1 // Copyright 2024, Linaro Limited 2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org> 3 // SPDX-License-Identifier: GPL-2.0-or-later 4 5 use core::ptr::{addr_of_mut, NonNull}; 6 use std::{ 7 ffi::CStr, 8 os::raw::{c_int, c_uchar, c_uint, c_void}, 9 }; 10 11 use qemu_api::{ 12 bindings::{self, *}, 13 c_str, 14 irq::InterruptSource, 15 prelude::*, 16 qdev::DeviceImpl, 17 qom::ObjectImpl, 18 }; 19 20 use crate::{ 21 device_class, 22 memory_ops::PL011_OPS, 23 registers::{self, Interrupt}, 24 RegisterOffset, 25 }; 26 27 /// Integer Baud Rate Divider, `UARTIBRD` 28 const IBRD_MASK: u32 = 0xffff; 29 30 /// Fractional Baud Rate Divider, `UARTFBRD` 31 const FBRD_MASK: u32 = 0x3f; 32 33 /// QEMU sourced constant. 34 pub const PL011_FIFO_DEPTH: usize = 16_usize; 35 36 #[derive(Clone, Copy, Debug)] 37 enum DeviceId { 38 #[allow(dead_code)] 39 Arm = 0, 40 Luminary, 41 } 42 43 impl std::ops::Index<hwaddr> for DeviceId { 44 type Output = c_uchar; 45 46 fn index(&self, idx: hwaddr) -> &Self::Output { 47 match self { 48 Self::Arm => &Self::PL011_ID_ARM[idx as usize], 49 Self::Luminary => &Self::PL011_ID_LUMINARY[idx as usize], 50 } 51 } 52 } 53 54 impl DeviceId { 55 const PL011_ID_ARM: [c_uchar; 8] = [0x11, 0x10, 0x14, 0x00, 0x0d, 0xf0, 0x05, 0xb1]; 56 const PL011_ID_LUMINARY: [c_uchar; 8] = [0x11, 0x00, 0x18, 0x01, 0x0d, 0xf0, 0x05, 0xb1]; 57 } 58 59 #[repr(C)] 60 #[derive(Debug, qemu_api_macros::Object, qemu_api_macros::offsets)] 61 /// PL011 Device Model in QEMU 62 pub struct PL011State { 63 pub parent_obj: SysBusDevice, 64 pub iomem: MemoryRegion, 65 #[doc(alias = "fr")] 66 pub flags: registers::Flags, 67 #[doc(alias = "lcr")] 68 pub line_control: registers::LineControl, 69 #[doc(alias = "rsr")] 70 pub receive_status_error_clear: registers::ReceiveStatusErrorClear, 71 #[doc(alias = "cr")] 72 pub control: registers::Control, 73 pub dmacr: u32, 74 pub int_enabled: u32, 75 pub int_level: u32, 76 pub read_fifo: [registers::Data; PL011_FIFO_DEPTH], 77 pub ilpr: u32, 78 pub ibrd: u32, 79 pub fbrd: u32, 80 pub ifl: u32, 81 pub read_pos: usize, 82 pub read_count: usize, 83 pub read_trigger: usize, 84 #[doc(alias = "chr")] 85 pub char_backend: CharBackend, 86 /// QEMU interrupts 87 /// 88 /// ```text 89 /// * sysbus MMIO region 0: device registers 90 /// * sysbus IRQ 0: `UARTINTR` (combined interrupt line) 91 /// * sysbus IRQ 1: `UARTRXINTR` (receive FIFO interrupt line) 92 /// * sysbus IRQ 2: `UARTTXINTR` (transmit FIFO interrupt line) 93 /// * sysbus IRQ 3: `UARTRTINTR` (receive timeout interrupt line) 94 /// * sysbus IRQ 4: `UARTMSINTR` (momem status interrupt line) 95 /// * sysbus IRQ 5: `UARTEINTR` (error interrupt line) 96 /// ``` 97 #[doc(alias = "irq")] 98 pub interrupts: [InterruptSource; IRQMASK.len()], 99 #[doc(alias = "clk")] 100 pub clock: NonNull<Clock>, 101 #[doc(alias = "migrate_clk")] 102 pub migrate_clock: bool, 103 /// The byte string that identifies the device. 104 device_id: DeviceId, 105 } 106 107 qom_isa!(PL011State : SysBusDevice, DeviceState, Object); 108 109 unsafe impl ObjectType for PL011State { 110 type Class = <SysBusDevice as ObjectType>::Class; 111 const TYPE_NAME: &'static CStr = crate::TYPE_PL011; 112 } 113 114 impl ObjectImpl for PL011State { 115 type ParentType = SysBusDevice; 116 117 const INSTANCE_INIT: Option<unsafe fn(&mut Self)> = Some(Self::init); 118 } 119 120 impl DeviceImpl for PL011State { 121 fn properties() -> &'static [Property] { 122 &device_class::PL011_PROPERTIES 123 } 124 fn vmsd() -> Option<&'static VMStateDescription> { 125 Some(&device_class::VMSTATE_PL011) 126 } 127 const REALIZE: Option<fn(&mut Self)> = Some(Self::realize); 128 const RESET: Option<fn(&mut Self)> = Some(Self::reset); 129 } 130 131 impl PL011State { 132 /// Initializes a pre-allocated, unitialized instance of `PL011State`. 133 /// 134 /// # Safety 135 /// 136 /// `self` must point to a correctly sized and aligned location for the 137 /// `PL011State` type. It must not be called more than once on the same 138 /// location/instance. All its fields are expected to hold unitialized 139 /// values with the sole exception of `parent_obj`. 140 unsafe fn init(&mut self) { 141 const CLK_NAME: &CStr = c_str!("clk"); 142 143 // SAFETY: 144 // 145 // self and self.iomem are guaranteed to be valid at this point since callers 146 // must make sure the `self` reference is valid. 147 unsafe { 148 memory_region_init_io( 149 addr_of_mut!(self.iomem), 150 addr_of_mut!(*self).cast::<Object>(), 151 &PL011_OPS, 152 addr_of_mut!(*self).cast::<c_void>(), 153 Self::TYPE_NAME.as_ptr(), 154 0x1000, 155 ); 156 157 let sbd: &mut SysBusDevice = self.upcast_mut(); 158 sysbus_init_mmio(sbd, addr_of_mut!(self.iomem)); 159 } 160 161 for irq in self.interrupts.iter() { 162 let sbd: &SysBusDevice = self.upcast(); 163 sbd.init_irq(irq); 164 } 165 166 // SAFETY: 167 // 168 // self.clock is not initialized at this point; but since `NonNull<_>` is Copy, 169 // we can overwrite the undefined value without side effects. This is 170 // safe since all PL011State instances are created by QOM code which 171 // calls this function to initialize the fields; therefore no code is 172 // able to access an invalid self.clock value. 173 unsafe { 174 let dev: &mut DeviceState = self.upcast_mut(); 175 self.clock = NonNull::new(qdev_init_clock_in( 176 dev, 177 CLK_NAME.as_ptr(), 178 None, /* pl011_clock_update */ 179 addr_of_mut!(*self).cast::<c_void>(), 180 ClockEvent::ClockUpdate.0, 181 )) 182 .unwrap(); 183 } 184 } 185 186 pub fn read(&mut self, offset: hwaddr, _size: c_uint) -> std::ops::ControlFlow<u64, u64> { 187 use RegisterOffset::*; 188 189 std::ops::ControlFlow::Break(match RegisterOffset::try_from(offset) { 190 Err(v) if (0x3f8..0x400).contains(&(v >> 2)) => { 191 u64::from(self.device_id[(offset - 0xfe0) >> 2]) 192 } 193 Err(_) => { 194 // qemu_log_mask(LOG_GUEST_ERROR, "pl011_read: Bad offset 0x%x\n", (int)offset); 195 0 196 } 197 Ok(DR) => { 198 self.flags.set_receive_fifo_full(false); 199 let c = self.read_fifo[self.read_pos]; 200 if self.read_count > 0 { 201 self.read_count -= 1; 202 self.read_pos = (self.read_pos + 1) & (self.fifo_depth() - 1); 203 } 204 if self.read_count == 0 { 205 self.flags.set_receive_fifo_empty(true); 206 } 207 if self.read_count + 1 == self.read_trigger { 208 self.int_level &= !registers::INT_RX; 209 } 210 // Update error bits. 211 self.receive_status_error_clear.set_from_data(c); 212 self.update(); 213 // Must call qemu_chr_fe_accept_input, so return Continue: 214 let c = u32::from(c); 215 return std::ops::ControlFlow::Continue(u64::from(c)); 216 } 217 Ok(RSR) => u8::from(self.receive_status_error_clear).into(), 218 Ok(FR) => u16::from(self.flags).into(), 219 Ok(FBRD) => self.fbrd.into(), 220 Ok(ILPR) => self.ilpr.into(), 221 Ok(IBRD) => self.ibrd.into(), 222 Ok(LCR_H) => u16::from(self.line_control).into(), 223 Ok(CR) => { 224 // We exercise our self-control. 225 u16::from(self.control).into() 226 } 227 Ok(FLS) => self.ifl.into(), 228 Ok(IMSC) => self.int_enabled.into(), 229 Ok(RIS) => self.int_level.into(), 230 Ok(MIS) => u64::from(self.int_level & self.int_enabled), 231 Ok(ICR) => { 232 // "The UARTICR Register is the interrupt clear register and is write-only" 233 // Source: ARM DDI 0183G 3.3.13 Interrupt Clear Register, UARTICR 234 0 235 } 236 Ok(DMACR) => self.dmacr.into(), 237 }) 238 } 239 240 pub fn write(&mut self, offset: hwaddr, value: u64) { 241 // eprintln!("write offset {offset} value {value}"); 242 use RegisterOffset::*; 243 let value: u32 = value as u32; 244 match RegisterOffset::try_from(offset) { 245 Err(_bad_offset) => { 246 eprintln!("write bad offset {offset} value {value}"); 247 } 248 Ok(DR) => { 249 // ??? Check if transmitter is enabled. 250 let ch: u8 = value as u8; 251 // XXX this blocks entire thread. Rewrite to use 252 // qemu_chr_fe_write and background I/O callbacks 253 254 // SAFETY: self.char_backend is a valid CharBackend instance after it's been 255 // initialized in realize(). 256 unsafe { 257 qemu_chr_fe_write_all(addr_of_mut!(self.char_backend), &ch, 1); 258 } 259 self.loopback_tx(value); 260 self.int_level |= registers::INT_TX; 261 self.update(); 262 } 263 Ok(RSR) => { 264 self.receive_status_error_clear.reset(); 265 } 266 Ok(FR) => { 267 // flag writes are ignored 268 } 269 Ok(ILPR) => { 270 self.ilpr = value; 271 } 272 Ok(IBRD) => { 273 self.ibrd = value; 274 } 275 Ok(FBRD) => { 276 self.fbrd = value; 277 } 278 Ok(LCR_H) => { 279 let value = value as u16; 280 let new_val: registers::LineControl = value.into(); 281 // Reset the FIFO state on FIFO enable or disable 282 if bool::from(self.line_control.fifos_enabled()) 283 ^ bool::from(new_val.fifos_enabled()) 284 { 285 self.reset_rx_fifo(); 286 self.reset_tx_fifo(); 287 } 288 if self.line_control.send_break() ^ new_val.send_break() { 289 let mut break_enable: c_int = new_val.send_break().into(); 290 // SAFETY: self.char_backend is a valid CharBackend instance after it's been 291 // initialized in realize(). 292 unsafe { 293 qemu_chr_fe_ioctl( 294 addr_of_mut!(self.char_backend), 295 CHR_IOCTL_SERIAL_SET_BREAK as i32, 296 addr_of_mut!(break_enable).cast::<c_void>(), 297 ); 298 } 299 self.loopback_break(break_enable > 0); 300 } 301 self.line_control = new_val; 302 self.set_read_trigger(); 303 } 304 Ok(CR) => { 305 // ??? Need to implement the enable bit. 306 let value = value as u16; 307 self.control = value.into(); 308 self.loopback_mdmctrl(); 309 } 310 Ok(FLS) => { 311 self.ifl = value; 312 self.set_read_trigger(); 313 } 314 Ok(IMSC) => { 315 self.int_enabled = value; 316 self.update(); 317 } 318 Ok(RIS) => {} 319 Ok(MIS) => {} 320 Ok(ICR) => { 321 self.int_level &= !value; 322 self.update(); 323 } 324 Ok(DMACR) => { 325 self.dmacr = value; 326 if value & 3 > 0 { 327 // qemu_log_mask(LOG_UNIMP, "pl011: DMA not implemented\n"); 328 eprintln!("pl011: DMA not implemented"); 329 } 330 } 331 } 332 } 333 334 #[inline] 335 fn loopback_tx(&mut self, value: u32) { 336 if !self.loopback_enabled() { 337 return; 338 } 339 340 // Caveat: 341 // 342 // In real hardware, TX loopback happens at the serial-bit level 343 // and then reassembled by the RX logics back into bytes and placed 344 // into the RX fifo. That is, loopback happens after TX fifo. 345 // 346 // Because the real hardware TX fifo is time-drained at the frame 347 // rate governed by the configured serial format, some loopback 348 // bytes in TX fifo may still be able to get into the RX fifo 349 // that could be full at times while being drained at software 350 // pace. 351 // 352 // In such scenario, the RX draining pace is the major factor 353 // deciding which loopback bytes get into the RX fifo, unless 354 // hardware flow-control is enabled. 355 // 356 // For simplicity, the above described is not emulated. 357 self.put_fifo(value); 358 } 359 360 fn loopback_mdmctrl(&mut self) { 361 if !self.loopback_enabled() { 362 return; 363 } 364 365 /* 366 * Loopback software-driven modem control outputs to modem status inputs: 367 * FR.RI <= CR.Out2 368 * FR.DCD <= CR.Out1 369 * FR.CTS <= CR.RTS 370 * FR.DSR <= CR.DTR 371 * 372 * The loopback happens immediately even if this call is triggered 373 * by setting only CR.LBE. 374 * 375 * CTS/RTS updates due to enabled hardware flow controls are not 376 * dealt with here. 377 */ 378 379 self.flags.set_ring_indicator(self.control.out_2()); 380 self.flags.set_data_carrier_detect(self.control.out_1()); 381 self.flags.set_clear_to_send(self.control.request_to_send()); 382 self.flags 383 .set_data_set_ready(self.control.data_transmit_ready()); 384 385 // Change interrupts based on updated FR 386 let mut il = self.int_level; 387 388 il &= !Interrupt::MS; 389 390 if self.flags.data_set_ready() { 391 il |= Interrupt::DSR as u32; 392 } 393 if self.flags.data_carrier_detect() { 394 il |= Interrupt::DCD as u32; 395 } 396 if self.flags.clear_to_send() { 397 il |= Interrupt::CTS as u32; 398 } 399 if self.flags.ring_indicator() { 400 il |= Interrupt::RI as u32; 401 } 402 self.int_level = il; 403 self.update(); 404 } 405 406 fn loopback_break(&mut self, enable: bool) { 407 if enable { 408 self.loopback_tx(registers::Data::BREAK.into()); 409 } 410 } 411 412 fn set_read_trigger(&mut self) { 413 self.read_trigger = 1; 414 } 415 416 pub fn realize(&mut self) { 417 // SAFETY: self.char_backend has the correct size and alignment for a 418 // CharBackend object, and its callbacks are of the correct types. 419 unsafe { 420 qemu_chr_fe_set_handlers( 421 addr_of_mut!(self.char_backend), 422 Some(pl011_can_receive), 423 Some(pl011_receive), 424 Some(pl011_event), 425 None, 426 addr_of_mut!(*self).cast::<c_void>(), 427 core::ptr::null_mut(), 428 true, 429 ); 430 } 431 } 432 433 pub fn reset(&mut self) { 434 self.line_control.reset(); 435 self.receive_status_error_clear.reset(); 436 self.dmacr = 0; 437 self.int_enabled = 0; 438 self.int_level = 0; 439 self.ilpr = 0; 440 self.ibrd = 0; 441 self.fbrd = 0; 442 self.read_trigger = 1; 443 self.ifl = 0x12; 444 self.control.reset(); 445 self.flags.reset(); 446 self.reset_rx_fifo(); 447 self.reset_tx_fifo(); 448 } 449 450 pub fn reset_rx_fifo(&mut self) { 451 self.read_count = 0; 452 self.read_pos = 0; 453 454 // Reset FIFO flags 455 self.flags.set_receive_fifo_full(false); 456 self.flags.set_receive_fifo_empty(true); 457 } 458 459 pub fn reset_tx_fifo(&mut self) { 460 // Reset FIFO flags 461 self.flags.set_transmit_fifo_full(false); 462 self.flags.set_transmit_fifo_empty(true); 463 } 464 465 pub fn can_receive(&self) -> bool { 466 // trace_pl011_can_receive(s->lcr, s->read_count, r); 467 self.read_count < self.fifo_depth() 468 } 469 470 pub fn event(&mut self, event: QEMUChrEvent) { 471 if event == bindings::QEMUChrEvent::CHR_EVENT_BREAK && !self.loopback_enabled() { 472 self.put_fifo(registers::Data::BREAK.into()); 473 } 474 } 475 476 #[inline] 477 pub fn fifo_enabled(&self) -> bool { 478 matches!(self.line_control.fifos_enabled(), registers::Mode::FIFO) 479 } 480 481 #[inline] 482 pub fn loopback_enabled(&self) -> bool { 483 self.control.enable_loopback() 484 } 485 486 #[inline] 487 pub fn fifo_depth(&self) -> usize { 488 // Note: FIFO depth is expected to be power-of-2 489 if self.fifo_enabled() { 490 return PL011_FIFO_DEPTH; 491 } 492 1 493 } 494 495 pub fn put_fifo(&mut self, value: c_uint) { 496 let depth = self.fifo_depth(); 497 assert!(depth > 0); 498 let slot = (self.read_pos + self.read_count) & (depth - 1); 499 self.read_fifo[slot] = registers::Data::from(value); 500 self.read_count += 1; 501 self.flags.set_receive_fifo_empty(false); 502 if self.read_count == depth { 503 self.flags.set_receive_fifo_full(true); 504 } 505 506 if self.read_count == self.read_trigger { 507 self.int_level |= registers::INT_RX; 508 self.update(); 509 } 510 } 511 512 pub fn update(&self) { 513 let flags = self.int_level & self.int_enabled; 514 for (irq, i) in self.interrupts.iter().zip(IRQMASK) { 515 irq.set(flags & i != 0); 516 } 517 } 518 519 pub fn post_load(&mut self, _version_id: u32) -> Result<(), ()> { 520 /* Sanity-check input state */ 521 if self.read_pos >= self.read_fifo.len() || self.read_count > self.read_fifo.len() { 522 return Err(()); 523 } 524 525 if !self.fifo_enabled() && self.read_count > 0 && self.read_pos > 0 { 526 // Older versions of PL011 didn't ensure that the single 527 // character in the FIFO in FIFO-disabled mode is in 528 // element 0 of the array; convert to follow the current 529 // code's assumptions. 530 self.read_fifo[0] = self.read_fifo[self.read_pos]; 531 self.read_pos = 0; 532 } 533 534 self.ibrd &= IBRD_MASK; 535 self.fbrd &= FBRD_MASK; 536 537 Ok(()) 538 } 539 } 540 541 /// Which bits in the interrupt status matter for each outbound IRQ line ? 542 pub const IRQMASK: [u32; 6] = [ 543 /* combined IRQ */ 544 Interrupt::E 545 | Interrupt::MS 546 | Interrupt::RT as u32 547 | Interrupt::TX as u32 548 | Interrupt::RX as u32, 549 Interrupt::RX as u32, 550 Interrupt::TX as u32, 551 Interrupt::RT as u32, 552 Interrupt::MS, 553 Interrupt::E, 554 ]; 555 556 /// # Safety 557 /// 558 /// We expect the FFI user of this function to pass a valid pointer, that has 559 /// the same size as [`PL011State`]. We also expect the device is 560 /// readable/writeable from one thread at any time. 561 pub unsafe extern "C" fn pl011_can_receive(opaque: *mut c_void) -> c_int { 562 unsafe { 563 debug_assert!(!opaque.is_null()); 564 let state = NonNull::new_unchecked(opaque.cast::<PL011State>()); 565 state.as_ref().can_receive().into() 566 } 567 } 568 569 /// # Safety 570 /// 571 /// We expect the FFI user of this function to pass a valid pointer, that has 572 /// the same size as [`PL011State`]. We also expect the device is 573 /// readable/writeable from one thread at any time. 574 /// 575 /// The buffer and size arguments must also be valid. 576 pub unsafe extern "C" fn pl011_receive(opaque: *mut c_void, buf: *const u8, size: c_int) { 577 unsafe { 578 debug_assert!(!opaque.is_null()); 579 let mut state = NonNull::new_unchecked(opaque.cast::<PL011State>()); 580 if state.as_ref().loopback_enabled() { 581 return; 582 } 583 if size > 0 { 584 debug_assert!(!buf.is_null()); 585 state.as_mut().put_fifo(c_uint::from(buf.read_volatile())) 586 } 587 } 588 } 589 590 /// # Safety 591 /// 592 /// We expect the FFI user of this function to pass a valid pointer, that has 593 /// the same size as [`PL011State`]. We also expect the device is 594 /// readable/writeable from one thread at any time. 595 pub unsafe extern "C" fn pl011_event(opaque: *mut c_void, event: QEMUChrEvent) { 596 unsafe { 597 debug_assert!(!opaque.is_null()); 598 let mut state = NonNull::new_unchecked(opaque.cast::<PL011State>()); 599 state.as_mut().event(event) 600 } 601 } 602 603 /// # Safety 604 /// 605 /// We expect the FFI user of this function to pass a valid pointer for `chr`. 606 #[no_mangle] 607 pub unsafe extern "C" fn pl011_create( 608 addr: u64, 609 irq: qemu_irq, 610 chr: *mut Chardev, 611 ) -> *mut DeviceState { 612 unsafe { 613 let dev: *mut DeviceState = qdev_new(PL011State::TYPE_NAME.as_ptr()); 614 let sysbus: *mut SysBusDevice = dev.cast::<SysBusDevice>(); 615 616 qdev_prop_set_chr(dev, c_str!("chardev").as_ptr(), chr); 617 sysbus_realize_and_unref(sysbus, addr_of_mut!(error_fatal)); 618 sysbus_mmio_map(sysbus, 0, addr); 619 sysbus_connect_irq(sysbus, 0, irq); 620 dev 621 } 622 } 623 624 #[repr(C)] 625 #[derive(Debug, qemu_api_macros::Object)] 626 /// PL011 Luminary device model. 627 pub struct PL011Luminary { 628 parent_obj: PL011State, 629 } 630 631 impl PL011Luminary { 632 /// Initializes a pre-allocated, unitialized instance of `PL011Luminary`. 633 /// 634 /// # Safety 635 /// 636 /// We expect the FFI user of this function to pass a valid pointer, that 637 /// has the same size as [`PL011Luminary`]. We also expect the device is 638 /// readable/writeable from one thread at any time. 639 unsafe fn init(&mut self) { 640 self.parent_obj.device_id = DeviceId::Luminary; 641 } 642 } 643 644 qom_isa!(PL011Luminary : PL011State, SysBusDevice, DeviceState, Object); 645 646 unsafe impl ObjectType for PL011Luminary { 647 type Class = <PL011State as ObjectType>::Class; 648 const TYPE_NAME: &'static CStr = crate::TYPE_PL011_LUMINARY; 649 } 650 651 impl ObjectImpl for PL011Luminary { 652 type ParentType = PL011State; 653 654 const INSTANCE_INIT: Option<unsafe fn(&mut Self)> = Some(Self::init); 655 } 656 657 impl DeviceImpl for PL011Luminary {} 658