xref: /openbmc/qemu/rust/hw/char/pl011/src/lib.rs (revision e1f9353334859ea325f25bd88e01645af63b133b)
1 // Copyright 2024, Linaro Limited
2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org>
3 // SPDX-License-Identifier: GPL-2.0-or-later
4 //
5 // PL011 QEMU Device Model
6 //
7 // This library implements a device model for the PrimeCell® UART (PL011)
8 // device in QEMU.
9 //
10 #![doc = include_str!("../README.md")]
11 //! # Library crate
12 //!
13 //! See [`PL011State`](crate::device::PL011State) for the device model type and
14 //! the [`registers`] module for register types.
15 
16 #![deny(
17     clippy::correctness,
18     clippy::suspicious,
19     clippy::complexity,
20     clippy::perf,
21     clippy::cargo,
22     clippy::nursery,
23     clippy::style
24 )]
25 #![allow(clippy::upper_case_acronyms)]
26 #![allow(clippy::result_unit_err)]
27 
28 extern crate bilge;
29 extern crate bilge_impl;
30 extern crate qemu_api;
31 
32 use qemu_api::c_str;
33 
34 pub mod device;
35 pub mod device_class;
36 pub mod memory_ops;
37 
38 pub const TYPE_PL011: &::std::ffi::CStr = c_str!("pl011");
39 pub const TYPE_PL011_LUMINARY: &::std::ffi::CStr = c_str!("pl011_luminary");
40 
41 /// Offset of each register from the base memory address of the device.
42 ///
43 /// # Source
44 /// ARM DDI 0183G, Table 3-1 p.3-3
45 #[doc(alias = "offset")]
46 #[allow(non_camel_case_types)]
47 #[repr(u64)]
48 #[derive(Debug)]
49 pub enum RegisterOffset {
50     /// Data Register
51     ///
52     /// A write to this register initiates the actual data transmission
53     #[doc(alias = "UARTDR")]
54     DR = 0x000,
55     /// Receive Status Register or Error Clear Register
56     #[doc(alias = "UARTRSR")]
57     #[doc(alias = "UARTECR")]
58     RSR = 0x004,
59     /// Flag Register
60     ///
61     /// A read of this register shows if transmission is complete
62     #[doc(alias = "UARTFR")]
63     FR = 0x018,
64     /// Fractional Baud Rate Register
65     ///
66     /// responsible for baud rate speed
67     #[doc(alias = "UARTFBRD")]
68     FBRD = 0x028,
69     /// `IrDA` Low-Power Counter Register
70     #[doc(alias = "UARTILPR")]
71     ILPR = 0x020,
72     /// Integer Baud Rate Register
73     ///
74     /// Responsible for baud rate speed
75     #[doc(alias = "UARTIBRD")]
76     IBRD = 0x024,
77     /// line control register (data frame format)
78     #[doc(alias = "UARTLCR_H")]
79     LCR_H = 0x02C,
80     /// Toggle UART, transmission or reception
81     #[doc(alias = "UARTCR")]
82     CR = 0x030,
83     /// Interrupt FIFO Level Select Register
84     #[doc(alias = "UARTIFLS")]
85     FLS = 0x034,
86     /// Interrupt Mask Set/Clear Register
87     #[doc(alias = "UARTIMSC")]
88     IMSC = 0x038,
89     /// Raw Interrupt Status Register
90     #[doc(alias = "UARTRIS")]
91     RIS = 0x03C,
92     /// Masked Interrupt Status Register
93     #[doc(alias = "UARTMIS")]
94     MIS = 0x040,
95     /// Interrupt Clear Register
96     #[doc(alias = "UARTICR")]
97     ICR = 0x044,
98     /// DMA control Register
99     #[doc(alias = "UARTDMACR")]
100     DMACR = 0x048,
101     ///// Reserved, offsets `0x04C` to `0x07C`.
102     //Reserved = 0x04C,
103 }
104 
105 impl core::convert::TryFrom<u64> for RegisterOffset {
106     type Error = u64;
107 
108     fn try_from(value: u64) -> Result<Self, Self::Error> {
109         macro_rules! case {
110             ($($discriminant:ident),*$(,)*) => {
111                 /* check that matching on all macro arguments compiles, which means we are not
112                  * missing any enum value; if the type definition ever changes this will stop
113                  * compiling.
114                  */
115                 const fn _assert_exhaustive(val: RegisterOffset) {
116                     match val {
117                         $(RegisterOffset::$discriminant => (),)*
118                     }
119                 }
120 
121                 match value {
122                     $(x if x == Self::$discriminant as u64 => Ok(Self::$discriminant),)*
123                      _ => Err(value),
124                 }
125             }
126         }
127         case! { DR, RSR, FR, FBRD, ILPR, IBRD, LCR_H, CR, FLS, IMSC, RIS, MIS, ICR, DMACR }
128     }
129 }
130 
131 pub mod registers {
132     //! Device registers exposed as typed structs which are backed by arbitrary
133     //! integer bitmaps. [`Data`], [`Control`], [`LineControl`], etc.
134     //!
135     //! All PL011 registers are essentially 32-bit wide, but are typed here as
136     //! bitmaps with only the necessary width. That is, if a struct bitmap
137     //! in this module is for example 16 bits long, it should be conceived
138     //! as a 32-bit register where the unmentioned higher bits are always
139     //! unused thus treated as zero when read or written.
140     use bilge::prelude::*;
141 
142     /// Receive Status Register / Data Register common error bits
143     ///
144     /// The `UARTRSR` register is updated only when a read occurs
145     /// from the `UARTDR` register with the same status information
146     /// that can also be obtained by reading the `UARTDR` register
147     #[bitsize(8)]
148     #[derive(Clone, Copy, Default, DebugBits, FromBits)]
149     pub struct Errors {
150         pub framing_error: bool,
151         pub parity_error: bool,
152         pub break_error: bool,
153         pub overrun_error: bool,
154         _reserved_unpredictable: u4,
155     }
156 
157     // TODO: FIFO Mode has different semantics
158     /// Data Register, `UARTDR`
159     ///
160     /// The `UARTDR` register is the data register.
161     ///
162     /// For words to be transmitted:
163     ///
164     /// - if the FIFOs are enabled, data written to this location is pushed onto
165     ///   the transmit
166     /// FIFO
167     /// - if the FIFOs are not enabled, data is stored in the transmitter
168     ///   holding register (the
169     /// bottom word of the transmit FIFO).
170     ///
171     /// The write operation initiates transmission from the UART. The data is
172     /// prefixed with a start bit, appended with the appropriate parity bit
173     /// (if parity is enabled), and a stop bit. The resultant word is then
174     /// transmitted.
175     ///
176     /// For received words:
177     ///
178     /// - if the FIFOs are enabled, the data byte and the 4-bit status (break,
179     ///   frame, parity,
180     /// and overrun) is pushed onto the 12-bit wide receive FIFO
181     /// - if the FIFOs are not enabled, the data byte and status are stored in
182     ///   the receiving
183     /// holding register (the bottom word of the receive FIFO).
184     ///
185     /// The received data byte is read by performing reads from the `UARTDR`
186     /// register along with the corresponding status information. The status
187     /// information can also be read by a read of the `UARTRSR/UARTECR`
188     /// register.
189     ///
190     /// # Note
191     ///
192     /// You must disable the UART before any of the control registers are
193     /// reprogrammed. When the UART is disabled in the middle of
194     /// transmission or reception, it completes the current character before
195     /// stopping.
196     ///
197     /// # Source
198     /// ARM DDI 0183G 3.3.1 Data Register, UARTDR
199     #[bitsize(32)]
200     #[derive(Clone, Copy, Default, DebugBits, FromBits)]
201     #[doc(alias = "UARTDR")]
202     pub struct Data {
203         pub data: u8,
204         pub errors: Errors,
205         _reserved: u16,
206     }
207 
208     impl Data {
209         // bilge is not very const-friendly, unfortunately
210         pub const BREAK: Self = Self { value: 1 << 10 };
211     }
212 
213     // TODO: FIFO Mode has different semantics
214     /// Receive Status Register / Error Clear Register, `UARTRSR/UARTECR`
215     ///
216     /// The UARTRSR/UARTECR register is the receive status register/error clear
217     /// register. Receive status can also be read from the `UARTRSR`
218     /// register. If the status is read from this register, then the status
219     /// information for break, framing and parity corresponds to the
220     /// data character read from the [Data register](Data), `UARTDR` prior to
221     /// reading the UARTRSR register. The status information for overrun is
222     /// set immediately when an overrun condition occurs.
223     ///
224     ///
225     /// # Note
226     /// The received data character must be read first from the [Data
227     /// Register](Data), `UARTDR` before reading the error status associated
228     /// with that data character from the `UARTRSR` register. This read
229     /// sequence cannot be reversed, because the `UARTRSR` register is
230     /// updated only when a read occurs from the `UARTDR` register. However,
231     /// the status information can also be obtained by reading the `UARTDR`
232     /// register
233     ///
234     /// # Source
235     /// ARM DDI 0183G 3.3.2 Receive Status Register/Error Clear Register,
236     /// UARTRSR/UARTECR
237     #[bitsize(8)]
238     #[derive(Clone, Copy, DebugBits, FromBits)]
239     pub struct ReceiveStatusErrorClear {
240         pub errors: Errors,
241     }
242 
243     impl ReceiveStatusErrorClear {
244         pub fn set_from_data(&mut self, data: Data) {
245             self.set_errors(data.errors());
246         }
247 
248         pub fn reset(&mut self) {
249             // All the bits are cleared to 0 on reset.
250             *self = Self::default();
251         }
252     }
253 
254     impl Default for ReceiveStatusErrorClear {
255         fn default() -> Self {
256             0.into()
257         }
258     }
259 
260     #[bitsize(16)]
261     #[derive(Clone, Copy, DebugBits, FromBits)]
262     /// Flag Register, `UARTFR`
263     #[doc(alias = "UARTFR")]
264     pub struct Flags {
265         /// CTS Clear to send. This bit is the complement of the UART clear to
266         /// send, `nUARTCTS`, modem status input. That is, the bit is 1
267         /// when `nUARTCTS` is LOW.
268         pub clear_to_send: bool,
269         /// DSR Data set ready. This bit is the complement of the UART data set
270         /// ready, `nUARTDSR`, modem status input. That is, the bit is 1 when
271         /// `nUARTDSR` is LOW.
272         pub data_set_ready: bool,
273         /// DCD Data carrier detect. This bit is the complement of the UART data
274         /// carrier detect, `nUARTDCD`, modem status input. That is, the bit is
275         /// 1 when `nUARTDCD` is LOW.
276         pub data_carrier_detect: bool,
277         /// BUSY UART busy. If this bit is set to 1, the UART is busy
278         /// transmitting data. This bit remains set until the complete
279         /// byte, including all the stop bits, has been sent from the
280         /// shift register. This bit is set as soon as the transmit FIFO
281         /// becomes non-empty, regardless of whether the UART is enabled
282         /// or not.
283         pub busy: bool,
284         /// RXFE Receive FIFO empty. The meaning of this bit depends on the
285         /// state of the FEN bit in the UARTLCR_H register. If the FIFO
286         /// is disabled, this bit is set when the receive holding
287         /// register is empty. If the FIFO is enabled, the RXFE bit is
288         /// set when the receive FIFO is empty.
289         pub receive_fifo_empty: bool,
290         /// TXFF Transmit FIFO full. The meaning of this bit depends on the
291         /// state of the FEN bit in the UARTLCR_H register. If the FIFO
292         /// is disabled, this bit is set when the transmit holding
293         /// register is full. If the FIFO is enabled, the TXFF bit is
294         /// set when the transmit FIFO is full.
295         pub transmit_fifo_full: bool,
296         /// RXFF Receive FIFO full. The meaning of this bit depends on the state
297         /// of the FEN bit in the UARTLCR_H register. If the FIFO is
298         /// disabled, this bit is set when the receive holding register
299         /// is full. If the FIFO is enabled, the RXFF bit is set when
300         /// the receive FIFO is full.
301         pub receive_fifo_full: bool,
302         /// Transmit FIFO empty. The meaning of this bit depends on the state of
303         /// the FEN bit in the [Line Control register](LineControl),
304         /// `UARTLCR_H`. If the FIFO is disabled, this bit is set when the
305         /// transmit holding register is empty. If the FIFO is enabled,
306         /// the TXFE bit is set when the transmit FIFO is empty. This
307         /// bit does not indicate if there is data in the transmit shift
308         /// register.
309         pub transmit_fifo_empty: bool,
310         /// `RI`, is `true` when `nUARTRI` is `LOW`.
311         pub ring_indicator: bool,
312         _reserved_zero_no_modify: u7,
313     }
314 
315     impl Flags {
316         pub fn reset(&mut self) {
317             *self = Self::default();
318         }
319     }
320 
321     impl Default for Flags {
322         fn default() -> Self {
323             let mut ret: Self = 0.into();
324             // After reset TXFF, RXFF, and BUSY are 0, and TXFE and RXFE are 1
325             ret.set_receive_fifo_empty(true);
326             ret.set_transmit_fifo_empty(true);
327             ret
328         }
329     }
330 
331     #[bitsize(16)]
332     #[derive(Clone, Copy, DebugBits, FromBits)]
333     /// Line Control Register, `UARTLCR_H`
334     #[doc(alias = "UARTLCR_H")]
335     pub struct LineControl {
336         /// BRK Send break.
337         ///
338         /// If this bit is set to `1`, a low-level is continually output on the
339         /// `UARTTXD` output, after completing transmission of the
340         /// current character. For the proper execution of the break command,
341         /// the software must set this bit for at least two complete
342         /// frames. For normal use, this bit must be cleared to `0`.
343         pub send_break: bool,
344         /// 1 PEN Parity enable:
345         ///
346         /// - 0 = parity is disabled and no parity bit added to the data frame
347         /// - 1 = parity checking and generation is enabled.
348         ///
349         /// See Table 3-11 on page 3-14 for the parity truth table.
350         pub parity_enabled: bool,
351         /// EPS Even parity select. Controls the type of parity the UART uses
352         /// during transmission and reception:
353         /// - 0 = odd parity. The UART generates or checks for an odd number of
354         ///   1s in the data and parity bits.
355         /// - 1 = even parity. The UART generates or checks for an even number
356         ///   of 1s in the data and parity bits.
357         /// This bit has no effect when the `PEN` bit disables parity checking
358         /// and generation. See Table 3-11 on page 3-14 for the parity
359         /// truth table.
360         pub parity: Parity,
361         /// 3 STP2 Two stop bits select. If this bit is set to 1, two stop bits
362         /// are transmitted at the end of the frame. The receive
363         /// logic does not check for two stop bits being received.
364         pub two_stops_bits: bool,
365         /// FEN Enable FIFOs:
366         /// 0 = FIFOs are disabled (character mode) that is, the FIFOs become
367         /// 1-byte-deep holding registers 1 = transmit and receive FIFO
368         /// buffers are enabled (FIFO mode).
369         pub fifos_enabled: Mode,
370         /// WLEN Word length. These bits indicate the number of data bits
371         /// transmitted or received in a frame as follows: b11 = 8 bits
372         /// b10 = 7 bits
373         /// b01 = 6 bits
374         /// b00 = 5 bits.
375         pub word_length: WordLength,
376         /// 7 SPS Stick parity select.
377         /// 0 = stick parity is disabled
378         /// 1 = either:
379         /// • if the EPS bit is 0 then the parity bit is transmitted and checked
380         /// as a 1 • if the EPS bit is 1 then the parity bit is
381         /// transmitted and checked as a 0. This bit has no effect when
382         /// the PEN bit disables parity checking and generation. See Table 3-11
383         /// on page 3-14 for the parity truth table.
384         pub sticky_parity: bool,
385         /// 15:8 - Reserved, do not modify, read as zero.
386         _reserved_zero_no_modify: u8,
387     }
388 
389     impl LineControl {
390         pub fn reset(&mut self) {
391             // All the bits are cleared to 0 when reset.
392             *self = 0.into();
393         }
394     }
395 
396     impl Default for LineControl {
397         fn default() -> Self {
398             0.into()
399         }
400     }
401 
402     #[bitsize(1)]
403     #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
404     /// `EPS` "Even parity select", field of [Line Control
405     /// register](LineControl).
406     pub enum Parity {
407         /// - 0 = odd parity. The UART generates or checks for an odd number of
408         ///   1s in the data and parity bits.
409         Odd = 0,
410         /// - 1 = even parity. The UART generates or checks for an even number
411         ///   of 1s in the data and parity bits.
412         Even = 1,
413     }
414 
415     #[bitsize(1)]
416     #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
417     /// `FEN` "Enable FIFOs" or Device mode, field of [Line Control
418     /// register](LineControl).
419     pub enum Mode {
420         /// 0 = FIFOs are disabled (character mode) that is, the FIFOs become
421         /// 1-byte-deep holding registers
422         Character = 0,
423         /// 1 = transmit and receive FIFO buffers are enabled (FIFO mode).
424         FIFO = 1,
425     }
426 
427     impl From<Mode> for bool {
428         fn from(val: Mode) -> Self {
429             matches!(val, Mode::FIFO)
430         }
431     }
432 
433     #[bitsize(2)]
434     #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
435     /// `WLEN` Word length, field of [Line Control register](LineControl).
436     ///
437     /// These bits indicate the number of data bits transmitted or received in a
438     /// frame as follows:
439     pub enum WordLength {
440         /// b11 = 8 bits
441         _8Bits = 0b11,
442         /// b10 = 7 bits
443         _7Bits = 0b10,
444         /// b01 = 6 bits
445         _6Bits = 0b01,
446         /// b00 = 5 bits.
447         _5Bits = 0b00,
448     }
449 
450     /// Control Register, `UARTCR`
451     ///
452     /// The `UARTCR` register is the control register. All the bits are cleared
453     /// to `0` on reset except for bits `9` and `8` that are set to `1`.
454     ///
455     /// # Source
456     /// ARM DDI 0183G, 3.3.8 Control Register, `UARTCR`, Table 3-12
457     #[bitsize(16)]
458     #[doc(alias = "UARTCR")]
459     #[derive(Clone, Copy, DebugBits, FromBits)]
460     pub struct Control {
461         /// `UARTEN` UART enable: 0 = UART is disabled. If the UART is disabled
462         /// in the middle of transmission or reception, it completes the current
463         /// character before stopping. 1 = the UART is enabled. Data
464         /// transmission and reception occurs for either UART signals or SIR
465         /// signals depending on the setting of the SIREN bit.
466         pub enable_uart: bool,
467         /// `SIREN` `SIR` enable: 0 = IrDA SIR ENDEC is disabled. `nSIROUT`
468         /// remains LOW (no light pulse generated), and signal transitions on
469         /// SIRIN have no effect. 1 = IrDA SIR ENDEC is enabled. Data is
470         /// transmitted and received on nSIROUT and SIRIN. UARTTXD remains HIGH,
471         /// in the marking state. Signal transitions on UARTRXD or modem status
472         /// inputs have no effect. This bit has no effect if the UARTEN bit
473         /// disables the UART.
474         pub enable_sir: bool,
475         /// `SIRLP` SIR low-power IrDA mode. This bit selects the IrDA encoding
476         /// mode. If this bit is cleared to 0, low-level bits are transmitted as
477         /// an active high pulse with a width of 3/ 16th of the bit period. If
478         /// this bit is set to 1, low-level bits are transmitted with a pulse
479         /// width that is 3 times the period of the IrLPBaud16 input signal,
480         /// regardless of the selected bit rate. Setting this bit uses less
481         /// power, but might reduce transmission distances.
482         pub sir_lowpower_irda_mode: u1,
483         /// Reserved, do not modify, read as zero.
484         _reserved_zero_no_modify: u4,
485         /// `LBE` Loopback enable. If this bit is set to 1 and the SIREN bit is
486         /// set to 1 and the SIRTEST bit in the Test Control register, UARTTCR
487         /// on page 4-5 is set to 1, then the nSIROUT path is inverted, and fed
488         /// through to the SIRIN path. The SIRTEST bit in the test register must
489         /// be set to 1 to override the normal half-duplex SIR operation. This
490         /// must be the requirement for accessing the test registers during
491         /// normal operation, and SIRTEST must be cleared to 0 when loopback
492         /// testing is finished. This feature reduces the amount of external
493         /// coupling required during system test. If this bit is set to 1, and
494         /// the SIRTEST bit is set to 0, the UARTTXD path is fed through to the
495         /// UARTRXD path. In either SIR mode or UART mode, when this bit is set,
496         /// the modem outputs are also fed through to the modem inputs. This bit
497         /// is cleared to 0 on reset, to disable loopback.
498         pub enable_loopback: bool,
499         /// `TXE` Transmit enable. If this bit is set to 1, the transmit section
500         /// of the UART is enabled. Data transmission occurs for either UART
501         /// signals, or SIR signals depending on the setting of the SIREN bit.
502         /// When the UART is disabled in the middle of transmission, it
503         /// completes the current character before stopping.
504         pub enable_transmit: bool,
505         /// `RXE` Receive enable. If this bit is set to 1, the receive section
506         /// of the UART is enabled. Data reception occurs for either UART
507         /// signals or SIR signals depending on the setting of the SIREN bit.
508         /// When the UART is disabled in the middle of reception, it completes
509         /// the current character before stopping.
510         pub enable_receive: bool,
511         /// `DTR` Data transmit ready. This bit is the complement of the UART
512         /// data transmit ready, `nUARTDTR`, modem status output. That is, when
513         /// the bit is programmed to a 1 then `nUARTDTR` is LOW.
514         pub data_transmit_ready: bool,
515         /// `RTS` Request to send. This bit is the complement of the UART
516         /// request to send, `nUARTRTS`, modem status output. That is, when the
517         /// bit is programmed to a 1 then `nUARTRTS` is LOW.
518         pub request_to_send: bool,
519         /// `Out1` This bit is the complement of the UART Out1 (`nUARTOut1`)
520         /// modem status output. That is, when the bit is programmed to a 1 the
521         /// output is 0. For DTE this can be used as Data Carrier Detect (DCD).
522         pub out_1: bool,
523         /// `Out2` This bit is the complement of the UART Out2 (`nUARTOut2`)
524         /// modem status output. That is, when the bit is programmed to a 1, the
525         /// output is 0. For DTE this can be used as Ring Indicator (RI).
526         pub out_2: bool,
527         /// `RTSEn` RTS hardware flow control enable. If this bit is set to 1,
528         /// RTS hardware flow control is enabled. Data is only requested when
529         /// there is space in the receive FIFO for it to be received.
530         pub rts_hardware_flow_control_enable: bool,
531         /// `CTSEn` CTS hardware flow control enable. If this bit is set to 1,
532         /// CTS hardware flow control is enabled. Data is only transmitted when
533         /// the `nUARTCTS` signal is asserted.
534         pub cts_hardware_flow_control_enable: bool,
535     }
536 
537     impl Control {
538         pub fn reset(&mut self) {
539             *self = 0.into();
540             self.set_enable_receive(true);
541             self.set_enable_transmit(true);
542         }
543     }
544 
545     impl Default for Control {
546         fn default() -> Self {
547             let mut ret: Self = 0.into();
548             ret.reset();
549             ret
550         }
551     }
552 
553     /// Interrupt status bits in UARTRIS, UARTMIS, UARTIMSC
554     pub const INT_OE: u32 = 1 << 10;
555     pub const INT_BE: u32 = 1 << 9;
556     pub const INT_PE: u32 = 1 << 8;
557     pub const INT_FE: u32 = 1 << 7;
558     pub const INT_RT: u32 = 1 << 6;
559     pub const INT_TX: u32 = 1 << 5;
560     pub const INT_RX: u32 = 1 << 4;
561     pub const INT_DSR: u32 = 1 << 3;
562     pub const INT_DCD: u32 = 1 << 2;
563     pub const INT_CTS: u32 = 1 << 1;
564     pub const INT_RI: u32 = 1 << 0;
565     pub const INT_E: u32 = INT_OE | INT_BE | INT_PE | INT_FE;
566     pub const INT_MS: u32 = INT_RI | INT_DSR | INT_DCD | INT_CTS;
567 
568     #[repr(u32)]
569     pub enum Interrupt {
570         OE = 1 << 10,
571         BE = 1 << 9,
572         PE = 1 << 8,
573         FE = 1 << 7,
574         RT = 1 << 6,
575         TX = 1 << 5,
576         RX = 1 << 4,
577         DSR = 1 << 3,
578         DCD = 1 << 2,
579         CTS = 1 << 1,
580         RI = 1 << 0,
581     }
582 
583     impl Interrupt {
584         pub const E: u32 = INT_OE | INT_BE | INT_PE | INT_FE;
585         pub const MS: u32 = INT_RI | INT_DSR | INT_DCD | INT_CTS;
586     }
587 }
588 
589 // TODO: You must disable the UART before any of the control registers are
590 // reprogrammed. When the UART is disabled in the middle of transmission or
591 // reception, it completes the current character before stopping
592