xref: /openbmc/qemu/rust/qemu-api/src/qom.rs (revision a44122258328a33aaa776c21277e6d4f98ab3d1f)
1 // Copyright 2024, Linaro Limited
2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org>
3 // SPDX-License-Identifier: GPL-2.0-or-later
4 
5 //! Bindings to access QOM functionality from Rust.
6 //!
7 //! The QEMU Object Model (QOM) provides inheritance and dynamic typing for QEMU
8 //! devices. This module makes QOM's features available in Rust through three
9 //! main mechanisms:
10 //!
11 //! * Automatic creation and registration of `TypeInfo` for classes that are
12 //!   written in Rust, as well as mapping between Rust traits and QOM vtables.
13 //!
14 //! * Type-safe casting between parent and child classes, through the [`IsA`]
15 //!   trait and methods such as [`upcast`](ObjectCast::upcast) and
16 //!   [`downcast`](ObjectCast::downcast).
17 //!
18 //! * Automatic delegation of parent class methods to child classes. When a
19 //!   trait uses [`IsA`] as a bound, its contents become available to all child
20 //!   classes through blanket implementations. This works both for class methods
21 //!   and for instance methods accessed through references or smart pointers.
22 //!
23 //! # Structure of a class
24 //!
25 //! A leaf class only needs a struct holding instance state. The struct must
26 //! implement the [`ObjectType`] and [`IsA`] traits, as well as any `*Impl`
27 //! traits that exist for its superclasses.
28 //!
29 //! If a class has subclasses, it will also provide a struct for instance data,
30 //! with the same characteristics as for concrete classes, but it also needs
31 //! additional components to support virtual methods:
32 //!
33 //! * a struct for class data, for example `DeviceClass`. This corresponds to
34 //!   the C "class struct" and holds the vtable that is used by instances of the
35 //!   class and its subclasses. It must start with its parent's class struct.
36 //!
37 //! * a trait for virtual method implementations, for example `DeviceImpl`.
38 //!   Child classes implement this trait to provide their own behavior for
39 //!   virtual methods. The trait's methods take `&self` to access instance data.
40 //!   The traits have the appropriate specialization of `IsA<>` as a supertrait,
41 //!   for example `IsA<DeviceState>` for `DeviceImpl`.
42 //!
43 //! * a trait for instance methods, for example `DeviceMethods`. This trait is
44 //!   automatically implemented for any reference or smart pointer to a device
45 //!   instance.  It calls into the vtable provides access across all subclasses
46 //!   to methods defined for the class.
47 //!
48 //! * optionally, a trait for class methods, for example `DeviceClassMethods`.
49 //!   This provides access to class-wide functionality that doesn't depend on
50 //!   instance data. Like instance methods, these are automatically inherited by
51 //!   child classes.
52 //!
53 //! # Class structures
54 //!
55 //! Each QOM class that has virtual methods describes them in a
56 //! _class struct_.  Class structs include a parent field corresponding
57 //! to the vtable of the parent class, all the way up to [`ObjectClass`].
58 //!
59 //! As mentioned above, virtual methods are defined via traits such as
60 //! `DeviceImpl`.  Class structs do not define any trait but, conventionally,
61 //! all of them have a `class_init` method to initialize the virtual methods
62 //! based on the trait and then call the same method on the superclass.
63 //!
64 //! ```ignore
65 //! impl YourSubclassClass
66 //! {
67 //!     pub fn class_init<T: YourSubclassImpl>(&mut self) {
68 //!         ...
69 //!         klass.parent_class::class_init<T>();
70 //!     }
71 //! }
72 //! ```
73 //!
74 //! If a class implements a QOM interface.  In that case, the function must
75 //! contain, for each interface, an extra forwarding call as follows:
76 //!
77 //! ```ignore
78 //! ResettableClass::cast::<Self>(self).class_init::<Self>();
79 //! ```
80 //!
81 //! These `class_init` functions are methods on the class rather than a trait,
82 //! because the bound on `T` (`DeviceImpl` in this case), will change for every
83 //! class struct.  The functions are pointed to by the
84 //! [`ObjectImpl::CLASS_INIT`] function pointer. While there is no default
85 //! implementation, in most cases it will be enough to write it as follows:
86 //!
87 //! ```ignore
88 //! const CLASS_INIT: fn(&mut Self::Class)> = Self::Class::class_init::<Self>;
89 //! ```
90 //!
91 //! This design incurs a small amount of code duplication but, by not using
92 //! traits, it allows the flexibility of implementing bindings in any crate,
93 //! without incurring into violations of orphan rules for traits.
94 
95 use std::{
96     ffi::{c_void, CStr},
97     fmt,
98     mem::{ManuallyDrop, MaybeUninit},
99     ops::{Deref, DerefMut},
100     ptr::NonNull,
101 };
102 
103 pub use bindings::ObjectClass;
104 
105 use crate::{
106     bindings::{
107         self, object_class_dynamic_cast, object_dynamic_cast, object_get_class,
108         object_get_typename, object_new, object_ref, object_unref, TypeInfo,
109     },
110     cell::{bql_locked, Opaque},
111 };
112 
113 /// A safe wrapper around [`bindings::Object`].
114 #[repr(transparent)]
115 #[derive(Debug, qemu_api_macros::Wrapper)]
116 pub struct Object(Opaque<bindings::Object>);
117 
118 unsafe impl Send for Object {}
119 unsafe impl Sync for Object {}
120 
121 /// Marker trait: `Self` can be statically upcasted to `P` (i.e. `P` is a direct
122 /// or indirect parent of `Self`).
123 ///
124 /// # Safety
125 ///
126 /// The struct `Self` must be `#[repr(C)]` and must begin, directly or
127 /// indirectly, with a field of type `P`.  This ensures that invalid casts,
128 /// which rely on `IsA<>` for static checking, are rejected at compile time.
129 pub unsafe trait IsA<P: ObjectType>: ObjectType {}
130 
131 // SAFETY: it is always safe to cast to your own type
132 unsafe impl<T: ObjectType> IsA<T> for T {}
133 
134 /// Macro to mark superclasses of QOM classes.  This enables type-safe
135 /// up- and downcasting.
136 ///
137 /// # Safety
138 ///
139 /// This macro is a thin wrapper around the [`IsA`] trait and performs
140 /// no checking whatsoever of what is declared.  It is the caller's
141 /// responsibility to have $struct begin, directly or indirectly, with
142 /// a field of type `$parent`.
143 #[macro_export]
144 macro_rules! qom_isa {
145     ($struct:ty : $($parent:ty),* ) => {
146         $(
147             // SAFETY: it is the caller responsibility to have $parent as the
148             // first field
149             unsafe impl $crate::qom::IsA<$parent> for $struct {}
150 
151             impl AsRef<$parent> for $struct {
152                 fn as_ref(&self) -> &$parent {
153                     // SAFETY: follows the same rules as for IsA<U>, which is
154                     // declared above.
155                     let ptr: *const Self = self;
156                     unsafe { &*ptr.cast::<$parent>() }
157                 }
158             }
159         )*
160     };
161 }
162 
163 /// This is the same as [`ManuallyDrop<T>`](std::mem::ManuallyDrop), though
164 /// it hides the standard methods of `ManuallyDrop`.
165 ///
166 /// The first field of an `ObjectType` must be of type `ParentField<T>`.
167 /// (Technically, this is only necessary if there is at least one Rust
168 /// superclass in the hierarchy).  This is to ensure that the parent field is
169 /// dropped after the subclass; this drop order is enforced by the C
170 /// `object_deinit` function.
171 ///
172 /// # Examples
173 ///
174 /// ```ignore
175 /// #[repr(C)]
176 /// #[derive(qemu_api_macros::Object)]
177 /// pub struct MyDevice {
178 ///     parent: ParentField<DeviceState>,
179 ///     ...
180 /// }
181 /// ```
182 #[derive(Debug)]
183 #[repr(transparent)]
184 pub struct ParentField<T: ObjectType>(std::mem::ManuallyDrop<T>);
185 
186 impl<T: ObjectType> Deref for ParentField<T> {
187     type Target = T;
188 
189     #[inline(always)]
190     fn deref(&self) -> &Self::Target {
191         &self.0
192     }
193 }
194 
195 impl<T: ObjectType> DerefMut for ParentField<T> {
196     #[inline(always)]
197     fn deref_mut(&mut self) -> &mut Self::Target {
198         &mut self.0
199     }
200 }
201 
202 impl<T: fmt::Display + ObjectType> fmt::Display for ParentField<T> {
203     #[inline(always)]
204     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
205         self.0.fmt(f)
206     }
207 }
208 
209 /// This struct knows that the superclasses of the object have already been
210 /// initialized.
211 pub struct ParentInit<'a, T>(&'a mut MaybeUninit<T>);
212 
213 impl<'a, T> ParentInit<'a, T> {
214     #[inline]
215     pub fn with(obj: &'a mut MaybeUninit<T>, f: impl FnOnce(ParentInit<'a, T>)) {
216         let parent_init = ParentInit(obj);
217         f(parent_init)
218     }
219 }
220 
221 impl<T: ObjectType> ParentInit<'_, T> {
222     /// Return the receiver as a mutable raw pointer to Object.
223     ///
224     /// # Safety
225     ///
226     /// Fields beyond `Object` could be uninitialized and it's your
227     /// responsibility to avoid that they're used when the pointer is
228     /// dereferenced, either directly or through a cast.
229     pub fn as_object_mut_ptr(&self) -> *mut bindings::Object {
230         self.as_object_ptr().cast_mut()
231     }
232 
233     /// Return the receiver as a mutable raw pointer to Object.
234     ///
235     /// # Safety
236     ///
237     /// Fields beyond `Object` could be uninitialized and it's your
238     /// responsibility to avoid that they're used when the pointer is
239     /// dereferenced, either directly or through a cast.
240     pub fn as_object_ptr(&self) -> *const bindings::Object {
241         self.0.as_ptr().cast()
242     }
243 }
244 
245 impl<'a, T: ObjectImpl> ParentInit<'a, T> {
246     /// Convert from a derived type to one of its parent types, which
247     /// have already been initialized.
248     ///
249     /// # Safety
250     ///
251     /// Structurally this is always a safe operation; the [`IsA`] trait
252     /// provides static verification trait that `Self` dereferences to `U` or
253     /// a child of `U`, and only parent types of `T` are allowed.
254     ///
255     /// However, while the fields of the resulting reference are initialized,
256     /// calls might use uninitialized fields of the subclass.  It is your
257     /// responsibility to avoid this.
258     pub unsafe fn upcast<U: ObjectType>(&self) -> &'a U
259     where
260         T::ParentType: IsA<U>,
261     {
262         // SAFETY: soundness is declared via IsA<U>, which is an unsafe trait;
263         // the parent has been initialized before `instance_init `is called
264         unsafe { &*(self.0.as_ptr().cast::<U>()) }
265     }
266 
267     /// Convert from a derived type to one of its parent types, which
268     /// have already been initialized.
269     ///
270     /// # Safety
271     ///
272     /// Structurally this is always a safe operation; the [`IsA`] trait
273     /// provides static verification trait that `Self` dereferences to `U` or
274     /// a child of `U`, and only parent types of `T` are allowed.
275     ///
276     /// However, while the fields of the resulting reference are initialized,
277     /// calls might use uninitialized fields of the subclass.  It is your
278     /// responsibility to avoid this.
279     pub unsafe fn upcast_mut<U: ObjectType>(&mut self) -> &'a mut U
280     where
281         T::ParentType: IsA<U>,
282     {
283         // SAFETY: soundness is declared via IsA<U>, which is an unsafe trait;
284         // the parent has been initialized before `instance_init `is called
285         unsafe { &mut *(self.0.as_mut_ptr().cast::<U>()) }
286     }
287 }
288 
289 impl<T> Deref for ParentInit<'_, T> {
290     type Target = MaybeUninit<T>;
291 
292     fn deref(&self) -> &Self::Target {
293         self.0
294     }
295 }
296 
297 impl<T> DerefMut for ParentInit<'_, T> {
298     fn deref_mut(&mut self) -> &mut Self::Target {
299         self.0
300     }
301 }
302 
303 unsafe extern "C" fn rust_instance_init<T: ObjectImpl>(obj: *mut bindings::Object) {
304     let mut state = NonNull::new(obj).unwrap().cast::<T>();
305     // SAFETY: obj is an instance of T, since rust_instance_init<T>
306     // is called from QOM core as the instance_init function
307     // for class T
308     unsafe {
309         T::INSTANCE_INIT.unwrap()(state.as_mut());
310     }
311 }
312 
313 unsafe extern "C" fn rust_instance_post_init<T: ObjectImpl>(obj: *mut bindings::Object) {
314     let state = NonNull::new(obj).unwrap().cast::<T>();
315     // SAFETY: obj is an instance of T, since rust_instance_post_init<T>
316     // is called from QOM core as the instance_post_init function
317     // for class T
318     T::INSTANCE_POST_INIT.unwrap()(unsafe { state.as_ref() });
319 }
320 
321 unsafe extern "C" fn rust_class_init<T: ObjectType + ObjectImpl>(
322     klass: *mut ObjectClass,
323     _data: *const c_void,
324 ) {
325     let mut klass = NonNull::new(klass)
326         .unwrap()
327         .cast::<<T as ObjectType>::Class>();
328     // SAFETY: klass is a T::Class, since rust_class_init<T>
329     // is called from QOM core as the class_init function
330     // for class T
331     <T as ObjectImpl>::CLASS_INIT(unsafe { klass.as_mut() })
332 }
333 
334 unsafe extern "C" fn drop_object<T: ObjectImpl>(obj: *mut bindings::Object) {
335     // SAFETY: obj is an instance of T, since drop_object<T> is called
336     // from the QOM core function object_deinit() as the instance_finalize
337     // function for class T.  Note that while object_deinit() will drop the
338     // superclass field separately after this function returns, `T` must
339     // implement the unsafe trait ObjectType; the safety rules for the
340     // trait mandate that the parent field is manually dropped.
341     unsafe { std::ptr::drop_in_place(obj.cast::<T>()) }
342 }
343 
344 /// Trait exposed by all structs corresponding to QOM objects.
345 ///
346 /// # Safety
347 ///
348 /// For classes declared in C:
349 ///
350 /// - `Class` and `TYPE` must match the data in the `TypeInfo`;
351 ///
352 /// - the first field of the struct must be of the instance type corresponding
353 ///   to the superclass, as declared in the `TypeInfo`
354 ///
355 /// - likewise, the first field of the `Class` struct must be of the class type
356 ///   corresponding to the superclass
357 ///
358 /// For classes declared in Rust and implementing [`ObjectImpl`]:
359 ///
360 /// - the struct must be `#[repr(C)]`;
361 ///
362 /// - the first field of the struct must be of type
363 ///   [`ParentField<T>`](ParentField), where `T` is the parent type
364 ///   [`ObjectImpl::ParentType`]
365 ///
366 /// - the first field of the `Class` must be of the class struct corresponding
367 ///   to the superclass, which is `ObjectImpl::ParentType::Class`. `ParentField`
368 ///   is not needed here.
369 ///
370 /// In both cases, having a separate class type is not necessary if the subclass
371 /// does not add any field.
372 pub unsafe trait ObjectType: Sized {
373     /// The QOM class object corresponding to this struct.  This is used
374     /// to automatically generate a `class_init` method.
375     type Class;
376 
377     /// The name of the type, which can be passed to `object_new()` to
378     /// generate an instance of this type.
379     const TYPE_NAME: &'static CStr;
380 
381     /// Return the receiver as an Object.  This is always safe, even
382     /// if this type represents an interface.
383     fn as_object(&self) -> &Object {
384         unsafe { &*self.as_ptr().cast() }
385     }
386 
387     /// Return the receiver as a const raw pointer to Object.
388     /// This is preferable to `as_object_mut_ptr()` if a C
389     /// function only needs a `const Object *`.
390     fn as_object_ptr(&self) -> *const bindings::Object {
391         self.as_object().as_ptr()
392     }
393 
394     /// Return the receiver as a mutable raw pointer to Object.
395     ///
396     /// # Safety
397     ///
398     /// This cast is always safe, but because the result is mutable
399     /// and the incoming reference is not, this should only be used
400     /// for calls to C functions, and only if needed.
401     unsafe fn as_object_mut_ptr(&self) -> *mut bindings::Object {
402         self.as_object().as_mut_ptr()
403     }
404 }
405 
406 /// Trait exposed by all structs corresponding to QOM interfaces.
407 /// Unlike `ObjectType`, it is implemented on the class type (which provides
408 /// the vtable for the interfaces).
409 ///
410 /// # Safety
411 ///
412 /// `TYPE` must match the contents of the `TypeInfo` as found in the C code;
413 /// right now, interfaces can only be declared in C.
414 pub unsafe trait InterfaceType: Sized {
415     /// The name of the type, which can be passed to
416     /// `object_class_dynamic_cast()` to obtain the pointer to the vtable
417     /// for this interface.
418     const TYPE_NAME: &'static CStr;
419 
420     /// Return the vtable for the interface; `U` is the type that
421     /// lists the interface in its `TypeInfo`.
422     ///
423     /// # Examples
424     ///
425     /// This function is usually called by a `class_init` method in `U::Class`.
426     /// For example, `DeviceClass::class_init<T>` initializes its `Resettable`
427     /// interface as follows:
428     ///
429     /// ```ignore
430     /// ResettableClass::cast::<DeviceState>(self).class_init::<T>();
431     /// ```
432     ///
433     /// where `T` is the concrete subclass that is being initialized.
434     ///
435     /// # Panics
436     ///
437     /// Panic if the incoming argument if `T` does not implement the interface.
438     fn cast<U: ObjectType>(klass: &mut U::Class) -> &mut Self {
439         unsafe {
440             // SAFETY: upcasting to ObjectClass is always valid, and the
441             // return type is either NULL or the argument itself
442             let result: *mut Self = object_class_dynamic_cast(
443                 (klass as *mut U::Class).cast(),
444                 Self::TYPE_NAME.as_ptr(),
445             )
446             .cast();
447             result.as_mut().unwrap()
448         }
449     }
450 }
451 
452 /// This trait provides safe casting operations for QOM objects to raw pointers,
453 /// to be used for example for FFI. The trait can be applied to any kind of
454 /// reference or smart pointers, and enforces correctness through the [`IsA`]
455 /// trait.
456 pub trait ObjectDeref: Deref
457 where
458     Self::Target: ObjectType,
459 {
460     /// Convert to a const Rust pointer, to be used for example for FFI.
461     /// The target pointer type must be the type of `self` or a superclass
462     fn as_ptr<U: ObjectType>(&self) -> *const U
463     where
464         Self::Target: IsA<U>,
465     {
466         let ptr: *const Self::Target = self.deref();
467         ptr.cast::<U>()
468     }
469 
470     /// Convert to a mutable Rust pointer, to be used for example for FFI.
471     /// The target pointer type must be the type of `self` or a superclass.
472     /// Used to implement interior mutability for objects.
473     ///
474     /// # Safety
475     ///
476     /// This method is safe because only the actual dereference of the pointer
477     /// has to be unsafe.  Bindings to C APIs will use it a lot, but care has
478     /// to be taken because it overrides the const-ness of `&self`.
479     fn as_mut_ptr<U: ObjectType>(&self) -> *mut U
480     where
481         Self::Target: IsA<U>,
482     {
483         #[allow(clippy::as_ptr_cast_mut)]
484         {
485             self.as_ptr::<U>().cast_mut()
486         }
487     }
488 }
489 
490 /// Trait that adds extra functionality for `&T` where `T` is a QOM
491 /// object type.  Allows conversion to/from C objects in generic code.
492 pub trait ObjectCast: ObjectDeref + Copy
493 where
494     Self::Target: ObjectType,
495 {
496     /// Safely convert from a derived type to one of its parent types.
497     ///
498     /// This is always safe; the [`IsA`] trait provides static verification
499     /// trait that `Self` dereferences to `U` or a child of `U`.
500     fn upcast<'a, U: ObjectType>(self) -> &'a U
501     where
502         Self::Target: IsA<U>,
503         Self: 'a,
504     {
505         // SAFETY: soundness is declared via IsA<U>, which is an unsafe trait
506         unsafe { self.unsafe_cast::<U>() }
507     }
508 
509     /// Attempt to convert to a derived type.
510     ///
511     /// Returns `None` if the object is not actually of type `U`. This is
512     /// verified at runtime by checking the object's type information.
513     fn downcast<'a, U: IsA<Self::Target>>(self) -> Option<&'a U>
514     where
515         Self: 'a,
516     {
517         self.dynamic_cast::<U>()
518     }
519 
520     /// Attempt to convert between any two types in the QOM hierarchy.
521     ///
522     /// Returns `None` if the object is not actually of type `U`. This is
523     /// verified at runtime by checking the object's type information.
524     fn dynamic_cast<'a, U: ObjectType>(self) -> Option<&'a U>
525     where
526         Self: 'a,
527     {
528         unsafe {
529             // SAFETY: upcasting to Object is always valid, and the
530             // return type is either NULL or the argument itself
531             let result: *const U =
532                 object_dynamic_cast(self.as_object_mut_ptr(), U::TYPE_NAME.as_ptr()).cast();
533 
534             result.as_ref()
535         }
536     }
537 
538     /// Convert to any QOM type without verification.
539     ///
540     /// # Safety
541     ///
542     /// What safety? You need to know yourself that the cast is correct; only
543     /// use when performance is paramount.  It is still better than a raw
544     /// pointer `cast()`, which does not even check that you remain in the
545     /// realm of QOM `ObjectType`s.
546     ///
547     /// `unsafe_cast::<Object>()` is always safe.
548     unsafe fn unsafe_cast<'a, U: ObjectType>(self) -> &'a U
549     where
550         Self: 'a,
551     {
552         unsafe { &*(self.as_ptr::<Self::Target>().cast::<U>()) }
553     }
554 }
555 
556 impl<T: ObjectType> ObjectDeref for &T {}
557 impl<T: ObjectType> ObjectCast for &T {}
558 
559 impl<T: ObjectType> ObjectDeref for &mut T {}
560 
561 /// Trait a type must implement to be registered with QEMU.
562 pub trait ObjectImpl: ObjectType + IsA<Object> {
563     /// The parent of the type.  This should match the first field of the
564     /// struct that implements `ObjectImpl`, minus the `ParentField<_>` wrapper.
565     type ParentType: ObjectType;
566 
567     /// Whether the object can be instantiated
568     const ABSTRACT: bool = false;
569 
570     /// Function that is called to initialize an object.  The parent class will
571     /// have already been initialized so the type is only responsible for
572     /// initializing its own members.
573     ///
574     /// FIXME: The argument is not really a valid reference. `&mut
575     /// MaybeUninit<Self>` would be a better description.
576     const INSTANCE_INIT: Option<unsafe fn(&mut Self)> = None;
577 
578     /// Function that is called to finish initialization of an object, once
579     /// `INSTANCE_INIT` functions have been called.
580     const INSTANCE_POST_INIT: Option<fn(&Self)> = None;
581 
582     /// Called on descendant classes after all parent class initialization
583     /// has occurred, but before the class itself is initialized.  This
584     /// is only useful if a class is not a leaf, and can be used to undo
585     /// the effects of copying the contents of the parent's class struct
586     /// to the descendants.
587     const CLASS_BASE_INIT: Option<
588         unsafe extern "C" fn(klass: *mut ObjectClass, data: *const c_void),
589     > = None;
590 
591     const TYPE_INFO: TypeInfo = TypeInfo {
592         name: Self::TYPE_NAME.as_ptr(),
593         parent: Self::ParentType::TYPE_NAME.as_ptr(),
594         instance_size: core::mem::size_of::<Self>(),
595         instance_align: core::mem::align_of::<Self>(),
596         instance_init: match Self::INSTANCE_INIT {
597             None => None,
598             Some(_) => Some(rust_instance_init::<Self>),
599         },
600         instance_post_init: match Self::INSTANCE_POST_INIT {
601             None => None,
602             Some(_) => Some(rust_instance_post_init::<Self>),
603         },
604         instance_finalize: Some(drop_object::<Self>),
605         abstract_: Self::ABSTRACT,
606         class_size: core::mem::size_of::<Self::Class>(),
607         class_init: Some(rust_class_init::<Self>),
608         class_base_init: Self::CLASS_BASE_INIT,
609         class_data: core::ptr::null(),
610         interfaces: core::ptr::null(),
611     };
612 
613     // methods on ObjectClass
614     const UNPARENT: Option<fn(&Self)> = None;
615 
616     /// Store into the argument the virtual method implementations
617     /// for `Self`.  On entry, the virtual method pointers are set to
618     /// the default values coming from the parent classes; the function
619     /// can change them to override virtual methods of a parent class.
620     ///
621     /// Usually defined simply as `Self::Class::class_init::<Self>`;
622     /// however a default implementation cannot be included here, because the
623     /// bounds that the `Self::Class::class_init` method places on `Self` are
624     /// not known in advance.
625     ///
626     /// # Safety
627     ///
628     /// While `klass`'s parent class is initialized on entry, the other fields
629     /// are all zero; it is therefore assumed that all fields in `T` can be
630     /// zeroed, otherwise it would not be possible to provide the class as a
631     /// `&mut T`.  TODO: it may be possible to add an unsafe trait that checks
632     /// that all fields *after the parent class* (but not the parent class
633     /// itself) are Zeroable.  This unsafe trait can be added via a derive
634     /// macro.
635     const CLASS_INIT: fn(&mut Self::Class);
636 }
637 
638 /// # Safety
639 ///
640 /// We expect the FFI user of this function to pass a valid pointer that
641 /// can be downcasted to type `T`. We also expect the device is
642 /// readable/writeable from one thread at any time.
643 unsafe extern "C" fn rust_unparent_fn<T: ObjectImpl>(dev: *mut bindings::Object) {
644     let state = NonNull::new(dev).unwrap().cast::<T>();
645     T::UNPARENT.unwrap()(unsafe { state.as_ref() });
646 }
647 
648 impl ObjectClass {
649     /// Fill in the virtual methods of `ObjectClass` based on the definitions in
650     /// the `ObjectImpl` trait.
651     pub fn class_init<T: ObjectImpl>(&mut self) {
652         if <T as ObjectImpl>::UNPARENT.is_some() {
653             self.unparent = Some(rust_unparent_fn::<T>);
654         }
655     }
656 }
657 
658 unsafe impl ObjectType for Object {
659     type Class = ObjectClass;
660     const TYPE_NAME: &'static CStr =
661         unsafe { CStr::from_bytes_with_nul_unchecked(bindings::TYPE_OBJECT) };
662 }
663 
664 /// A reference-counted pointer to a QOM object.
665 ///
666 /// `Owned<T>` wraps `T` with automatic reference counting.  It increases the
667 /// reference count when created via [`Owned::from`] or cloned, and decreases
668 /// it when dropped.  This ensures that the reference count remains elevated
669 /// as long as any `Owned<T>` references to it exist.
670 ///
671 /// `Owned<T>` can be used for two reasons:
672 /// * because the lifetime of the QOM object is unknown and someone else could
673 ///   take a reference (similar to `Arc<T>`, for example): in this case, the
674 ///   object can escape and outlive the Rust struct that contains the `Owned<T>`
675 ///   field;
676 ///
677 /// * to ensure that the object stays alive until after `Drop::drop` is called
678 ///   on the Rust struct: in this case, the object will always die together with
679 ///   the Rust struct that contains the `Owned<T>` field.
680 ///
681 /// Child properties are an example of the second case: in C, an object that
682 /// is created with `object_initialize_child` will die *before*
683 /// `instance_finalize` is called, whereas Rust expects the struct to have valid
684 /// contents when `Drop::drop` is called.  Therefore Rust structs that have
685 /// child properties need to keep a reference to the child object.  Right now
686 /// this can be done with `Owned<T>`; in the future one might have a separate
687 /// `Child<'parent, T>` smart pointer that keeps a reference to a `T`, like
688 /// `Owned`, but does not allow cloning.
689 ///
690 /// Note that dropping an `Owned<T>` requires the big QEMU lock to be taken.
691 #[repr(transparent)]
692 #[derive(PartialEq, Eq, Hash, PartialOrd, Ord)]
693 pub struct Owned<T: ObjectType>(NonNull<T>);
694 
695 // The following rationale for safety is taken from Linux's kernel::sync::Arc.
696 
697 // SAFETY: It is safe to send `Owned<T>` to another thread when the underlying
698 // `T` is `Sync` because it effectively means sharing `&T` (which is safe
699 // because `T` is `Sync`); additionally, it needs `T` to be `Send` because any
700 // thread that has an `Owned<T>` may ultimately access `T` using a
701 // mutable reference when the reference count reaches zero and `T` is dropped.
702 unsafe impl<T: ObjectType + Send + Sync> Send for Owned<T> {}
703 
704 // SAFETY: It is safe to send `&Owned<T>` to another thread when the underlying
705 // `T` is `Sync` because it effectively means sharing `&T` (which is safe
706 // because `T` is `Sync`); additionally, it needs `T` to be `Send` because any
707 // thread that has a `&Owned<T>` may clone it and get an `Owned<T>` on that
708 // thread, so the thread may ultimately access `T` using a mutable reference
709 // when the reference count reaches zero and `T` is dropped.
710 unsafe impl<T: ObjectType + Sync + Send> Sync for Owned<T> {}
711 
712 impl<T: ObjectType> Owned<T> {
713     /// Convert a raw C pointer into an owned reference to the QOM
714     /// object it points to.  The object's reference count will be
715     /// decreased when the `Owned` is dropped.
716     ///
717     /// # Panics
718     ///
719     /// Panics if `ptr` is NULL.
720     ///
721     /// # Safety
722     ///
723     /// The caller must indeed own a reference to the QOM object.
724     /// The object must not be embedded in another unless the outer
725     /// object is guaranteed to have a longer lifetime.
726     ///
727     /// A raw pointer obtained via [`Owned::into_raw()`] can always be passed
728     /// back to `from_raw()` (assuming the original `Owned` was valid!),
729     /// since the owned reference remains there between the calls to
730     /// `into_raw()` and `from_raw()`.
731     pub unsafe fn from_raw(ptr: *const T) -> Self {
732         // SAFETY NOTE: while NonNull requires a mutable pointer, only
733         // Deref is implemented so the pointer passed to from_raw
734         // remains const
735         Owned(NonNull::new(ptr.cast_mut()).unwrap())
736     }
737 
738     /// Obtain a raw C pointer from a reference.  `src` is consumed
739     /// and the reference is leaked.
740     #[allow(clippy::missing_const_for_fn)]
741     pub fn into_raw(src: Owned<T>) -> *mut T {
742         let src = ManuallyDrop::new(src);
743         src.0.as_ptr()
744     }
745 
746     /// Increase the reference count of a QOM object and return
747     /// a new owned reference to it.
748     ///
749     /// # Safety
750     ///
751     /// The object must not be embedded in another, unless the outer
752     /// object is guaranteed to have a longer lifetime.
753     pub unsafe fn from(obj: &T) -> Self {
754         unsafe {
755             object_ref(obj.as_object_mut_ptr().cast::<c_void>());
756 
757             // SAFETY NOTE: while NonNull requires a mutable pointer, only
758             // Deref is implemented so the reference passed to from_raw
759             // remains shared
760             Owned(NonNull::new_unchecked(obj.as_mut_ptr()))
761         }
762     }
763 }
764 
765 impl<T: ObjectType> Clone for Owned<T> {
766     fn clone(&self) -> Self {
767         // SAFETY: creation method is unsafe; whoever calls it has
768         // responsibility that the pointer is valid, and remains valid
769         // throughout the lifetime of the `Owned<T>` and its clones.
770         unsafe { Owned::from(self.deref()) }
771     }
772 }
773 
774 impl<T: ObjectType> Deref for Owned<T> {
775     type Target = T;
776 
777     fn deref(&self) -> &Self::Target {
778         // SAFETY: creation method is unsafe; whoever calls it has
779         // responsibility that the pointer is valid, and remains valid
780         // throughout the lifetime of the `Owned<T>` and its clones.
781         // With that guarantee, reference counting ensures that
782         // the object remains alive.
783         unsafe { &*self.0.as_ptr() }
784     }
785 }
786 impl<T: ObjectType> ObjectDeref for Owned<T> {}
787 
788 impl<T: ObjectType> Drop for Owned<T> {
789     fn drop(&mut self) {
790         assert!(bql_locked());
791         // SAFETY: creation method is unsafe, and whoever calls it has
792         // responsibility that the pointer is valid, and remains valid
793         // throughout the lifetime of the `Owned<T>` and its clones.
794         unsafe {
795             object_unref(self.as_object_mut_ptr().cast::<c_void>());
796         }
797     }
798 }
799 
800 impl<T: IsA<Object>> fmt::Debug for Owned<T> {
801     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
802         self.deref().debug_fmt(f)
803     }
804 }
805 
806 /// Trait for class methods exposed by the Object class.  The methods can be
807 /// called on all objects that have the trait `IsA<Object>`.
808 ///
809 /// The trait should only be used through the blanket implementation,
810 /// which guarantees safety via `IsA`
811 pub trait ObjectClassMethods: IsA<Object> {
812     /// Return a new reference counted instance of this class
813     fn new() -> Owned<Self> {
814         assert!(bql_locked());
815         // SAFETY: the object created by object_new is allocated on
816         // the heap and has a reference count of 1
817         unsafe {
818             let raw_obj = object_new(Self::TYPE_NAME.as_ptr());
819             let obj = Object::from_raw(raw_obj).unsafe_cast::<Self>();
820             Owned::from_raw(obj)
821         }
822     }
823 }
824 
825 /// Trait for methods exposed by the Object class.  The methods can be
826 /// called on all objects that have the trait `IsA<Object>`.
827 ///
828 /// The trait should only be used through the blanket implementation,
829 /// which guarantees safety via `IsA`
830 pub trait ObjectMethods: ObjectDeref
831 where
832     Self::Target: IsA<Object>,
833 {
834     /// Return the name of the type of `self`
835     fn typename(&self) -> std::borrow::Cow<'_, str> {
836         let obj = self.upcast::<Object>();
837         // SAFETY: safety of this is the requirement for implementing IsA
838         // The result of the C API has static lifetime
839         unsafe {
840             let p = object_get_typename(obj.as_mut_ptr());
841             CStr::from_ptr(p).to_string_lossy()
842         }
843     }
844 
845     fn get_class(&self) -> &'static <Self::Target as ObjectType>::Class {
846         let obj = self.upcast::<Object>();
847 
848         // SAFETY: all objects can call object_get_class; the actual class
849         // type is guaranteed by the implementation of `ObjectType` and
850         // `ObjectImpl`.
851         let klass: &'static <Self::Target as ObjectType>::Class =
852             unsafe { &*object_get_class(obj.as_mut_ptr()).cast() };
853 
854         klass
855     }
856 
857     /// Convenience function for implementing the Debug trait
858     fn debug_fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
859         f.debug_tuple(&self.typename())
860             .field(&(self as *const Self))
861             .finish()
862     }
863 }
864 
865 impl<T> ObjectClassMethods for T where T: IsA<Object> {}
866 impl<R: ObjectDeref> ObjectMethods for R where R::Target: IsA<Object> {}
867