xref: /openbmc/qemu/rust/qemu-api/src/qom.rs (revision e4fb0be1d1d6b67df7709d84d16133b64f455ce8)
1 // Copyright 2024, Linaro Limited
2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org>
3 // SPDX-License-Identifier: GPL-2.0-or-later
4 
5 //! Bindings to access QOM functionality from Rust.
6 //!
7 //! The QEMU Object Model (QOM) provides inheritance and dynamic typing for QEMU
8 //! devices. This module makes QOM's features available in Rust through three
9 //! main mechanisms:
10 //!
11 //! * Automatic creation and registration of `TypeInfo` for classes that are
12 //!   written in Rust, as well as mapping between Rust traits and QOM vtables.
13 //!
14 //! * Type-safe casting between parent and child classes, through the [`IsA`]
15 //!   trait and methods such as [`upcast`](ObjectCast::upcast) and
16 //!   [`downcast`](ObjectCast::downcast).
17 //!
18 //! * Automatic delegation of parent class methods to child classes. When a
19 //!   trait uses [`IsA`] as a bound, its contents become available to all child
20 //!   classes through blanket implementations. This works both for class methods
21 //!   and for instance methods accessed through references or smart pointers.
22 //!
23 //! # Structure of a class
24 //!
25 //! A leaf class only needs a struct holding instance state. The struct must
26 //! implement the [`ObjectType`] and [`IsA`] traits, as well as any `*Impl`
27 //! traits that exist for its superclasses.
28 //!
29 //! If a class has subclasses, it will also provide a struct for instance data,
30 //! with the same characteristics as for concrete classes, but it also needs
31 //! additional components to support virtual methods:
32 //!
33 //! * a struct for class data, for example `DeviceClass`. This corresponds to
34 //!   the C "class struct" and holds the vtable that is used by instances of the
35 //!   class and its subclasses. It must start with its parent's class struct.
36 //!
37 //! * a trait for virtual method implementations, for example `DeviceImpl`.
38 //!   Child classes implement this trait to provide their own behavior for
39 //!   virtual methods. The trait's methods take `&self` to access instance data.
40 //!   The traits have the appropriate specialization of `IsA<>` as a supertrait,
41 //!   for example `IsA<DeviceState>` for `DeviceImpl`.
42 //!
43 //! * a trait for instance methods, for example `DeviceMethods`. This trait is
44 //!   automatically implemented for any reference or smart pointer to a device
45 //!   instance.  It calls into the vtable provides access across all subclasses
46 //!   to methods defined for the class.
47 //!
48 //! * optionally, a trait for class methods, for example `DeviceClassMethods`.
49 //!   This provides access to class-wide functionality that doesn't depend on
50 //!   instance data. Like instance methods, these are automatically inherited by
51 //!   child classes.
52 //!
53 //! # Class structures
54 //!
55 //! Each QOM class that has virtual methods describes them in a
56 //! _class struct_.  Class structs include a parent field corresponding
57 //! to the vtable of the parent class, all the way up to [`ObjectClass`].
58 //!
59 //! As mentioned above, virtual methods are defined via traits such as
60 //! `DeviceImpl`.  Class structs do not define any trait but, conventionally,
61 //! all of them have a `class_init` method to initialize the virtual methods
62 //! based on the trait and then call the same method on the superclass.
63 //!
64 //! ```ignore
65 //! impl YourSubclassClass
66 //! {
67 //!     pub fn class_init<T: YourSubclassImpl>(&mut self) {
68 //!         ...
69 //!         klass.parent_class::class_init<T>();
70 //!     }
71 //! }
72 //! ```
73 //!
74 //! If a class implements a QOM interface.  In that case, the function must
75 //! contain, for each interface, an extra forwarding call as follows:
76 //!
77 //! ```ignore
78 //! ResettableClass::cast::<Self>(self).class_init::<Self>();
79 //! ```
80 //!
81 //! These `class_init` functions are methods on the class rather than a trait,
82 //! because the bound on `T` (`DeviceImpl` in this case), will change for every
83 //! class struct.  The functions are pointed to by the
84 //! [`ObjectImpl::CLASS_INIT`] function pointer. While there is no default
85 //! implementation, in most cases it will be enough to write it as follows:
86 //!
87 //! ```ignore
88 //! const CLASS_INIT: fn(&mut Self::Class)> = Self::Class::class_init::<Self>;
89 //! ```
90 //!
91 //! This design incurs a small amount of code duplication but, by not using
92 //! traits, it allows the flexibility of implementing bindings in any crate,
93 //! without incurring into violations of orphan rules for traits.
94 
95 use std::{
96     ffi::{c_void, CStr},
97     fmt,
98     mem::ManuallyDrop,
99     ops::{Deref, DerefMut},
100     ptr::NonNull,
101 };
102 
103 pub use bindings::ObjectClass;
104 
105 use crate::{
106     bindings::{
107         self, object_class_dynamic_cast, object_dynamic_cast, object_get_class,
108         object_get_typename, object_new, object_ref, object_unref, TypeInfo,
109     },
110     cell::{bql_locked, Opaque},
111 };
112 
113 /// A safe wrapper around [`bindings::Object`].
114 #[repr(transparent)]
115 #[derive(Debug, qemu_api_macros::Wrapper)]
116 pub struct Object(Opaque<bindings::Object>);
117 
118 unsafe impl Send for Object {}
119 unsafe impl Sync for Object {}
120 
121 /// Marker trait: `Self` can be statically upcasted to `P` (i.e. `P` is a direct
122 /// or indirect parent of `Self`).
123 ///
124 /// # Safety
125 ///
126 /// The struct `Self` must be `#[repr(C)]` and must begin, directly or
127 /// indirectly, with a field of type `P`.  This ensures that invalid casts,
128 /// which rely on `IsA<>` for static checking, are rejected at compile time.
129 pub unsafe trait IsA<P: ObjectType>: ObjectType {}
130 
131 // SAFETY: it is always safe to cast to your own type
132 unsafe impl<T: ObjectType> IsA<T> for T {}
133 
134 /// Macro to mark superclasses of QOM classes.  This enables type-safe
135 /// up- and downcasting.
136 ///
137 /// # Safety
138 ///
139 /// This macro is a thin wrapper around the [`IsA`] trait and performs
140 /// no checking whatsoever of what is declared.  It is the caller's
141 /// responsibility to have $struct begin, directly or indirectly, with
142 /// a field of type `$parent`.
143 #[macro_export]
144 macro_rules! qom_isa {
145     ($struct:ty : $($parent:ty),* ) => {
146         $(
147             // SAFETY: it is the caller responsibility to have $parent as the
148             // first field
149             unsafe impl $crate::qom::IsA<$parent> for $struct {}
150 
151             impl AsRef<$parent> for $struct {
152                 fn as_ref(&self) -> &$parent {
153                     // SAFETY: follows the same rules as for IsA<U>, which is
154                     // declared above.
155                     let ptr: *const Self = self;
156                     unsafe { &*ptr.cast::<$parent>() }
157                 }
158             }
159         )*
160     };
161 }
162 
163 /// This is the same as [`ManuallyDrop<T>`](std::mem::ManuallyDrop), though
164 /// it hides the standard methods of `ManuallyDrop`.
165 ///
166 /// The first field of an `ObjectType` must be of type `ParentField<T>`.
167 /// (Technically, this is only necessary if there is at least one Rust
168 /// superclass in the hierarchy).  This is to ensure that the parent field is
169 /// dropped after the subclass; this drop order is enforced by the C
170 /// `object_deinit` function.
171 ///
172 /// # Examples
173 ///
174 /// ```ignore
175 /// #[repr(C)]
176 /// #[derive(qemu_api_macros::Object)]
177 /// pub struct MyDevice {
178 ///     parent: ParentField<DeviceState>,
179 ///     ...
180 /// }
181 /// ```
182 #[derive(Debug)]
183 #[repr(transparent)]
184 pub struct ParentField<T: ObjectType>(std::mem::ManuallyDrop<T>);
185 
186 impl<T: ObjectType> Deref for ParentField<T> {
187     type Target = T;
188 
189     #[inline(always)]
190     fn deref(&self) -> &Self::Target {
191         &self.0
192     }
193 }
194 
195 impl<T: ObjectType> DerefMut for ParentField<T> {
196     #[inline(always)]
197     fn deref_mut(&mut self) -> &mut Self::Target {
198         &mut self.0
199     }
200 }
201 
202 impl<T: fmt::Display + ObjectType> fmt::Display for ParentField<T> {
203     #[inline(always)]
204     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
205         self.0.fmt(f)
206     }
207 }
208 
209 unsafe extern "C" fn rust_instance_init<T: ObjectImpl>(obj: *mut bindings::Object) {
210     let mut state = NonNull::new(obj).unwrap().cast::<T>();
211     // SAFETY: obj is an instance of T, since rust_instance_init<T>
212     // is called from QOM core as the instance_init function
213     // for class T
214     unsafe {
215         T::INSTANCE_INIT.unwrap()(state.as_mut());
216     }
217 }
218 
219 unsafe extern "C" fn rust_instance_post_init<T: ObjectImpl>(obj: *mut bindings::Object) {
220     let state = NonNull::new(obj).unwrap().cast::<T>();
221     // SAFETY: obj is an instance of T, since rust_instance_post_init<T>
222     // is called from QOM core as the instance_post_init function
223     // for class T
224     T::INSTANCE_POST_INIT.unwrap()(unsafe { state.as_ref() });
225 }
226 
227 unsafe extern "C" fn rust_class_init<T: ObjectType + ObjectImpl>(
228     klass: *mut ObjectClass,
229     _data: *const c_void,
230 ) {
231     let mut klass = NonNull::new(klass)
232         .unwrap()
233         .cast::<<T as ObjectType>::Class>();
234     // SAFETY: klass is a T::Class, since rust_class_init<T>
235     // is called from QOM core as the class_init function
236     // for class T
237     <T as ObjectImpl>::CLASS_INIT(unsafe { klass.as_mut() })
238 }
239 
240 unsafe extern "C" fn drop_object<T: ObjectImpl>(obj: *mut bindings::Object) {
241     // SAFETY: obj is an instance of T, since drop_object<T> is called
242     // from the QOM core function object_deinit() as the instance_finalize
243     // function for class T.  Note that while object_deinit() will drop the
244     // superclass field separately after this function returns, `T` must
245     // implement the unsafe trait ObjectType; the safety rules for the
246     // trait mandate that the parent field is manually dropped.
247     unsafe { std::ptr::drop_in_place(obj.cast::<T>()) }
248 }
249 
250 /// Trait exposed by all structs corresponding to QOM objects.
251 ///
252 /// # Safety
253 ///
254 /// For classes declared in C:
255 ///
256 /// - `Class` and `TYPE` must match the data in the `TypeInfo`;
257 ///
258 /// - the first field of the struct must be of the instance type corresponding
259 ///   to the superclass, as declared in the `TypeInfo`
260 ///
261 /// - likewise, the first field of the `Class` struct must be of the class type
262 ///   corresponding to the superclass
263 ///
264 /// For classes declared in Rust and implementing [`ObjectImpl`]:
265 ///
266 /// - the struct must be `#[repr(C)]`;
267 ///
268 /// - the first field of the struct must be of type
269 ///   [`ParentField<T>`](ParentField), where `T` is the parent type
270 ///   [`ObjectImpl::ParentType`]
271 ///
272 /// - the first field of the `Class` must be of the class struct corresponding
273 ///   to the superclass, which is `ObjectImpl::ParentType::Class`. `ParentField`
274 ///   is not needed here.
275 ///
276 /// In both cases, having a separate class type is not necessary if the subclass
277 /// does not add any field.
278 pub unsafe trait ObjectType: Sized {
279     /// The QOM class object corresponding to this struct.  This is used
280     /// to automatically generate a `class_init` method.
281     type Class;
282 
283     /// The name of the type, which can be passed to `object_new()` to
284     /// generate an instance of this type.
285     const TYPE_NAME: &'static CStr;
286 
287     /// Return the receiver as an Object.  This is always safe, even
288     /// if this type represents an interface.
289     fn as_object(&self) -> &Object {
290         unsafe { &*self.as_ptr().cast() }
291     }
292 
293     /// Return the receiver as a const raw pointer to Object.
294     /// This is preferrable to `as_object_mut_ptr()` if a C
295     /// function only needs a `const Object *`.
296     fn as_object_ptr(&self) -> *const bindings::Object {
297         self.as_object().as_ptr()
298     }
299 
300     /// Return the receiver as a mutable raw pointer to Object.
301     ///
302     /// # Safety
303     ///
304     /// This cast is always safe, but because the result is mutable
305     /// and the incoming reference is not, this should only be used
306     /// for calls to C functions, and only if needed.
307     unsafe fn as_object_mut_ptr(&self) -> *mut bindings::Object {
308         self.as_object().as_mut_ptr()
309     }
310 }
311 
312 /// Trait exposed by all structs corresponding to QOM interfaces.
313 /// Unlike `ObjectType`, it is implemented on the class type (which provides
314 /// the vtable for the interfaces).
315 ///
316 /// # Safety
317 ///
318 /// `TYPE` must match the contents of the `TypeInfo` as found in the C code;
319 /// right now, interfaces can only be declared in C.
320 pub unsafe trait InterfaceType: Sized {
321     /// The name of the type, which can be passed to
322     /// `object_class_dynamic_cast()` to obtain the pointer to the vtable
323     /// for this interface.
324     const TYPE_NAME: &'static CStr;
325 
326     /// Return the vtable for the interface; `U` is the type that
327     /// lists the interface in its `TypeInfo`.
328     ///
329     /// # Examples
330     ///
331     /// This function is usually called by a `class_init` method in `U::Class`.
332     /// For example, `DeviceClass::class_init<T>` initializes its `Resettable`
333     /// interface as follows:
334     ///
335     /// ```ignore
336     /// ResettableClass::cast::<DeviceState>(self).class_init::<T>();
337     /// ```
338     ///
339     /// where `T` is the concrete subclass that is being initialized.
340     ///
341     /// # Panics
342     ///
343     /// Panic if the incoming argument if `T` does not implement the interface.
344     fn cast<U: ObjectType>(klass: &mut U::Class) -> &mut Self {
345         unsafe {
346             // SAFETY: upcasting to ObjectClass is always valid, and the
347             // return type is either NULL or the argument itself
348             let result: *mut Self = object_class_dynamic_cast(
349                 (klass as *mut U::Class).cast(),
350                 Self::TYPE_NAME.as_ptr(),
351             )
352             .cast();
353             result.as_mut().unwrap()
354         }
355     }
356 }
357 
358 /// This trait provides safe casting operations for QOM objects to raw pointers,
359 /// to be used for example for FFI. The trait can be applied to any kind of
360 /// reference or smart pointers, and enforces correctness through the [`IsA`]
361 /// trait.
362 pub trait ObjectDeref: Deref
363 where
364     Self::Target: ObjectType,
365 {
366     /// Convert to a const Rust pointer, to be used for example for FFI.
367     /// The target pointer type must be the type of `self` or a superclass
368     fn as_ptr<U: ObjectType>(&self) -> *const U
369     where
370         Self::Target: IsA<U>,
371     {
372         let ptr: *const Self::Target = self.deref();
373         ptr.cast::<U>()
374     }
375 
376     /// Convert to a mutable Rust pointer, to be used for example for FFI.
377     /// The target pointer type must be the type of `self` or a superclass.
378     /// Used to implement interior mutability for objects.
379     ///
380     /// # Safety
381     ///
382     /// This method is safe because only the actual dereference of the pointer
383     /// has to be unsafe.  Bindings to C APIs will use it a lot, but care has
384     /// to be taken because it overrides the const-ness of `&self`.
385     fn as_mut_ptr<U: ObjectType>(&self) -> *mut U
386     where
387         Self::Target: IsA<U>,
388     {
389         #[allow(clippy::as_ptr_cast_mut)]
390         {
391             self.as_ptr::<U>() as *mut _
392         }
393     }
394 }
395 
396 /// Trait that adds extra functionality for `&T` where `T` is a QOM
397 /// object type.  Allows conversion to/from C objects in generic code.
398 pub trait ObjectCast: ObjectDeref + Copy
399 where
400     Self::Target: ObjectType,
401 {
402     /// Safely convert from a derived type to one of its parent types.
403     ///
404     /// This is always safe; the [`IsA`] trait provides static verification
405     /// trait that `Self` dereferences to `U` or a child of `U`.
406     fn upcast<'a, U: ObjectType>(self) -> &'a U
407     where
408         Self::Target: IsA<U>,
409         Self: 'a,
410     {
411         // SAFETY: soundness is declared via IsA<U>, which is an unsafe trait
412         unsafe { self.unsafe_cast::<U>() }
413     }
414 
415     /// Attempt to convert to a derived type.
416     ///
417     /// Returns `None` if the object is not actually of type `U`. This is
418     /// verified at runtime by checking the object's type information.
419     fn downcast<'a, U: IsA<Self::Target>>(self) -> Option<&'a U>
420     where
421         Self: 'a,
422     {
423         self.dynamic_cast::<U>()
424     }
425 
426     /// Attempt to convert between any two types in the QOM hierarchy.
427     ///
428     /// Returns `None` if the object is not actually of type `U`. This is
429     /// verified at runtime by checking the object's type information.
430     fn dynamic_cast<'a, U: ObjectType>(self) -> Option<&'a U>
431     where
432         Self: 'a,
433     {
434         unsafe {
435             // SAFETY: upcasting to Object is always valid, and the
436             // return type is either NULL or the argument itself
437             let result: *const U =
438                 object_dynamic_cast(self.as_object_mut_ptr(), U::TYPE_NAME.as_ptr()).cast();
439 
440             result.as_ref()
441         }
442     }
443 
444     /// Convert to any QOM type without verification.
445     ///
446     /// # Safety
447     ///
448     /// What safety? You need to know yourself that the cast is correct; only
449     /// use when performance is paramount.  It is still better than a raw
450     /// pointer `cast()`, which does not even check that you remain in the
451     /// realm of QOM `ObjectType`s.
452     ///
453     /// `unsafe_cast::<Object>()` is always safe.
454     unsafe fn unsafe_cast<'a, U: ObjectType>(self) -> &'a U
455     where
456         Self: 'a,
457     {
458         unsafe { &*(self.as_ptr::<Self::Target>().cast::<U>()) }
459     }
460 }
461 
462 impl<T: ObjectType> ObjectDeref for &T {}
463 impl<T: ObjectType> ObjectCast for &T {}
464 
465 impl<T: ObjectType> ObjectDeref for &mut T {}
466 
467 /// Trait a type must implement to be registered with QEMU.
468 pub trait ObjectImpl: ObjectType + IsA<Object> {
469     /// The parent of the type.  This should match the first field of the
470     /// struct that implements `ObjectImpl`, minus the `ParentField<_>` wrapper.
471     type ParentType: ObjectType;
472 
473     /// Whether the object can be instantiated
474     const ABSTRACT: bool = false;
475 
476     /// Function that is called to initialize an object.  The parent class will
477     /// have already been initialized so the type is only responsible for
478     /// initializing its own members.
479     ///
480     /// FIXME: The argument is not really a valid reference. `&mut
481     /// MaybeUninit<Self>` would be a better description.
482     const INSTANCE_INIT: Option<unsafe fn(&mut Self)> = None;
483 
484     /// Function that is called to finish initialization of an object, once
485     /// `INSTANCE_INIT` functions have been called.
486     const INSTANCE_POST_INIT: Option<fn(&Self)> = None;
487 
488     /// Called on descendent classes after all parent class initialization
489     /// has occurred, but before the class itself is initialized.  This
490     /// is only useful if a class is not a leaf, and can be used to undo
491     /// the effects of copying the contents of the parent's class struct
492     /// to the descendants.
493     const CLASS_BASE_INIT: Option<
494         unsafe extern "C" fn(klass: *mut ObjectClass, data: *const c_void),
495     > = None;
496 
497     const TYPE_INFO: TypeInfo = TypeInfo {
498         name: Self::TYPE_NAME.as_ptr(),
499         parent: Self::ParentType::TYPE_NAME.as_ptr(),
500         instance_size: core::mem::size_of::<Self>(),
501         instance_align: core::mem::align_of::<Self>(),
502         instance_init: match Self::INSTANCE_INIT {
503             None => None,
504             Some(_) => Some(rust_instance_init::<Self>),
505         },
506         instance_post_init: match Self::INSTANCE_POST_INIT {
507             None => None,
508             Some(_) => Some(rust_instance_post_init::<Self>),
509         },
510         instance_finalize: Some(drop_object::<Self>),
511         abstract_: Self::ABSTRACT,
512         class_size: core::mem::size_of::<Self::Class>(),
513         class_init: Some(rust_class_init::<Self>),
514         class_base_init: Self::CLASS_BASE_INIT,
515         class_data: core::ptr::null(),
516         interfaces: core::ptr::null(),
517     };
518 
519     // methods on ObjectClass
520     const UNPARENT: Option<fn(&Self)> = None;
521 
522     /// Store into the argument the virtual method implementations
523     /// for `Self`.  On entry, the virtual method pointers are set to
524     /// the default values coming from the parent classes; the function
525     /// can change them to override virtual methods of a parent class.
526     ///
527     /// Usually defined simply as `Self::Class::class_init::<Self>`;
528     /// however a default implementation cannot be included here, because the
529     /// bounds that the `Self::Class::class_init` method places on `Self` are
530     /// not known in advance.
531     ///
532     /// # Safety
533     ///
534     /// While `klass`'s parent class is initialized on entry, the other fields
535     /// are all zero; it is therefore assumed that all fields in `T` can be
536     /// zeroed, otherwise it would not be possible to provide the class as a
537     /// `&mut T`.  TODO: add a bound of [`Zeroable`](crate::zeroable::Zeroable)
538     /// to T; this is more easily done once Zeroable does not require a manual
539     /// implementation (Rust 1.75.0).
540     const CLASS_INIT: fn(&mut Self::Class);
541 }
542 
543 /// # Safety
544 ///
545 /// We expect the FFI user of this function to pass a valid pointer that
546 /// can be downcasted to type `T`. We also expect the device is
547 /// readable/writeable from one thread at any time.
548 unsafe extern "C" fn rust_unparent_fn<T: ObjectImpl>(dev: *mut bindings::Object) {
549     let state = NonNull::new(dev).unwrap().cast::<T>();
550     T::UNPARENT.unwrap()(unsafe { state.as_ref() });
551 }
552 
553 impl ObjectClass {
554     /// Fill in the virtual methods of `ObjectClass` based on the definitions in
555     /// the `ObjectImpl` trait.
556     pub fn class_init<T: ObjectImpl>(&mut self) {
557         if <T as ObjectImpl>::UNPARENT.is_some() {
558             self.unparent = Some(rust_unparent_fn::<T>);
559         }
560     }
561 }
562 
563 unsafe impl ObjectType for Object {
564     type Class = ObjectClass;
565     const TYPE_NAME: &'static CStr =
566         unsafe { CStr::from_bytes_with_nul_unchecked(bindings::TYPE_OBJECT) };
567 }
568 
569 /// A reference-counted pointer to a QOM object.
570 ///
571 /// `Owned<T>` wraps `T` with automatic reference counting.  It increases the
572 /// reference count when created via [`Owned::from`] or cloned, and decreases
573 /// it when dropped.  This ensures that the reference count remains elevated
574 /// as long as any `Owned<T>` references to it exist.
575 ///
576 /// `Owned<T>` can be used for two reasons:
577 /// * because the lifetime of the QOM object is unknown and someone else could
578 ///   take a reference (similar to `Arc<T>`, for example): in this case, the
579 ///   object can escape and outlive the Rust struct that contains the `Owned<T>`
580 ///   field;
581 ///
582 /// * to ensure that the object stays alive until after `Drop::drop` is called
583 ///   on the Rust struct: in this case, the object will always die together with
584 ///   the Rust struct that contains the `Owned<T>` field.
585 ///
586 /// Child properties are an example of the second case: in C, an object that
587 /// is created with `object_initialize_child` will die *before*
588 /// `instance_finalize` is called, whereas Rust expects the struct to have valid
589 /// contents when `Drop::drop` is called.  Therefore Rust structs that have
590 /// child properties need to keep a reference to the child object.  Right now
591 /// this can be done with `Owned<T>`; in the future one might have a separate
592 /// `Child<'parent, T>` smart pointer that keeps a reference to a `T`, like
593 /// `Owned`, but does not allow cloning.
594 ///
595 /// Note that dropping an `Owned<T>` requires the big QEMU lock to be taken.
596 #[repr(transparent)]
597 #[derive(PartialEq, Eq, Hash, PartialOrd, Ord)]
598 pub struct Owned<T: ObjectType>(NonNull<T>);
599 
600 // The following rationale for safety is taken from Linux's kernel::sync::Arc.
601 
602 // SAFETY: It is safe to send `Owned<T>` to another thread when the underlying
603 // `T` is `Sync` because it effectively means sharing `&T` (which is safe
604 // because `T` is `Sync`); additionally, it needs `T` to be `Send` because any
605 // thread that has an `Owned<T>` may ultimately access `T` using a
606 // mutable reference when the reference count reaches zero and `T` is dropped.
607 unsafe impl<T: ObjectType + Send + Sync> Send for Owned<T> {}
608 
609 // SAFETY: It is safe to send `&Owned<T>` to another thread when the underlying
610 // `T` is `Sync` because it effectively means sharing `&T` (which is safe
611 // because `T` is `Sync`); additionally, it needs `T` to be `Send` because any
612 // thread that has a `&Owned<T>` may clone it and get an `Owned<T>` on that
613 // thread, so the thread may ultimately access `T` using a mutable reference
614 // when the reference count reaches zero and `T` is dropped.
615 unsafe impl<T: ObjectType + Sync + Send> Sync for Owned<T> {}
616 
617 impl<T: ObjectType> Owned<T> {
618     /// Convert a raw C pointer into an owned reference to the QOM
619     /// object it points to.  The object's reference count will be
620     /// decreased when the `Owned` is dropped.
621     ///
622     /// # Panics
623     ///
624     /// Panics if `ptr` is NULL.
625     ///
626     /// # Safety
627     ///
628     /// The caller must indeed own a reference to the QOM object.
629     /// The object must not be embedded in another unless the outer
630     /// object is guaranteed to have a longer lifetime.
631     ///
632     /// A raw pointer obtained via [`Owned::into_raw()`] can always be passed
633     /// back to `from_raw()` (assuming the original `Owned` was valid!),
634     /// since the owned reference remains there between the calls to
635     /// `into_raw()` and `from_raw()`.
636     pub unsafe fn from_raw(ptr: *const T) -> Self {
637         // SAFETY NOTE: while NonNull requires a mutable pointer, only
638         // Deref is implemented so the pointer passed to from_raw
639         // remains const
640         Owned(NonNull::new(ptr as *mut T).unwrap())
641     }
642 
643     /// Obtain a raw C pointer from a reference.  `src` is consumed
644     /// and the reference is leaked.
645     #[allow(clippy::missing_const_for_fn)]
646     pub fn into_raw(src: Owned<T>) -> *mut T {
647         let src = ManuallyDrop::new(src);
648         src.0.as_ptr()
649     }
650 
651     /// Increase the reference count of a QOM object and return
652     /// a new owned reference to it.
653     ///
654     /// # Safety
655     ///
656     /// The object must not be embedded in another, unless the outer
657     /// object is guaranteed to have a longer lifetime.
658     pub unsafe fn from(obj: &T) -> Self {
659         unsafe {
660             object_ref(obj.as_object_mut_ptr().cast::<c_void>());
661 
662             // SAFETY NOTE: while NonNull requires a mutable pointer, only
663             // Deref is implemented so the reference passed to from_raw
664             // remains shared
665             Owned(NonNull::new_unchecked(obj.as_mut_ptr()))
666         }
667     }
668 }
669 
670 impl<T: ObjectType> Clone for Owned<T> {
671     fn clone(&self) -> Self {
672         // SAFETY: creation method is unsafe; whoever calls it has
673         // responsibility that the pointer is valid, and remains valid
674         // throughout the lifetime of the `Owned<T>` and its clones.
675         unsafe { Owned::from(self.deref()) }
676     }
677 }
678 
679 impl<T: ObjectType> Deref for Owned<T> {
680     type Target = T;
681 
682     fn deref(&self) -> &Self::Target {
683         // SAFETY: creation method is unsafe; whoever calls it has
684         // responsibility that the pointer is valid, and remains valid
685         // throughout the lifetime of the `Owned<T>` and its clones.
686         // With that guarantee, reference counting ensures that
687         // the object remains alive.
688         unsafe { &*self.0.as_ptr() }
689     }
690 }
691 impl<T: ObjectType> ObjectDeref for Owned<T> {}
692 
693 impl<T: ObjectType> Drop for Owned<T> {
694     fn drop(&mut self) {
695         assert!(bql_locked());
696         // SAFETY: creation method is unsafe, and whoever calls it has
697         // responsibility that the pointer is valid, and remains valid
698         // throughout the lifetime of the `Owned<T>` and its clones.
699         unsafe {
700             object_unref(self.as_object_mut_ptr().cast::<c_void>());
701         }
702     }
703 }
704 
705 impl<T: IsA<Object>> fmt::Debug for Owned<T> {
706     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
707         self.deref().debug_fmt(f)
708     }
709 }
710 
711 /// Trait for class methods exposed by the Object class.  The methods can be
712 /// called on all objects that have the trait `IsA<Object>`.
713 ///
714 /// The trait should only be used through the blanket implementation,
715 /// which guarantees safety via `IsA`
716 pub trait ObjectClassMethods: IsA<Object> {
717     /// Return a new reference counted instance of this class
718     fn new() -> Owned<Self> {
719         assert!(bql_locked());
720         // SAFETY: the object created by object_new is allocated on
721         // the heap and has a reference count of 1
722         unsafe {
723             let raw_obj = object_new(Self::TYPE_NAME.as_ptr());
724             let obj = Object::from_raw(raw_obj).unsafe_cast::<Self>();
725             Owned::from_raw(obj)
726         }
727     }
728 }
729 
730 /// Trait for methods exposed by the Object class.  The methods can be
731 /// called on all objects that have the trait `IsA<Object>`.
732 ///
733 /// The trait should only be used through the blanket implementation,
734 /// which guarantees safety via `IsA`
735 pub trait ObjectMethods: ObjectDeref
736 where
737     Self::Target: IsA<Object>,
738 {
739     /// Return the name of the type of `self`
740     fn typename(&self) -> std::borrow::Cow<'_, str> {
741         let obj = self.upcast::<Object>();
742         // SAFETY: safety of this is the requirement for implementing IsA
743         // The result of the C API has static lifetime
744         unsafe {
745             let p = object_get_typename(obj.as_mut_ptr());
746             CStr::from_ptr(p).to_string_lossy()
747         }
748     }
749 
750     fn get_class(&self) -> &'static <Self::Target as ObjectType>::Class {
751         let obj = self.upcast::<Object>();
752 
753         // SAFETY: all objects can call object_get_class; the actual class
754         // type is guaranteed by the implementation of `ObjectType` and
755         // `ObjectImpl`.
756         let klass: &'static <Self::Target as ObjectType>::Class =
757             unsafe { &*object_get_class(obj.as_mut_ptr()).cast() };
758 
759         klass
760     }
761 
762     /// Convenience function for implementing the Debug trait
763     fn debug_fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
764         f.debug_tuple(&self.typename())
765             .field(&(self as *const Self))
766             .finish()
767     }
768 }
769 
770 impl<T> ObjectClassMethods for T where T: IsA<Object> {}
771 impl<R: ObjectDeref> ObjectMethods for R where R::Target: IsA<Object> {}
772