1 /* 2 * Simple interface for atomic operations. 3 * 4 * Copyright (C) 2013 Red Hat, Inc. 5 * 6 * Author: Paolo Bonzini <pbonzini@redhat.com> 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2 or later. 9 * See the COPYING file in the top-level directory. 10 * 11 * See docs/devel/atomics.rst for discussion about the guarantees each 12 * atomic primitive is meant to provide. 13 */ 14 15 #ifndef QEMU_ATOMIC_H 16 #define QEMU_ATOMIC_H 17 18 #include "compiler.h" 19 20 /* Compiler barrier */ 21 #define barrier() ({ asm volatile("" ::: "memory"); (void)0; }) 22 23 /* The variable that receives the old value of an atomically-accessed 24 * variable must be non-qualified, because atomic builtins return values 25 * through a pointer-type argument as in __atomic_load(&var, &old, MODEL). 26 * 27 * This macro has to handle types smaller than int manually, because of 28 * implicit promotion. int and larger types, as well as pointers, can be 29 * converted to a non-qualified type just by applying a binary operator. 30 */ 31 #define typeof_strip_qual(expr) \ 32 typeof( \ 33 __builtin_choose_expr( \ 34 __builtin_types_compatible_p(typeof(expr), bool) || \ 35 __builtin_types_compatible_p(typeof(expr), const bool) || \ 36 __builtin_types_compatible_p(typeof(expr), volatile bool) || \ 37 __builtin_types_compatible_p(typeof(expr), const volatile bool), \ 38 (bool)1, \ 39 __builtin_choose_expr( \ 40 __builtin_types_compatible_p(typeof(expr), signed char) || \ 41 __builtin_types_compatible_p(typeof(expr), const signed char) || \ 42 __builtin_types_compatible_p(typeof(expr), volatile signed char) || \ 43 __builtin_types_compatible_p(typeof(expr), const volatile signed char), \ 44 (signed char)1, \ 45 __builtin_choose_expr( \ 46 __builtin_types_compatible_p(typeof(expr), unsigned char) || \ 47 __builtin_types_compatible_p(typeof(expr), const unsigned char) || \ 48 __builtin_types_compatible_p(typeof(expr), volatile unsigned char) || \ 49 __builtin_types_compatible_p(typeof(expr), const volatile unsigned char), \ 50 (unsigned char)1, \ 51 __builtin_choose_expr( \ 52 __builtin_types_compatible_p(typeof(expr), signed short) || \ 53 __builtin_types_compatible_p(typeof(expr), const signed short) || \ 54 __builtin_types_compatible_p(typeof(expr), volatile signed short) || \ 55 __builtin_types_compatible_p(typeof(expr), const volatile signed short), \ 56 (signed short)1, \ 57 __builtin_choose_expr( \ 58 __builtin_types_compatible_p(typeof(expr), unsigned short) || \ 59 __builtin_types_compatible_p(typeof(expr), const unsigned short) || \ 60 __builtin_types_compatible_p(typeof(expr), volatile unsigned short) || \ 61 __builtin_types_compatible_p(typeof(expr), const volatile unsigned short), \ 62 (unsigned short)1, \ 63 (expr)+0)))))) 64 65 #ifndef __ATOMIC_RELAXED 66 #error "Expecting C11 atomic ops" 67 #endif 68 69 /* Manual memory barriers 70 * 71 *__atomic_thread_fence does not include a compiler barrier; instead, 72 * the barrier is part of __atomic_load/__atomic_store's "volatile-like" 73 * semantics. If smp_wmb() is a no-op, absence of the barrier means that 74 * the compiler is free to reorder stores on each side of the barrier. 75 * Add one here, and similarly in smp_rmb() and smp_read_barrier_depends(). 76 */ 77 78 #define smp_mb() ({ barrier(); __atomic_thread_fence(__ATOMIC_SEQ_CST); }) 79 #define smp_mb_release() ({ barrier(); __atomic_thread_fence(__ATOMIC_RELEASE); }) 80 #define smp_mb_acquire() ({ barrier(); __atomic_thread_fence(__ATOMIC_ACQUIRE); }) 81 82 /* Most compilers currently treat consume and acquire the same, but really 83 * no processors except Alpha need a barrier here. Leave it in if 84 * using Thread Sanitizer to avoid warnings, otherwise optimize it away. 85 */ 86 #ifdef QEMU_SANITIZE_THREAD 87 #define smp_read_barrier_depends() ({ barrier(); __atomic_thread_fence(__ATOMIC_CONSUME); }) 88 #elif defined(__alpha__) 89 #define smp_read_barrier_depends() asm volatile("mb":::"memory") 90 #else 91 #define smp_read_barrier_depends() barrier() 92 #endif 93 94 /* 95 * A signal barrier forces all pending local memory ops to be observed before 96 * a SIGSEGV is delivered to the *same* thread. In practice this is exactly 97 * the same as barrier(), but since we have the correct builtin, use it. 98 */ 99 #define signal_barrier() __atomic_signal_fence(__ATOMIC_SEQ_CST) 100 101 /* Sanity check that the size of an atomic operation isn't "overly large". 102 * Despite the fact that e.g. i686 has 64-bit atomic operations, we do not 103 * want to use them because we ought not need them, and this lets us do a 104 * bit of sanity checking that other 32-bit hosts might build. 105 * 106 * That said, we have a problem on 64-bit ILP32 hosts in that in order to 107 * sync with TCG_OVERSIZED_GUEST, this must match TCG_TARGET_REG_BITS. 108 * We'd prefer not want to pull in everything else TCG related, so handle 109 * those few cases by hand. 110 * 111 * Note that x32 is fully detected with __x86_64__ + _ILP32, and that for 112 * Sparc we always force the use of sparcv9 in configure. MIPS n32 (ILP32) & 113 * n64 (LP64) ABIs are both detected using __mips64. 114 */ 115 #if defined(__x86_64__) || defined(__sparc__) || defined(__mips64) 116 # define ATOMIC_REG_SIZE 8 117 #else 118 # define ATOMIC_REG_SIZE sizeof(void *) 119 #endif 120 121 /* Weak atomic operations prevent the compiler moving other 122 * loads/stores past the atomic operation load/store. However there is 123 * no explicit memory barrier for the processor. 124 * 125 * The C11 memory model says that variables that are accessed from 126 * different threads should at least be done with __ATOMIC_RELAXED 127 * primitives or the result is undefined. Generally this has little to 128 * no effect on the generated code but not using the atomic primitives 129 * will get flagged by sanitizers as a violation. 130 */ 131 #define qatomic_read__nocheck(ptr) \ 132 __atomic_load_n(ptr, __ATOMIC_RELAXED) 133 134 #define qatomic_read(ptr) \ 135 ({ \ 136 qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \ 137 qatomic_read__nocheck(ptr); \ 138 }) 139 140 #define qatomic_set__nocheck(ptr, i) \ 141 __atomic_store_n(ptr, i, __ATOMIC_RELAXED) 142 143 #define qatomic_set(ptr, i) do { \ 144 qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \ 145 qatomic_set__nocheck(ptr, i); \ 146 } while(0) 147 148 /* See above: most compilers currently treat consume and acquire the 149 * same, but this slows down qatomic_rcu_read unnecessarily. 150 */ 151 #ifdef QEMU_SANITIZE_THREAD 152 #define qatomic_rcu_read__nocheck(ptr, valptr) \ 153 __atomic_load(ptr, valptr, __ATOMIC_CONSUME); 154 #else 155 #define qatomic_rcu_read__nocheck(ptr, valptr) \ 156 __atomic_load(ptr, valptr, __ATOMIC_RELAXED); \ 157 smp_read_barrier_depends(); 158 #endif 159 160 #define qatomic_rcu_read(ptr) \ 161 ({ \ 162 qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \ 163 typeof_strip_qual(*ptr) _val; \ 164 qatomic_rcu_read__nocheck(ptr, &_val); \ 165 _val; \ 166 }) 167 168 #define qatomic_rcu_set(ptr, i) do { \ 169 qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \ 170 __atomic_store_n(ptr, i, __ATOMIC_RELEASE); \ 171 } while(0) 172 173 #define qatomic_load_acquire(ptr) \ 174 ({ \ 175 qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \ 176 typeof_strip_qual(*ptr) _val; \ 177 __atomic_load(ptr, &_val, __ATOMIC_ACQUIRE); \ 178 _val; \ 179 }) 180 181 #define qatomic_store_release(ptr, i) do { \ 182 qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \ 183 __atomic_store_n(ptr, i, __ATOMIC_RELEASE); \ 184 } while(0) 185 186 187 /* All the remaining operations are fully sequentially consistent */ 188 189 #define qatomic_xchg__nocheck(ptr, i) ({ \ 190 __atomic_exchange_n(ptr, (i), __ATOMIC_SEQ_CST); \ 191 }) 192 193 #define qatomic_xchg(ptr, i) ({ \ 194 qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \ 195 qatomic_xchg__nocheck(ptr, i); \ 196 }) 197 198 /* Returns the eventual value, failed or not */ 199 #define qatomic_cmpxchg__nocheck(ptr, old, new) ({ \ 200 typeof_strip_qual(*ptr) _old = (old); \ 201 (void)__atomic_compare_exchange_n(ptr, &_old, new, false, \ 202 __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); \ 203 _old; \ 204 }) 205 206 #define qatomic_cmpxchg(ptr, old, new) ({ \ 207 qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \ 208 qatomic_cmpxchg__nocheck(ptr, old, new); \ 209 }) 210 211 /* Provide shorter names for GCC atomic builtins, return old value */ 212 #define qatomic_fetch_inc(ptr) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST) 213 #define qatomic_fetch_dec(ptr) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST) 214 215 #define qatomic_fetch_add(ptr, n) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST) 216 #define qatomic_fetch_sub(ptr, n) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST) 217 #define qatomic_fetch_and(ptr, n) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST) 218 #define qatomic_fetch_or(ptr, n) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST) 219 #define qatomic_fetch_xor(ptr, n) __atomic_fetch_xor(ptr, n, __ATOMIC_SEQ_CST) 220 221 #define qatomic_inc_fetch(ptr) __atomic_add_fetch(ptr, 1, __ATOMIC_SEQ_CST) 222 #define qatomic_dec_fetch(ptr) __atomic_sub_fetch(ptr, 1, __ATOMIC_SEQ_CST) 223 #define qatomic_add_fetch(ptr, n) __atomic_add_fetch(ptr, n, __ATOMIC_SEQ_CST) 224 #define qatomic_sub_fetch(ptr, n) __atomic_sub_fetch(ptr, n, __ATOMIC_SEQ_CST) 225 #define qatomic_and_fetch(ptr, n) __atomic_and_fetch(ptr, n, __ATOMIC_SEQ_CST) 226 #define qatomic_or_fetch(ptr, n) __atomic_or_fetch(ptr, n, __ATOMIC_SEQ_CST) 227 #define qatomic_xor_fetch(ptr, n) __atomic_xor_fetch(ptr, n, __ATOMIC_SEQ_CST) 228 229 /* And even shorter names that return void. */ 230 #define qatomic_inc(ptr) \ 231 ((void) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST)) 232 #define qatomic_dec(ptr) \ 233 ((void) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST)) 234 #define qatomic_add(ptr, n) \ 235 ((void) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST)) 236 #define qatomic_sub(ptr, n) \ 237 ((void) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST)) 238 #define qatomic_and(ptr, n) \ 239 ((void) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST)) 240 #define qatomic_or(ptr, n) \ 241 ((void) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST)) 242 #define qatomic_xor(ptr, n) \ 243 ((void) __atomic_fetch_xor(ptr, n, __ATOMIC_SEQ_CST)) 244 245 #define smp_wmb() smp_mb_release() 246 #define smp_rmb() smp_mb_acquire() 247 248 /* qatomic_mb_read/set semantics map Java volatile variables. They are 249 * less expensive on some platforms (notably POWER) than fully 250 * sequentially consistent operations. 251 * 252 * As long as they are used as paired operations they are safe to 253 * use. See docs/devel/atomics.rst for more discussion. 254 */ 255 256 #define qatomic_mb_read(ptr) \ 257 qatomic_load_acquire(ptr) 258 259 #if !defined(QEMU_SANITIZE_THREAD) && \ 260 (defined(__i386__) || defined(__x86_64__) || defined(__s390x__)) 261 /* This is more efficient than a store plus a fence. */ 262 # define qatomic_mb_set(ptr, i) ((void)qatomic_xchg(ptr, i)) 263 #else 264 # define qatomic_mb_set(ptr, i) \ 265 ({ qatomic_store_release(ptr, i); smp_mb(); }) 266 #endif 267 268 #define qatomic_fetch_inc_nonzero(ptr) ({ \ 269 typeof_strip_qual(*ptr) _oldn = qatomic_read(ptr); \ 270 while (_oldn && qatomic_cmpxchg(ptr, _oldn, _oldn + 1) != _oldn) { \ 271 _oldn = qatomic_read(ptr); \ 272 } \ 273 _oldn; \ 274 }) 275 276 /* 277 * Abstractions to access atomically (i.e. "once") i64/u64 variables. 278 * 279 * The i386 abi is odd in that by default members are only aligned to 280 * 4 bytes, which means that 8-byte types can wind up mis-aligned. 281 * Clang will then warn about this, and emit a call into libatomic. 282 * 283 * Use of these types in structures when they will be used with atomic 284 * operations can avoid this. 285 */ 286 typedef int64_t aligned_int64_t __attribute__((aligned(8))); 287 typedef uint64_t aligned_uint64_t __attribute__((aligned(8))); 288 289 #ifdef CONFIG_ATOMIC64 290 /* Use __nocheck because sizeof(void *) might be < sizeof(u64) */ 291 #define qatomic_read_i64(P) \ 292 _Generic(*(P), int64_t: qatomic_read__nocheck(P)) 293 #define qatomic_read_u64(P) \ 294 _Generic(*(P), uint64_t: qatomic_read__nocheck(P)) 295 #define qatomic_set_i64(P, V) \ 296 _Generic(*(P), int64_t: qatomic_set__nocheck(P, V)) 297 #define qatomic_set_u64(P, V) \ 298 _Generic(*(P), uint64_t: qatomic_set__nocheck(P, V)) 299 300 static inline void qatomic64_init(void) 301 { 302 } 303 #else /* !CONFIG_ATOMIC64 */ 304 int64_t qatomic_read_i64(const int64_t *ptr); 305 uint64_t qatomic_read_u64(const uint64_t *ptr); 306 void qatomic_set_i64(int64_t *ptr, int64_t val); 307 void qatomic_set_u64(uint64_t *ptr, uint64_t val); 308 void qatomic64_init(void); 309 #endif /* !CONFIG_ATOMIC64 */ 310 311 #endif /* QEMU_ATOMIC_H */ 312