1 // Copyright 2024, Linaro Limited 2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org> 3 // SPDX-License-Identifier: GPL-2.0-or-later 4 5 use std::{ffi::CStr, mem::size_of, ptr::addr_of_mut}; 6 7 use qemu_api::{ 8 chardev::{CharBackend, Chardev, Event}, 9 impl_vmstate_forward, 10 irq::{IRQState, InterruptSource}, 11 memory::{hwaddr, MemoryRegion, MemoryRegionOps, MemoryRegionOpsBuilder}, 12 prelude::*, 13 qdev::{Clock, ClockEvent, DeviceImpl, DeviceState, Property, ResetType, ResettablePhasesImpl}, 14 qom::{ObjectImpl, Owned, ParentField}, 15 static_assert, 16 sysbus::{SysBusDevice, SysBusDeviceImpl}, 17 vmstate::VMStateDescription, 18 }; 19 20 use crate::{ 21 device_class, 22 registers::{self, Interrupt, RegisterOffset}, 23 }; 24 25 // TODO: You must disable the UART before any of the control registers are 26 // reprogrammed. When the UART is disabled in the middle of transmission or 27 // reception, it completes the current character before stopping 28 29 /// Integer Baud Rate Divider, `UARTIBRD` 30 const IBRD_MASK: u32 = 0xffff; 31 32 /// Fractional Baud Rate Divider, `UARTFBRD` 33 const FBRD_MASK: u32 = 0x3f; 34 35 /// QEMU sourced constant. 36 pub const PL011_FIFO_DEPTH: u32 = 16; 37 38 #[derive(Clone, Copy)] 39 struct DeviceId(&'static [u8; 8]); 40 41 impl std::ops::Index<hwaddr> for DeviceId { 42 type Output = u8; 43 44 fn index(&self, idx: hwaddr) -> &Self::Output { 45 &self.0[idx as usize] 46 } 47 } 48 49 // FIFOs use 32-bit indices instead of usize, for compatibility with 50 // the migration stream produced by the C version of this device. 51 #[repr(transparent)] 52 #[derive(Debug, Default)] 53 pub struct Fifo([registers::Data; PL011_FIFO_DEPTH as usize]); 54 impl_vmstate_forward!(Fifo); 55 56 impl Fifo { 57 const fn len(&self) -> u32 { 58 self.0.len() as u32 59 } 60 } 61 62 impl std::ops::IndexMut<u32> for Fifo { 63 fn index_mut(&mut self, idx: u32) -> &mut Self::Output { 64 &mut self.0[idx as usize] 65 } 66 } 67 68 impl std::ops::Index<u32> for Fifo { 69 type Output = registers::Data; 70 71 fn index(&self, idx: u32) -> &Self::Output { 72 &self.0[idx as usize] 73 } 74 } 75 76 #[repr(C)] 77 #[derive(Debug, Default, qemu_api_macros::offsets)] 78 pub struct PL011Registers { 79 #[doc(alias = "fr")] 80 pub flags: registers::Flags, 81 #[doc(alias = "lcr")] 82 pub line_control: registers::LineControl, 83 #[doc(alias = "rsr")] 84 pub receive_status_error_clear: registers::ReceiveStatusErrorClear, 85 #[doc(alias = "cr")] 86 pub control: registers::Control, 87 pub dmacr: u32, 88 pub int_enabled: u32, 89 pub int_level: u32, 90 pub read_fifo: Fifo, 91 pub ilpr: u32, 92 pub ibrd: u32, 93 pub fbrd: u32, 94 pub ifl: u32, 95 pub read_pos: u32, 96 pub read_count: u32, 97 pub read_trigger: u32, 98 } 99 100 #[repr(C)] 101 #[derive(qemu_api_macros::Object, qemu_api_macros::offsets)] 102 /// PL011 Device Model in QEMU 103 pub struct PL011State { 104 pub parent_obj: ParentField<SysBusDevice>, 105 pub iomem: MemoryRegion, 106 #[doc(alias = "chr")] 107 pub char_backend: CharBackend, 108 pub regs: BqlRefCell<PL011Registers>, 109 /// QEMU interrupts 110 /// 111 /// ```text 112 /// * sysbus MMIO region 0: device registers 113 /// * sysbus IRQ 0: `UARTINTR` (combined interrupt line) 114 /// * sysbus IRQ 1: `UARTRXINTR` (receive FIFO interrupt line) 115 /// * sysbus IRQ 2: `UARTTXINTR` (transmit FIFO interrupt line) 116 /// * sysbus IRQ 3: `UARTRTINTR` (receive timeout interrupt line) 117 /// * sysbus IRQ 4: `UARTMSINTR` (momem status interrupt line) 118 /// * sysbus IRQ 5: `UARTEINTR` (error interrupt line) 119 /// ``` 120 #[doc(alias = "irq")] 121 pub interrupts: [InterruptSource; IRQMASK.len()], 122 #[doc(alias = "clk")] 123 pub clock: Owned<Clock>, 124 #[doc(alias = "migrate_clk")] 125 pub migrate_clock: bool, 126 } 127 128 // Some C users of this device embed its state struct into their own 129 // structs, so the size of the Rust version must not be any larger 130 // than the size of the C one. If this assert triggers you need to 131 // expand the padding_for_rust[] array in the C PL011State struct. 132 static_assert!(size_of::<PL011State>() <= size_of::<qemu_api::bindings::PL011State>()); 133 134 qom_isa!(PL011State : SysBusDevice, DeviceState, Object); 135 136 #[repr(C)] 137 pub struct PL011Class { 138 parent_class: <SysBusDevice as ObjectType>::Class, 139 /// The byte string that identifies the device. 140 device_id: DeviceId, 141 } 142 143 trait PL011Impl: SysBusDeviceImpl + IsA<PL011State> { 144 const DEVICE_ID: DeviceId; 145 } 146 147 impl PL011Class { 148 fn class_init<T: PL011Impl>(&mut self) { 149 self.device_id = T::DEVICE_ID; 150 self.parent_class.class_init::<T>(); 151 } 152 } 153 154 unsafe impl ObjectType for PL011State { 155 type Class = PL011Class; 156 const TYPE_NAME: &'static CStr = crate::TYPE_PL011; 157 } 158 159 impl PL011Impl for PL011State { 160 const DEVICE_ID: DeviceId = DeviceId(&[0x11, 0x10, 0x14, 0x00, 0x0d, 0xf0, 0x05, 0xb1]); 161 } 162 163 impl ObjectImpl for PL011State { 164 type ParentType = SysBusDevice; 165 166 const INSTANCE_INIT: Option<unsafe fn(&mut Self)> = Some(Self::init); 167 const INSTANCE_POST_INIT: Option<fn(&Self)> = Some(Self::post_init); 168 const CLASS_INIT: fn(&mut Self::Class) = Self::Class::class_init::<Self>; 169 } 170 171 impl DeviceImpl for PL011State { 172 fn properties() -> &'static [Property] { 173 &device_class::PL011_PROPERTIES 174 } 175 fn vmsd() -> Option<&'static VMStateDescription> { 176 Some(&device_class::VMSTATE_PL011) 177 } 178 const REALIZE: Option<fn(&Self)> = Some(Self::realize); 179 } 180 181 impl ResettablePhasesImpl for PL011State { 182 const HOLD: Option<fn(&Self, ResetType)> = Some(Self::reset_hold); 183 } 184 185 impl SysBusDeviceImpl for PL011State {} 186 187 impl PL011Registers { 188 pub(self) fn read(&mut self, offset: RegisterOffset) -> (bool, u32) { 189 use RegisterOffset::*; 190 191 let mut update = false; 192 let result = match offset { 193 DR => self.read_data_register(&mut update), 194 RSR => u32::from(self.receive_status_error_clear), 195 FR => u32::from(self.flags), 196 FBRD => self.fbrd, 197 ILPR => self.ilpr, 198 IBRD => self.ibrd, 199 LCR_H => u32::from(self.line_control), 200 CR => u32::from(self.control), 201 FLS => self.ifl, 202 IMSC => self.int_enabled, 203 RIS => self.int_level, 204 MIS => self.int_level & self.int_enabled, 205 ICR => { 206 // "The UARTICR Register is the interrupt clear register and is write-only" 207 // Source: ARM DDI 0183G 3.3.13 Interrupt Clear Register, UARTICR 208 0 209 } 210 DMACR => self.dmacr, 211 }; 212 (update, result) 213 } 214 215 pub(self) fn write( 216 &mut self, 217 offset: RegisterOffset, 218 value: u32, 219 char_backend: &CharBackend, 220 ) -> bool { 221 // eprintln!("write offset {offset} value {value}"); 222 use RegisterOffset::*; 223 match offset { 224 DR => { 225 // interrupts always checked 226 let _ = self.loopback_tx(value.into()); 227 self.int_level |= Interrupt::TX.0; 228 return true; 229 } 230 RSR => { 231 self.receive_status_error_clear = 0.into(); 232 } 233 FR => { 234 // flag writes are ignored 235 } 236 ILPR => { 237 self.ilpr = value; 238 } 239 IBRD => { 240 self.ibrd = value; 241 } 242 FBRD => { 243 self.fbrd = value; 244 } 245 LCR_H => { 246 let new_val: registers::LineControl = value.into(); 247 // Reset the FIFO state on FIFO enable or disable 248 if self.line_control.fifos_enabled() != new_val.fifos_enabled() { 249 self.reset_rx_fifo(); 250 self.reset_tx_fifo(); 251 } 252 let update = (self.line_control.send_break() != new_val.send_break()) && { 253 let break_enable = new_val.send_break(); 254 let _ = char_backend.send_break(break_enable); 255 self.loopback_break(break_enable) 256 }; 257 self.line_control = new_val; 258 self.set_read_trigger(); 259 return update; 260 } 261 CR => { 262 // ??? Need to implement the enable bit. 263 self.control = value.into(); 264 return self.loopback_mdmctrl(); 265 } 266 FLS => { 267 self.ifl = value; 268 self.set_read_trigger(); 269 } 270 IMSC => { 271 self.int_enabled = value; 272 return true; 273 } 274 RIS => {} 275 MIS => {} 276 ICR => { 277 self.int_level &= !value; 278 return true; 279 } 280 DMACR => { 281 self.dmacr = value; 282 if value & 3 > 0 { 283 // qemu_log_mask(LOG_UNIMP, "pl011: DMA not implemented\n"); 284 eprintln!("pl011: DMA not implemented"); 285 } 286 } 287 } 288 false 289 } 290 291 fn read_data_register(&mut self, update: &mut bool) -> u32 { 292 self.flags.set_receive_fifo_full(false); 293 let c = self.read_fifo[self.read_pos]; 294 295 if self.read_count > 0 { 296 self.read_count -= 1; 297 self.read_pos = (self.read_pos + 1) & (self.fifo_depth() - 1); 298 } 299 if self.read_count == 0 { 300 self.flags.set_receive_fifo_empty(true); 301 } 302 if self.read_count + 1 == self.read_trigger { 303 self.int_level &= !Interrupt::RX.0; 304 } 305 self.receive_status_error_clear.set_from_data(c); 306 *update = true; 307 u32::from(c) 308 } 309 310 #[inline] 311 #[must_use] 312 fn loopback_tx(&mut self, value: registers::Data) -> bool { 313 // Caveat: 314 // 315 // In real hardware, TX loopback happens at the serial-bit level 316 // and then reassembled by the RX logics back into bytes and placed 317 // into the RX fifo. That is, loopback happens after TX fifo. 318 // 319 // Because the real hardware TX fifo is time-drained at the frame 320 // rate governed by the configured serial format, some loopback 321 // bytes in TX fifo may still be able to get into the RX fifo 322 // that could be full at times while being drained at software 323 // pace. 324 // 325 // In such scenario, the RX draining pace is the major factor 326 // deciding which loopback bytes get into the RX fifo, unless 327 // hardware flow-control is enabled. 328 // 329 // For simplicity, the above described is not emulated. 330 self.loopback_enabled() && self.put_fifo(value) 331 } 332 333 #[must_use] 334 fn loopback_mdmctrl(&mut self) -> bool { 335 if !self.loopback_enabled() { 336 return false; 337 } 338 339 /* 340 * Loopback software-driven modem control outputs to modem status inputs: 341 * FR.RI <= CR.Out2 342 * FR.DCD <= CR.Out1 343 * FR.CTS <= CR.RTS 344 * FR.DSR <= CR.DTR 345 * 346 * The loopback happens immediately even if this call is triggered 347 * by setting only CR.LBE. 348 * 349 * CTS/RTS updates due to enabled hardware flow controls are not 350 * dealt with here. 351 */ 352 353 self.flags.set_ring_indicator(self.control.out_2()); 354 self.flags.set_data_carrier_detect(self.control.out_1()); 355 self.flags.set_clear_to_send(self.control.request_to_send()); 356 self.flags 357 .set_data_set_ready(self.control.data_transmit_ready()); 358 359 // Change interrupts based on updated FR 360 let mut il = self.int_level; 361 362 il &= !Interrupt::MS.0; 363 364 if self.flags.data_set_ready() { 365 il |= Interrupt::DSR.0; 366 } 367 if self.flags.data_carrier_detect() { 368 il |= Interrupt::DCD.0; 369 } 370 if self.flags.clear_to_send() { 371 il |= Interrupt::CTS.0; 372 } 373 if self.flags.ring_indicator() { 374 il |= Interrupt::RI.0; 375 } 376 self.int_level = il; 377 true 378 } 379 380 fn loopback_break(&mut self, enable: bool) -> bool { 381 enable && self.loopback_tx(registers::Data::BREAK) 382 } 383 384 fn set_read_trigger(&mut self) { 385 self.read_trigger = 1; 386 } 387 388 pub fn reset(&mut self) { 389 self.line_control.reset(); 390 self.receive_status_error_clear.reset(); 391 self.dmacr = 0; 392 self.int_enabled = 0; 393 self.int_level = 0; 394 self.ilpr = 0; 395 self.ibrd = 0; 396 self.fbrd = 0; 397 self.read_trigger = 1; 398 self.ifl = 0x12; 399 self.control.reset(); 400 self.flags.reset(); 401 self.reset_rx_fifo(); 402 self.reset_tx_fifo(); 403 } 404 405 pub fn reset_rx_fifo(&mut self) { 406 self.read_count = 0; 407 self.read_pos = 0; 408 409 // Reset FIFO flags 410 self.flags.set_receive_fifo_full(false); 411 self.flags.set_receive_fifo_empty(true); 412 } 413 414 pub fn reset_tx_fifo(&mut self) { 415 // Reset FIFO flags 416 self.flags.set_transmit_fifo_full(false); 417 self.flags.set_transmit_fifo_empty(true); 418 } 419 420 #[inline] 421 pub fn fifo_enabled(&self) -> bool { 422 self.line_control.fifos_enabled() == registers::Mode::FIFO 423 } 424 425 #[inline] 426 pub fn loopback_enabled(&self) -> bool { 427 self.control.enable_loopback() 428 } 429 430 #[inline] 431 pub fn fifo_depth(&self) -> u32 { 432 // Note: FIFO depth is expected to be power-of-2 433 if self.fifo_enabled() { 434 return PL011_FIFO_DEPTH; 435 } 436 1 437 } 438 439 #[must_use] 440 pub fn put_fifo(&mut self, value: registers::Data) -> bool { 441 let depth = self.fifo_depth(); 442 assert!(depth > 0); 443 let slot = (self.read_pos + self.read_count) & (depth - 1); 444 self.read_fifo[slot] = value; 445 self.read_count += 1; 446 self.flags.set_receive_fifo_empty(false); 447 if self.read_count == depth { 448 self.flags.set_receive_fifo_full(true); 449 } 450 451 if self.read_count == self.read_trigger { 452 self.int_level |= Interrupt::RX.0; 453 return true; 454 } 455 false 456 } 457 458 pub fn post_load(&mut self) -> Result<(), ()> { 459 /* Sanity-check input state */ 460 if self.read_pos >= self.read_fifo.len() || self.read_count > self.read_fifo.len() { 461 return Err(()); 462 } 463 464 if !self.fifo_enabled() && self.read_count > 0 && self.read_pos > 0 { 465 // Older versions of PL011 didn't ensure that the single 466 // character in the FIFO in FIFO-disabled mode is in 467 // element 0 of the array; convert to follow the current 468 // code's assumptions. 469 self.read_fifo[0] = self.read_fifo[self.read_pos]; 470 self.read_pos = 0; 471 } 472 473 self.ibrd &= IBRD_MASK; 474 self.fbrd &= FBRD_MASK; 475 476 Ok(()) 477 } 478 } 479 480 impl PL011State { 481 /// Initializes a pre-allocated, unitialized instance of `PL011State`. 482 /// 483 /// # Safety 484 /// 485 /// `self` must point to a correctly sized and aligned location for the 486 /// `PL011State` type. It must not be called more than once on the same 487 /// location/instance. All its fields are expected to hold unitialized 488 /// values with the sole exception of `parent_obj`. 489 unsafe fn init(&mut self) { 490 static PL011_OPS: MemoryRegionOps<PL011State> = MemoryRegionOpsBuilder::<PL011State>::new() 491 .read(&PL011State::read) 492 .write(&PL011State::write) 493 .native_endian() 494 .impl_sizes(4, 4) 495 .build(); 496 497 // SAFETY: 498 // 499 // self and self.iomem are guaranteed to be valid at this point since callers 500 // must make sure the `self` reference is valid. 501 MemoryRegion::init_io( 502 unsafe { &mut *addr_of_mut!(self.iomem) }, 503 addr_of_mut!(*self), 504 &PL011_OPS, 505 "pl011", 506 0x1000, 507 ); 508 509 self.regs = Default::default(); 510 511 // SAFETY: 512 // 513 // self.clock is not initialized at this point; but since `Owned<_>` is 514 // not Drop, we can overwrite the undefined value without side effects; 515 // it's not sound but, because for all PL011State instances are created 516 // by QOM code which calls this function to initialize the fields, at 517 // leastno code is able to access an invalid self.clock value. 518 self.clock = self.init_clock_in("clk", &Self::clock_update, ClockEvent::ClockUpdate); 519 } 520 521 const fn clock_update(&self, _event: ClockEvent) { 522 /* pl011_trace_baudrate_change(s); */ 523 } 524 525 fn post_init(&self) { 526 self.init_mmio(&self.iomem); 527 for irq in self.interrupts.iter() { 528 self.init_irq(irq); 529 } 530 } 531 532 fn read(&self, offset: hwaddr, _size: u32) -> u64 { 533 match RegisterOffset::try_from(offset) { 534 Err(v) if (0x3f8..0x400).contains(&(v >> 2)) => { 535 let device_id = self.get_class().device_id; 536 u64::from(device_id[(offset - 0xfe0) >> 2]) 537 } 538 Err(_) => { 539 // qemu_log_mask(LOG_GUEST_ERROR, "pl011_read: Bad offset 0x%x\n", (int)offset); 540 0 541 } 542 Ok(field) => { 543 let (update_irq, result) = self.regs.borrow_mut().read(field); 544 if update_irq { 545 self.update(); 546 self.char_backend.accept_input(); 547 } 548 result.into() 549 } 550 } 551 } 552 553 fn write(&self, offset: hwaddr, value: u64, _size: u32) { 554 let mut update_irq = false; 555 if let Ok(field) = RegisterOffset::try_from(offset) { 556 // qemu_chr_fe_write_all() calls into the can_receive 557 // callback, so handle writes before entering PL011Registers. 558 if field == RegisterOffset::DR { 559 // ??? Check if transmitter is enabled. 560 let ch: [u8; 1] = [value as u8]; 561 // XXX this blocks entire thread. Rewrite to use 562 // qemu_chr_fe_write and background I/O callbacks 563 let _ = self.char_backend.write_all(&ch); 564 } 565 566 update_irq = self 567 .regs 568 .borrow_mut() 569 .write(field, value as u32, &self.char_backend); 570 } else { 571 eprintln!("write bad offset {offset} value {value}"); 572 } 573 if update_irq { 574 self.update(); 575 } 576 } 577 578 fn can_receive(&self) -> u32 { 579 let regs = self.regs.borrow(); 580 // trace_pl011_can_receive(s->lcr, s->read_count, r); 581 u32::from(regs.read_count < regs.fifo_depth()) 582 } 583 584 fn receive(&self, buf: &[u8]) { 585 if buf.is_empty() { 586 return; 587 } 588 let mut regs = self.regs.borrow_mut(); 589 let c: u32 = buf[0].into(); 590 let update_irq = !regs.loopback_enabled() && regs.put_fifo(c.into()); 591 // Release the BqlRefCell before calling self.update() 592 drop(regs); 593 594 if update_irq { 595 self.update(); 596 } 597 } 598 599 fn event(&self, event: Event) { 600 let mut update_irq = false; 601 let mut regs = self.regs.borrow_mut(); 602 if event == Event::CHR_EVENT_BREAK && !regs.loopback_enabled() { 603 update_irq = regs.put_fifo(registers::Data::BREAK); 604 } 605 // Release the BqlRefCell before calling self.update() 606 drop(regs); 607 608 if update_irq { 609 self.update() 610 } 611 } 612 613 fn realize(&self) { 614 self.char_backend 615 .enable_handlers(self, Self::can_receive, Self::receive, Self::event); 616 } 617 618 fn reset_hold(&self, _type: ResetType) { 619 self.regs.borrow_mut().reset(); 620 } 621 622 fn update(&self) { 623 let regs = self.regs.borrow(); 624 let flags = regs.int_level & regs.int_enabled; 625 for (irq, i) in self.interrupts.iter().zip(IRQMASK) { 626 irq.set(flags & i != 0); 627 } 628 } 629 630 pub fn post_load(&self, _version_id: u32) -> Result<(), ()> { 631 self.regs.borrow_mut().post_load() 632 } 633 } 634 635 /// Which bits in the interrupt status matter for each outbound IRQ line ? 636 const IRQMASK: [u32; 6] = [ 637 /* combined IRQ */ 638 Interrupt::E.0 | Interrupt::MS.0 | Interrupt::RT.0 | Interrupt::TX.0 | Interrupt::RX.0, 639 Interrupt::RX.0, 640 Interrupt::TX.0, 641 Interrupt::RT.0, 642 Interrupt::MS.0, 643 Interrupt::E.0, 644 ]; 645 646 /// # Safety 647 /// 648 /// We expect the FFI user of this function to pass a valid pointer for `chr` 649 /// and `irq`. 650 #[no_mangle] 651 pub unsafe extern "C" fn pl011_create( 652 addr: u64, 653 irq: *mut IRQState, 654 chr: *mut Chardev, 655 ) -> *mut DeviceState { 656 // SAFETY: The callers promise that they have owned references. 657 // They do not gift them to pl011_create, so use `Owned::from`. 658 let irq = unsafe { Owned::<IRQState>::from(&*irq) }; 659 660 let dev = PL011State::new(); 661 if !chr.is_null() { 662 let chr = unsafe { Owned::<Chardev>::from(&*chr) }; 663 dev.prop_set_chr("chardev", &chr); 664 } 665 dev.sysbus_realize(); 666 dev.mmio_map(0, addr); 667 dev.connect_irq(0, &irq); 668 669 // The pointer is kept alive by the QOM tree; drop the owned ref 670 dev.as_mut_ptr() 671 } 672 673 #[repr(C)] 674 #[derive(qemu_api_macros::Object)] 675 /// PL011 Luminary device model. 676 pub struct PL011Luminary { 677 parent_obj: ParentField<PL011State>, 678 } 679 680 qom_isa!(PL011Luminary : PL011State, SysBusDevice, DeviceState, Object); 681 682 unsafe impl ObjectType for PL011Luminary { 683 type Class = <PL011State as ObjectType>::Class; 684 const TYPE_NAME: &'static CStr = crate::TYPE_PL011_LUMINARY; 685 } 686 687 impl ObjectImpl for PL011Luminary { 688 type ParentType = PL011State; 689 690 const CLASS_INIT: fn(&mut Self::Class) = Self::Class::class_init::<Self>; 691 } 692 693 impl PL011Impl for PL011Luminary { 694 const DEVICE_ID: DeviceId = DeviceId(&[0x11, 0x00, 0x18, 0x01, 0x0d, 0xf0, 0x05, 0xb1]); 695 } 696 697 impl DeviceImpl for PL011Luminary {} 698 impl ResettablePhasesImpl for PL011Luminary {} 699 impl SysBusDeviceImpl for PL011Luminary {} 700