660 661 void qemu_init_vcpu(CPUState *cpu) 662 { 663 MachineState *ms = MACHINE(qdev_get_machine()); 664 665 cpu->nr_cores = machine_topo_get_cores_per_socket(ms); 666 cpu->nr_threads = ms->smp.threads; 667 cpu->stopped = true; 668 cpu->random_seed = qemu_guest_random_seed_thread_part1(); 669 670 if (!cpu->as) { 671 /* If the target cpu hasn't set up any address spaces itself, 672 * give it the default one. 673 */ 674 cpu->num_ases = 1; 675 cpu_address_space_init(cpu, 0, "cpu-memory", cpu->memory); 676 } 677 678 /* accelerators all implement the AccelOpsClass */ 679 g_assert(cpus_accel != NULL && cpus_accel->create_vcpu_thread != NULL); 680 cpus_accel->create_vcpu_thread(cpu); 681 682 while (!cpu->created) { 683 qemu_cond_wait(&qemu_cpu_cond, &bql); 684 } 685 } 686 687 void cpu_stop_current(void) 688 { 689 if (current_cpu) { 690 current_cpu->stop = true; 691 cpu_exit(current_cpu); 692 } 693 } 694 695 int vm_stop(RunState state) 696 { 697 if (qemu_in_vcpu_thread()) { 698 qemu_system_vmstop_request_prepare(); 699 qemu_system_vmstop_request(state); 700 /* 701 * FIXME: should not return to device code in case 702 * vm_stop() has been requested. 703 */ 704 cpu_stop_current(); 705 return 0; 706 } 707 708 return do_vm_stop(state, true); 709 } 710 711 /** 712 * Prepare for (re)starting the VM. 713 * Returns 0 if the vCPUs should be restarted, -1 on an error condition, 714 * and 1 otherwise. 715 */ 716 int vm_prepare_start(bool step_pending) 717 { 718 int ret = vm_was_suspended ? 1 : 0; 719 RunState state = vm_was_suspended ? RUN_STATE_SUSPENDED : RUN_STATE_RUNNING; 720 RunState requested; 721 722 qemu_vmstop_requested(&requested); 723 if (runstate_is_running() && requested == RUN_STATE__MAX) { 724 return -1; 725 } 726 727 /* Ensure that a STOP/RESUME pair of events is emitted if a 728 * vmstop request was pending. The BLOCK_IO_ERROR event, for 729 * example, according to documentation is always followed by 730 * the STOP event. 731 */ 732 if (runstate_is_running()) { 733 qapi_event_send_stop(); 734 qapi_event_send_resume(); 735 return -1; 736 } 737 738 /* 739 * WHPX accelerator needs to know whether we are going to step 740 * any CPUs, before starting the first one. 741 */ 742 if (cpus_accel->synchronize_pre_resume) { 743 cpus_accel->synchronize_pre_resume(step_pending); 744 } 745 746 /* We are sending this now, but the CPUs will be resumed shortly later */ 747 qapi_event_send_resume(); 748 749 cpu_enable_ticks(); 750 runstate_set(state); 751 vm_state_notify(1, state); 752 vm_was_suspended = false; 753 return ret; 754 } 755 756 void vm_start(void) 757 { 758 if (!vm_prepare_start(false)) { 759 resume_all_vcpus(); 760 } 761 } 762 763 void vm_resume(RunState state) 764 { 765 if (runstate_is_live(state)) { 766 vm_start(); 767 } else { 768 runstate_set(state); 769 } 770 } 771 772 /* does a state transition even if the VM is already stopped, 773 current state is forgotten forever */ 774 int vm_stop_force_state(RunState state) 775 { 776 if (runstate_is_live(runstate_get())) { 777 return vm_stop(state); 778 } else { 779 int ret; 780 runstate_set(state); 781 782 bdrv_drain_all(); 783 /* Make sure to return an error if the flush in a previous vm_stop() 784 * failed. */ 785 ret = bdrv_flush_all(); 786 trace_vm_stop_flush_all(ret); 787 return ret; 788 } 789 } 790 791 void qmp_memsave(int64_t addr, int64_t size, const char *filename, 792 bool has_cpu, int64_t cpu_index, Error **errp) 793 { 794 FILE *f; 795 uint32_t l; 796 CPUState *cpu; 797 uint8_t buf[1024]; 798 int64_t orig_addr = addr, orig_size = size; 799 800 if (!has_cpu) { 801 cpu_index = 0; 802 } 803 804 cpu = qemu_get_cpu(cpu_index); 805 if (cpu == NULL) { 806 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index", 807 "a CPU number"); 808 return; 809 } 810 811 f = fopen(filename, "wb"); 812 if (!f) { 813 error_setg_file_open(errp, errno, filename); 814 return; 815 } 816 817 while (size != 0) { 818 l = sizeof(buf); 819 if (l > size) 820 l = size; 821 if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) { 822 error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64 823 " specified", orig_addr, orig_size); 824 goto exit; 825 } 826 if (fwrite(buf, 1, l, f) != l) { 827 error_setg(errp, "writing memory to '%s' failed", 828 filename); 829 goto exit; 830 } 831 addr += l; 832 size -= l; 833 } 834 835 exit: 836 fclose(f); 837 } 838 839 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename, 840 Error **errp) 841 { 842 FILE *f; 843 uint32_t l; 844 uint8_t buf[1024]; 845 846 f = fopen(filename, "wb"); 847 if (!f) { 848 error_setg_file_open(errp, errno, filename); 849 return; 850 } 851 852 while (size != 0) { 853 l = sizeof(buf); 854 if (l > size) 855 l = size; 856 cpu_physical_memory_read(addr, buf, l); 857 if (fwrite(buf, 1, l, f) != l) { 858 error_setg(errp, "writing memory to '%s' failed", 859 filename); 860 goto exit; 861 } 862 addr += l; 863 size -= l; 864 } 865 866 exit: 867 fclose(f); 868 } 869 870 void qmp_inject_nmi(Error **errp) 871 { 872 nmi_monitor_handle(monitor_get_cpu_index(monitor_cur()), errp); 873 } 874 875