xref: /openbmc/qemu/rust/qemu-api/src/qom.rs (revision 8d394f6cf0b50a82758b651e81a18dac13e70e7d)
1 // Copyright 2024, Linaro Limited
2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org>
3 // SPDX-License-Identifier: GPL-2.0-or-later
4 
5 //! Bindings to access QOM functionality from Rust.
6 //!
7 //! The QEMU Object Model (QOM) provides inheritance and dynamic typing for QEMU
8 //! devices. This module makes QOM's features available in Rust through three
9 //! main mechanisms:
10 //!
11 //! * Automatic creation and registration of `TypeInfo` for classes that are
12 //!   written in Rust, as well as mapping between Rust traits and QOM vtables.
13 //!
14 //! * Type-safe casting between parent and child classes, through the [`IsA`]
15 //!   trait and methods such as [`upcast`](ObjectCast::upcast) and
16 //!   [`downcast`](ObjectCast::downcast).
17 //!
18 //! * Automatic delegation of parent class methods to child classes. When a
19 //!   trait uses [`IsA`] as a bound, its contents become available to all child
20 //!   classes through blanket implementations. This works both for class methods
21 //!   and for instance methods accessed through references or smart pointers.
22 //!
23 //! # Structure of a class
24 //!
25 //! A leaf class only needs a struct holding instance state. The struct must
26 //! implement the [`ObjectType`] and [`IsA`] traits, as well as any `*Impl`
27 //! traits that exist for its superclasses.
28 //!
29 //! If a class has subclasses, it will also provide a struct for instance data,
30 //! with the same characteristics as for concrete classes, but it also needs
31 //! additional components to support virtual methods:
32 //!
33 //! * a struct for class data, for example `DeviceClass`. This corresponds to
34 //!   the C "class struct" and holds the vtable that is used by instances of the
35 //!   class and its subclasses. It must start with its parent's class struct.
36 //!
37 //! * a trait for virtual method implementations, for example `DeviceImpl`.
38 //!   Child classes implement this trait to provide their own behavior for
39 //!   virtual methods. The trait's methods take `&self` to access instance data.
40 //!   The traits have the appropriate specialization of `IsA<>` as a supertrait,
41 //!   for example `IsA<DeviceState>` for `DeviceImpl`.
42 //!
43 //! * a trait for instance methods, for example `DeviceMethods`. This trait is
44 //!   automatically implemented for any reference or smart pointer to a device
45 //!   instance.  It calls into the vtable provides access across all subclasses
46 //!   to methods defined for the class.
47 //!
48 //! * optionally, a trait for class methods, for example `DeviceClassMethods`.
49 //!   This provides access to class-wide functionality that doesn't depend on
50 //!   instance data. Like instance methods, these are automatically inherited by
51 //!   child classes.
52 //!
53 //! # Class structures
54 //!
55 //! Each QOM class that has virtual methods describes them in a
56 //! _class struct_.  Class structs include a parent field corresponding
57 //! to the vtable of the parent class, all the way up to [`ObjectClass`].
58 //!
59 //! As mentioned above, virtual methods are defined via traits such as
60 //! `DeviceImpl`.  Class structs do not define any trait but, conventionally,
61 //! all of them have a `class_init` method to initialize the virtual methods
62 //! based on the trait and then call the same method on the superclass.
63 //!
64 //! ```ignore
65 //! impl YourSubclassClass
66 //! {
67 //!     pub fn class_init<T: YourSubclassImpl>(&mut self) {
68 //!         ...
69 //!         klass.parent_class::class_init<T>();
70 //!     }
71 //! }
72 //! ```
73 //!
74 //! If a class implements a QOM interface.  In that case, the function must
75 //! contain, for each interface, an extra forwarding call as follows:
76 //!
77 //! ```ignore
78 //! ResettableClass::cast::<Self>(self).class_init::<Self>();
79 //! ```
80 //!
81 //! These `class_init` functions are methods on the class rather than a trait,
82 //! because the bound on `T` (`DeviceImpl` in this case), will change for every
83 //! class struct.  The functions are pointed to by the
84 //! [`ObjectImpl::CLASS_INIT`] function pointer. While there is no default
85 //! implementation, in most cases it will be enough to write it as follows:
86 //!
87 //! ```ignore
88 //! const CLASS_INIT: fn(&mut Self::Class)> = Self::Class::class_init::<Self>;
89 //! ```
90 //!
91 //! This design incurs a small amount of code duplication but, by not using
92 //! traits, it allows the flexibility of implementing bindings in any crate,
93 //! without incurring into violations of orphan rules for traits.
94 
95 use std::{
96     ffi::{c_void, CStr},
97     fmt,
98     marker::PhantomData,
99     mem::{ManuallyDrop, MaybeUninit},
100     ops::{Deref, DerefMut},
101     ptr::NonNull,
102 };
103 
104 pub use bindings::ObjectClass;
105 
106 use crate::{
107     bindings::{
108         self, object_class_dynamic_cast, object_dynamic_cast, object_get_class,
109         object_get_typename, object_new, object_ref, object_unref, TypeInfo,
110     },
111     cell::{bql_locked, Opaque},
112 };
113 
114 /// A safe wrapper around [`bindings::Object`].
115 #[repr(transparent)]
116 #[derive(Debug, qemu_api_macros::Wrapper)]
117 pub struct Object(Opaque<bindings::Object>);
118 
119 unsafe impl Send for Object {}
120 unsafe impl Sync for Object {}
121 
122 /// Marker trait: `Self` can be statically upcasted to `P` (i.e. `P` is a direct
123 /// or indirect parent of `Self`).
124 ///
125 /// # Safety
126 ///
127 /// The struct `Self` must be `#[repr(C)]` and must begin, directly or
128 /// indirectly, with a field of type `P`.  This ensures that invalid casts,
129 /// which rely on `IsA<>` for static checking, are rejected at compile time.
130 pub unsafe trait IsA<P: ObjectType>: ObjectType {}
131 
132 // SAFETY: it is always safe to cast to your own type
133 unsafe impl<T: ObjectType> IsA<T> for T {}
134 
135 /// Macro to mark superclasses of QOM classes.  This enables type-safe
136 /// up- and downcasting.
137 ///
138 /// # Safety
139 ///
140 /// This macro is a thin wrapper around the [`IsA`] trait and performs
141 /// no checking whatsoever of what is declared.  It is the caller's
142 /// responsibility to have $struct begin, directly or indirectly, with
143 /// a field of type `$parent`.
144 #[macro_export]
145 macro_rules! qom_isa {
146     ($struct:ty : $($parent:ty),* ) => {
147         $(
148             // SAFETY: it is the caller responsibility to have $parent as the
149             // first field
150             unsafe impl $crate::qom::IsA<$parent> for $struct {}
151 
152             impl AsRef<$parent> for $struct {
153                 fn as_ref(&self) -> &$parent {
154                     // SAFETY: follows the same rules as for IsA<U>, which is
155                     // declared above.
156                     let ptr: *const Self = self;
157                     unsafe { &*ptr.cast::<$parent>() }
158                 }
159             }
160         )*
161     };
162 }
163 
164 /// This is the same as [`ManuallyDrop<T>`](std::mem::ManuallyDrop), though
165 /// it hides the standard methods of `ManuallyDrop`.
166 ///
167 /// The first field of an `ObjectType` must be of type `ParentField<T>`.
168 /// (Technically, this is only necessary if there is at least one Rust
169 /// superclass in the hierarchy).  This is to ensure that the parent field is
170 /// dropped after the subclass; this drop order is enforced by the C
171 /// `object_deinit` function.
172 ///
173 /// # Examples
174 ///
175 /// ```ignore
176 /// #[repr(C)]
177 /// #[derive(qemu_api_macros::Object)]
178 /// pub struct MyDevice {
179 ///     parent: ParentField<DeviceState>,
180 ///     ...
181 /// }
182 /// ```
183 #[derive(Debug)]
184 #[repr(transparent)]
185 pub struct ParentField<T: ObjectType>(std::mem::ManuallyDrop<T>);
186 
187 impl<T: ObjectType> Deref for ParentField<T> {
188     type Target = T;
189 
190     #[inline(always)]
191     fn deref(&self) -> &Self::Target {
192         &self.0
193     }
194 }
195 
196 impl<T: ObjectType> DerefMut for ParentField<T> {
197     #[inline(always)]
198     fn deref_mut(&mut self) -> &mut Self::Target {
199         &mut self.0
200     }
201 }
202 
203 impl<T: fmt::Display + ObjectType> fmt::Display for ParentField<T> {
204     #[inline(always)]
205     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
206         self.0.fmt(f)
207     }
208 }
209 
210 /// This struct knows that the superclasses of the object have already been
211 /// initialized.
212 ///
213 /// The declaration of `ParentInit` is.. *"a kind of magic"*.  It uses a
214 /// technique that is found in several crates, the main ones probably being
215 /// `ghost-cell` (in fact it was introduced by the [`GhostCell` paper](https://plv.mpi-sws.org/rustbelt/ghostcell/))
216 /// and `generativity`.
217 ///
218 /// The `PhantomData` makes the `ParentInit` type *invariant* with respect to
219 /// the lifetime argument `'init`.  This, together with the `for<'...>` in
220 /// `[ParentInit::with]`, block any attempt of the compiler to be creative when
221 /// operating on types of type `ParentInit` and to extend their lifetimes.  In
222 /// particular, it ensures that the `ParentInit` cannot be made to outlive the
223 /// `rust_instance_init()` function that creates it, and therefore that the
224 /// `&'init T` reference is valid.
225 ///
226 /// This implementation of the same concept, without the QOM baggage, can help
227 /// understanding the effect:
228 ///
229 /// ```
230 /// use std::marker::PhantomData;
231 ///
232 /// #[derive(PartialEq, Eq)]
233 /// pub struct Jail<'closure, T: Copy>(&'closure T, PhantomData<fn(&'closure ()) -> &'closure ()>);
234 ///
235 /// impl<'closure, T: Copy> Jail<'closure, T> {
236 ///     fn get(&self) -> T {
237 ///         *self.0
238 ///     }
239 ///
240 ///     #[inline]
241 ///     fn with<U>(v: T, f: impl for<'id> FnOnce(Jail<'id, T>) -> U) -> U {
242 ///         let parent_init = Jail(&v, PhantomData);
243 ///         f(parent_init)
244 ///     }
245 /// }
246 /// ```
247 ///
248 /// It's impossible to escape the `Jail`; `token1` cannot be moved out of the
249 /// closure:
250 ///
251 /// ```ignore
252 /// let x = 42;
253 /// let escape = Jail::with(&x, |token1| {
254 ///     println!("{}", token1.get());
255 ///     // fails to compile...
256 ///     token1
257 /// });
258 /// // ... so you cannot do this:
259 /// println!("{}", escape.get());
260 /// ```
261 ///
262 /// Likewise, in the QOM case the `ParentInit` cannot be moved out of
263 /// `instance_init()`. Without this trick it would be possible to stash a
264 /// `ParentInit` and use it later to access uninitialized memory.
265 ///
266 /// Here is another example, showing how separately-created "identities" stay
267 /// isolated:
268 ///
269 /// ```ignore
270 /// impl<'closure, T: Copy> Clone for Jail<'closure, T> {
271 ///     fn clone(&self) -> Jail<'closure, T> {
272 ///         Jail(self.0, PhantomData)
273 ///     }
274 /// }
275 ///
276 /// fn main() {
277 ///     Jail::with(42, |token1| {
278 ///         // this works and returns true: the clone has the same "identity"
279 ///         println!("{}", token1 == token1.clone());
280 ///         Jail::with(42, |token2| {
281 ///             // here the outer token remains accessible...
282 ///             println!("{}", token1.get());
283 ///             // ... but the two are separate: this fails to compile:
284 ///             println!("{}", token1 == token2);
285 ///         });
286 ///     });
287 /// }
288 /// ```
289 pub struct ParentInit<'init, T>(
290     &'init mut MaybeUninit<T>,
291     PhantomData<fn(&'init ()) -> &'init ()>,
292 );
293 
294 impl<'init, T> ParentInit<'init, T> {
295     #[inline]
296     pub fn with(obj: &'init mut MaybeUninit<T>, f: impl for<'id> FnOnce(ParentInit<'id, T>)) {
297         let parent_init = ParentInit(obj, PhantomData);
298         f(parent_init)
299     }
300 }
301 
302 impl<T: ObjectType> ParentInit<'_, T> {
303     /// Return the receiver as a mutable raw pointer to Object.
304     ///
305     /// # Safety
306     ///
307     /// Fields beyond `Object` could be uninitialized and it's your
308     /// responsibility to avoid that they're used when the pointer is
309     /// dereferenced, either directly or through a cast.
310     pub fn as_object_mut_ptr(&self) -> *mut bindings::Object {
311         self.as_object_ptr().cast_mut()
312     }
313 
314     /// Return the receiver as a mutable raw pointer to Object.
315     ///
316     /// # Safety
317     ///
318     /// Fields beyond `Object` could be uninitialized and it's your
319     /// responsibility to avoid that they're used when the pointer is
320     /// dereferenced, either directly or through a cast.
321     pub fn as_object_ptr(&self) -> *const bindings::Object {
322         self.0.as_ptr().cast()
323     }
324 }
325 
326 impl<'a, T: ObjectImpl> ParentInit<'a, T> {
327     /// Convert from a derived type to one of its parent types, which
328     /// have already been initialized.
329     ///
330     /// # Safety
331     ///
332     /// Structurally this is always a safe operation; the [`IsA`] trait
333     /// provides static verification trait that `Self` dereferences to `U` or
334     /// a child of `U`, and only parent types of `T` are allowed.
335     ///
336     /// However, while the fields of the resulting reference are initialized,
337     /// calls might use uninitialized fields of the subclass.  It is your
338     /// responsibility to avoid this.
339     pub unsafe fn upcast<U: ObjectType>(&self) -> &'a U
340     where
341         T::ParentType: IsA<U>,
342     {
343         // SAFETY: soundness is declared via IsA<U>, which is an unsafe trait;
344         // the parent has been initialized before `instance_init `is called
345         unsafe { &*(self.0.as_ptr().cast::<U>()) }
346     }
347 
348     /// Convert from a derived type to one of its parent types, which
349     /// have already been initialized.
350     ///
351     /// # Safety
352     ///
353     /// Structurally this is always a safe operation; the [`IsA`] trait
354     /// provides static verification trait that `Self` dereferences to `U` or
355     /// a child of `U`, and only parent types of `T` are allowed.
356     ///
357     /// However, while the fields of the resulting reference are initialized,
358     /// calls might use uninitialized fields of the subclass.  It is your
359     /// responsibility to avoid this.
360     pub unsafe fn upcast_mut<U: ObjectType>(&mut self) -> &'a mut U
361     where
362         T::ParentType: IsA<U>,
363     {
364         // SAFETY: soundness is declared via IsA<U>, which is an unsafe trait;
365         // the parent has been initialized before `instance_init `is called
366         unsafe { &mut *(self.0.as_mut_ptr().cast::<U>()) }
367     }
368 }
369 
370 impl<T> Deref for ParentInit<'_, T> {
371     type Target = MaybeUninit<T>;
372 
373     fn deref(&self) -> &Self::Target {
374         self.0
375     }
376 }
377 
378 impl<T> DerefMut for ParentInit<'_, T> {
379     fn deref_mut(&mut self) -> &mut Self::Target {
380         self.0
381     }
382 }
383 
384 unsafe extern "C" fn rust_instance_init<T: ObjectImpl>(obj: *mut bindings::Object) {
385     let mut state = NonNull::new(obj).unwrap().cast::<T>();
386     // SAFETY: obj is an instance of T, since rust_instance_init<T>
387     // is called from QOM core as the instance_init function
388     // for class T
389     unsafe {
390         T::INSTANCE_INIT.unwrap()(state.as_mut());
391     }
392 }
393 
394 unsafe extern "C" fn rust_instance_post_init<T: ObjectImpl>(obj: *mut bindings::Object) {
395     let state = NonNull::new(obj).unwrap().cast::<T>();
396     // SAFETY: obj is an instance of T, since rust_instance_post_init<T>
397     // is called from QOM core as the instance_post_init function
398     // for class T
399     T::INSTANCE_POST_INIT.unwrap()(unsafe { state.as_ref() });
400 }
401 
402 unsafe extern "C" fn rust_class_init<T: ObjectType + ObjectImpl>(
403     klass: *mut ObjectClass,
404     _data: *const c_void,
405 ) {
406     let mut klass = NonNull::new(klass)
407         .unwrap()
408         .cast::<<T as ObjectType>::Class>();
409     // SAFETY: klass is a T::Class, since rust_class_init<T>
410     // is called from QOM core as the class_init function
411     // for class T
412     <T as ObjectImpl>::CLASS_INIT(unsafe { klass.as_mut() })
413 }
414 
415 unsafe extern "C" fn drop_object<T: ObjectImpl>(obj: *mut bindings::Object) {
416     // SAFETY: obj is an instance of T, since drop_object<T> is called
417     // from the QOM core function object_deinit() as the instance_finalize
418     // function for class T.  Note that while object_deinit() will drop the
419     // superclass field separately after this function returns, `T` must
420     // implement the unsafe trait ObjectType; the safety rules for the
421     // trait mandate that the parent field is manually dropped.
422     unsafe { std::ptr::drop_in_place(obj.cast::<T>()) }
423 }
424 
425 /// Trait exposed by all structs corresponding to QOM objects.
426 ///
427 /// # Safety
428 ///
429 /// For classes declared in C:
430 ///
431 /// - `Class` and `TYPE` must match the data in the `TypeInfo`;
432 ///
433 /// - the first field of the struct must be of the instance type corresponding
434 ///   to the superclass, as declared in the `TypeInfo`
435 ///
436 /// - likewise, the first field of the `Class` struct must be of the class type
437 ///   corresponding to the superclass
438 ///
439 /// For classes declared in Rust and implementing [`ObjectImpl`]:
440 ///
441 /// - the struct must be `#[repr(C)]`;
442 ///
443 /// - the first field of the struct must be of type
444 ///   [`ParentField<T>`](ParentField), where `T` is the parent type
445 ///   [`ObjectImpl::ParentType`]
446 ///
447 /// - the first field of the `Class` must be of the class struct corresponding
448 ///   to the superclass, which is `ObjectImpl::ParentType::Class`. `ParentField`
449 ///   is not needed here.
450 ///
451 /// In both cases, having a separate class type is not necessary if the subclass
452 /// does not add any field.
453 pub unsafe trait ObjectType: Sized {
454     /// The QOM class object corresponding to this struct.  This is used
455     /// to automatically generate a `class_init` method.
456     type Class;
457 
458     /// The name of the type, which can be passed to `object_new()` to
459     /// generate an instance of this type.
460     const TYPE_NAME: &'static CStr;
461 
462     /// Return the receiver as an Object.  This is always safe, even
463     /// if this type represents an interface.
464     fn as_object(&self) -> &Object {
465         unsafe { &*self.as_ptr().cast() }
466     }
467 
468     /// Return the receiver as a const raw pointer to Object.
469     /// This is preferable to `as_object_mut_ptr()` if a C
470     /// function only needs a `const Object *`.
471     fn as_object_ptr(&self) -> *const bindings::Object {
472         self.as_object().as_ptr()
473     }
474 
475     /// Return the receiver as a mutable raw pointer to Object.
476     ///
477     /// # Safety
478     ///
479     /// This cast is always safe, but because the result is mutable
480     /// and the incoming reference is not, this should only be used
481     /// for calls to C functions, and only if needed.
482     unsafe fn as_object_mut_ptr(&self) -> *mut bindings::Object {
483         self.as_object().as_mut_ptr()
484     }
485 }
486 
487 /// Trait exposed by all structs corresponding to QOM interfaces.
488 /// Unlike `ObjectType`, it is implemented on the class type (which provides
489 /// the vtable for the interfaces).
490 ///
491 /// # Safety
492 ///
493 /// `TYPE` must match the contents of the `TypeInfo` as found in the C code;
494 /// right now, interfaces can only be declared in C.
495 pub unsafe trait InterfaceType: Sized {
496     /// The name of the type, which can be passed to
497     /// `object_class_dynamic_cast()` to obtain the pointer to the vtable
498     /// for this interface.
499     const TYPE_NAME: &'static CStr;
500 
501     /// Return the vtable for the interface; `U` is the type that
502     /// lists the interface in its `TypeInfo`.
503     ///
504     /// # Examples
505     ///
506     /// This function is usually called by a `class_init` method in `U::Class`.
507     /// For example, `DeviceClass::class_init<T>` initializes its `Resettable`
508     /// interface as follows:
509     ///
510     /// ```ignore
511     /// ResettableClass::cast::<DeviceState>(self).class_init::<T>();
512     /// ```
513     ///
514     /// where `T` is the concrete subclass that is being initialized.
515     ///
516     /// # Panics
517     ///
518     /// Panic if the incoming argument if `T` does not implement the interface.
519     fn cast<U: ObjectType>(klass: &mut U::Class) -> &mut Self {
520         unsafe {
521             // SAFETY: upcasting to ObjectClass is always valid, and the
522             // return type is either NULL or the argument itself
523             let result: *mut Self = object_class_dynamic_cast(
524                 (klass as *mut U::Class).cast(),
525                 Self::TYPE_NAME.as_ptr(),
526             )
527             .cast();
528             result.as_mut().unwrap()
529         }
530     }
531 }
532 
533 /// This trait provides safe casting operations for QOM objects to raw pointers,
534 /// to be used for example for FFI. The trait can be applied to any kind of
535 /// reference or smart pointers, and enforces correctness through the [`IsA`]
536 /// trait.
537 pub trait ObjectDeref: Deref
538 where
539     Self::Target: ObjectType,
540 {
541     /// Convert to a const Rust pointer, to be used for example for FFI.
542     /// The target pointer type must be the type of `self` or a superclass
543     fn as_ptr<U: ObjectType>(&self) -> *const U
544     where
545         Self::Target: IsA<U>,
546     {
547         let ptr: *const Self::Target = self.deref();
548         ptr.cast::<U>()
549     }
550 
551     /// Convert to a mutable Rust pointer, to be used for example for FFI.
552     /// The target pointer type must be the type of `self` or a superclass.
553     /// Used to implement interior mutability for objects.
554     ///
555     /// # Safety
556     ///
557     /// This method is safe because only the actual dereference of the pointer
558     /// has to be unsafe.  Bindings to C APIs will use it a lot, but care has
559     /// to be taken because it overrides the const-ness of `&self`.
560     fn as_mut_ptr<U: ObjectType>(&self) -> *mut U
561     where
562         Self::Target: IsA<U>,
563     {
564         #[allow(clippy::as_ptr_cast_mut)]
565         {
566             self.as_ptr::<U>().cast_mut()
567         }
568     }
569 }
570 
571 /// Trait that adds extra functionality for `&T` where `T` is a QOM
572 /// object type.  Allows conversion to/from C objects in generic code.
573 pub trait ObjectCast: ObjectDeref + Copy
574 where
575     Self::Target: ObjectType,
576 {
577     /// Safely convert from a derived type to one of its parent types.
578     ///
579     /// This is always safe; the [`IsA`] trait provides static verification
580     /// trait that `Self` dereferences to `U` or a child of `U`.
581     fn upcast<'a, U: ObjectType>(self) -> &'a U
582     where
583         Self::Target: IsA<U>,
584         Self: 'a,
585     {
586         // SAFETY: soundness is declared via IsA<U>, which is an unsafe trait
587         unsafe { self.unsafe_cast::<U>() }
588     }
589 
590     /// Attempt to convert to a derived type.
591     ///
592     /// Returns `None` if the object is not actually of type `U`. This is
593     /// verified at runtime by checking the object's type information.
594     fn downcast<'a, U: IsA<Self::Target>>(self) -> Option<&'a U>
595     where
596         Self: 'a,
597     {
598         self.dynamic_cast::<U>()
599     }
600 
601     /// Attempt to convert between any two types in the QOM hierarchy.
602     ///
603     /// Returns `None` if the object is not actually of type `U`. This is
604     /// verified at runtime by checking the object's type information.
605     fn dynamic_cast<'a, U: ObjectType>(self) -> Option<&'a U>
606     where
607         Self: 'a,
608     {
609         unsafe {
610             // SAFETY: upcasting to Object is always valid, and the
611             // return type is either NULL or the argument itself
612             let result: *const U =
613                 object_dynamic_cast(self.as_object_mut_ptr(), U::TYPE_NAME.as_ptr()).cast();
614 
615             result.as_ref()
616         }
617     }
618 
619     /// Convert to any QOM type without verification.
620     ///
621     /// # Safety
622     ///
623     /// What safety? You need to know yourself that the cast is correct; only
624     /// use when performance is paramount.  It is still better than a raw
625     /// pointer `cast()`, which does not even check that you remain in the
626     /// realm of QOM `ObjectType`s.
627     ///
628     /// `unsafe_cast::<Object>()` is always safe.
629     unsafe fn unsafe_cast<'a, U: ObjectType>(self) -> &'a U
630     where
631         Self: 'a,
632     {
633         unsafe { &*(self.as_ptr::<Self::Target>().cast::<U>()) }
634     }
635 }
636 
637 impl<T: ObjectType> ObjectDeref for &T {}
638 impl<T: ObjectType> ObjectCast for &T {}
639 
640 impl<T: ObjectType> ObjectDeref for &mut T {}
641 
642 /// Trait a type must implement to be registered with QEMU.
643 pub trait ObjectImpl: ObjectType + IsA<Object> {
644     /// The parent of the type.  This should match the first field of the
645     /// struct that implements `ObjectImpl`, minus the `ParentField<_>` wrapper.
646     type ParentType: ObjectType;
647 
648     /// Whether the object can be instantiated
649     const ABSTRACT: bool = false;
650 
651     /// Function that is called to initialize an object.  The parent class will
652     /// have already been initialized so the type is only responsible for
653     /// initializing its own members.
654     ///
655     /// FIXME: The argument is not really a valid reference. `&mut
656     /// MaybeUninit<Self>` would be a better description.
657     const INSTANCE_INIT: Option<unsafe fn(&mut Self)> = None;
658 
659     /// Function that is called to finish initialization of an object, once
660     /// `INSTANCE_INIT` functions have been called.
661     const INSTANCE_POST_INIT: Option<fn(&Self)> = None;
662 
663     /// Called on descendant classes after all parent class initialization
664     /// has occurred, but before the class itself is initialized.  This
665     /// is only useful if a class is not a leaf, and can be used to undo
666     /// the effects of copying the contents of the parent's class struct
667     /// to the descendants.
668     const CLASS_BASE_INIT: Option<
669         unsafe extern "C" fn(klass: *mut ObjectClass, data: *const c_void),
670     > = None;
671 
672     const TYPE_INFO: TypeInfo = TypeInfo {
673         name: Self::TYPE_NAME.as_ptr(),
674         parent: Self::ParentType::TYPE_NAME.as_ptr(),
675         instance_size: core::mem::size_of::<Self>(),
676         instance_align: core::mem::align_of::<Self>(),
677         instance_init: match Self::INSTANCE_INIT {
678             None => None,
679             Some(_) => Some(rust_instance_init::<Self>),
680         },
681         instance_post_init: match Self::INSTANCE_POST_INIT {
682             None => None,
683             Some(_) => Some(rust_instance_post_init::<Self>),
684         },
685         instance_finalize: Some(drop_object::<Self>),
686         abstract_: Self::ABSTRACT,
687         class_size: core::mem::size_of::<Self::Class>(),
688         class_init: Some(rust_class_init::<Self>),
689         class_base_init: Self::CLASS_BASE_INIT,
690         class_data: core::ptr::null(),
691         interfaces: core::ptr::null(),
692     };
693 
694     // methods on ObjectClass
695     const UNPARENT: Option<fn(&Self)> = None;
696 
697     /// Store into the argument the virtual method implementations
698     /// for `Self`.  On entry, the virtual method pointers are set to
699     /// the default values coming from the parent classes; the function
700     /// can change them to override virtual methods of a parent class.
701     ///
702     /// Usually defined simply as `Self::Class::class_init::<Self>`;
703     /// however a default implementation cannot be included here, because the
704     /// bounds that the `Self::Class::class_init` method places on `Self` are
705     /// not known in advance.
706     ///
707     /// # Safety
708     ///
709     /// While `klass`'s parent class is initialized on entry, the other fields
710     /// are all zero; it is therefore assumed that all fields in `T` can be
711     /// zeroed, otherwise it would not be possible to provide the class as a
712     /// `&mut T`.  TODO: it may be possible to add an unsafe trait that checks
713     /// that all fields *after the parent class* (but not the parent class
714     /// itself) are Zeroable.  This unsafe trait can be added via a derive
715     /// macro.
716     const CLASS_INIT: fn(&mut Self::Class);
717 }
718 
719 /// # Safety
720 ///
721 /// We expect the FFI user of this function to pass a valid pointer that
722 /// can be downcasted to type `T`. We also expect the device is
723 /// readable/writeable from one thread at any time.
724 unsafe extern "C" fn rust_unparent_fn<T: ObjectImpl>(dev: *mut bindings::Object) {
725     let state = NonNull::new(dev).unwrap().cast::<T>();
726     T::UNPARENT.unwrap()(unsafe { state.as_ref() });
727 }
728 
729 impl ObjectClass {
730     /// Fill in the virtual methods of `ObjectClass` based on the definitions in
731     /// the `ObjectImpl` trait.
732     pub fn class_init<T: ObjectImpl>(&mut self) {
733         if <T as ObjectImpl>::UNPARENT.is_some() {
734             self.unparent = Some(rust_unparent_fn::<T>);
735         }
736     }
737 }
738 
739 unsafe impl ObjectType for Object {
740     type Class = ObjectClass;
741     const TYPE_NAME: &'static CStr =
742         unsafe { CStr::from_bytes_with_nul_unchecked(bindings::TYPE_OBJECT) };
743 }
744 
745 /// A reference-counted pointer to a QOM object.
746 ///
747 /// `Owned<T>` wraps `T` with automatic reference counting.  It increases the
748 /// reference count when created via [`Owned::from`] or cloned, and decreases
749 /// it when dropped.  This ensures that the reference count remains elevated
750 /// as long as any `Owned<T>` references to it exist.
751 ///
752 /// `Owned<T>` can be used for two reasons:
753 /// * because the lifetime of the QOM object is unknown and someone else could
754 ///   take a reference (similar to `Arc<T>`, for example): in this case, the
755 ///   object can escape and outlive the Rust struct that contains the `Owned<T>`
756 ///   field;
757 ///
758 /// * to ensure that the object stays alive until after `Drop::drop` is called
759 ///   on the Rust struct: in this case, the object will always die together with
760 ///   the Rust struct that contains the `Owned<T>` field.
761 ///
762 /// Child properties are an example of the second case: in C, an object that
763 /// is created with `object_initialize_child` will die *before*
764 /// `instance_finalize` is called, whereas Rust expects the struct to have valid
765 /// contents when `Drop::drop` is called.  Therefore Rust structs that have
766 /// child properties need to keep a reference to the child object.  Right now
767 /// this can be done with `Owned<T>`; in the future one might have a separate
768 /// `Child<'parent, T>` smart pointer that keeps a reference to a `T`, like
769 /// `Owned`, but does not allow cloning.
770 ///
771 /// Note that dropping an `Owned<T>` requires the big QEMU lock to be taken.
772 #[repr(transparent)]
773 #[derive(PartialEq, Eq, Hash, PartialOrd, Ord)]
774 pub struct Owned<T: ObjectType>(NonNull<T>);
775 
776 // The following rationale for safety is taken from Linux's kernel::sync::Arc.
777 
778 // SAFETY: It is safe to send `Owned<T>` to another thread when the underlying
779 // `T` is `Sync` because it effectively means sharing `&T` (which is safe
780 // because `T` is `Sync`); additionally, it needs `T` to be `Send` because any
781 // thread that has an `Owned<T>` may ultimately access `T` using a
782 // mutable reference when the reference count reaches zero and `T` is dropped.
783 unsafe impl<T: ObjectType + Send + Sync> Send for Owned<T> {}
784 
785 // SAFETY: It is safe to send `&Owned<T>` to another thread when the underlying
786 // `T` is `Sync` because it effectively means sharing `&T` (which is safe
787 // because `T` is `Sync`); additionally, it needs `T` to be `Send` because any
788 // thread that has a `&Owned<T>` may clone it and get an `Owned<T>` on that
789 // thread, so the thread may ultimately access `T` using a mutable reference
790 // when the reference count reaches zero and `T` is dropped.
791 unsafe impl<T: ObjectType + Sync + Send> Sync for Owned<T> {}
792 
793 impl<T: ObjectType> Owned<T> {
794     /// Convert a raw C pointer into an owned reference to the QOM
795     /// object it points to.  The object's reference count will be
796     /// decreased when the `Owned` is dropped.
797     ///
798     /// # Panics
799     ///
800     /// Panics if `ptr` is NULL.
801     ///
802     /// # Safety
803     ///
804     /// The caller must indeed own a reference to the QOM object.
805     /// The object must not be embedded in another unless the outer
806     /// object is guaranteed to have a longer lifetime.
807     ///
808     /// A raw pointer obtained via [`Owned::into_raw()`] can always be passed
809     /// back to `from_raw()` (assuming the original `Owned` was valid!),
810     /// since the owned reference remains there between the calls to
811     /// `into_raw()` and `from_raw()`.
812     pub unsafe fn from_raw(ptr: *const T) -> Self {
813         // SAFETY NOTE: while NonNull requires a mutable pointer, only
814         // Deref is implemented so the pointer passed to from_raw
815         // remains const
816         Owned(NonNull::new(ptr.cast_mut()).unwrap())
817     }
818 
819     /// Obtain a raw C pointer from a reference.  `src` is consumed
820     /// and the reference is leaked.
821     #[allow(clippy::missing_const_for_fn)]
822     pub fn into_raw(src: Owned<T>) -> *mut T {
823         let src = ManuallyDrop::new(src);
824         src.0.as_ptr()
825     }
826 
827     /// Increase the reference count of a QOM object and return
828     /// a new owned reference to it.
829     ///
830     /// # Safety
831     ///
832     /// The object must not be embedded in another, unless the outer
833     /// object is guaranteed to have a longer lifetime.
834     pub unsafe fn from(obj: &T) -> Self {
835         unsafe {
836             object_ref(obj.as_object_mut_ptr().cast::<c_void>());
837 
838             // SAFETY NOTE: while NonNull requires a mutable pointer, only
839             // Deref is implemented so the reference passed to from_raw
840             // remains shared
841             Owned(NonNull::new_unchecked(obj.as_mut_ptr()))
842         }
843     }
844 }
845 
846 impl<T: ObjectType> Clone for Owned<T> {
847     fn clone(&self) -> Self {
848         // SAFETY: creation method is unsafe; whoever calls it has
849         // responsibility that the pointer is valid, and remains valid
850         // throughout the lifetime of the `Owned<T>` and its clones.
851         unsafe { Owned::from(self.deref()) }
852     }
853 }
854 
855 impl<T: ObjectType> Deref for Owned<T> {
856     type Target = T;
857 
858     fn deref(&self) -> &Self::Target {
859         // SAFETY: creation method is unsafe; whoever calls it has
860         // responsibility that the pointer is valid, and remains valid
861         // throughout the lifetime of the `Owned<T>` and its clones.
862         // With that guarantee, reference counting ensures that
863         // the object remains alive.
864         unsafe { &*self.0.as_ptr() }
865     }
866 }
867 impl<T: ObjectType> ObjectDeref for Owned<T> {}
868 
869 impl<T: ObjectType> Drop for Owned<T> {
870     fn drop(&mut self) {
871         assert!(bql_locked());
872         // SAFETY: creation method is unsafe, and whoever calls it has
873         // responsibility that the pointer is valid, and remains valid
874         // throughout the lifetime of the `Owned<T>` and its clones.
875         unsafe {
876             object_unref(self.as_object_mut_ptr().cast::<c_void>());
877         }
878     }
879 }
880 
881 impl<T: IsA<Object>> fmt::Debug for Owned<T> {
882     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
883         self.deref().debug_fmt(f)
884     }
885 }
886 
887 /// Trait for class methods exposed by the Object class.  The methods can be
888 /// called on all objects that have the trait `IsA<Object>`.
889 ///
890 /// The trait should only be used through the blanket implementation,
891 /// which guarantees safety via `IsA`
892 pub trait ObjectClassMethods: IsA<Object> {
893     /// Return a new reference counted instance of this class
894     fn new() -> Owned<Self> {
895         assert!(bql_locked());
896         // SAFETY: the object created by object_new is allocated on
897         // the heap and has a reference count of 1
898         unsafe {
899             let raw_obj = object_new(Self::TYPE_NAME.as_ptr());
900             let obj = Object::from_raw(raw_obj).unsafe_cast::<Self>();
901             Owned::from_raw(obj)
902         }
903     }
904 }
905 
906 /// Trait for methods exposed by the Object class.  The methods can be
907 /// called on all objects that have the trait `IsA<Object>`.
908 ///
909 /// The trait should only be used through the blanket implementation,
910 /// which guarantees safety via `IsA`
911 pub trait ObjectMethods: ObjectDeref
912 where
913     Self::Target: IsA<Object>,
914 {
915     /// Return the name of the type of `self`
916     fn typename(&self) -> std::borrow::Cow<'_, str> {
917         let obj = self.upcast::<Object>();
918         // SAFETY: safety of this is the requirement for implementing IsA
919         // The result of the C API has static lifetime
920         unsafe {
921             let p = object_get_typename(obj.as_mut_ptr());
922             CStr::from_ptr(p).to_string_lossy()
923         }
924     }
925 
926     fn get_class(&self) -> &'static <Self::Target as ObjectType>::Class {
927         let obj = self.upcast::<Object>();
928 
929         // SAFETY: all objects can call object_get_class; the actual class
930         // type is guaranteed by the implementation of `ObjectType` and
931         // `ObjectImpl`.
932         let klass: &'static <Self::Target as ObjectType>::Class =
933             unsafe { &*object_get_class(obj.as_mut_ptr()).cast() };
934 
935         klass
936     }
937 
938     /// Convenience function for implementing the Debug trait
939     fn debug_fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
940         f.debug_tuple(&self.typename())
941             .field(&(self as *const Self))
942             .finish()
943     }
944 }
945 
946 impl<T> ObjectClassMethods for T where T: IsA<Object> {}
947 impl<R: ObjectDeref> ObjectMethods for R where R::Target: IsA<Object> {}
948