1 /*
2  * Simple interface for atomic operations.
3  *
4  * Copyright (C) 2013 Red Hat, Inc.
5  *
6  * Author: Paolo Bonzini <pbonzini@redhat.com>
7  *
8  * This work is licensed under the terms of the GNU GPL, version 2 or later.
9  * See the COPYING file in the top-level directory.
10  *
11  * See docs/devel/atomics.rst for discussion about the guarantees each
12  * atomic primitive is meant to provide.
13  */
14 
15 #ifndef QEMU_ATOMIC_H
16 #define QEMU_ATOMIC_H
17 
18 #include "compiler.h"
19 
20 /* Compiler barrier */
21 #define barrier()   ({ asm volatile("" ::: "memory"); (void)0; })
22 
23 #ifndef __ATOMIC_RELAXED
24 #error "Expecting C11 atomic ops"
25 #endif
26 
27 /* Manual memory barriers
28  *
29  *__atomic_thread_fence does not include a compiler barrier; instead,
30  * the barrier is part of __atomic_load/__atomic_store's "volatile-like"
31  * semantics. If smp_wmb() is a no-op, absence of the barrier means that
32  * the compiler is free to reorder stores on each side of the barrier.
33  * Add one here, and similarly in smp_rmb() and smp_read_barrier_depends().
34  */
35 
36 #define smp_mb()                     ({ barrier(); __atomic_thread_fence(__ATOMIC_SEQ_CST); })
37 #define smp_mb_release()             ({ barrier(); __atomic_thread_fence(__ATOMIC_RELEASE); })
38 #define smp_mb_acquire()             ({ barrier(); __atomic_thread_fence(__ATOMIC_ACQUIRE); })
39 
40 /* Most compilers currently treat consume and acquire the same, but really
41  * no processors except Alpha need a barrier here.  Leave it in if
42  * using Thread Sanitizer to avoid warnings, otherwise optimize it away.
43  */
44 #ifdef QEMU_SANITIZE_THREAD
45 #define smp_read_barrier_depends()   ({ barrier(); __atomic_thread_fence(__ATOMIC_CONSUME); })
46 #elif defined(__alpha__)
47 #define smp_read_barrier_depends()   asm volatile("mb":::"memory")
48 #else
49 #define smp_read_barrier_depends()   barrier()
50 #endif
51 
52 /*
53  * A signal barrier forces all pending local memory ops to be observed before
54  * a SIGSEGV is delivered to the *same* thread.  In practice this is exactly
55  * the same as barrier(), but since we have the correct builtin, use it.
56  */
57 #define signal_barrier()    __atomic_signal_fence(__ATOMIC_SEQ_CST)
58 
59 /* Sanity check that the size of an atomic operation isn't "overly large".
60  * Despite the fact that e.g. i686 has 64-bit atomic operations, we do not
61  * want to use them because we ought not need them, and this lets us do a
62  * bit of sanity checking that other 32-bit hosts might build.
63  *
64  * That said, we have a problem on 64-bit ILP32 hosts in that in order to
65  * sync with TCG_OVERSIZED_GUEST, this must match TCG_TARGET_REG_BITS.
66  * We'd prefer not want to pull in everything else TCG related, so handle
67  * those few cases by hand.
68  *
69  * Note that x32 is fully detected with __x86_64__ + _ILP32, and that for
70  * Sparc we always force the use of sparcv9 in configure. MIPS n32 (ILP32) &
71  * n64 (LP64) ABIs are both detected using __mips64.
72  */
73 #if defined(__x86_64__) || defined(__sparc__) || defined(__mips64)
74 # define ATOMIC_REG_SIZE  8
75 #else
76 # define ATOMIC_REG_SIZE  sizeof(void *)
77 #endif
78 
79 /* Weak atomic operations prevent the compiler moving other
80  * loads/stores past the atomic operation load/store. However there is
81  * no explicit memory barrier for the processor.
82  *
83  * The C11 memory model says that variables that are accessed from
84  * different threads should at least be done with __ATOMIC_RELAXED
85  * primitives or the result is undefined. Generally this has little to
86  * no effect on the generated code but not using the atomic primitives
87  * will get flagged by sanitizers as a violation.
88  */
89 #define qatomic_read__nocheck(ptr) \
90     __atomic_load_n(ptr, __ATOMIC_RELAXED)
91 
92 #define qatomic_read(ptr)                              \
93     ({                                                 \
94     qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \
95     qatomic_read__nocheck(ptr);                        \
96     })
97 
98 #define qatomic_set__nocheck(ptr, i) \
99     __atomic_store_n(ptr, i, __ATOMIC_RELAXED)
100 
101 #define qatomic_set(ptr, i)  do {                      \
102     qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \
103     qatomic_set__nocheck(ptr, i);                      \
104 } while(0)
105 
106 /* See above: most compilers currently treat consume and acquire the
107  * same, but this slows down qatomic_rcu_read unnecessarily.
108  */
109 #ifdef QEMU_SANITIZE_THREAD
110 #define qatomic_rcu_read__nocheck(ptr, valptr)           \
111     __atomic_load(ptr, valptr, __ATOMIC_CONSUME);
112 #else
113 #define qatomic_rcu_read__nocheck(ptr, valptr)           \
114     __atomic_load(ptr, valptr, __ATOMIC_RELAXED);        \
115     smp_read_barrier_depends();
116 #endif
117 
118 /*
119  * Preprocessor sorcery ahead: use a different identifier for the
120  * local variable in each expansion, so we can nest macro calls
121  * without shadowing variables.
122  */
123 #define qatomic_rcu_read_internal(ptr, _val)            \
124     ({                                                  \
125     qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \
126     typeof_strip_qual(*ptr) _val;                       \
127     qatomic_rcu_read__nocheck(ptr, &_val);              \
128     _val;                                               \
129     })
130 #define qatomic_rcu_read(ptr) \
131     qatomic_rcu_read_internal((ptr), MAKE_IDENTFIER(_val))
132 
133 #define qatomic_rcu_set(ptr, i) do {                   \
134     qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \
135     __atomic_store_n(ptr, i, __ATOMIC_RELEASE);        \
136 } while(0)
137 
138 #define qatomic_load_acquire(ptr)                       \
139     ({                                                  \
140     qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \
141     typeof_strip_qual(*ptr) _val;                       \
142     __atomic_load(ptr, &_val, __ATOMIC_ACQUIRE);        \
143     _val;                                               \
144     })
145 
146 #define qatomic_store_release(ptr, i)  do {             \
147     qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE); \
148     __atomic_store_n(ptr, i, __ATOMIC_RELEASE);         \
149 } while(0)
150 
151 
152 /* All the remaining operations are fully sequentially consistent */
153 
154 #define qatomic_xchg__nocheck(ptr, i)    ({                 \
155     __atomic_exchange_n(ptr, (i), __ATOMIC_SEQ_CST);        \
156 })
157 
158 #define qatomic_xchg(ptr, i)    ({                          \
159     qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE);     \
160     qatomic_xchg__nocheck(ptr, i);                          \
161 })
162 
163 /* Returns the old value of '*ptr' (whether the cmpxchg failed or not) */
164 #define qatomic_cmpxchg__nocheck(ptr, old, new)    ({                   \
165     typeof_strip_qual(*ptr) _old = (old);                               \
166     (void)__atomic_compare_exchange_n(ptr, &_old, new, false,           \
167                               __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST);      \
168     _old;                                                               \
169 })
170 
171 #define qatomic_cmpxchg(ptr, old, new)    ({                            \
172     qemu_build_assert(sizeof(*ptr) <= ATOMIC_REG_SIZE);                 \
173     qatomic_cmpxchg__nocheck(ptr, old, new);                            \
174 })
175 
176 /* Provide shorter names for GCC atomic builtins, return old value */
177 #define qatomic_fetch_inc(ptr)  __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST)
178 #define qatomic_fetch_dec(ptr)  __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST)
179 
180 #define qatomic_fetch_add(ptr, n) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST)
181 #define qatomic_fetch_sub(ptr, n) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST)
182 #define qatomic_fetch_and(ptr, n) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST)
183 #define qatomic_fetch_or(ptr, n)  __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST)
184 #define qatomic_fetch_xor(ptr, n) __atomic_fetch_xor(ptr, n, __ATOMIC_SEQ_CST)
185 
186 #define qatomic_inc_fetch(ptr)    __atomic_add_fetch(ptr, 1, __ATOMIC_SEQ_CST)
187 #define qatomic_dec_fetch(ptr)    __atomic_sub_fetch(ptr, 1, __ATOMIC_SEQ_CST)
188 #define qatomic_add_fetch(ptr, n) __atomic_add_fetch(ptr, n, __ATOMIC_SEQ_CST)
189 #define qatomic_sub_fetch(ptr, n) __atomic_sub_fetch(ptr, n, __ATOMIC_SEQ_CST)
190 #define qatomic_and_fetch(ptr, n) __atomic_and_fetch(ptr, n, __ATOMIC_SEQ_CST)
191 #define qatomic_or_fetch(ptr, n)  __atomic_or_fetch(ptr, n, __ATOMIC_SEQ_CST)
192 #define qatomic_xor_fetch(ptr, n) __atomic_xor_fetch(ptr, n, __ATOMIC_SEQ_CST)
193 
194 /* And even shorter names that return void.  */
195 #define qatomic_inc(ptr) \
196     ((void) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST))
197 #define qatomic_dec(ptr) \
198     ((void) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST))
199 #define qatomic_add(ptr, n) \
200     ((void) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST))
201 #define qatomic_sub(ptr, n) \
202     ((void) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST))
203 #define qatomic_and(ptr, n) \
204     ((void) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST))
205 #define qatomic_or(ptr, n) \
206     ((void) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST))
207 #define qatomic_xor(ptr, n) \
208     ((void) __atomic_fetch_xor(ptr, n, __ATOMIC_SEQ_CST))
209 
210 #define smp_wmb()   smp_mb_release()
211 #define smp_rmb()   smp_mb_acquire()
212 
213 /*
214  * SEQ_CST is weaker than the older __sync_* builtins and Linux
215  * kernel read-modify-write atomics.  Provide a macro to obtain
216  * the same semantics.
217  */
218 #if !defined(QEMU_SANITIZE_THREAD) && \
219     (defined(__i386__) || defined(__x86_64__) || defined(__s390x__))
220 # define smp_mb__before_rmw() signal_barrier()
221 # define smp_mb__after_rmw() signal_barrier()
222 #else
223 # define smp_mb__before_rmw() smp_mb()
224 # define smp_mb__after_rmw() smp_mb()
225 #endif
226 
227 /*
228  * On some architectures, qatomic_set_mb is more efficient than a store
229  * plus a fence.
230  */
231 
232 #if !defined(QEMU_SANITIZE_THREAD) && \
233     (defined(__i386__) || defined(__x86_64__) || defined(__s390x__))
234 # define qatomic_set_mb(ptr, i) \
235     ({ (void)qatomic_xchg(ptr, i); smp_mb__after_rmw(); })
236 #else
237 # define qatomic_set_mb(ptr, i) \
238    ({ qatomic_store_release(ptr, i); smp_mb(); })
239 #endif
240 
241 #define qatomic_fetch_inc_nonzero(ptr) ({                               \
242     typeof_strip_qual(*ptr) _oldn = qatomic_read(ptr);                  \
243     while (_oldn && qatomic_cmpxchg(ptr, _oldn, _oldn + 1) != _oldn) {  \
244         _oldn = qatomic_read(ptr);                                      \
245     }                                                                   \
246     _oldn;                                                              \
247 })
248 
249 /*
250  * Abstractions to access atomically (i.e. "once") i64/u64 variables.
251  *
252  * The i386 abi is odd in that by default members are only aligned to
253  * 4 bytes, which means that 8-byte types can wind up mis-aligned.
254  * Clang will then warn about this, and emit a call into libatomic.
255  *
256  * Use of these types in structures when they will be used with atomic
257  * operations can avoid this.
258  */
259 typedef int64_t aligned_int64_t __attribute__((aligned(8)));
260 typedef uint64_t aligned_uint64_t __attribute__((aligned(8)));
261 
262 #ifdef CONFIG_ATOMIC64
263 /* Use __nocheck because sizeof(void *) might be < sizeof(u64) */
264 #define qatomic_read_i64(P) \
265     _Generic(*(P), int64_t: qatomic_read__nocheck(P))
266 #define qatomic_read_u64(P) \
267     _Generic(*(P), uint64_t: qatomic_read__nocheck(P))
268 #define qatomic_set_i64(P, V) \
269     _Generic(*(P), int64_t: qatomic_set__nocheck(P, V))
270 #define qatomic_set_u64(P, V) \
271     _Generic(*(P), uint64_t: qatomic_set__nocheck(P, V))
272 
273 static inline void qatomic64_init(void)
274 {
275 }
276 #else /* !CONFIG_ATOMIC64 */
277 int64_t  qatomic_read_i64(const int64_t *ptr);
278 uint64_t qatomic_read_u64(const uint64_t *ptr);
279 void qatomic_set_i64(int64_t *ptr, int64_t val);
280 void qatomic_set_u64(uint64_t *ptr, uint64_t val);
281 void qatomic64_init(void);
282 #endif /* !CONFIG_ATOMIC64 */
283 
284 #endif /* QEMU_ATOMIC_H */
285