1#!/usr/bin/env python3 2# Copyright (c) 2018 Linaro Limited 3# 4# This library is free software; you can redistribute it and/or 5# modify it under the terms of the GNU Lesser General Public 6# License as published by the Free Software Foundation; either 7# version 2.1 of the License, or (at your option) any later version. 8# 9# This library is distributed in the hope that it will be useful, 10# but WITHOUT ANY WARRANTY; without even the implied warranty of 11# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12# Lesser General Public License for more details. 13# 14# You should have received a copy of the GNU Lesser General Public 15# License along with this library; if not, see <http://www.gnu.org/licenses/>. 16# 17 18# 19# Generate a decoding tree from a specification file. 20# See the syntax and semantics in docs/devel/decodetree.rst. 21# 22 23import io 24import os 25import re 26import sys 27import getopt 28 29insnwidth = 32 30bitop_width = 32 31insnmask = 0xffffffff 32variablewidth = False 33fields = {} 34arguments = {} 35formats = {} 36allpatterns = [] 37anyextern = False 38testforerror = False 39 40translate_prefix = 'trans' 41translate_scope = 'static ' 42input_file = '' 43output_file = None 44output_fd = None 45output_null = False 46insntype = 'uint32_t' 47decode_function = 'decode' 48 49# An identifier for C. 50re_C_ident = '[a-zA-Z][a-zA-Z0-9_]*' 51 52# Identifiers for Arguments, Fields, Formats and Patterns. 53re_arg_ident = '&[a-zA-Z0-9_]*' 54re_fld_ident = '%[a-zA-Z0-9_]*' 55re_fmt_ident = '@[a-zA-Z0-9_]*' 56re_pat_ident = '[a-zA-Z0-9_]*' 57 58# Local implementation of a topological sort. We use the same API that 59# the Python graphlib does, so that when QEMU moves forward to a 60# baseline of Python 3.9 or newer this code can all be dropped and 61# replaced with: 62# from graphlib import TopologicalSorter, CycleError 63# 64# https://docs.python.org/3.9/library/graphlib.html#graphlib.TopologicalSorter 65# 66# We only implement the parts of TopologicalSorter we care about: 67# ts = TopologicalSorter(graph=None) 68# create the sorter. graph is a dictionary whose keys are 69# nodes and whose values are lists of the predecessors of that node. 70# (That is, if graph contains "A" -> ["B", "C"] then we must output 71# B and C before A.) 72# ts.static_order() 73# returns a list of all the nodes in sorted order, or raises CycleError 74# CycleError 75# exception raised if there are cycles in the graph. The second 76# element in the args attribute is a list of nodes which form a 77# cycle; the first and last element are the same, eg [a, b, c, a] 78# (Our implementation doesn't give the order correctly.) 79# 80# For our purposes we can assume that the data set is always small 81# (typically 10 nodes or less, actual links in the graph very rare), 82# so we don't need to worry about efficiency of implementation. 83# 84# The core of this implementation is from 85# https://code.activestate.com/recipes/578272-topological-sort/ 86# (but updated to Python 3), and is under the MIT license. 87 88class CycleError(ValueError): 89 """Subclass of ValueError raised if cycles exist in the graph""" 90 pass 91 92class TopologicalSorter: 93 """Topologically sort a graph""" 94 def __init__(self, graph=None): 95 self.graph = graph 96 97 def static_order(self): 98 # We do the sort right here, unlike the stdlib version 99 from functools import reduce 100 data = {} 101 r = [] 102 103 if not self.graph: 104 return [] 105 106 # This code wants the values in the dict to be specifically sets 107 for k, v in self.graph.items(): 108 data[k] = set(v) 109 110 # Find all items that don't depend on anything. 111 extra_items_in_deps = (reduce(set.union, data.values()) 112 - set(data.keys())) 113 # Add empty dependencies where needed 114 data.update({item:{} for item in extra_items_in_deps}) 115 while True: 116 ordered = set(item for item, dep in data.items() if not dep) 117 if not ordered: 118 break 119 r.extend(ordered) 120 data = {item: (dep - ordered) 121 for item, dep in data.items() 122 if item not in ordered} 123 if data: 124 # This doesn't give as nice results as the stdlib, which 125 # gives you the cycle by listing the nodes in order. Here 126 # we only know the nodes in the cycle but not their order. 127 raise CycleError(f'nodes are in a cycle', list(data.keys())) 128 129 return r 130# end TopologicalSorter 131 132def error_with_file(file, lineno, *args): 133 """Print an error message from file:line and args and exit.""" 134 global output_file 135 global output_fd 136 137 # For the test suite expected-errors case, don't print the 138 # string "error: ", so they don't turn up as false positives 139 # if you grep the meson logs for strings like that. 140 end = 'error: ' if not testforerror else 'detected: ' 141 prefix = '' 142 if file: 143 prefix += f'{file}:' 144 if lineno: 145 prefix += f'{lineno}:' 146 if prefix: 147 prefix += ' ' 148 print(prefix, end=end, file=sys.stderr) 149 print(*args, file=sys.stderr) 150 151 if output_file and output_fd: 152 output_fd.close() 153 os.remove(output_file) 154 exit(0 if testforerror else 1) 155# end error_with_file 156 157 158def error(lineno, *args): 159 error_with_file(input_file, lineno, *args) 160# end error 161 162 163def output(*args): 164 global output_fd 165 for a in args: 166 output_fd.write(a) 167 168 169def output_autogen(): 170 output('/* This file is autogenerated by scripts/decodetree.py. */\n\n') 171 172 173def str_indent(c): 174 """Return a string with C spaces""" 175 return ' ' * c 176 177 178def str_fields(fields): 179 """Return a string uniquely identifying FIELDS""" 180 r = '' 181 for n in sorted(fields.keys()): 182 r += '_' + n 183 return r[1:] 184 185 186def whex(val): 187 """Return a hex string for val padded for insnwidth""" 188 global insnwidth 189 return f'0x{val:0{insnwidth // 4}x}' 190 191 192def whexC(val): 193 """Return a hex string for val padded for insnwidth, 194 and with the proper suffix for a C constant.""" 195 suffix = '' 196 if val >= 0x100000000: 197 suffix = 'ull' 198 elif val >= 0x80000000: 199 suffix = 'u' 200 return whex(val) + suffix 201 202 203def str_match_bits(bits, mask): 204 """Return a string pretty-printing BITS/MASK""" 205 global insnwidth 206 207 i = 1 << (insnwidth - 1) 208 space = 0x01010100 209 r = '' 210 while i != 0: 211 if i & mask: 212 if i & bits: 213 r += '1' 214 else: 215 r += '0' 216 else: 217 r += '.' 218 if i & space: 219 r += ' ' 220 i >>= 1 221 return r 222 223 224def is_pow2(x): 225 """Return true iff X is equal to a power of 2.""" 226 return (x & (x - 1)) == 0 227 228 229def ctz(x): 230 """Return the number of times 2 factors into X.""" 231 assert x != 0 232 r = 0 233 while ((x >> r) & 1) == 0: 234 r += 1 235 return r 236 237 238def is_contiguous(bits): 239 if bits == 0: 240 return -1 241 shift = ctz(bits) 242 if is_pow2((bits >> shift) + 1): 243 return shift 244 else: 245 return -1 246 247 248def eq_fields_for_args(flds_a, arg): 249 if len(flds_a) != len(arg.fields): 250 return False 251 # Only allow inference on default types 252 for t in arg.types: 253 if t != 'int': 254 return False 255 for k, a in flds_a.items(): 256 if k not in arg.fields: 257 return False 258 return True 259 260 261def eq_fields_for_fmts(flds_a, flds_b): 262 if len(flds_a) != len(flds_b): 263 return False 264 for k, a in flds_a.items(): 265 if k not in flds_b: 266 return False 267 b = flds_b[k] 268 if a.__class__ != b.__class__ or a != b: 269 return False 270 return True 271 272 273class Field: 274 """Class representing a simple instruction field""" 275 def __init__(self, sign, pos, len): 276 self.sign = sign 277 self.pos = pos 278 self.len = len 279 self.mask = ((1 << len) - 1) << pos 280 281 def __str__(self): 282 if self.sign: 283 s = 's' 284 else: 285 s = '' 286 return str(self.pos) + ':' + s + str(self.len) 287 288 def str_extract(self, lvalue_formatter): 289 global bitop_width 290 s = 's' if self.sign else '' 291 return f'{s}extract{bitop_width}(insn, {self.pos}, {self.len})' 292 293 def referenced_fields(self): 294 return [] 295 296 def __eq__(self, other): 297 return self.sign == other.sign and self.mask == other.mask 298 299 def __ne__(self, other): 300 return not self.__eq__(other) 301# end Field 302 303 304class MultiField: 305 """Class representing a compound instruction field""" 306 def __init__(self, subs, mask): 307 self.subs = subs 308 self.sign = subs[0].sign 309 self.mask = mask 310 311 def __str__(self): 312 return str(self.subs) 313 314 def str_extract(self, lvalue_formatter): 315 global bitop_width 316 ret = '0' 317 pos = 0 318 for f in reversed(self.subs): 319 ext = f.str_extract(lvalue_formatter) 320 if pos == 0: 321 ret = ext 322 else: 323 ret = f'deposit{bitop_width}({ret}, {pos}, {bitop_width - pos}, {ext})' 324 pos += f.len 325 return ret 326 327 def referenced_fields(self): 328 l = [] 329 for f in self.subs: 330 l.extend(f.referenced_fields()) 331 return l 332 333 def __ne__(self, other): 334 if len(self.subs) != len(other.subs): 335 return True 336 for a, b in zip(self.subs, other.subs): 337 if a.__class__ != b.__class__ or a != b: 338 return True 339 return False 340 341 def __eq__(self, other): 342 return not self.__ne__(other) 343# end MultiField 344 345 346class ConstField: 347 """Class representing an argument field with constant value""" 348 def __init__(self, value): 349 self.value = value 350 self.mask = 0 351 self.sign = value < 0 352 353 def __str__(self): 354 return str(self.value) 355 356 def str_extract(self, lvalue_formatter): 357 return str(self.value) 358 359 def referenced_fields(self): 360 return [] 361 362 def __cmp__(self, other): 363 return self.value - other.value 364# end ConstField 365 366 367class FunctionField: 368 """Class representing a field passed through a function""" 369 def __init__(self, func, base): 370 self.mask = base.mask 371 self.sign = base.sign 372 self.base = base 373 self.func = func 374 375 def __str__(self): 376 return self.func + '(' + str(self.base) + ')' 377 378 def str_extract(self, lvalue_formatter): 379 return (self.func + '(ctx, ' 380 + self.base.str_extract(lvalue_formatter) + ')') 381 382 def referenced_fields(self): 383 return self.base.referenced_fields() 384 385 def __eq__(self, other): 386 return self.func == other.func and self.base == other.base 387 388 def __ne__(self, other): 389 return not self.__eq__(other) 390# end FunctionField 391 392 393class ParameterField: 394 """Class representing a pseudo-field read from a function""" 395 def __init__(self, func): 396 self.mask = 0 397 self.sign = 0 398 self.func = func 399 400 def __str__(self): 401 return self.func 402 403 def str_extract(self, lvalue_formatter): 404 return self.func + '(ctx)' 405 406 def referenced_fields(self): 407 return [] 408 409 def __eq__(self, other): 410 return self.func == other.func 411 412 def __ne__(self, other): 413 return not self.__eq__(other) 414# end ParameterField 415 416class NamedField: 417 """Class representing a field already named in the pattern""" 418 def __init__(self, name, sign, len): 419 self.mask = 0 420 self.sign = sign 421 self.len = len 422 self.name = name 423 424 def __str__(self): 425 return self.name 426 427 def str_extract(self, lvalue_formatter): 428 global bitop_width 429 s = 's' if self.sign else '' 430 lvalue = lvalue_formatter(self.name) 431 return f'{s}extract{bitop_width}({lvalue}, 0, {self.len})' 432 433 def referenced_fields(self): 434 return [self.name] 435 436 def __eq__(self, other): 437 return self.name == other.name 438 439 def __ne__(self, other): 440 return not self.__eq__(other) 441# end NamedField 442 443class Arguments: 444 """Class representing the extracted fields of a format""" 445 def __init__(self, nm, flds, types, extern): 446 self.name = nm 447 self.extern = extern 448 self.fields = flds 449 self.types = types 450 451 def __str__(self): 452 return self.name + ' ' + str(self.fields) 453 454 def struct_name(self): 455 return 'arg_' + self.name 456 457 def output_def(self): 458 if not self.extern: 459 output('typedef struct {\n') 460 for (n, t) in zip(self.fields, self.types): 461 output(f' {t} {n};\n') 462 output('} ', self.struct_name(), ';\n\n') 463# end Arguments 464 465class General: 466 """Common code between instruction formats and instruction patterns""" 467 def __init__(self, name, lineno, base, fixb, fixm, udfm, fldm, flds, w): 468 self.name = name 469 self.file = input_file 470 self.lineno = lineno 471 self.base = base 472 self.fixedbits = fixb 473 self.fixedmask = fixm 474 self.undefmask = udfm 475 self.fieldmask = fldm 476 self.fields = flds 477 self.width = w 478 self.dangling = None 479 480 def __str__(self): 481 return self.name + ' ' + str_match_bits(self.fixedbits, self.fixedmask) 482 483 def str1(self, i): 484 return str_indent(i) + self.__str__() 485 486 def dangling_references(self): 487 # Return a list of all named references which aren't satisfied 488 # directly by this format/pattern. This will be either: 489 # * a format referring to a field which is specified by the 490 # pattern(s) using it 491 # * a pattern referring to a field which is specified by the 492 # format it uses 493 # * a user error (referring to a field that doesn't exist at all) 494 if self.dangling is None: 495 # Compute this once and cache the answer 496 dangling = [] 497 for n, f in self.fields.items(): 498 for r in f.referenced_fields(): 499 if r not in self.fields: 500 dangling.append(r) 501 self.dangling = dangling 502 return self.dangling 503 504 def output_fields(self, indent, lvalue_formatter): 505 # We use a topological sort to ensure that any use of NamedField 506 # comes after the initialization of the field it is referencing. 507 graph = {} 508 for n, f in self.fields.items(): 509 refs = f.referenced_fields() 510 graph[n] = refs 511 512 try: 513 ts = TopologicalSorter(graph) 514 for n in ts.static_order(): 515 # We only want to emit assignments for the keys 516 # in our fields list, not for anything that ends up 517 # in the tsort graph only because it was referenced as 518 # a NamedField. 519 try: 520 f = self.fields[n] 521 output(indent, lvalue_formatter(n), ' = ', 522 f.str_extract(lvalue_formatter), ';\n') 523 except KeyError: 524 pass 525 except CycleError as e: 526 # The second element of args is a list of nodes which form 527 # a cycle (there might be others too, but only one is reported). 528 # Pretty-print it to tell the user. 529 cycle = ' => '.join(e.args[1]) 530 error(self.lineno, 'field definitions form a cycle: ' + cycle) 531# end General 532 533 534class Format(General): 535 """Class representing an instruction format""" 536 537 def extract_name(self): 538 global decode_function 539 return decode_function + '_extract_' + self.name 540 541 def output_extract(self): 542 output('static void ', self.extract_name(), '(DisasContext *ctx, ', 543 self.base.struct_name(), ' *a, ', insntype, ' insn)\n{\n') 544 self.output_fields(str_indent(4), lambda n: 'a->' + n) 545 output('}\n\n') 546# end Format 547 548 549class Pattern(General): 550 """Class representing an instruction pattern""" 551 552 def output_decl(self): 553 global translate_scope 554 global translate_prefix 555 output('typedef ', self.base.base.struct_name(), 556 ' arg_', self.name, ';\n') 557 output(translate_scope, 'bool ', translate_prefix, '_', self.name, 558 '(DisasContext *ctx, arg_', self.name, ' *a);\n') 559 560 def output_code(self, i, extracted, outerbits, outermask): 561 global translate_prefix 562 ind = str_indent(i) 563 arg = self.base.base.name 564 output(ind, '/* ', self.file, ':', str(self.lineno), ' */\n') 565 # We might have named references in the format that refer to fields 566 # in the pattern, or named references in the pattern that refer 567 # to fields in the format. This affects whether we extract the fields 568 # for the format before or after the ones for the pattern. 569 # For simplicity we don't allow cross references in both directions. 570 # This is also where we catch the syntax error of referring to 571 # a nonexistent field. 572 fmt_refs = self.base.dangling_references() 573 for r in fmt_refs: 574 if r not in self.fields: 575 error(self.lineno, f'format refers to undefined field {r}') 576 pat_refs = self.dangling_references() 577 for r in pat_refs: 578 if r not in self.base.fields: 579 error(self.lineno, f'pattern refers to undefined field {r}') 580 if pat_refs and fmt_refs: 581 error(self.lineno, ('pattern that uses fields defined in format ' 582 'cannot use format that uses fields defined ' 583 'in pattern')) 584 if fmt_refs: 585 # pattern fields first 586 self.output_fields(ind, lambda n: 'u.f_' + arg + '.' + n) 587 assert not extracted, "dangling fmt refs but it was already extracted" 588 if not extracted: 589 output(ind, self.base.extract_name(), 590 '(ctx, &u.f_', arg, ', insn);\n') 591 if not fmt_refs: 592 # pattern fields last 593 self.output_fields(ind, lambda n: 'u.f_' + arg + '.' + n) 594 595 output(ind, 'if (', translate_prefix, '_', self.name, 596 '(ctx, &u.f_', arg, ')) return true;\n') 597 598 # Normal patterns do not have children. 599 def build_tree(self): 600 return 601 def prop_masks(self): 602 return 603 def prop_format(self): 604 return 605 def prop_width(self): 606 return 607 608# end Pattern 609 610 611class MultiPattern(General): 612 """Class representing a set of instruction patterns""" 613 614 def __init__(self, lineno): 615 self.file = input_file 616 self.lineno = lineno 617 self.pats = [] 618 self.base = None 619 self.fixedbits = 0 620 self.fixedmask = 0 621 self.undefmask = 0 622 self.width = None 623 624 def __str__(self): 625 r = 'group' 626 if self.fixedbits is not None: 627 r += ' ' + str_match_bits(self.fixedbits, self.fixedmask) 628 return r 629 630 def output_decl(self): 631 for p in self.pats: 632 p.output_decl() 633 634 def prop_masks(self): 635 global insnmask 636 637 fixedmask = insnmask 638 undefmask = insnmask 639 640 # Collect fixedmask/undefmask for all of the children. 641 for p in self.pats: 642 p.prop_masks() 643 fixedmask &= p.fixedmask 644 undefmask &= p.undefmask 645 646 # Widen fixedmask until all fixedbits match 647 repeat = True 648 fixedbits = 0 649 while repeat and fixedmask != 0: 650 fixedbits = None 651 for p in self.pats: 652 thisbits = p.fixedbits & fixedmask 653 if fixedbits is None: 654 fixedbits = thisbits 655 elif fixedbits != thisbits: 656 fixedmask &= ~(fixedbits ^ thisbits) 657 break 658 else: 659 repeat = False 660 661 self.fixedbits = fixedbits 662 self.fixedmask = fixedmask 663 self.undefmask = undefmask 664 665 def build_tree(self): 666 for p in self.pats: 667 p.build_tree() 668 669 def prop_format(self): 670 for p in self.pats: 671 p.prop_format() 672 673 def prop_width(self): 674 width = None 675 for p in self.pats: 676 p.prop_width() 677 if width is None: 678 width = p.width 679 elif width != p.width: 680 error_with_file(self.file, self.lineno, 681 'width mismatch in patterns within braces') 682 self.width = width 683 684# end MultiPattern 685 686 687class IncMultiPattern(MultiPattern): 688 """Class representing an overlapping set of instruction patterns""" 689 690 def output_code(self, i, extracted, outerbits, outermask): 691 global translate_prefix 692 ind = str_indent(i) 693 for p in self.pats: 694 if outermask != p.fixedmask: 695 innermask = p.fixedmask & ~outermask 696 innerbits = p.fixedbits & ~outermask 697 output(ind, f'if ((insn & {whexC(innermask)}) == {whexC(innerbits)}) {{\n') 698 output(ind, f' /* {str_match_bits(p.fixedbits, p.fixedmask)} */\n') 699 p.output_code(i + 4, extracted, p.fixedbits, p.fixedmask) 700 output(ind, '}\n') 701 else: 702 p.output_code(i, extracted, p.fixedbits, p.fixedmask) 703 704 def build_tree(self): 705 if not self.pats: 706 error_with_file(self.file, self.lineno, 'empty pattern group') 707 super().build_tree() 708 709#end IncMultiPattern 710 711 712class Tree: 713 """Class representing a node in a decode tree""" 714 715 def __init__(self, fm, tm): 716 self.fixedmask = fm 717 self.thismask = tm 718 self.subs = [] 719 self.base = None 720 721 def str1(self, i): 722 ind = str_indent(i) 723 r = ind + whex(self.fixedmask) 724 if self.format: 725 r += ' ' + self.format.name 726 r += ' [\n' 727 for (b, s) in self.subs: 728 r += ind + f' {whex(b)}:\n' 729 r += s.str1(i + 4) + '\n' 730 r += ind + ']' 731 return r 732 733 def __str__(self): 734 return self.str1(0) 735 736 def output_code(self, i, extracted, outerbits, outermask): 737 ind = str_indent(i) 738 739 # If we identified all nodes below have the same format, 740 # extract the fields now. But don't do it if the format relies 741 # on named fields from the insn pattern, as those won't have 742 # been initialised at this point. 743 if not extracted and self.base and not self.base.dangling_references(): 744 output(ind, self.base.extract_name(), 745 '(ctx, &u.f_', self.base.base.name, ', insn);\n') 746 extracted = True 747 748 # Attempt to aid the compiler in producing compact switch statements. 749 # If the bits in the mask are contiguous, extract them. 750 sh = is_contiguous(self.thismask) 751 if sh > 0: 752 # Propagate SH down into the local functions. 753 def str_switch(b, sh=sh): 754 return f'(insn >> {sh}) & {b >> sh:#x}' 755 756 def str_case(b, sh=sh): 757 return hex(b >> sh) 758 else: 759 def str_switch(b): 760 return f'insn & {whexC(b)}' 761 762 def str_case(b): 763 return whexC(b) 764 765 output(ind, 'switch (', str_switch(self.thismask), ') {\n') 766 for b, s in sorted(self.subs): 767 assert (self.thismask & ~s.fixedmask) == 0 768 innermask = outermask | self.thismask 769 innerbits = outerbits | b 770 output(ind, 'case ', str_case(b), ':\n') 771 output(ind, ' /* ', 772 str_match_bits(innerbits, innermask), ' */\n') 773 s.output_code(i + 4, extracted, innerbits, innermask) 774 output(ind, ' break;\n') 775 output(ind, '}\n') 776# end Tree 777 778 779class ExcMultiPattern(MultiPattern): 780 """Class representing a non-overlapping set of instruction patterns""" 781 782 def output_code(self, i, extracted, outerbits, outermask): 783 # Defer everything to our decomposed Tree node 784 self.tree.output_code(i, extracted, outerbits, outermask) 785 786 @staticmethod 787 def __build_tree(pats, outerbits, outermask): 788 # Find the intersection of all remaining fixedmask. 789 innermask = ~outermask & insnmask 790 for i in pats: 791 innermask &= i.fixedmask 792 793 if innermask == 0: 794 # Edge condition: One pattern covers the entire insnmask 795 if len(pats) == 1: 796 t = Tree(outermask, innermask) 797 t.subs.append((0, pats[0])) 798 return t 799 800 text = 'overlapping patterns:' 801 for p in pats: 802 text += '\n' + p.file + ':' + str(p.lineno) + ': ' + str(p) 803 error_with_file(pats[0].file, pats[0].lineno, text) 804 805 fullmask = outermask | innermask 806 807 # Sort each element of pats into the bin selected by the mask. 808 bins = {} 809 for i in pats: 810 fb = i.fixedbits & innermask 811 if fb in bins: 812 bins[fb].append(i) 813 else: 814 bins[fb] = [i] 815 816 # We must recurse if any bin has more than one element or if 817 # the single element in the bin has not been fully matched. 818 t = Tree(fullmask, innermask) 819 820 for b, l in bins.items(): 821 s = l[0] 822 if len(l) > 1 or s.fixedmask & ~fullmask != 0: 823 s = ExcMultiPattern.__build_tree(l, b | outerbits, fullmask) 824 t.subs.append((b, s)) 825 826 return t 827 828 def build_tree(self): 829 super().build_tree() 830 self.tree = self.__build_tree(self.pats, self.fixedbits, 831 self.fixedmask) 832 833 @staticmethod 834 def __prop_format(tree): 835 """Propagate Format objects into the decode tree""" 836 837 # Depth first search. 838 for (b, s) in tree.subs: 839 if isinstance(s, Tree): 840 ExcMultiPattern.__prop_format(s) 841 842 # If all entries in SUBS have the same format, then 843 # propagate that into the tree. 844 f = None 845 for (b, s) in tree.subs: 846 if f is None: 847 f = s.base 848 if f is None: 849 return 850 if f is not s.base: 851 return 852 tree.base = f 853 854 def prop_format(self): 855 super().prop_format() 856 self.__prop_format(self.tree) 857 858# end ExcMultiPattern 859 860 861def parse_field(lineno, name, toks): 862 """Parse one instruction field from TOKS at LINENO""" 863 global fields 864 global insnwidth 865 global re_C_ident 866 867 # A "simple" field will have only one entry; 868 # a "multifield" will have several. 869 subs = [] 870 width = 0 871 func = None 872 for t in toks: 873 if re.match('^!function=', t): 874 if func: 875 error(lineno, 'duplicate function') 876 func = t.split('=') 877 func = func[1] 878 continue 879 880 if re.fullmatch(re_C_ident + ':s[0-9]+', t): 881 # Signed named field 882 subtoks = t.split(':') 883 n = subtoks[0] 884 le = int(subtoks[1]) 885 f = NamedField(n, True, le) 886 subs.append(f) 887 width += le 888 continue 889 if re.fullmatch(re_C_ident + ':[0-9]+', t): 890 # Unsigned named field 891 subtoks = t.split(':') 892 n = subtoks[0] 893 le = int(subtoks[1]) 894 f = NamedField(n, False, le) 895 subs.append(f) 896 width += le 897 continue 898 899 if re.fullmatch('[0-9]+:s[0-9]+', t): 900 # Signed field extract 901 subtoks = t.split(':s') 902 sign = True 903 elif re.fullmatch('[0-9]+:[0-9]+', t): 904 # Unsigned field extract 905 subtoks = t.split(':') 906 sign = False 907 else: 908 error(lineno, f'invalid field token "{t}"') 909 po = int(subtoks[0]) 910 le = int(subtoks[1]) 911 if po + le > insnwidth: 912 error(lineno, f'field {t} too large') 913 f = Field(sign, po, le) 914 subs.append(f) 915 width += le 916 917 if width > insnwidth: 918 error(lineno, 'field too large') 919 if len(subs) == 0: 920 if func: 921 f = ParameterField(func) 922 else: 923 error(lineno, 'field with no value') 924 else: 925 if len(subs) == 1: 926 f = subs[0] 927 else: 928 mask = 0 929 for s in subs: 930 if mask & s.mask: 931 error(lineno, 'field components overlap') 932 mask |= s.mask 933 f = MultiField(subs, mask) 934 if func: 935 f = FunctionField(func, f) 936 937 if name in fields: 938 error(lineno, 'duplicate field', name) 939 fields[name] = f 940# end parse_field 941 942 943def parse_arguments(lineno, name, toks): 944 """Parse one argument set from TOKS at LINENO""" 945 global arguments 946 global re_C_ident 947 global anyextern 948 949 flds = [] 950 types = [] 951 extern = False 952 for n in toks: 953 if re.fullmatch('!extern', n): 954 extern = True 955 anyextern = True 956 continue 957 if re.fullmatch(re_C_ident + ':' + re_C_ident, n): 958 (n, t) = n.split(':') 959 elif re.fullmatch(re_C_ident, n): 960 t = 'int' 961 else: 962 error(lineno, f'invalid argument set token "{n}"') 963 if n in flds: 964 error(lineno, f'duplicate argument "{n}"') 965 flds.append(n) 966 types.append(t) 967 968 if name in arguments: 969 error(lineno, 'duplicate argument set', name) 970 arguments[name] = Arguments(name, flds, types, extern) 971# end parse_arguments 972 973 974def lookup_field(lineno, name): 975 global fields 976 if name in fields: 977 return fields[name] 978 error(lineno, 'undefined field', name) 979 980 981def add_field(lineno, flds, new_name, f): 982 if new_name in flds: 983 error(lineno, 'duplicate field', new_name) 984 flds[new_name] = f 985 return flds 986 987 988def add_field_byname(lineno, flds, new_name, old_name): 989 return add_field(lineno, flds, new_name, lookup_field(lineno, old_name)) 990 991 992def infer_argument_set(flds): 993 global arguments 994 global decode_function 995 996 for arg in arguments.values(): 997 if eq_fields_for_args(flds, arg): 998 return arg 999 1000 name = decode_function + str(len(arguments)) 1001 arg = Arguments(name, flds.keys(), ['int'] * len(flds), False) 1002 arguments[name] = arg 1003 return arg 1004 1005 1006def infer_format(arg, fieldmask, flds, width): 1007 global arguments 1008 global formats 1009 global decode_function 1010 1011 const_flds = {} 1012 var_flds = {} 1013 for n, c in flds.items(): 1014 if c is ConstField: 1015 const_flds[n] = c 1016 else: 1017 var_flds[n] = c 1018 1019 # Look for an existing format with the same argument set and fields 1020 for fmt in formats.values(): 1021 if arg and fmt.base != arg: 1022 continue 1023 if fieldmask != fmt.fieldmask: 1024 continue 1025 if width != fmt.width: 1026 continue 1027 if not eq_fields_for_fmts(flds, fmt.fields): 1028 continue 1029 return (fmt, const_flds) 1030 1031 name = decode_function + '_Fmt_' + str(len(formats)) 1032 if not arg: 1033 arg = infer_argument_set(flds) 1034 1035 fmt = Format(name, 0, arg, 0, 0, 0, fieldmask, var_flds, width) 1036 formats[name] = fmt 1037 1038 return (fmt, const_flds) 1039# end infer_format 1040 1041 1042def parse_generic(lineno, parent_pat, name, toks): 1043 """Parse one instruction format from TOKS at LINENO""" 1044 global fields 1045 global arguments 1046 global formats 1047 global allpatterns 1048 global re_arg_ident 1049 global re_fld_ident 1050 global re_fmt_ident 1051 global re_C_ident 1052 global insnwidth 1053 global insnmask 1054 global variablewidth 1055 1056 is_format = parent_pat is None 1057 1058 fixedmask = 0 1059 fixedbits = 0 1060 undefmask = 0 1061 width = 0 1062 flds = {} 1063 arg = None 1064 fmt = None 1065 for t in toks: 1066 # '&Foo' gives a format an explicit argument set. 1067 if re.fullmatch(re_arg_ident, t): 1068 tt = t[1:] 1069 if arg: 1070 error(lineno, 'multiple argument sets') 1071 if tt in arguments: 1072 arg = arguments[tt] 1073 else: 1074 error(lineno, 'undefined argument set', t) 1075 continue 1076 1077 # '@Foo' gives a pattern an explicit format. 1078 if re.fullmatch(re_fmt_ident, t): 1079 tt = t[1:] 1080 if fmt: 1081 error(lineno, 'multiple formats') 1082 if tt in formats: 1083 fmt = formats[tt] 1084 else: 1085 error(lineno, 'undefined format', t) 1086 continue 1087 1088 # '%Foo' imports a field. 1089 if re.fullmatch(re_fld_ident, t): 1090 tt = t[1:] 1091 flds = add_field_byname(lineno, flds, tt, tt) 1092 continue 1093 1094 # 'Foo=%Bar' imports a field with a different name. 1095 if re.fullmatch(re_C_ident + '=' + re_fld_ident, t): 1096 (fname, iname) = t.split('=%') 1097 flds = add_field_byname(lineno, flds, fname, iname) 1098 continue 1099 1100 # 'Foo=number' sets an argument field to a constant value 1101 if re.fullmatch(re_C_ident + '=[+-]?[0-9]+', t): 1102 (fname, value) = t.split('=') 1103 value = int(value) 1104 flds = add_field(lineno, flds, fname, ConstField(value)) 1105 continue 1106 1107 # Pattern of 0s, 1s, dots and dashes indicate required zeros, 1108 # required ones, or dont-cares. 1109 if re.fullmatch('[01.-]+', t): 1110 shift = len(t) 1111 fms = t.replace('0', '1') 1112 fms = fms.replace('.', '0') 1113 fms = fms.replace('-', '0') 1114 fbs = t.replace('.', '0') 1115 fbs = fbs.replace('-', '0') 1116 ubm = t.replace('1', '0') 1117 ubm = ubm.replace('.', '0') 1118 ubm = ubm.replace('-', '1') 1119 fms = int(fms, 2) 1120 fbs = int(fbs, 2) 1121 ubm = int(ubm, 2) 1122 fixedbits = (fixedbits << shift) | fbs 1123 fixedmask = (fixedmask << shift) | fms 1124 undefmask = (undefmask << shift) | ubm 1125 # Otherwise, fieldname:fieldwidth 1126 elif re.fullmatch(re_C_ident + ':s?[0-9]+', t): 1127 (fname, flen) = t.split(':') 1128 sign = False 1129 if flen[0] == 's': 1130 sign = True 1131 flen = flen[1:] 1132 shift = int(flen, 10) 1133 if shift + width > insnwidth: 1134 error(lineno, f'field {fname} exceeds insnwidth') 1135 f = Field(sign, insnwidth - width - shift, shift) 1136 flds = add_field(lineno, flds, fname, f) 1137 fixedbits <<= shift 1138 fixedmask <<= shift 1139 undefmask <<= shift 1140 else: 1141 error(lineno, f'invalid token "{t}"') 1142 width += shift 1143 1144 if variablewidth and width < insnwidth and width % 8 == 0: 1145 shift = insnwidth - width 1146 fixedbits <<= shift 1147 fixedmask <<= shift 1148 undefmask <<= shift 1149 undefmask |= (1 << shift) - 1 1150 1151 # We should have filled in all of the bits of the instruction. 1152 elif not (is_format and width == 0) and width != insnwidth: 1153 error(lineno, f'definition has {width} bits') 1154 1155 # Do not check for fields overlapping fields; one valid usage 1156 # is to be able to duplicate fields via import. 1157 fieldmask = 0 1158 for f in flds.values(): 1159 fieldmask |= f.mask 1160 1161 # Fix up what we've parsed to match either a format or a pattern. 1162 if is_format: 1163 # Formats cannot reference formats. 1164 if fmt: 1165 error(lineno, 'format referencing format') 1166 # If an argument set is given, then there should be no fields 1167 # without a place to store it. 1168 if arg: 1169 for f in flds.keys(): 1170 if f not in arg.fields: 1171 error(lineno, f'field {f} not in argument set {arg.name}') 1172 else: 1173 arg = infer_argument_set(flds) 1174 if name in formats: 1175 error(lineno, 'duplicate format name', name) 1176 fmt = Format(name, lineno, arg, fixedbits, fixedmask, 1177 undefmask, fieldmask, flds, width) 1178 formats[name] = fmt 1179 else: 1180 # Patterns can reference a format ... 1181 if fmt: 1182 # ... but not an argument simultaneously 1183 if arg: 1184 error(lineno, 'pattern specifies both format and argument set') 1185 if fixedmask & fmt.fixedmask: 1186 error(lineno, 'pattern fixed bits overlap format fixed bits') 1187 if width != fmt.width: 1188 error(lineno, 'pattern uses format of different width') 1189 fieldmask |= fmt.fieldmask 1190 fixedbits |= fmt.fixedbits 1191 fixedmask |= fmt.fixedmask 1192 undefmask |= fmt.undefmask 1193 else: 1194 (fmt, flds) = infer_format(arg, fieldmask, flds, width) 1195 arg = fmt.base 1196 for f in flds.keys(): 1197 if f not in arg.fields: 1198 error(lineno, f'field {f} not in argument set {arg.name}') 1199 if f in fmt.fields.keys(): 1200 error(lineno, f'field {f} set by format and pattern') 1201 for f in arg.fields: 1202 if f not in flds.keys() and f not in fmt.fields.keys(): 1203 error(lineno, f'field {f} not initialized') 1204 pat = Pattern(name, lineno, fmt, fixedbits, fixedmask, 1205 undefmask, fieldmask, flds, width) 1206 parent_pat.pats.append(pat) 1207 allpatterns.append(pat) 1208 1209 # Validate the masks that we have assembled. 1210 if fieldmask & fixedmask: 1211 error(lineno, 'fieldmask overlaps fixedmask ', 1212 f'({whex(fieldmask)} & {whex(fixedmask)})') 1213 if fieldmask & undefmask: 1214 error(lineno, 'fieldmask overlaps undefmask ', 1215 f'({whex(fieldmask)} & {whex(undefmask)})') 1216 if fixedmask & undefmask: 1217 error(lineno, 'fixedmask overlaps undefmask ', 1218 f'({whex(fixedmask)} & {whex(undefmask)})') 1219 if not is_format: 1220 allbits = fieldmask | fixedmask | undefmask 1221 if allbits != insnmask: 1222 error(lineno, 'bits left unspecified ', 1223 f'({whex(allbits ^ insnmask)})') 1224# end parse_general 1225 1226 1227def parse_file(f, parent_pat): 1228 """Parse all of the patterns within a file""" 1229 global re_arg_ident 1230 global re_fld_ident 1231 global re_fmt_ident 1232 global re_pat_ident 1233 1234 # Read all of the lines of the file. Concatenate lines 1235 # ending in backslash; discard empty lines and comments. 1236 toks = [] 1237 lineno = 0 1238 nesting = 0 1239 nesting_pats = [] 1240 1241 for line in f: 1242 lineno += 1 1243 1244 # Expand and strip spaces, to find indent. 1245 line = line.rstrip() 1246 line = line.expandtabs() 1247 len1 = len(line) 1248 line = line.lstrip() 1249 len2 = len(line) 1250 1251 # Discard comments 1252 end = line.find('#') 1253 if end >= 0: 1254 line = line[:end] 1255 1256 t = line.split() 1257 if len(toks) != 0: 1258 # Next line after continuation 1259 toks.extend(t) 1260 else: 1261 # Allow completely blank lines. 1262 if len1 == 0: 1263 continue 1264 indent = len1 - len2 1265 # Empty line due to comment. 1266 if len(t) == 0: 1267 # Indentation must be correct, even for comment lines. 1268 if indent != nesting: 1269 error(lineno, 'indentation ', indent, ' != ', nesting) 1270 continue 1271 start_lineno = lineno 1272 toks = t 1273 1274 # Continuation? 1275 if toks[-1] == '\\': 1276 toks.pop() 1277 continue 1278 1279 name = toks[0] 1280 del toks[0] 1281 1282 # End nesting? 1283 if name == '}' or name == ']': 1284 if len(toks) != 0: 1285 error(start_lineno, 'extra tokens after close brace') 1286 1287 # Make sure { } and [ ] nest properly. 1288 if (name == '}') != isinstance(parent_pat, IncMultiPattern): 1289 error(lineno, 'mismatched close brace') 1290 1291 try: 1292 parent_pat = nesting_pats.pop() 1293 except: 1294 error(lineno, 'extra close brace') 1295 1296 nesting -= 2 1297 if indent != nesting: 1298 error(lineno, 'indentation ', indent, ' != ', nesting) 1299 1300 toks = [] 1301 continue 1302 1303 # Everything else should have current indentation. 1304 if indent != nesting: 1305 error(start_lineno, 'indentation ', indent, ' != ', nesting) 1306 1307 # Start nesting? 1308 if name == '{' or name == '[': 1309 if len(toks) != 0: 1310 error(start_lineno, 'extra tokens after open brace') 1311 1312 if name == '{': 1313 nested_pat = IncMultiPattern(start_lineno) 1314 else: 1315 nested_pat = ExcMultiPattern(start_lineno) 1316 parent_pat.pats.append(nested_pat) 1317 nesting_pats.append(parent_pat) 1318 parent_pat = nested_pat 1319 1320 nesting += 2 1321 toks = [] 1322 continue 1323 1324 # Determine the type of object needing to be parsed. 1325 if re.fullmatch(re_fld_ident, name): 1326 parse_field(start_lineno, name[1:], toks) 1327 elif re.fullmatch(re_arg_ident, name): 1328 parse_arguments(start_lineno, name[1:], toks) 1329 elif re.fullmatch(re_fmt_ident, name): 1330 parse_generic(start_lineno, None, name[1:], toks) 1331 elif re.fullmatch(re_pat_ident, name): 1332 parse_generic(start_lineno, parent_pat, name, toks) 1333 else: 1334 error(lineno, f'invalid token "{name}"') 1335 toks = [] 1336 1337 if nesting != 0: 1338 error(lineno, 'missing close brace') 1339# end parse_file 1340 1341 1342class SizeTree: 1343 """Class representing a node in a size decode tree""" 1344 1345 def __init__(self, m, w): 1346 self.mask = m 1347 self.subs = [] 1348 self.base = None 1349 self.width = w 1350 1351 def str1(self, i): 1352 ind = str_indent(i) 1353 r = ind + whex(self.mask) + ' [\n' 1354 for (b, s) in self.subs: 1355 r += ind + f' {whex(b)}:\n' 1356 r += s.str1(i + 4) + '\n' 1357 r += ind + ']' 1358 return r 1359 1360 def __str__(self): 1361 return self.str1(0) 1362 1363 def output_code(self, i, extracted, outerbits, outermask): 1364 ind = str_indent(i) 1365 1366 # If we need to load more bytes to test, do so now. 1367 if extracted < self.width: 1368 output(ind, f'insn = {decode_function}_load_bytes', 1369 f'(ctx, insn, {extracted // 8}, {self.width // 8});\n') 1370 extracted = self.width 1371 1372 # Attempt to aid the compiler in producing compact switch statements. 1373 # If the bits in the mask are contiguous, extract them. 1374 sh = is_contiguous(self.mask) 1375 if sh > 0: 1376 # Propagate SH down into the local functions. 1377 def str_switch(b, sh=sh): 1378 return f'(insn >> {sh}) & {b >> sh:#x}' 1379 1380 def str_case(b, sh=sh): 1381 return hex(b >> sh) 1382 else: 1383 def str_switch(b): 1384 return f'insn & {whexC(b)}' 1385 1386 def str_case(b): 1387 return whexC(b) 1388 1389 output(ind, 'switch (', str_switch(self.mask), ') {\n') 1390 for b, s in sorted(self.subs): 1391 innermask = outermask | self.mask 1392 innerbits = outerbits | b 1393 output(ind, 'case ', str_case(b), ':\n') 1394 output(ind, ' /* ', 1395 str_match_bits(innerbits, innermask), ' */\n') 1396 s.output_code(i + 4, extracted, innerbits, innermask) 1397 output(ind, '}\n') 1398 output(ind, 'return insn;\n') 1399# end SizeTree 1400 1401class SizeLeaf: 1402 """Class representing a leaf node in a size decode tree""" 1403 1404 def __init__(self, m, w): 1405 self.mask = m 1406 self.width = w 1407 1408 def str1(self, i): 1409 return str_indent(i) + whex(self.mask) 1410 1411 def __str__(self): 1412 return self.str1(0) 1413 1414 def output_code(self, i, extracted, outerbits, outermask): 1415 global decode_function 1416 ind = str_indent(i) 1417 1418 # If we need to load more bytes, do so now. 1419 if extracted < self.width: 1420 output(ind, f'insn = {decode_function}_load_bytes', 1421 f'(ctx, insn, {extracted // 8}, {self.width // 8});\n') 1422 extracted = self.width 1423 output(ind, 'return insn;\n') 1424# end SizeLeaf 1425 1426 1427def build_size_tree(pats, width, outerbits, outermask): 1428 global insnwidth 1429 1430 # Collect the mask of bits that are fixed in this width 1431 innermask = 0xff << (insnwidth - width) 1432 innermask &= ~outermask 1433 minwidth = None 1434 onewidth = True 1435 for i in pats: 1436 innermask &= i.fixedmask 1437 if minwidth is None: 1438 minwidth = i.width 1439 elif minwidth != i.width: 1440 onewidth = False; 1441 if minwidth < i.width: 1442 minwidth = i.width 1443 1444 if onewidth: 1445 return SizeLeaf(innermask, minwidth) 1446 1447 if innermask == 0: 1448 if width < minwidth: 1449 return build_size_tree(pats, width + 8, outerbits, outermask) 1450 1451 pnames = [] 1452 for p in pats: 1453 pnames.append(p.name + ':' + p.file + ':' + str(p.lineno)) 1454 error_with_file(pats[0].file, pats[0].lineno, 1455 f'overlapping patterns size {width}:', pnames) 1456 1457 bins = {} 1458 for i in pats: 1459 fb = i.fixedbits & innermask 1460 if fb in bins: 1461 bins[fb].append(i) 1462 else: 1463 bins[fb] = [i] 1464 1465 fullmask = outermask | innermask 1466 lens = sorted(bins.keys()) 1467 if len(lens) == 1: 1468 b = lens[0] 1469 return build_size_tree(bins[b], width + 8, b | outerbits, fullmask) 1470 1471 r = SizeTree(innermask, width) 1472 for b, l in bins.items(): 1473 s = build_size_tree(l, width, b | outerbits, fullmask) 1474 r.subs.append((b, s)) 1475 return r 1476# end build_size_tree 1477 1478 1479def prop_size(tree): 1480 """Propagate minimum widths up the decode size tree""" 1481 1482 if isinstance(tree, SizeTree): 1483 min = None 1484 for (b, s) in tree.subs: 1485 width = prop_size(s) 1486 if min is None or min > width: 1487 min = width 1488 assert min >= tree.width 1489 tree.width = min 1490 else: 1491 min = tree.width 1492 return min 1493# end prop_size 1494 1495 1496def main(): 1497 global arguments 1498 global formats 1499 global allpatterns 1500 global translate_scope 1501 global translate_prefix 1502 global output_fd 1503 global output_file 1504 global output_null 1505 global input_file 1506 global insnwidth 1507 global insntype 1508 global insnmask 1509 global decode_function 1510 global bitop_width 1511 global variablewidth 1512 global anyextern 1513 global testforerror 1514 1515 decode_scope = 'static ' 1516 1517 long_opts = ['decode=', 'translate=', 'output=', 'insnwidth=', 1518 'static-decode=', 'varinsnwidth=', 'test-for-error', 1519 'output-null'] 1520 try: 1521 (opts, args) = getopt.gnu_getopt(sys.argv[1:], 'o:vw:', long_opts) 1522 except getopt.GetoptError as err: 1523 error(0, err) 1524 for o, a in opts: 1525 if o in ('-o', '--output'): 1526 output_file = a 1527 elif o == '--decode': 1528 decode_function = a 1529 decode_scope = '' 1530 elif o == '--static-decode': 1531 decode_function = a 1532 elif o == '--translate': 1533 translate_prefix = a 1534 translate_scope = '' 1535 elif o in ('-w', '--insnwidth', '--varinsnwidth'): 1536 if o == '--varinsnwidth': 1537 variablewidth = True 1538 insnwidth = int(a) 1539 if insnwidth == 16: 1540 insntype = 'uint16_t' 1541 insnmask = 0xffff 1542 elif insnwidth == 64: 1543 insntype = 'uint64_t' 1544 insnmask = 0xffffffffffffffff 1545 bitop_width = 64 1546 elif insnwidth != 32: 1547 error(0, 'cannot handle insns of width', insnwidth) 1548 elif o == '--test-for-error': 1549 testforerror = True 1550 elif o == '--output-null': 1551 output_null = True 1552 else: 1553 assert False, 'unhandled option' 1554 1555 if len(args) < 1: 1556 error(0, 'missing input file') 1557 1558 toppat = ExcMultiPattern(0) 1559 1560 for filename in args: 1561 input_file = filename 1562 f = open(filename, 'rt', encoding='utf-8') 1563 parse_file(f, toppat) 1564 f.close() 1565 1566 # We do not want to compute masks for toppat, because those masks 1567 # are used as a starting point for build_tree. For toppat, we must 1568 # insist that decode begins from naught. 1569 for i in toppat.pats: 1570 i.prop_masks() 1571 1572 toppat.build_tree() 1573 toppat.prop_format() 1574 1575 if variablewidth: 1576 for i in toppat.pats: 1577 i.prop_width() 1578 stree = build_size_tree(toppat.pats, 8, 0, 0) 1579 prop_size(stree) 1580 1581 if output_null: 1582 output_fd = open(os.devnull, 'wt', encoding='utf-8', errors="ignore") 1583 elif output_file: 1584 output_fd = open(output_file, 'wt', encoding='utf-8') 1585 else: 1586 output_fd = io.TextIOWrapper(sys.stdout.buffer, 1587 encoding=sys.stdout.encoding, 1588 errors="ignore") 1589 1590 output_autogen() 1591 for n in sorted(arguments.keys()): 1592 f = arguments[n] 1593 f.output_def() 1594 1595 # A single translate function can be invoked for different patterns. 1596 # Make sure that the argument sets are the same, and declare the 1597 # function only once. 1598 # 1599 # If we're sharing formats, we're likely also sharing trans_* functions, 1600 # but we can't tell which ones. Prevent issues from the compiler by 1601 # suppressing redundant declaration warnings. 1602 if anyextern: 1603 output("#pragma GCC diagnostic push\n", 1604 "#pragma GCC diagnostic ignored \"-Wredundant-decls\"\n", 1605 "#ifdef __clang__\n" 1606 "# pragma GCC diagnostic ignored \"-Wtypedef-redefinition\"\n", 1607 "#endif\n\n") 1608 1609 out_pats = {} 1610 for i in allpatterns: 1611 if i.name in out_pats: 1612 p = out_pats[i.name] 1613 if i.base.base != p.base.base: 1614 error(0, i.name, ' has conflicting argument sets') 1615 else: 1616 i.output_decl() 1617 out_pats[i.name] = i 1618 output('\n') 1619 1620 if anyextern: 1621 output("#pragma GCC diagnostic pop\n\n") 1622 1623 for n in sorted(formats.keys()): 1624 f = formats[n] 1625 f.output_extract() 1626 1627 output(decode_scope, 'bool ', decode_function, 1628 '(DisasContext *ctx, ', insntype, ' insn)\n{\n') 1629 1630 i4 = str_indent(4) 1631 1632 if len(allpatterns) != 0: 1633 output(i4, 'union {\n') 1634 for n in sorted(arguments.keys()): 1635 f = arguments[n] 1636 output(i4, i4, f.struct_name(), ' f_', f.name, ';\n') 1637 output(i4, '} u;\n\n') 1638 toppat.output_code(4, False, 0, 0) 1639 1640 output(i4, 'return false;\n') 1641 output('}\n') 1642 1643 if variablewidth: 1644 output('\n', decode_scope, insntype, ' ', decode_function, 1645 '_load(DisasContext *ctx)\n{\n', 1646 ' ', insntype, ' insn = 0;\n\n') 1647 stree.output_code(4, 0, 0, 0) 1648 output('}\n') 1649 1650 if output_file: 1651 output_fd.close() 1652 exit(1 if testforerror else 0) 1653# end main 1654 1655 1656if __name__ == '__main__': 1657 main() 1658