1HXCOMM Use DEFHEADING() to define headings in both help text and texi 2HXCOMM Text between STEXI and ETEXI are copied to texi version and 3HXCOMM discarded from C version 4HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to 5HXCOMM construct option structures, enums and help message for specified 6HXCOMM architectures. 7HXCOMM HXCOMM can be used for comments, discarded from both texi and C 8 9DEFHEADING(Standard options:) 10STEXI 11@table @option 12ETEXI 13 14DEF("help", 0, QEMU_OPTION_h, 15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL) 16STEXI 17@item -h 18@findex -h 19Display help and exit 20ETEXI 21 22DEF("version", 0, QEMU_OPTION_version, 23 "-version display version information and exit\n", QEMU_ARCH_ALL) 24STEXI 25@item -version 26@findex -version 27Display version information and exit 28ETEXI 29 30DEF("machine", HAS_ARG, QEMU_OPTION_machine, \ 31 "-machine [type=]name[,prop[=value][,...]]\n" 32 " selects emulated machine ('-machine help' for list)\n" 33 " property accel=accel1[:accel2[:...]] selects accelerator\n" 34 " supported accelerators are kvm, xen, hax, hvf, whpx or tcg (default: tcg)\n" 35 " kernel_irqchip=on|off|split controls accelerated irqchip support (default=off)\n" 36 " vmport=on|off|auto controls emulation of vmport (default: auto)\n" 37 " kvm_shadow_mem=size of KVM shadow MMU in bytes\n" 38 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n" 39 " mem-merge=on|off controls memory merge support (default: on)\n" 40 " igd-passthru=on|off controls IGD GFX passthrough support (default=off)\n" 41 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n" 42 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n" 43 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n" 44 " nvdimm=on|off controls NVDIMM support (default=off)\n" 45 " enforce-config-section=on|off enforce configuration section migration (default=off)\n" 46 " memory-encryption=@var{} memory encryption object to use (default=none)\n", 47 QEMU_ARCH_ALL) 48STEXI 49@item -machine [type=]@var{name}[,prop=@var{value}[,...]] 50@findex -machine 51Select the emulated machine by @var{name}. Use @code{-machine help} to list 52available machines. 53 54For architectures which aim to support live migration compatibility 55across releases, each release will introduce a new versioned machine 56type. For example, the 2.8.0 release introduced machine types 57``pc-i440fx-2.8'' and ``pc-q35-2.8'' for the x86_64/i686 architectures. 58 59To allow live migration of guests from QEMU version 2.8.0, to QEMU 60version 2.9.0, the 2.9.0 version must support the ``pc-i440fx-2.8'' 61and ``pc-q35-2.8'' machines too. To allow users live migrating VMs 62to skip multiple intermediate releases when upgrading, new releases 63of QEMU will support machine types from many previous versions. 64 65Supported machine properties are: 66@table @option 67@item accel=@var{accels1}[:@var{accels2}[:...]] 68This is used to enable an accelerator. Depending on the target architecture, 69kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If there is 70more than one accelerator specified, the next one is used if the previous one 71fails to initialize. 72@item kernel_irqchip=on|off 73Controls in-kernel irqchip support for the chosen accelerator when available. 74@item gfx_passthru=on|off 75Enables IGD GFX passthrough support for the chosen machine when available. 76@item vmport=on|off|auto 77Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the 78value based on accel. For accel=xen the default is off otherwise the default 79is on. 80@item kvm_shadow_mem=size 81Defines the size of the KVM shadow MMU. 82@item dump-guest-core=on|off 83Include guest memory in a core dump. The default is on. 84@item mem-merge=on|off 85Enables or disables memory merge support. This feature, when supported by 86the host, de-duplicates identical memory pages among VMs instances 87(enabled by default). 88@item aes-key-wrap=on|off 89Enables or disables AES key wrapping support on s390-ccw hosts. This feature 90controls whether AES wrapping keys will be created to allow 91execution of AES cryptographic functions. The default is on. 92@item dea-key-wrap=on|off 93Enables or disables DEA key wrapping support on s390-ccw hosts. This feature 94controls whether DEA wrapping keys will be created to allow 95execution of DEA cryptographic functions. The default is on. 96@item nvdimm=on|off 97Enables or disables NVDIMM support. The default is off. 98@item enforce-config-section=on|off 99If @option{enforce-config-section} is set to @var{on}, force migration 100code to send configuration section even if the machine-type sets the 101@option{migration.send-configuration} property to @var{off}. 102NOTE: this parameter is deprecated. Please use @option{-global} 103@option{migration.send-configuration}=@var{on|off} instead. 104@item memory-encryption=@var{} 105Memory encryption object to use. The default is none. 106@end table 107ETEXI 108 109HXCOMM Deprecated by -machine 110DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL) 111 112DEF("cpu", HAS_ARG, QEMU_OPTION_cpu, 113 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL) 114STEXI 115@item -cpu @var{model} 116@findex -cpu 117Select CPU model (@code{-cpu help} for list and additional feature selection) 118ETEXI 119 120DEF("accel", HAS_ARG, QEMU_OPTION_accel, 121 "-accel [accel=]accelerator[,thread=single|multi]\n" 122 " select accelerator (kvm, xen, hax, hvf, whpx or tcg; use 'help' for a list)\n" 123 " thread=single|multi (enable multi-threaded TCG)\n", QEMU_ARCH_ALL) 124STEXI 125@item -accel @var{name}[,prop=@var{value}[,...]] 126@findex -accel 127This is used to enable an accelerator. Depending on the target architecture, 128kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If there is 129more than one accelerator specified, the next one is used if the previous one 130fails to initialize. 131@table @option 132@item thread=single|multi 133Controls number of TCG threads. When the TCG is multi-threaded there will be one 134thread per vCPU therefor taking advantage of additional host cores. The default 135is to enable multi-threading where both the back-end and front-ends support it and 136no incompatible TCG features have been enabled (e.g. icount/replay). 137@end table 138ETEXI 139 140DEF("smp", HAS_ARG, QEMU_OPTION_smp, 141 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n" 142 " set the number of CPUs to 'n' [default=1]\n" 143 " maxcpus= maximum number of total cpus, including\n" 144 " offline CPUs for hotplug, etc\n" 145 " cores= number of CPU cores on one socket\n" 146 " threads= number of threads on one CPU core\n" 147 " sockets= number of discrete sockets in the system\n", 148 QEMU_ARCH_ALL) 149STEXI 150@item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}] 151@findex -smp 152Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255 153CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs 154to 4. 155For the PC target, the number of @var{cores} per socket, the number 156of @var{threads} per cores and the total number of @var{sockets} can be 157specified. Missing values will be computed. If any on the three values is 158given, the total number of CPUs @var{n} can be omitted. @var{maxcpus} 159specifies the maximum number of hotpluggable CPUs. 160ETEXI 161 162DEF("numa", HAS_ARG, QEMU_OPTION_numa, 163 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n" 164 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n" 165 "-numa dist,src=source,dst=destination,val=distance\n" 166 "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n", 167 QEMU_ARCH_ALL) 168STEXI 169@item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}] 170@itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}] 171@itemx -numa dist,src=@var{source},dst=@var{destination},val=@var{distance} 172@itemx -numa cpu,node-id=@var{node}[,socket-id=@var{x}][,core-id=@var{y}][,thread-id=@var{z}] 173@findex -numa 174Define a NUMA node and assign RAM and VCPUs to it. 175Set the NUMA distance from a source node to a destination node. 176 177Legacy VCPU assignment uses @samp{cpus} option where 178@var{firstcpu} and @var{lastcpu} are CPU indexes. Each 179@samp{cpus} option represent a contiguous range of CPU indexes 180(or a single VCPU if @var{lastcpu} is omitted). A non-contiguous 181set of VCPUs can be represented by providing multiple @samp{cpus} 182options. If @samp{cpus} is omitted on all nodes, VCPUs are automatically 183split between them. 184 185For example, the following option assigns VCPUs 0, 1, 2 and 5 to 186a NUMA node: 187@example 188-numa node,cpus=0-2,cpus=5 189@end example 190 191@samp{cpu} option is a new alternative to @samp{cpus} option 192which uses @samp{socket-id|core-id|thread-id} properties to assign 193CPU objects to a @var{node} using topology layout properties of CPU. 194The set of properties is machine specific, and depends on used 195machine type/@samp{smp} options. It could be queried with 196@samp{hotpluggable-cpus} monitor command. 197@samp{node-id} property specifies @var{node} to which CPU object 198will be assigned, it's required for @var{node} to be declared 199with @samp{node} option before it's used with @samp{cpu} option. 200 201For example: 202@example 203-M pc \ 204-smp 1,sockets=2,maxcpus=2 \ 205-numa node,nodeid=0 -numa node,nodeid=1 \ 206-numa cpu,node-id=0,socket-id=0 -numa cpu,node-id=1,socket-id=1 207@end example 208 209@samp{mem} assigns a given RAM amount to a node. @samp{memdev} 210assigns RAM from a given memory backend device to a node. If 211@samp{mem} and @samp{memdev} are omitted in all nodes, RAM is 212split equally between them. 213 214@samp{mem} and @samp{memdev} are mutually exclusive. Furthermore, 215if one node uses @samp{memdev}, all of them have to use it. 216 217@var{source} and @var{destination} are NUMA node IDs. 218@var{distance} is the NUMA distance from @var{source} to @var{destination}. 219The distance from a node to itself is always 10. If any pair of nodes is 220given a distance, then all pairs must be given distances. Although, when 221distances are only given in one direction for each pair of nodes, then 222the distances in the opposite directions are assumed to be the same. If, 223however, an asymmetrical pair of distances is given for even one node 224pair, then all node pairs must be provided distance values for both 225directions, even when they are symmetrical. When a node is unreachable 226from another node, set the pair's distance to 255. 227 228Note that the -@option{numa} option doesn't allocate any of the 229specified resources, it just assigns existing resources to NUMA 230nodes. This means that one still has to use the @option{-m}, 231@option{-smp} options to allocate RAM and VCPUs respectively. 232 233ETEXI 234 235DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd, 236 "-add-fd fd=fd,set=set[,opaque=opaque]\n" 237 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL) 238STEXI 239@item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}] 240@findex -add-fd 241 242Add a file descriptor to an fd set. Valid options are: 243 244@table @option 245@item fd=@var{fd} 246This option defines the file descriptor of which a duplicate is added to fd set. 247The file descriptor cannot be stdin, stdout, or stderr. 248@item set=@var{set} 249This option defines the ID of the fd set to add the file descriptor to. 250@item opaque=@var{opaque} 251This option defines a free-form string that can be used to describe @var{fd}. 252@end table 253 254You can open an image using pre-opened file descriptors from an fd set: 255@example 256qemu-system-i386 257-add-fd fd=3,set=2,opaque="rdwr:/path/to/file" 258-add-fd fd=4,set=2,opaque="rdonly:/path/to/file" 259-drive file=/dev/fdset/2,index=0,media=disk 260@end example 261ETEXI 262 263DEF("set", HAS_ARG, QEMU_OPTION_set, 264 "-set group.id.arg=value\n" 265 " set <arg> parameter for item <id> of type <group>\n" 266 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL) 267STEXI 268@item -set @var{group}.@var{id}.@var{arg}=@var{value} 269@findex -set 270Set parameter @var{arg} for item @var{id} of type @var{group} 271ETEXI 272 273DEF("global", HAS_ARG, QEMU_OPTION_global, 274 "-global driver.property=value\n" 275 "-global driver=driver,property=property,value=value\n" 276 " set a global default for a driver property\n", 277 QEMU_ARCH_ALL) 278STEXI 279@item -global @var{driver}.@var{prop}=@var{value} 280@itemx -global driver=@var{driver},property=@var{property},value=@var{value} 281@findex -global 282Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.: 283 284@example 285qemu-system-i386 -global ide-hd.physical_block_size=4096 disk-image.img 286@end example 287 288In particular, you can use this to set driver properties for devices which are 289created automatically by the machine model. To create a device which is not 290created automatically and set properties on it, use -@option{device}. 291 292-global @var{driver}.@var{prop}=@var{value} is shorthand for -global 293driver=@var{driver},property=@var{prop},value=@var{value}. The 294longhand syntax works even when @var{driver} contains a dot. 295ETEXI 296 297DEF("boot", HAS_ARG, QEMU_OPTION_boot, 298 "-boot [order=drives][,once=drives][,menu=on|off]\n" 299 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n" 300 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n" 301 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n" 302 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n" 303 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n", 304 QEMU_ARCH_ALL) 305STEXI 306@item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off] 307@findex -boot 308Specify boot order @var{drives} as a string of drive letters. Valid 309drive letters depend on the target architecture. The x86 PC uses: a, b 310(floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot 311from network adapter 1-4), hard disk boot is the default. To apply a 312particular boot order only on the first startup, specify it via 313@option{once}. Note that the @option{order} or @option{once} parameter 314should not be used together with the @option{bootindex} property of 315devices, since the firmware implementations normally do not support both 316at the same time. 317 318Interactive boot menus/prompts can be enabled via @option{menu=on} as far 319as firmware/BIOS supports them. The default is non-interactive boot. 320 321A splash picture could be passed to bios, enabling user to show it as logo, 322when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS 323supports them. Currently Seabios for X86 system support it. 324limitation: The splash file could be a jpeg file or a BMP file in 24 BPP 325format(true color). The resolution should be supported by the SVGA mode, so 326the recommended is 320x240, 640x480, 800x640. 327 328A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms 329when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not 330reboot, qemu passes '-1' to bios by default. Currently Seabios for X86 331system support it. 332 333Do strict boot via @option{strict=on} as far as firmware/BIOS 334supports it. This only effects when boot priority is changed by 335bootindex options. The default is non-strict boot. 336 337@example 338# try to boot from network first, then from hard disk 339qemu-system-i386 -boot order=nc 340# boot from CD-ROM first, switch back to default order after reboot 341qemu-system-i386 -boot once=d 342# boot with a splash picture for 5 seconds. 343qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000 344@end example 345 346Note: The legacy format '-boot @var{drives}' is still supported but its 347use is discouraged as it may be removed from future versions. 348ETEXI 349 350DEF("m", HAS_ARG, QEMU_OPTION_m, 351 "-m [size=]megs[,slots=n,maxmem=size]\n" 352 " configure guest RAM\n" 353 " size: initial amount of guest memory\n" 354 " slots: number of hotplug slots (default: none)\n" 355 " maxmem: maximum amount of guest memory (default: none)\n" 356 "NOTE: Some architectures might enforce a specific granularity\n", 357 QEMU_ARCH_ALL) 358STEXI 359@item -m [size=]@var{megs}[,slots=n,maxmem=size] 360@findex -m 361Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB. 362Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in 363megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem} 364could be used to set amount of hotpluggable memory slots and maximum amount of 365memory. Note that @var{maxmem} must be aligned to the page size. 366 367For example, the following command-line sets the guest startup RAM size to 3681GB, creates 3 slots to hotplug additional memory and sets the maximum 369memory the guest can reach to 4GB: 370 371@example 372qemu-system-x86_64 -m 1G,slots=3,maxmem=4G 373@end example 374 375If @var{slots} and @var{maxmem} are not specified, memory hotplug won't 376be enabled and the guest startup RAM will never increase. 377ETEXI 378 379DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath, 380 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL) 381STEXI 382@item -mem-path @var{path} 383@findex -mem-path 384Allocate guest RAM from a temporarily created file in @var{path}. 385ETEXI 386 387DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc, 388 "-mem-prealloc preallocate guest memory (use with -mem-path)\n", 389 QEMU_ARCH_ALL) 390STEXI 391@item -mem-prealloc 392@findex -mem-prealloc 393Preallocate memory when using -mem-path. 394ETEXI 395 396DEF("k", HAS_ARG, QEMU_OPTION_k, 397 "-k language use keyboard layout (for example 'fr' for French)\n", 398 QEMU_ARCH_ALL) 399STEXI 400@item -k @var{language} 401@findex -k 402Use keyboard layout @var{language} (for example @code{fr} for 403French). This option is only needed where it is not easy to get raw PC 404keycodes (e.g. on Macs, with some X11 servers or with a VNC or curses 405display). You don't normally need to use it on PC/Linux or PC/Windows 406hosts. 407 408The available layouts are: 409@example 410ar de-ch es fo fr-ca hu ja mk no pt-br sv 411da en-gb et fr fr-ch is lt nl pl ru th 412de en-us fi fr-be hr it lv nl-be pt sl tr 413@end example 414 415The default is @code{en-us}. 416ETEXI 417 418 419DEF("audio-help", 0, QEMU_OPTION_audio_help, 420 "-audio-help print list of audio drivers and their options\n", 421 QEMU_ARCH_ALL) 422STEXI 423@item -audio-help 424@findex -audio-help 425Will show the audio subsystem help: list of drivers, tunable 426parameters. 427ETEXI 428 429DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw, 430 "-soundhw c1,... enable audio support\n" 431 " and only specified sound cards (comma separated list)\n" 432 " use '-soundhw help' to get the list of supported cards\n" 433 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL) 434STEXI 435@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all 436@findex -soundhw 437Enable audio and selected sound hardware. Use 'help' to print all 438available sound hardware. 439 440@example 441qemu-system-i386 -soundhw sb16,adlib disk.img 442qemu-system-i386 -soundhw es1370 disk.img 443qemu-system-i386 -soundhw ac97 disk.img 444qemu-system-i386 -soundhw hda disk.img 445qemu-system-i386 -soundhw all disk.img 446qemu-system-i386 -soundhw help 447@end example 448 449Note that Linux's i810_audio OSS kernel (for AC97) module might 450require manually specifying clocking. 451 452@example 453modprobe i810_audio clocking=48000 454@end example 455ETEXI 456 457DEF("device", HAS_ARG, QEMU_OPTION_device, 458 "-device driver[,prop[=value][,...]]\n" 459 " add device (based on driver)\n" 460 " prop=value,... sets driver properties\n" 461 " use '-device help' to print all possible drivers\n" 462 " use '-device driver,help' to print all possible properties\n", 463 QEMU_ARCH_ALL) 464STEXI 465@item -device @var{driver}[,@var{prop}[=@var{value}][,...]] 466@findex -device 467Add device @var{driver}. @var{prop}=@var{value} sets driver 468properties. Valid properties depend on the driver. To get help on 469possible drivers and properties, use @code{-device help} and 470@code{-device @var{driver},help}. 471 472Some drivers are: 473@item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}][,sdrfile=@var{file}][,furareasize=@var{val}][,furdatafile=@var{file}] 474 475Add an IPMI BMC. This is a simulation of a hardware management 476interface processor that normally sits on a system. It provides 477a watchdog and the ability to reset and power control the system. 478You need to connect this to an IPMI interface to make it useful 479 480The IPMI slave address to use for the BMC. The default is 0x20. 481This address is the BMC's address on the I2C network of management 482controllers. If you don't know what this means, it is safe to ignore 483it. 484 485@table @option 486@item bmc=@var{id} 487The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above. 488@item slave_addr=@var{val} 489Define slave address to use for the BMC. The default is 0x20. 490@item sdrfile=@var{file} 491file containing raw Sensor Data Records (SDR) data. The default is none. 492@item fruareasize=@var{val} 493size of a Field Replaceable Unit (FRU) area. The default is 1024. 494@item frudatafile=@var{file} 495file containing raw Field Replaceable Unit (FRU) inventory data. The default is none. 496@end table 497 498@item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}] 499 500Add a connection to an external IPMI BMC simulator. Instead of 501locally emulating the BMC like the above item, instead connect 502to an external entity that provides the IPMI services. 503 504A connection is made to an external BMC simulator. If you do this, it 505is strongly recommended that you use the "reconnect=" chardev option 506to reconnect to the simulator if the connection is lost. Note that if 507this is not used carefully, it can be a security issue, as the 508interface has the ability to send resets, NMIs, and power off the VM. 509It's best if QEMU makes a connection to an external simulator running 510on a secure port on localhost, so neither the simulator nor QEMU is 511exposed to any outside network. 512 513See the "lanserv/README.vm" file in the OpenIPMI library for more 514details on the external interface. 515 516@item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}] 517 518Add a KCS IPMI interafce on the ISA bus. This also adds a 519corresponding ACPI and SMBIOS entries, if appropriate. 520 521@table @option 522@item bmc=@var{id} 523The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above. 524@item ioport=@var{val} 525Define the I/O address of the interface. The default is 0xca0 for KCS. 526@item irq=@var{val} 527Define the interrupt to use. The default is 5. To disable interrupts, 528set this to 0. 529@end table 530 531@item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}] 532 533Like the KCS interface, but defines a BT interface. The default port is 5340xe4 and the default interrupt is 5. 535 536ETEXI 537 538DEF("name", HAS_ARG, QEMU_OPTION_name, 539 "-name string1[,process=string2][,debug-threads=on|off]\n" 540 " set the name of the guest\n" 541 " string1 sets the window title and string2 the process name\n" 542 " When debug-threads is enabled, individual threads are given a separate name\n" 543 " NOTE: The thread names are for debugging and not a stable API.\n", 544 QEMU_ARCH_ALL) 545STEXI 546@item -name @var{name} 547@findex -name 548Sets the @var{name} of the guest. 549This name will be displayed in the SDL window caption. 550The @var{name} will also be used for the VNC server. 551Also optionally set the top visible process name in Linux. 552Naming of individual threads can also be enabled on Linux to aid debugging. 553ETEXI 554 555DEF("uuid", HAS_ARG, QEMU_OPTION_uuid, 556 "-uuid %08x-%04x-%04x-%04x-%012x\n" 557 " specify machine UUID\n", QEMU_ARCH_ALL) 558STEXI 559@item -uuid @var{uuid} 560@findex -uuid 561Set system UUID. 562ETEXI 563 564STEXI 565@end table 566ETEXI 567DEFHEADING() 568 569DEFHEADING(Block device options:) 570STEXI 571@table @option 572ETEXI 573 574DEF("fda", HAS_ARG, QEMU_OPTION_fda, 575 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL) 576DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL) 577STEXI 578@item -fda @var{file} 579@itemx -fdb @var{file} 580@findex -fda 581@findex -fdb 582Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). 583ETEXI 584 585DEF("hda", HAS_ARG, QEMU_OPTION_hda, 586 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL) 587DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL) 588DEF("hdc", HAS_ARG, QEMU_OPTION_hdc, 589 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL) 590DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL) 591STEXI 592@item -hda @var{file} 593@itemx -hdb @var{file} 594@itemx -hdc @var{file} 595@itemx -hdd @var{file} 596@findex -hda 597@findex -hdb 598@findex -hdc 599@findex -hdd 600Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}). 601ETEXI 602 603DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom, 604 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n", 605 QEMU_ARCH_ALL) 606STEXI 607@item -cdrom @var{file} 608@findex -cdrom 609Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and 610@option{-cdrom} at the same time). You can use the host CD-ROM by 611using @file{/dev/cdrom} as filename (@pxref{host_drives}). 612ETEXI 613 614DEF("blockdev", HAS_ARG, QEMU_OPTION_blockdev, 615 "-blockdev [driver=]driver[,node-name=N][,discard=ignore|unmap]\n" 616 " [,cache.direct=on|off][,cache.no-flush=on|off]\n" 617 " [,read-only=on|off][,detect-zeroes=on|off|unmap]\n" 618 " [,driver specific parameters...]\n" 619 " configure a block backend\n", QEMU_ARCH_ALL) 620STEXI 621@item -blockdev @var{option}[,@var{option}[,@var{option}[,...]]] 622@findex -blockdev 623 624Define a new block driver node. Some of the options apply to all block drivers, 625other options are only accepted for a specific block driver. See below for a 626list of generic options and options for the most common block drivers. 627 628Options that expect a reference to another node (e.g. @code{file}) can be 629given in two ways. Either you specify the node name of an already existing node 630(file=@var{node-name}), or you define a new node inline, adding options 631for the referenced node after a dot (file.filename=@var{path},file.aio=native). 632 633A block driver node created with @option{-blockdev} can be used for a guest 634device by specifying its node name for the @code{drive} property in a 635@option{-device} argument that defines a block device. 636 637@table @option 638@item Valid options for any block driver node: 639 640@table @code 641@item driver 642Specifies the block driver to use for the given node. 643@item node-name 644This defines the name of the block driver node by which it will be referenced 645later. The name must be unique, i.e. it must not match the name of a different 646block driver node, or (if you use @option{-drive} as well) the ID of a drive. 647 648If no node name is specified, it is automatically generated. The generated node 649name is not intended to be predictable and changes between QEMU invocations. 650For the top level, an explicit node name must be specified. 651@item read-only 652Open the node read-only. Guest write attempts will fail. 653@item cache.direct 654The host page cache can be avoided with @option{cache.direct=on}. This will 655attempt to do disk IO directly to the guest's memory. QEMU may still perform an 656internal copy of the data. 657@item cache.no-flush 658In case you don't care about data integrity over host failures, you can use 659@option{cache.no-flush=on}. This option tells QEMU that it never needs to write 660any data to the disk but can instead keep things in cache. If anything goes 661wrong, like your host losing power, the disk storage getting disconnected 662accidentally, etc. your image will most probably be rendered unusable. 663@item discard=@var{discard} 664@var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls 665whether @code{discard} (also known as @code{trim} or @code{unmap}) requests are 666ignored or passed to the filesystem. Some machine types may not support 667discard requests. 668@item detect-zeroes=@var{detect-zeroes} 669@var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic 670conversion of plain zero writes by the OS to driver specific optimized 671zero write commands. You may even choose "unmap" if @var{discard} is set 672to "unmap" to allow a zero write to be converted to an @code{unmap} operation. 673@end table 674 675@item Driver-specific options for @code{file} 676 677This is the protocol-level block driver for accessing regular files. 678 679@table @code 680@item filename 681The path to the image file in the local filesystem 682@item aio 683Specifies the AIO backend (threads/native, default: threads) 684@item locking 685Specifies whether the image file is protected with Linux OFD / POSIX locks. The 686default is to use the Linux Open File Descriptor API if available, otherwise no 687lock is applied. (auto/on/off, default: auto) 688@end table 689Example: 690@example 691-blockdev driver=file,node-name=disk,filename=disk.img 692@end example 693 694@item Driver-specific options for @code{raw} 695 696This is the image format block driver for raw images. It is usually 697stacked on top of a protocol level block driver such as @code{file}. 698 699@table @code 700@item file 701Reference to or definition of the data source block driver node 702(e.g. a @code{file} driver node) 703@end table 704Example 1: 705@example 706-blockdev driver=file,node-name=disk_file,filename=disk.img 707-blockdev driver=raw,node-name=disk,file=disk_file 708@end example 709Example 2: 710@example 711-blockdev driver=raw,node-name=disk,file.driver=file,file.filename=disk.img 712@end example 713 714@item Driver-specific options for @code{qcow2} 715 716This is the image format block driver for qcow2 images. It is usually 717stacked on top of a protocol level block driver such as @code{file}. 718 719@table @code 720@item file 721Reference to or definition of the data source block driver node 722(e.g. a @code{file} driver node) 723 724@item backing 725Reference to or definition of the backing file block device (default is taken 726from the image file). It is allowed to pass @code{null} here in order to disable 727the default backing file. 728 729@item lazy-refcounts 730Whether to enable the lazy refcounts feature (on/off; default is taken from the 731image file) 732 733@item cache-size 734The maximum total size of the L2 table and refcount block caches in bytes 735(default: the sum of l2-cache-size and refcount-cache-size) 736 737@item l2-cache-size 738The maximum size of the L2 table cache in bytes 739(default: if cache-size is not specified - 32M on Linux platforms, and 8M on 740non-Linux platforms; otherwise, as large as possible within the cache-size, 741while permitting the requested or the minimal refcount cache size) 742 743@item refcount-cache-size 744The maximum size of the refcount block cache in bytes 745(default: 4 times the cluster size; or if cache-size is specified, the part of 746it which is not used for the L2 cache) 747 748@item cache-clean-interval 749Clean unused entries in the L2 and refcount caches. The interval is in seconds. 750The default value is 600 on supporting platforms, and 0 on other platforms. 751Setting it to 0 disables this feature. 752 753@item pass-discard-request 754Whether discard requests to the qcow2 device should be forwarded to the data 755source (on/off; default: on if discard=unmap is specified, off otherwise) 756 757@item pass-discard-snapshot 758Whether discard requests for the data source should be issued when a snapshot 759operation (e.g. deleting a snapshot) frees clusters in the qcow2 file (on/off; 760default: on) 761 762@item pass-discard-other 763Whether discard requests for the data source should be issued on other 764occasions where a cluster gets freed (on/off; default: off) 765 766@item overlap-check 767Which overlap checks to perform for writes to the image 768(none/constant/cached/all; default: cached). For details or finer 769granularity control refer to the QAPI documentation of @code{blockdev-add}. 770@end table 771 772Example 1: 773@example 774-blockdev driver=file,node-name=my_file,filename=/tmp/disk.qcow2 775-blockdev driver=qcow2,node-name=hda,file=my_file,overlap-check=none,cache-size=16777216 776@end example 777Example 2: 778@example 779-blockdev driver=qcow2,node-name=disk,file.driver=http,file.filename=http://example.com/image.qcow2 780@end example 781 782@item Driver-specific options for other drivers 783Please refer to the QAPI documentation of the @code{blockdev-add} QMP command. 784 785@end table 786 787ETEXI 788 789DEF("drive", HAS_ARG, QEMU_OPTION_drive, 790 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n" 791 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n" 792 " [,snapshot=on|off][,rerror=ignore|stop|report]\n" 793 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n" 794 " [,readonly=on|off][,copy-on-read=on|off]\n" 795 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n" 796 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n" 797 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n" 798 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n" 799 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n" 800 " [[,iops_size=is]]\n" 801 " [[,group=g]]\n" 802 " use 'file' as a drive image\n", QEMU_ARCH_ALL) 803STEXI 804@item -drive @var{option}[,@var{option}[,@var{option}[,...]]] 805@findex -drive 806 807Define a new drive. This includes creating a block driver node (the backend) as 808well as a guest device, and is mostly a shortcut for defining the corresponding 809@option{-blockdev} and @option{-device} options. 810 811@option{-drive} accepts all options that are accepted by @option{-blockdev}. In 812addition, it knows the following options: 813 814@table @option 815@item file=@var{file} 816This option defines which disk image (@pxref{disk_images}) to use with 817this drive. If the filename contains comma, you must double it 818(for instance, "file=my,,file" to use file "my,file"). 819 820Special files such as iSCSI devices can be specified using protocol 821specific URLs. See the section for "Device URL Syntax" for more information. 822@item if=@var{interface} 823This option defines on which type on interface the drive is connected. 824Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio, none. 825@item bus=@var{bus},unit=@var{unit} 826These options define where is connected the drive by defining the bus number and 827the unit id. 828@item index=@var{index} 829This option defines where is connected the drive by using an index in the list 830of available connectors of a given interface type. 831@item media=@var{media} 832This option defines the type of the media: disk or cdrom. 833@item snapshot=@var{snapshot} 834@var{snapshot} is "on" or "off" and controls snapshot mode for the given drive 835(see @option{-snapshot}). 836@item cache=@var{cache} 837@var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough" 838and controls how the host cache is used to access block data. This is a 839shortcut that sets the @option{cache.direct} and @option{cache.no-flush} 840options (as in @option{-blockdev}), and additionally @option{cache.writeback}, 841which provides a default for the @option{write-cache} option of block guest 842devices (as in @option{-device}). The modes correspond to the following 843settings: 844 845@c Our texi2pod.pl script doesn't support @multitable, so fall back to using 846@c plain ASCII art (well, UTF-8 art really). This looks okay both in the manpage 847@c and the HTML output. 848@example 849@ │ cache.writeback cache.direct cache.no-flush 850─────────────┼───────────────────────────────────────────────── 851writeback │ on off off 852none │ on on off 853writethrough │ off off off 854directsync │ off on off 855unsafe │ on off on 856@end example 857 858The default mode is @option{cache=writeback}. 859 860@item aio=@var{aio} 861@var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO. 862@item format=@var{format} 863Specify which disk @var{format} will be used rather than detecting 864the format. Can be used to specify format=raw to avoid interpreting 865an untrusted format header. 866@item werror=@var{action},rerror=@var{action} 867Specify which @var{action} to take on write and read errors. Valid actions are: 868"ignore" (ignore the error and try to continue), "stop" (pause QEMU), 869"report" (report the error to the guest), "enospc" (pause QEMU only if the 870host disk is full; report the error to the guest otherwise). 871The default setting is @option{werror=enospc} and @option{rerror=report}. 872@item copy-on-read=@var{copy-on-read} 873@var{copy-on-read} is "on" or "off" and enables whether to copy read backing 874file sectors into the image file. 875@item bps=@var{b},bps_rd=@var{r},bps_wr=@var{w} 876Specify bandwidth throttling limits in bytes per second, either for all request 877types or for reads or writes only. Small values can lead to timeouts or hangs 878inside the guest. A safe minimum for disks is 2 MB/s. 879@item bps_max=@var{bm},bps_rd_max=@var{rm},bps_wr_max=@var{wm} 880Specify bursts in bytes per second, either for all request types or for reads 881or writes only. Bursts allow the guest I/O to spike above the limit 882temporarily. 883@item iops=@var{i},iops_rd=@var{r},iops_wr=@var{w} 884Specify request rate limits in requests per second, either for all request 885types or for reads or writes only. 886@item iops_max=@var{bm},iops_rd_max=@var{rm},iops_wr_max=@var{wm} 887Specify bursts in requests per second, either for all request types or for reads 888or writes only. Bursts allow the guest I/O to spike above the limit 889temporarily. 890@item iops_size=@var{is} 891Let every @var{is} bytes of a request count as a new request for iops 892throttling purposes. Use this option to prevent guests from circumventing iops 893limits by sending fewer but larger requests. 894@item group=@var{g} 895Join a throttling quota group with given name @var{g}. All drives that are 896members of the same group are accounted for together. Use this option to 897prevent guests from circumventing throttling limits by using many small disks 898instead of a single larger disk. 899@end table 900 901By default, the @option{cache.writeback=on} mode is used. It will report data 902writes as completed as soon as the data is present in the host page cache. 903This is safe as long as your guest OS makes sure to correctly flush disk caches 904where needed. If your guest OS does not handle volatile disk write caches 905correctly and your host crashes or loses power, then the guest may experience 906data corruption. 907 908For such guests, you should consider using @option{cache.writeback=off}. This 909means that the host page cache will be used to read and write data, but write 910notification will be sent to the guest only after QEMU has made sure to flush 911each write to the disk. Be aware that this has a major impact on performance. 912 913When using the @option{-snapshot} option, unsafe caching is always used. 914 915Copy-on-read avoids accessing the same backing file sectors repeatedly and is 916useful when the backing file is over a slow network. By default copy-on-read 917is off. 918 919Instead of @option{-cdrom} you can use: 920@example 921qemu-system-i386 -drive file=file,index=2,media=cdrom 922@end example 923 924Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can 925use: 926@example 927qemu-system-i386 -drive file=file,index=0,media=disk 928qemu-system-i386 -drive file=file,index=1,media=disk 929qemu-system-i386 -drive file=file,index=2,media=disk 930qemu-system-i386 -drive file=file,index=3,media=disk 931@end example 932 933You can open an image using pre-opened file descriptors from an fd set: 934@example 935qemu-system-i386 936-add-fd fd=3,set=2,opaque="rdwr:/path/to/file" 937-add-fd fd=4,set=2,opaque="rdonly:/path/to/file" 938-drive file=/dev/fdset/2,index=0,media=disk 939@end example 940 941You can connect a CDROM to the slave of ide0: 942@example 943qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom 944@end example 945 946If you don't specify the "file=" argument, you define an empty drive: 947@example 948qemu-system-i386 -drive if=ide,index=1,media=cdrom 949@end example 950 951Instead of @option{-fda}, @option{-fdb}, you can use: 952@example 953qemu-system-i386 -drive file=file,index=0,if=floppy 954qemu-system-i386 -drive file=file,index=1,if=floppy 955@end example 956 957By default, @var{interface} is "ide" and @var{index} is automatically 958incremented: 959@example 960qemu-system-i386 -drive file=a -drive file=b" 961@end example 962is interpreted like: 963@example 964qemu-system-i386 -hda a -hdb b 965@end example 966ETEXI 967 968DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock, 969 "-mtdblock file use 'file' as on-board Flash memory image\n", 970 QEMU_ARCH_ALL) 971STEXI 972@item -mtdblock @var{file} 973@findex -mtdblock 974Use @var{file} as on-board Flash memory image. 975ETEXI 976 977DEF("sd", HAS_ARG, QEMU_OPTION_sd, 978 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL) 979STEXI 980@item -sd @var{file} 981@findex -sd 982Use @var{file} as SecureDigital card image. 983ETEXI 984 985DEF("pflash", HAS_ARG, QEMU_OPTION_pflash, 986 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL) 987STEXI 988@item -pflash @var{file} 989@findex -pflash 990Use @var{file} as a parallel flash image. 991ETEXI 992 993DEF("snapshot", 0, QEMU_OPTION_snapshot, 994 "-snapshot write to temporary files instead of disk image files\n", 995 QEMU_ARCH_ALL) 996STEXI 997@item -snapshot 998@findex -snapshot 999Write to temporary files instead of disk image files. In this case, 1000the raw disk image you use is not written back. You can however force 1001the write back by pressing @key{C-a s} (@pxref{disk_images}). 1002ETEXI 1003 1004DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev, 1005 "-fsdev fsdriver,id=id[,path=path,][security_model={mapped-xattr|mapped-file|passthrough|none}]\n" 1006 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd][,fmode=fmode][,dmode=dmode]\n" 1007 " [[,throttling.bps-total=b]|[[,throttling.bps-read=r][,throttling.bps-write=w]]]\n" 1008 " [[,throttling.iops-total=i]|[[,throttling.iops-read=r][,throttling.iops-write=w]]]\n" 1009 " [[,throttling.bps-total-max=bm]|[[,throttling.bps-read-max=rm][,throttling.bps-write-max=wm]]]\n" 1010 " [[,throttling.iops-total-max=im]|[[,throttling.iops-read-max=irm][,throttling.iops-write-max=iwm]]]\n" 1011 " [[,throttling.iops-size=is]]\n", 1012 QEMU_ARCH_ALL) 1013 1014STEXI 1015 1016@item -fsdev @var{fsdriver},id=@var{id},path=@var{path},[security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}][,fmode=@var{fmode}][,dmode=@var{dmode}] 1017@findex -fsdev 1018Define a new file system device. Valid options are: 1019@table @option 1020@item @var{fsdriver} 1021This option specifies the fs driver backend to use. 1022Currently "local" and "proxy" file system drivers are supported. 1023@item id=@var{id} 1024Specifies identifier for this device 1025@item path=@var{path} 1026Specifies the export path for the file system device. Files under 1027this path will be available to the 9p client on the guest. 1028@item security_model=@var{security_model} 1029Specifies the security model to be used for this export path. 1030Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none". 1031In "passthrough" security model, files are stored using the same 1032credentials as they are created on the guest. This requires QEMU 1033to run as root. In "mapped-xattr" security model, some of the file 1034attributes like uid, gid, mode bits and link target are stored as 1035file attributes. For "mapped-file" these attributes are stored in the 1036hidden .virtfs_metadata directory. Directories exported by this security model cannot 1037interact with other unix tools. "none" security model is same as 1038passthrough except the sever won't report failures if it fails to 1039set file attributes like ownership. Security model is mandatory 1040only for local fsdriver. Other fsdrivers (like proxy) don't take 1041security model as a parameter. 1042@item writeout=@var{writeout} 1043This is an optional argument. The only supported value is "immediate". 1044This means that host page cache will be used to read and write data but 1045write notification will be sent to the guest only when the data has been 1046reported as written by the storage subsystem. 1047@item readonly 1048Enables exporting 9p share as a readonly mount for guests. By default 1049read-write access is given. 1050@item socket=@var{socket} 1051Enables proxy filesystem driver to use passed socket file for communicating 1052with virtfs-proxy-helper 1053@item sock_fd=@var{sock_fd} 1054Enables proxy filesystem driver to use passed socket descriptor for 1055communicating with virtfs-proxy-helper. Usually a helper like libvirt 1056will create socketpair and pass one of the fds as sock_fd 1057@item fmode=@var{fmode} 1058Specifies the default mode for newly created files on the host. Works only 1059with security models "mapped-xattr" and "mapped-file". 1060@item dmode=@var{dmode} 1061Specifies the default mode for newly created directories on the host. Works 1062only with security models "mapped-xattr" and "mapped-file". 1063@end table 1064 1065-fsdev option is used along with -device driver "virtio-9p-pci". 1066@item -device virtio-9p-pci,fsdev=@var{id},mount_tag=@var{mount_tag} 1067Options for virtio-9p-pci driver are: 1068@table @option 1069@item fsdev=@var{id} 1070Specifies the id value specified along with -fsdev option 1071@item mount_tag=@var{mount_tag} 1072Specifies the tag name to be used by the guest to mount this export point 1073@end table 1074 1075ETEXI 1076 1077DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs, 1078 "-virtfs local,path=path,mount_tag=tag,security_model=[mapped-xattr|mapped-file|passthrough|none]\n" 1079 " [,id=id][,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd][,fmode=fmode][,dmode=dmode]\n", 1080 QEMU_ARCH_ALL) 1081 1082STEXI 1083 1084@item -virtfs @var{fsdriver}[,path=@var{path}],mount_tag=@var{mount_tag}[,security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}][,fmode=@var{fmode}][,dmode=@var{dmode}] 1085@findex -virtfs 1086 1087The general form of a Virtual File system pass-through options are: 1088@table @option 1089@item @var{fsdriver} 1090This option specifies the fs driver backend to use. 1091Currently "local" and "proxy" file system drivers are supported. 1092@item id=@var{id} 1093Specifies identifier for this device 1094@item path=@var{path} 1095Specifies the export path for the file system device. Files under 1096this path will be available to the 9p client on the guest. 1097@item security_model=@var{security_model} 1098Specifies the security model to be used for this export path. 1099Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none". 1100In "passthrough" security model, files are stored using the same 1101credentials as they are created on the guest. This requires QEMU 1102to run as root. In "mapped-xattr" security model, some of the file 1103attributes like uid, gid, mode bits and link target are stored as 1104file attributes. For "mapped-file" these attributes are stored in the 1105hidden .virtfs_metadata directory. Directories exported by this security model cannot 1106interact with other unix tools. "none" security model is same as 1107passthrough except the sever won't report failures if it fails to 1108set file attributes like ownership. Security model is mandatory only 1109for local fsdriver. Other fsdrivers (like proxy) don't take security 1110model as a parameter. 1111@item writeout=@var{writeout} 1112This is an optional argument. The only supported value is "immediate". 1113This means that host page cache will be used to read and write data but 1114write notification will be sent to the guest only when the data has been 1115reported as written by the storage subsystem. 1116@item readonly 1117Enables exporting 9p share as a readonly mount for guests. By default 1118read-write access is given. 1119@item socket=@var{socket} 1120Enables proxy filesystem driver to use passed socket file for 1121communicating with virtfs-proxy-helper. Usually a helper like libvirt 1122will create socketpair and pass one of the fds as sock_fd 1123@item sock_fd 1124Enables proxy filesystem driver to use passed 'sock_fd' as the socket 1125descriptor for interfacing with virtfs-proxy-helper 1126@item fmode=@var{fmode} 1127Specifies the default mode for newly created files on the host. Works only 1128with security models "mapped-xattr" and "mapped-file". 1129@item dmode=@var{dmode} 1130Specifies the default mode for newly created directories on the host. Works 1131only with security models "mapped-xattr" and "mapped-file". 1132@end table 1133ETEXI 1134 1135DEF("virtfs_synth", 0, QEMU_OPTION_virtfs_synth, 1136 "-virtfs_synth Create synthetic file system image\n", 1137 QEMU_ARCH_ALL) 1138STEXI 1139@item -virtfs_synth 1140@findex -virtfs_synth 1141Create synthetic file system image 1142ETEXI 1143 1144DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi, 1145 "-iscsi [user=user][,password=password]\n" 1146 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n" 1147 " [,initiator-name=initiator-iqn][,id=target-iqn]\n" 1148 " [,timeout=timeout]\n" 1149 " iSCSI session parameters\n", QEMU_ARCH_ALL) 1150 1151STEXI 1152@item -iscsi 1153@findex -iscsi 1154Configure iSCSI session parameters. 1155ETEXI 1156 1157STEXI 1158@end table 1159ETEXI 1160DEFHEADING() 1161 1162DEFHEADING(USB options:) 1163STEXI 1164@table @option 1165ETEXI 1166 1167DEF("usb", 0, QEMU_OPTION_usb, 1168 "-usb enable the USB driver (if it is not used by default yet)\n", 1169 QEMU_ARCH_ALL) 1170STEXI 1171@item -usb 1172@findex -usb 1173Enable the USB driver (if it is not used by default yet). 1174ETEXI 1175 1176DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice, 1177 "-usbdevice name add the host or guest USB device 'name'\n", 1178 QEMU_ARCH_ALL) 1179STEXI 1180 1181@item -usbdevice @var{devname} 1182@findex -usbdevice 1183Add the USB device @var{devname}. Note that this option is deprecated, 1184please use @code{-device usb-...} instead. @xref{usb_devices}. 1185 1186@table @option 1187 1188@item mouse 1189Virtual Mouse. This will override the PS/2 mouse emulation when activated. 1190 1191@item tablet 1192Pointer device that uses absolute coordinates (like a touchscreen). This 1193means QEMU is able to report the mouse position without having to grab the 1194mouse. Also overrides the PS/2 mouse emulation when activated. 1195 1196@item braille 1197Braille device. This will use BrlAPI to display the braille output on a real 1198or fake device. 1199 1200@end table 1201ETEXI 1202 1203STEXI 1204@end table 1205ETEXI 1206DEFHEADING() 1207 1208DEFHEADING(Display options:) 1209STEXI 1210@table @option 1211ETEXI 1212 1213DEF("display", HAS_ARG, QEMU_OPTION_display, 1214 "-display spice-app[,gl=on|off]\n" 1215 "-display sdl[,frame=on|off][,alt_grab=on|off][,ctrl_grab=on|off]\n" 1216 " [,window_close=on|off][,gl=on|core|es|off]\n" 1217 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n" 1218 "-display vnc=<display>[,<optargs>]\n" 1219 "-display curses\n" 1220 "-display none\n" 1221 "-display egl-headless[,rendernode=<file>]" 1222 " select display type\n" 1223 "The default display is equivalent to\n" 1224#if defined(CONFIG_GTK) 1225 "\t\"-display gtk\"\n" 1226#elif defined(CONFIG_SDL) 1227 "\t\"-display sdl\"\n" 1228#elif defined(CONFIG_COCOA) 1229 "\t\"-display cocoa\"\n" 1230#elif defined(CONFIG_VNC) 1231 "\t\"-vnc localhost:0,to=99,id=default\"\n" 1232#else 1233 "\t\"-display none\"\n" 1234#endif 1235 , QEMU_ARCH_ALL) 1236STEXI 1237@item -display @var{type} 1238@findex -display 1239Select type of display to use. This option is a replacement for the 1240old style -sdl/-curses/... options. Valid values for @var{type} are 1241@table @option 1242@item sdl 1243Display video output via SDL (usually in a separate graphics 1244window; see the SDL documentation for other possibilities). 1245@item curses 1246Display video output via curses. For graphics device models which 1247support a text mode, QEMU can display this output using a 1248curses/ncurses interface. Nothing is displayed when the graphics 1249device is in graphical mode or if the graphics device does not support 1250a text mode. Generally only the VGA device models support text mode. 1251@item none 1252Do not display video output. The guest will still see an emulated 1253graphics card, but its output will not be displayed to the QEMU 1254user. This option differs from the -nographic option in that it 1255only affects what is done with video output; -nographic also changes 1256the destination of the serial and parallel port data. 1257@item gtk 1258Display video output in a GTK window. This interface provides drop-down 1259menus and other UI elements to configure and control the VM during 1260runtime. 1261@item vnc 1262Start a VNC server on display <arg> 1263@item egl-headless 1264Offload all OpenGL operations to a local DRI device. For any graphical display, 1265this display needs to be paired with either VNC or SPICE displays. 1266@item spice-app 1267Start QEMU as a Spice server and launch the default Spice client 1268application. The Spice server will redirect the serial consoles and 1269QEMU monitors. (Since 4.0) 1270@end table 1271ETEXI 1272 1273DEF("nographic", 0, QEMU_OPTION_nographic, 1274 "-nographic disable graphical output and redirect serial I/Os to console\n", 1275 QEMU_ARCH_ALL) 1276STEXI 1277@item -nographic 1278@findex -nographic 1279Normally, if QEMU is compiled with graphical window support, it displays 1280output such as guest graphics, guest console, and the QEMU monitor in a 1281window. With this option, you can totally disable graphical output so 1282that QEMU is a simple command line application. The emulated serial port 1283is redirected on the console and muxed with the monitor (unless 1284redirected elsewhere explicitly). Therefore, you can still use QEMU to 1285debug a Linux kernel with a serial console. Use @key{C-a h} for help on 1286switching between the console and monitor. 1287ETEXI 1288 1289DEF("curses", 0, QEMU_OPTION_curses, 1290 "-curses shorthand for -display curses\n", 1291 QEMU_ARCH_ALL) 1292STEXI 1293@item -curses 1294@findex -curses 1295Normally, if QEMU is compiled with graphical window support, it displays 1296output such as guest graphics, guest console, and the QEMU monitor in a 1297window. With this option, QEMU can display the VGA output when in text 1298mode using a curses/ncurses interface. Nothing is displayed in graphical 1299mode. 1300ETEXI 1301 1302DEF("alt-grab", 0, QEMU_OPTION_alt_grab, 1303 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n", 1304 QEMU_ARCH_ALL) 1305STEXI 1306@item -alt-grab 1307@findex -alt-grab 1308Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also 1309affects the special keys (for fullscreen, monitor-mode switching, etc). 1310ETEXI 1311 1312DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab, 1313 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n", 1314 QEMU_ARCH_ALL) 1315STEXI 1316@item -ctrl-grab 1317@findex -ctrl-grab 1318Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also 1319affects the special keys (for fullscreen, monitor-mode switching, etc). 1320ETEXI 1321 1322DEF("no-quit", 0, QEMU_OPTION_no_quit, 1323 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL) 1324STEXI 1325@item -no-quit 1326@findex -no-quit 1327Disable SDL window close capability. 1328ETEXI 1329 1330DEF("sdl", 0, QEMU_OPTION_sdl, 1331 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL) 1332STEXI 1333@item -sdl 1334@findex -sdl 1335Enable SDL. 1336ETEXI 1337 1338DEF("spice", HAS_ARG, QEMU_OPTION_spice, 1339 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n" 1340 " [,x509-key-file=<file>][,x509-key-password=<file>]\n" 1341 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n" 1342 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n" 1343 " [,tls-ciphers=<list>]\n" 1344 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n" 1345 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n" 1346 " [,sasl][,password=<secret>][,disable-ticketing]\n" 1347 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n" 1348 " [,jpeg-wan-compression=[auto|never|always]]\n" 1349 " [,zlib-glz-wan-compression=[auto|never|always]]\n" 1350 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n" 1351 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n" 1352 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n" 1353 " [,gl=[on|off]][,rendernode=<file>]\n" 1354 " enable spice\n" 1355 " at least one of {port, tls-port} is mandatory\n", 1356 QEMU_ARCH_ALL) 1357STEXI 1358@item -spice @var{option}[,@var{option}[,...]] 1359@findex -spice 1360Enable the spice remote desktop protocol. Valid options are 1361 1362@table @option 1363 1364@item port=<nr> 1365Set the TCP port spice is listening on for plaintext channels. 1366 1367@item addr=<addr> 1368Set the IP address spice is listening on. Default is any address. 1369 1370@item ipv4 1371@itemx ipv6 1372@itemx unix 1373Force using the specified IP version. 1374 1375@item password=<secret> 1376Set the password you need to authenticate. 1377 1378@item sasl 1379Require that the client use SASL to authenticate with the spice. 1380The exact choice of authentication method used is controlled from the 1381system / user's SASL configuration file for the 'qemu' service. This 1382is typically found in /etc/sasl2/qemu.conf. If running QEMU as an 1383unprivileged user, an environment variable SASL_CONF_PATH can be used 1384to make it search alternate locations for the service config. 1385While some SASL auth methods can also provide data encryption (eg GSSAPI), 1386it is recommended that SASL always be combined with the 'tls' and 1387'x509' settings to enable use of SSL and server certificates. This 1388ensures a data encryption preventing compromise of authentication 1389credentials. 1390 1391@item disable-ticketing 1392Allow client connects without authentication. 1393 1394@item disable-copy-paste 1395Disable copy paste between the client and the guest. 1396 1397@item disable-agent-file-xfer 1398Disable spice-vdagent based file-xfer between the client and the guest. 1399 1400@item tls-port=<nr> 1401Set the TCP port spice is listening on for encrypted channels. 1402 1403@item x509-dir=<dir> 1404Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir 1405 1406@item x509-key-file=<file> 1407@itemx x509-key-password=<file> 1408@itemx x509-cert-file=<file> 1409@itemx x509-cacert-file=<file> 1410@itemx x509-dh-key-file=<file> 1411The x509 file names can also be configured individually. 1412 1413@item tls-ciphers=<list> 1414Specify which ciphers to use. 1415 1416@item tls-channel=[main|display|cursor|inputs|record|playback] 1417@itemx plaintext-channel=[main|display|cursor|inputs|record|playback] 1418Force specific channel to be used with or without TLS encryption. The 1419options can be specified multiple times to configure multiple 1420channels. The special name "default" can be used to set the default 1421mode. For channels which are not explicitly forced into one mode the 1422spice client is allowed to pick tls/plaintext as he pleases. 1423 1424@item image-compression=[auto_glz|auto_lz|quic|glz|lz|off] 1425Configure image compression (lossless). 1426Default is auto_glz. 1427 1428@item jpeg-wan-compression=[auto|never|always] 1429@itemx zlib-glz-wan-compression=[auto|never|always] 1430Configure wan image compression (lossy for slow links). 1431Default is auto. 1432 1433@item streaming-video=[off|all|filter] 1434Configure video stream detection. Default is off. 1435 1436@item agent-mouse=[on|off] 1437Enable/disable passing mouse events via vdagent. Default is on. 1438 1439@item playback-compression=[on|off] 1440Enable/disable audio stream compression (using celt 0.5.1). Default is on. 1441 1442@item seamless-migration=[on|off] 1443Enable/disable spice seamless migration. Default is off. 1444 1445@item gl=[on|off] 1446Enable/disable OpenGL context. Default is off. 1447 1448@item rendernode=<file> 1449DRM render node for OpenGL rendering. If not specified, it will pick 1450the first available. (Since 2.9) 1451 1452@end table 1453ETEXI 1454 1455DEF("portrait", 0, QEMU_OPTION_portrait, 1456 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n", 1457 QEMU_ARCH_ALL) 1458STEXI 1459@item -portrait 1460@findex -portrait 1461Rotate graphical output 90 deg left (only PXA LCD). 1462ETEXI 1463 1464DEF("rotate", HAS_ARG, QEMU_OPTION_rotate, 1465 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n", 1466 QEMU_ARCH_ALL) 1467STEXI 1468@item -rotate @var{deg} 1469@findex -rotate 1470Rotate graphical output some deg left (only PXA LCD). 1471ETEXI 1472 1473DEF("vga", HAS_ARG, QEMU_OPTION_vga, 1474 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n" 1475 " select video card type\n", QEMU_ARCH_ALL) 1476STEXI 1477@item -vga @var{type} 1478@findex -vga 1479Select type of VGA card to emulate. Valid values for @var{type} are 1480@table @option 1481@item cirrus 1482Cirrus Logic GD5446 Video card. All Windows versions starting from 1483Windows 95 should recognize and use this graphic card. For optimal 1484performances, use 16 bit color depth in the guest and the host OS. 1485(This card was the default before QEMU 2.2) 1486@item std 1487Standard VGA card with Bochs VBE extensions. If your guest OS 1488supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want 1489to use high resolution modes (>= 1280x1024x16) then you should use 1490this option. (This card is the default since QEMU 2.2) 1491@item vmware 1492VMWare SVGA-II compatible adapter. Use it if you have sufficiently 1493recent XFree86/XOrg server or Windows guest with a driver for this 1494card. 1495@item qxl 1496QXL paravirtual graphic card. It is VGA compatible (including VESA 14972.0 VBE support). Works best with qxl guest drivers installed though. 1498Recommended choice when using the spice protocol. 1499@item tcx 1500(sun4m only) Sun TCX framebuffer. This is the default framebuffer for 1501sun4m machines and offers both 8-bit and 24-bit colour depths at a 1502fixed resolution of 1024x768. 1503@item cg3 1504(sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer 1505for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP) 1506resolutions aimed at people wishing to run older Solaris versions. 1507@item virtio 1508Virtio VGA card. 1509@item none 1510Disable VGA card. 1511@end table 1512ETEXI 1513 1514DEF("full-screen", 0, QEMU_OPTION_full_screen, 1515 "-full-screen start in full screen\n", QEMU_ARCH_ALL) 1516STEXI 1517@item -full-screen 1518@findex -full-screen 1519Start in full screen. 1520ETEXI 1521 1522DEF("g", 1, QEMU_OPTION_g , 1523 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n", 1524 QEMU_ARCH_PPC | QEMU_ARCH_SPARC) 1525STEXI 1526@item -g @var{width}x@var{height}[x@var{depth}] 1527@findex -g 1528Set the initial graphical resolution and depth (PPC, SPARC only). 1529ETEXI 1530 1531DEF("vnc", HAS_ARG, QEMU_OPTION_vnc , 1532 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL) 1533STEXI 1534@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]] 1535@findex -vnc 1536Normally, if QEMU is compiled with graphical window support, it displays 1537output such as guest graphics, guest console, and the QEMU monitor in a 1538window. With this option, you can have QEMU listen on VNC display 1539@var{display} and redirect the VGA display over the VNC session. It is 1540very useful to enable the usb tablet device when using this option 1541(option @option{-device usb-tablet}). When using the VNC display, you 1542must use the @option{-k} parameter to set the keyboard layout if you are 1543not using en-us. Valid syntax for the @var{display} is 1544 1545@table @option 1546 1547@item to=@var{L} 1548 1549With this option, QEMU will try next available VNC @var{display}s, until the 1550number @var{L}, if the origianlly defined "-vnc @var{display}" is not 1551available, e.g. port 5900+@var{display} is already used by another 1552application. By default, to=0. 1553 1554@item @var{host}:@var{d} 1555 1556TCP connections will only be allowed from @var{host} on display @var{d}. 1557By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can 1558be omitted in which case the server will accept connections from any host. 1559 1560@item unix:@var{path} 1561 1562Connections will be allowed over UNIX domain sockets where @var{path} is the 1563location of a unix socket to listen for connections on. 1564 1565@item none 1566 1567VNC is initialized but not started. The monitor @code{change} command 1568can be used to later start the VNC server. 1569 1570@end table 1571 1572Following the @var{display} value there may be one or more @var{option} flags 1573separated by commas. Valid options are 1574 1575@table @option 1576 1577@item reverse 1578 1579Connect to a listening VNC client via a ``reverse'' connection. The 1580client is specified by the @var{display}. For reverse network 1581connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument 1582is a TCP port number, not a display number. 1583 1584@item websocket 1585 1586Opens an additional TCP listening port dedicated to VNC Websocket connections. 1587If a bare @var{websocket} option is given, the Websocket port is 15885700+@var{display}. An alternative port can be specified with the 1589syntax @code{websocket}=@var{port}. 1590 1591If @var{host} is specified connections will only be allowed from this host. 1592It is possible to control the websocket listen address independently, using 1593the syntax @code{websocket}=@var{host}:@var{port}. 1594 1595If no TLS credentials are provided, the websocket connection runs in 1596unencrypted mode. If TLS credentials are provided, the websocket connection 1597requires encrypted client connections. 1598 1599@item password 1600 1601Require that password based authentication is used for client connections. 1602 1603The password must be set separately using the @code{set_password} command in 1604the @ref{pcsys_monitor}. The syntax to change your password is: 1605@code{set_password <protocol> <password>} where <protocol> could be either 1606"vnc" or "spice". 1607 1608If you would like to change <protocol> password expiration, you should use 1609@code{expire_password <protocol> <expiration-time>} where expiration time could 1610be one of the following options: now, never, +seconds or UNIX time of 1611expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800 1612to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this 1613date and time). 1614 1615You can also use keywords "now" or "never" for the expiration time to 1616allow <protocol> password to expire immediately or never expire. 1617 1618@item tls-creds=@var{ID} 1619 1620Provides the ID of a set of TLS credentials to use to secure the 1621VNC server. They will apply to both the normal VNC server socket 1622and the websocket socket (if enabled). Setting TLS credentials 1623will cause the VNC server socket to enable the VeNCrypt auth 1624mechanism. The credentials should have been previously created 1625using the @option{-object tls-creds} argument. 1626 1627@item sasl 1628 1629Require that the client use SASL to authenticate with the VNC server. 1630The exact choice of authentication method used is controlled from the 1631system / user's SASL configuration file for the 'qemu' service. This 1632is typically found in /etc/sasl2/qemu.conf. If running QEMU as an 1633unprivileged user, an environment variable SASL_CONF_PATH can be used 1634to make it search alternate locations for the service config. 1635While some SASL auth methods can also provide data encryption (eg GSSAPI), 1636it is recommended that SASL always be combined with the 'tls' and 1637'x509' settings to enable use of SSL and server certificates. This 1638ensures a data encryption preventing compromise of authentication 1639credentials. See the @ref{vnc_security} section for details on using 1640SASL authentication. 1641 1642@item acl 1643 1644Turn on access control lists for checking of the x509 client certificate 1645and SASL party. For x509 certs, the ACL check is made against the 1646certificate's distinguished name. This is something that looks like 1647@code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is 1648made against the username, which depending on the SASL plugin, may 1649include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}. 1650When the @option{acl} flag is set, the initial access list will be 1651empty, with a @code{deny} policy. Thus no one will be allowed to 1652use the VNC server until the ACLs have been loaded. This can be 1653achieved using the @code{acl} monitor command. 1654 1655@item lossy 1656 1657Enable lossy compression methods (gradient, JPEG, ...). If this 1658option is set, VNC client may receive lossy framebuffer updates 1659depending on its encoding settings. Enabling this option can save 1660a lot of bandwidth at the expense of quality. 1661 1662@item non-adaptive 1663 1664Disable adaptive encodings. Adaptive encodings are enabled by default. 1665An adaptive encoding will try to detect frequently updated screen regions, 1666and send updates in these regions using a lossy encoding (like JPEG). 1667This can be really helpful to save bandwidth when playing videos. Disabling 1668adaptive encodings restores the original static behavior of encodings 1669like Tight. 1670 1671@item share=[allow-exclusive|force-shared|ignore] 1672 1673Set display sharing policy. 'allow-exclusive' allows clients to ask 1674for exclusive access. As suggested by the rfb spec this is 1675implemented by dropping other connections. Connecting multiple 1676clients in parallel requires all clients asking for a shared session 1677(vncviewer: -shared switch). This is the default. 'force-shared' 1678disables exclusive client access. Useful for shared desktop sessions, 1679where you don't want someone forgetting specify -shared disconnect 1680everybody else. 'ignore' completely ignores the shared flag and 1681allows everybody connect unconditionally. Doesn't conform to the rfb 1682spec but is traditional QEMU behavior. 1683 1684@item key-delay-ms 1685 1686Set keyboard delay, for key down and key up events, in milliseconds. 1687Default is 10. Keyboards are low-bandwidth devices, so this slowdown 1688can help the device and guest to keep up and not lose events in case 1689events are arriving in bulk. Possible causes for the latter are flaky 1690network connections, or scripts for automated testing. 1691 1692@end table 1693ETEXI 1694 1695STEXI 1696@end table 1697ETEXI 1698ARCHHEADING(, QEMU_ARCH_I386) 1699 1700ARCHHEADING(i386 target only:, QEMU_ARCH_I386) 1701STEXI 1702@table @option 1703ETEXI 1704 1705DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack, 1706 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n", 1707 QEMU_ARCH_I386) 1708STEXI 1709@item -win2k-hack 1710@findex -win2k-hack 1711Use it when installing Windows 2000 to avoid a disk full bug. After 1712Windows 2000 is installed, you no longer need this option (this option 1713slows down the IDE transfers). 1714ETEXI 1715 1716DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk, 1717 "-no-fd-bootchk disable boot signature checking for floppy disks\n", 1718 QEMU_ARCH_I386) 1719STEXI 1720@item -no-fd-bootchk 1721@findex -no-fd-bootchk 1722Disable boot signature checking for floppy disks in BIOS. May 1723be needed to boot from old floppy disks. 1724ETEXI 1725 1726DEF("no-acpi", 0, QEMU_OPTION_no_acpi, 1727 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM) 1728STEXI 1729@item -no-acpi 1730@findex -no-acpi 1731Disable ACPI (Advanced Configuration and Power Interface) support. Use 1732it if your guest OS complains about ACPI problems (PC target machine 1733only). 1734ETEXI 1735 1736DEF("no-hpet", 0, QEMU_OPTION_no_hpet, 1737 "-no-hpet disable HPET\n", QEMU_ARCH_I386) 1738STEXI 1739@item -no-hpet 1740@findex -no-hpet 1741Disable HPET support. 1742ETEXI 1743 1744DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable, 1745 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n" 1746 " ACPI table description\n", QEMU_ARCH_I386) 1747STEXI 1748@item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...] 1749@findex -acpitable 1750Add ACPI table with specified header fields and context from specified files. 1751For file=, take whole ACPI table from the specified files, including all 1752ACPI headers (possible overridden by other options). 1753For data=, only data 1754portion of the table is used, all header information is specified in the 1755command line. 1756If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id 1757fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order 1758to ensure the field matches required by the Microsoft SLIC spec and the ACPI 1759spec. 1760ETEXI 1761 1762DEF("smbios", HAS_ARG, QEMU_OPTION_smbios, 1763 "-smbios file=binary\n" 1764 " load SMBIOS entry from binary file\n" 1765 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n" 1766 " [,uefi=on|off]\n" 1767 " specify SMBIOS type 0 fields\n" 1768 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n" 1769 " [,uuid=uuid][,sku=str][,family=str]\n" 1770 " specify SMBIOS type 1 fields\n" 1771 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n" 1772 " [,asset=str][,location=str]\n" 1773 " specify SMBIOS type 2 fields\n" 1774 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n" 1775 " [,sku=str]\n" 1776 " specify SMBIOS type 3 fields\n" 1777 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n" 1778 " [,asset=str][,part=str]\n" 1779 " specify SMBIOS type 4 fields\n" 1780 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n" 1781 " [,asset=str][,part=str][,speed=%d]\n" 1782 " specify SMBIOS type 17 fields\n", 1783 QEMU_ARCH_I386 | QEMU_ARCH_ARM) 1784STEXI 1785@item -smbios file=@var{binary} 1786@findex -smbios 1787Load SMBIOS entry from binary file. 1788 1789@item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off] 1790Specify SMBIOS type 0 fields 1791 1792@item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}] 1793Specify SMBIOS type 1 fields 1794 1795@item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}][,family=@var{str}] 1796Specify SMBIOS type 2 fields 1797 1798@item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}] 1799Specify SMBIOS type 3 fields 1800 1801@item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}] 1802Specify SMBIOS type 4 fields 1803 1804@item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}] 1805Specify SMBIOS type 17 fields 1806ETEXI 1807 1808STEXI 1809@end table 1810ETEXI 1811DEFHEADING() 1812 1813DEFHEADING(Network options:) 1814STEXI 1815@table @option 1816ETEXI 1817 1818DEF("netdev", HAS_ARG, QEMU_OPTION_netdev, 1819#ifdef CONFIG_SLIRP 1820 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n" 1821 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n" 1822 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n" 1823 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,domainname=domain]\n" 1824 " [,tftp=dir][,tftp-server-name=name][,bootfile=f][,hostfwd=rule][,guestfwd=rule]" 1825#ifndef _WIN32 1826 "[,smb=dir[,smbserver=addr]]\n" 1827#endif 1828 " configure a user mode network backend with ID 'str',\n" 1829 " its DHCP server and optional services\n" 1830#endif 1831#ifdef _WIN32 1832 "-netdev tap,id=str,ifname=name\n" 1833 " configure a host TAP network backend with ID 'str'\n" 1834#else 1835 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n" 1836 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n" 1837 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n" 1838 " [,poll-us=n]\n" 1839 " configure a host TAP network backend with ID 'str'\n" 1840 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n" 1841 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n" 1842 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n" 1843 " to deconfigure it\n" 1844 " use '[down]script=no' to disable script execution\n" 1845 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n" 1846 " configure it\n" 1847 " use 'fd=h' to connect to an already opened TAP interface\n" 1848 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n" 1849 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n" 1850 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n" 1851 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n" 1852 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n" 1853 " use vhost=on to enable experimental in kernel accelerator\n" 1854 " (only has effect for virtio guests which use MSIX)\n" 1855 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n" 1856 " use 'vhostfd=h' to connect to an already opened vhost net device\n" 1857 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n" 1858 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n" 1859 " use 'poll-us=n' to speciy the maximum number of microseconds that could be\n" 1860 " spent on busy polling for vhost net\n" 1861 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n" 1862 " configure a host TAP network backend with ID 'str' that is\n" 1863 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n" 1864 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n" 1865#endif 1866#ifdef __linux__ 1867 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n" 1868 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n" 1869 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n" 1870 " [,rxcookie=rxcookie][,offset=offset]\n" 1871 " configure a network backend with ID 'str' connected to\n" 1872 " an Ethernet over L2TPv3 pseudowire.\n" 1873 " Linux kernel 3.3+ as well as most routers can talk\n" 1874 " L2TPv3. This transport allows connecting a VM to a VM,\n" 1875 " VM to a router and even VM to Host. It is a nearly-universal\n" 1876 " standard (RFC3391). Note - this implementation uses static\n" 1877 " pre-configured tunnels (same as the Linux kernel).\n" 1878 " use 'src=' to specify source address\n" 1879 " use 'dst=' to specify destination address\n" 1880 " use 'udp=on' to specify udp encapsulation\n" 1881 " use 'srcport=' to specify source udp port\n" 1882 " use 'dstport=' to specify destination udp port\n" 1883 " use 'ipv6=on' to force v6\n" 1884 " L2TPv3 uses cookies to prevent misconfiguration as\n" 1885 " well as a weak security measure\n" 1886 " use 'rxcookie=0x012345678' to specify a rxcookie\n" 1887 " use 'txcookie=0x012345678' to specify a txcookie\n" 1888 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n" 1889 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n" 1890 " use 'pincounter=on' to work around broken counter handling in peer\n" 1891 " use 'offset=X' to add an extra offset between header and data\n" 1892#endif 1893 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n" 1894 " configure a network backend to connect to another network\n" 1895 " using a socket connection\n" 1896 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n" 1897 " configure a network backend to connect to a multicast maddr and port\n" 1898 " use 'localaddr=addr' to specify the host address to send packets from\n" 1899 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n" 1900 " configure a network backend to connect to another network\n" 1901 " using an UDP tunnel\n" 1902#ifdef CONFIG_VDE 1903 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n" 1904 " configure a network backend to connect to port 'n' of a vde switch\n" 1905 " running on host and listening for incoming connections on 'socketpath'.\n" 1906 " Use group 'groupname' and mode 'octalmode' to change default\n" 1907 " ownership and permissions for communication port.\n" 1908#endif 1909#ifdef CONFIG_NETMAP 1910 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n" 1911 " attach to the existing netmap-enabled network interface 'name', or to a\n" 1912 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n" 1913 " netmap device, defaults to '/dev/netmap')\n" 1914#endif 1915#ifdef CONFIG_POSIX 1916 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n" 1917 " configure a vhost-user network, backed by a chardev 'dev'\n" 1918#endif 1919 "-netdev hubport,id=str,hubid=n[,netdev=nd]\n" 1920 " configure a hub port on the hub with ID 'n'\n", QEMU_ARCH_ALL) 1921DEF("nic", HAS_ARG, QEMU_OPTION_nic, 1922 "-nic [tap|bridge|" 1923#ifdef CONFIG_SLIRP 1924 "user|" 1925#endif 1926#ifdef __linux__ 1927 "l2tpv3|" 1928#endif 1929#ifdef CONFIG_VDE 1930 "vde|" 1931#endif 1932#ifdef CONFIG_NETMAP 1933 "netmap|" 1934#endif 1935#ifdef CONFIG_POSIX 1936 "vhost-user|" 1937#endif 1938 "socket][,option][,...][mac=macaddr]\n" 1939 " initialize an on-board / default host NIC (using MAC address\n" 1940 " macaddr) and connect it to the given host network backend\n" 1941 "-nic none use it alone to have zero network devices (the default is to\n" 1942 " provided a 'user' network connection)\n", 1943 QEMU_ARCH_ALL) 1944DEF("net", HAS_ARG, QEMU_OPTION_net, 1945 "-net nic[,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n" 1946 " configure or create an on-board (or machine default) NIC and\n" 1947 " connect it to hub 0 (please use -nic unless you need a hub)\n" 1948 "-net [" 1949#ifdef CONFIG_SLIRP 1950 "user|" 1951#endif 1952 "tap|" 1953 "bridge|" 1954#ifdef CONFIG_VDE 1955 "vde|" 1956#endif 1957#ifdef CONFIG_NETMAP 1958 "netmap|" 1959#endif 1960 "socket][,option][,option][,...]\n" 1961 " old way to initialize a host network interface\n" 1962 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL) 1963STEXI 1964@item -nic [tap|bridge|user|l2tpv3|vde|netmap|vhost-user|socket][,...][,mac=macaddr][,model=mn] 1965@findex -nic 1966This option is a shortcut for configuring both the on-board (default) guest 1967NIC hardware and the host network backend in one go. The host backend options 1968are the same as with the corresponding @option{-netdev} options below. 1969The guest NIC model can be set with @option{model=@var{modelname}}. 1970Use @option{model=help} to list the available device types. 1971The hardware MAC address can be set with @option{mac=@var{macaddr}}. 1972 1973The following two example do exactly the same, to show how @option{-nic} can 1974be used to shorten the command line length (note that the e1000 is the default 1975on i386, so the @option{model=e1000} parameter could even be omitted here, too): 1976@example 1977qemu-system-i386 -netdev user,id=n1,ipv6=off -device e1000,netdev=n1,mac=52:54:98:76:54:32 1978qemu-system-i386 -nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32 1979@end example 1980 1981@item -nic none 1982Indicate that no network devices should be configured. It is used to override 1983the default configuration (default NIC with ``user'' host network backend) 1984which is activated if no other networking options are provided. 1985 1986@item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...] 1987@findex -netdev 1988Configure user mode host network backend which requires no administrator 1989privilege to run. Valid options are: 1990 1991@table @option 1992@item id=@var{id} 1993Assign symbolic name for use in monitor commands. 1994 1995@item ipv4=on|off and ipv6=on|off 1996Specify that either IPv4 or IPv6 must be enabled. If neither is specified 1997both protocols are enabled. 1998 1999@item net=@var{addr}[/@var{mask}] 2000Set IP network address the guest will see. Optionally specify the netmask, 2001either in the form a.b.c.d or as number of valid top-most bits. Default is 200210.0.2.0/24. 2003 2004@item host=@var{addr} 2005Specify the guest-visible address of the host. Default is the 2nd IP in the 2006guest network, i.e. x.x.x.2. 2007 2008@item ipv6-net=@var{addr}[/@var{int}] 2009Set IPv6 network address the guest will see (default is fec0::/64). The 2010network prefix is given in the usual hexadecimal IPv6 address 2011notation. The prefix size is optional, and is given as the number of 2012valid top-most bits (default is 64). 2013 2014@item ipv6-host=@var{addr} 2015Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in 2016the guest network, i.e. xxxx::2. 2017 2018@item restrict=on|off 2019If this option is enabled, the guest will be isolated, i.e. it will not be 2020able to contact the host and no guest IP packets will be routed over the host 2021to the outside. This option does not affect any explicitly set forwarding rules. 2022 2023@item hostname=@var{name} 2024Specifies the client hostname reported by the built-in DHCP server. 2025 2026@item dhcpstart=@var{addr} 2027Specify the first of the 16 IPs the built-in DHCP server can assign. Default 2028is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31. 2029 2030@item dns=@var{addr} 2031Specify the guest-visible address of the virtual nameserver. The address must 2032be different from the host address. Default is the 3rd IP in the guest network, 2033i.e. x.x.x.3. 2034 2035@item ipv6-dns=@var{addr} 2036Specify the guest-visible address of the IPv6 virtual nameserver. The address 2037must be different from the host address. Default is the 3rd IP in the guest 2038network, i.e. xxxx::3. 2039 2040@item dnssearch=@var{domain} 2041Provides an entry for the domain-search list sent by the built-in 2042DHCP server. More than one domain suffix can be transmitted by specifying 2043this option multiple times. If supported, this will cause the guest to 2044automatically try to append the given domain suffix(es) in case a domain name 2045can not be resolved. 2046 2047Example: 2048@example 2049qemu-system-i386 -nic user,dnssearch=mgmt.example.org,dnssearch=example.org 2050@end example 2051 2052@item domainname=@var{domain} 2053Specifies the client domain name reported by the built-in DHCP server. 2054 2055@item tftp=@var{dir} 2056When using the user mode network stack, activate a built-in TFTP 2057server. The files in @var{dir} will be exposed as the root of a TFTP server. 2058The TFTP client on the guest must be configured in binary mode (use the command 2059@code{bin} of the Unix TFTP client). 2060 2061@item tftp-server-name=@var{name} 2062In BOOTP reply, broadcast @var{name} as the "TFTP server name" (RFC2132 option 206366). This can be used to advise the guest to load boot files or configurations 2064from a different server than the host address. 2065 2066@item bootfile=@var{file} 2067When using the user mode network stack, broadcast @var{file} as the BOOTP 2068filename. In conjunction with @option{tftp}, this can be used to network boot 2069a guest from a local directory. 2070 2071Example (using pxelinux): 2072@example 2073qemu-system-i386 -hda linux.img -boot n -device e1000,netdev=n1 \ 2074 -netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0 2075@end example 2076 2077@item smb=@var{dir}[,smbserver=@var{addr}] 2078When using the user mode network stack, activate a built-in SMB 2079server so that Windows OSes can access to the host files in @file{@var{dir}} 2080transparently. The IP address of the SMB server can be set to @var{addr}. By 2081default the 4th IP in the guest network is used, i.e. x.x.x.4. 2082 2083In the guest Windows OS, the line: 2084@example 208510.0.2.4 smbserver 2086@end example 2087must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me) 2088or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000). 2089 2090Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}. 2091 2092Note that a SAMBA server must be installed on the host OS. 2093 2094@item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport} 2095Redirect incoming TCP or UDP connections to the host port @var{hostport} to 2096the guest IP address @var{guestaddr} on guest port @var{guestport}. If 2097@var{guestaddr} is not specified, its value is x.x.x.15 (default first address 2098given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can 2099be bound to a specific host interface. If no connection type is set, TCP is 2100used. This option can be given multiple times. 2101 2102For example, to redirect host X11 connection from screen 1 to guest 2103screen 0, use the following: 2104 2105@example 2106# on the host 2107qemu-system-i386 -nic user,hostfwd=tcp:127.0.0.1:6001-:6000 2108# this host xterm should open in the guest X11 server 2109xterm -display :1 2110@end example 2111 2112To redirect telnet connections from host port 5555 to telnet port on 2113the guest, use the following: 2114 2115@example 2116# on the host 2117qemu-system-i386 -nic user,hostfwd=tcp::5555-:23 2118telnet localhost 5555 2119@end example 2120 2121Then when you use on the host @code{telnet localhost 5555}, you 2122connect to the guest telnet server. 2123 2124@item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev} 2125@itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command} 2126Forward guest TCP connections to the IP address @var{server} on port @var{port} 2127to the character device @var{dev} or to a program executed by @var{cmd:command} 2128which gets spawned for each connection. This option can be given multiple times. 2129 2130You can either use a chardev directly and have that one used throughout QEMU's 2131lifetime, like in the following example: 2132 2133@example 2134# open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever 2135# the guest accesses it 2136qemu-system-i386 -nic user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321 2137@end example 2138 2139Or you can execute a command on every TCP connection established by the guest, 2140so that QEMU behaves similar to an inetd process for that virtual server: 2141 2142@example 2143# call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234 2144# and connect the TCP stream to its stdin/stdout 2145qemu-system-i386 -nic 'user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321' 2146@end example 2147 2148@end table 2149 2150@item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}] 2151Configure a host TAP network backend with ID @var{id}. 2152 2153Use the network script @var{file} to configure it and the network script 2154@var{dfile} to deconfigure it. If @var{name} is not provided, the OS 2155automatically provides one. The default network configure script is 2156@file{/etc/qemu-ifup} and the default network deconfigure script is 2157@file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no} 2158to disable script execution. 2159 2160If running QEMU as an unprivileged user, use the network helper 2161@var{helper} to configure the TAP interface and attach it to the bridge. 2162The default network helper executable is @file{/path/to/qemu-bridge-helper} 2163and the default bridge device is @file{br0}. 2164 2165@option{fd}=@var{h} can be used to specify the handle of an already 2166opened host TAP interface. 2167 2168Examples: 2169 2170@example 2171#launch a QEMU instance with the default network script 2172qemu-system-i386 linux.img -nic tap 2173@end example 2174 2175@example 2176#launch a QEMU instance with two NICs, each one connected 2177#to a TAP device 2178qemu-system-i386 linux.img \ 2179 -netdev tap,id=nd0,ifname=tap0 -device e1000,netdev=nd0 \ 2180 -netdev tap,id=nd1,ifname=tap1 -device rtl8139,netdev=nd1 2181@end example 2182 2183@example 2184#launch a QEMU instance with the default network helper to 2185#connect a TAP device to bridge br0 2186qemu-system-i386 linux.img -device virtio-net-pci,netdev=n1 \ 2187 -netdev tap,id=n1,"helper=/path/to/qemu-bridge-helper" 2188@end example 2189 2190@item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}] 2191Connect a host TAP network interface to a host bridge device. 2192 2193Use the network helper @var{helper} to configure the TAP interface and 2194attach it to the bridge. The default network helper executable is 2195@file{/path/to/qemu-bridge-helper} and the default bridge 2196device is @file{br0}. 2197 2198Examples: 2199 2200@example 2201#launch a QEMU instance with the default network helper to 2202#connect a TAP device to bridge br0 2203qemu-system-i386 linux.img -netdev bridge,id=n1 -device virtio-net,netdev=n1 2204@end example 2205 2206@example 2207#launch a QEMU instance with the default network helper to 2208#connect a TAP device to bridge qemubr0 2209qemu-system-i386 linux.img -netdev bridge,br=qemubr0,id=n1 -device virtio-net,netdev=n1 2210@end example 2211 2212@item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}] 2213 2214This host network backend can be used to connect the guest's network to 2215another QEMU virtual machine using a TCP socket connection. If @option{listen} 2216is specified, QEMU waits for incoming connections on @var{port} 2217(@var{host} is optional). @option{connect} is used to connect to 2218another QEMU instance using the @option{listen} option. @option{fd}=@var{h} 2219specifies an already opened TCP socket. 2220 2221Example: 2222@example 2223# launch a first QEMU instance 2224qemu-system-i386 linux.img \ 2225 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \ 2226 -netdev socket,id=n1,listen=:1234 2227# connect the network of this instance to the network of the first instance 2228qemu-system-i386 linux.img \ 2229 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \ 2230 -netdev socket,id=n2,connect=127.0.0.1:1234 2231@end example 2232 2233@item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]] 2234 2235Configure a socket host network backend to share the guest's network traffic 2236with another QEMU virtual machines using a UDP multicast socket, effectively 2237making a bus for every QEMU with same multicast address @var{maddr} and @var{port}. 2238NOTES: 2239@enumerate 2240@item 2241Several QEMU can be running on different hosts and share same bus (assuming 2242correct multicast setup for these hosts). 2243@item 2244mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see 2245@url{http://user-mode-linux.sf.net}. 2246@item 2247Use @option{fd=h} to specify an already opened UDP multicast socket. 2248@end enumerate 2249 2250Example: 2251@example 2252# launch one QEMU instance 2253qemu-system-i386 linux.img \ 2254 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \ 2255 -netdev socket,id=n1,mcast=230.0.0.1:1234 2256# launch another QEMU instance on same "bus" 2257qemu-system-i386 linux.img \ 2258 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \ 2259 -netdev socket,id=n2,mcast=230.0.0.1:1234 2260# launch yet another QEMU instance on same "bus" 2261qemu-system-i386 linux.img \ 2262 -device e1000,netdev=n3,mac=52:54:00:12:34:58 \ 2263 -netdev socket,id=n3,mcast=230.0.0.1:1234 2264@end example 2265 2266Example (User Mode Linux compat.): 2267@example 2268# launch QEMU instance (note mcast address selected is UML's default) 2269qemu-system-i386 linux.img \ 2270 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \ 2271 -netdev socket,id=n1,mcast=239.192.168.1:1102 2272# launch UML 2273/path/to/linux ubd0=/path/to/root_fs eth0=mcast 2274@end example 2275 2276Example (send packets from host's 1.2.3.4): 2277@example 2278qemu-system-i386 linux.img \ 2279 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \ 2280 -netdev socket,id=n1,mcast=239.192.168.1:1102,localaddr=1.2.3.4 2281@end example 2282 2283@item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}] 2284Configure a L2TPv3 pseudowire host network backend. L2TPv3 (RFC3391) is a 2285popular protocol to transport Ethernet (and other Layer 2) data frames between 2286two systems. It is present in routers, firewalls and the Linux kernel 2287(from version 3.3 onwards). 2288 2289This transport allows a VM to communicate to another VM, router or firewall directly. 2290 2291@table @option 2292@item src=@var{srcaddr} 2293 source address (mandatory) 2294@item dst=@var{dstaddr} 2295 destination address (mandatory) 2296@item udp 2297 select udp encapsulation (default is ip). 2298@item srcport=@var{srcport} 2299 source udp port. 2300@item dstport=@var{dstport} 2301 destination udp port. 2302@item ipv6 2303 force v6, otherwise defaults to v4. 2304@item rxcookie=@var{rxcookie} 2305@itemx txcookie=@var{txcookie} 2306 Cookies are a weak form of security in the l2tpv3 specification. 2307Their function is mostly to prevent misconfiguration. By default they are 32 2308bit. 2309@item cookie64 2310 Set cookie size to 64 bit instead of the default 32 2311@item counter=off 2312 Force a 'cut-down' L2TPv3 with no counter as in 2313draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00 2314@item pincounter=on 2315 Work around broken counter handling in peer. This may also help on 2316networks which have packet reorder. 2317@item offset=@var{offset} 2318 Add an extra offset between header and data 2319@end table 2320 2321For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan 2322on the remote Linux host 1.2.3.4: 2323@example 2324# Setup tunnel on linux host using raw ip as encapsulation 2325# on 1.2.3.4 2326ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \ 2327 encap udp udp_sport 16384 udp_dport 16384 2328ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \ 2329 0xFFFFFFFF peer_session_id 0xFFFFFFFF 2330ifconfig vmtunnel0 mtu 1500 2331ifconfig vmtunnel0 up 2332brctl addif br-lan vmtunnel0 2333 2334 2335# on 4.3.2.1 2336# launch QEMU instance - if your network has reorder or is very lossy add ,pincounter 2337 2338qemu-system-i386 linux.img -device e1000,netdev=n1 \ 2339 -netdev l2tpv3,id=n1,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter 2340 2341@end example 2342 2343@item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}] 2344Configure VDE backend to connect to PORT @var{n} of a vde switch running on host and 2345listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname} 2346and MODE @var{octalmode} to change default ownership and permissions for 2347communication port. This option is only available if QEMU has been compiled 2348with vde support enabled. 2349 2350Example: 2351@example 2352# launch vde switch 2353vde_switch -F -sock /tmp/myswitch 2354# launch QEMU instance 2355qemu-system-i386 linux.img -nic vde,sock=/tmp/myswitch 2356@end example 2357 2358@item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n] 2359 2360Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should 2361be a unix domain socket backed one. The vhost-user uses a specifically defined 2362protocol to pass vhost ioctl replacement messages to an application on the other 2363end of the socket. On non-MSIX guests, the feature can be forced with 2364@var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to 2365be created for multiqueue vhost-user. 2366 2367Example: 2368@example 2369qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \ 2370 -numa node,memdev=mem \ 2371 -chardev socket,id=chr0,path=/path/to/socket \ 2372 -netdev type=vhost-user,id=net0,chardev=chr0 \ 2373 -device virtio-net-pci,netdev=net0 2374@end example 2375 2376@item -netdev hubport,id=@var{id},hubid=@var{hubid}[,netdev=@var{nd}] 2377 2378Create a hub port on the emulated hub with ID @var{hubid}. 2379 2380The hubport netdev lets you connect a NIC to a QEMU emulated hub instead of a 2381single netdev. Alternatively, you can also connect the hubport to another 2382netdev with ID @var{nd} by using the @option{netdev=@var{nd}} option. 2383 2384@item -net nic[,netdev=@var{nd}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}] 2385@findex -net 2386Legacy option to configure or create an on-board (or machine default) Network 2387Interface Card(NIC) and connect it either to the emulated hub with ID 0 (i.e. 2388the default hub), or to the netdev @var{nd}. 2389The NIC is an e1000 by default on the PC target. Optionally, the MAC address 2390can be changed to @var{mac}, the device address set to @var{addr} (PCI cards 2391only), and a @var{name} can be assigned for use in monitor commands. 2392Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors 2393that the card should have; this option currently only affects virtio cards; set 2394@var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single 2395NIC is created. QEMU can emulate several different models of network card. 2396Use @code{-net nic,model=help} for a list of available devices for your target. 2397 2398@item -net user|tap|bridge|socket|l2tpv3|vde[,...][,name=@var{name}] 2399Configure a host network backend (with the options corresponding to the same 2400@option{-netdev} option) and connect it to the emulated hub 0 (the default 2401hub). Use @var{name} to specify the name of the hub port. 2402ETEXI 2403 2404STEXI 2405@end table 2406ETEXI 2407DEFHEADING() 2408 2409DEFHEADING(Character device options:) 2410 2411DEF("chardev", HAS_ARG, QEMU_OPTION_chardev, 2412 "-chardev help\n" 2413 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2414 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n" 2415 " [,server][,nowait][,telnet][,websocket][,reconnect=seconds][,mux=on|off]\n" 2416 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID] (tcp)\n" 2417 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,websocket][,reconnect=seconds]\n" 2418 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n" 2419 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n" 2420 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n" 2421 " [,logfile=PATH][,logappend=on|off]\n" 2422 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2423 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n" 2424 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2425 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n" 2426 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2427 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2428#ifdef _WIN32 2429 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2430 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2431#else 2432 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2433 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n" 2434#endif 2435#ifdef CONFIG_BRLAPI 2436 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2437#endif 2438#if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \ 2439 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) 2440 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2441 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2442#endif 2443#if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__) 2444 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2445 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n" 2446#endif 2447#if defined(CONFIG_SPICE) 2448 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n" 2449 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n" 2450#endif 2451 , QEMU_ARCH_ALL 2452) 2453 2454STEXI 2455 2456The general form of a character device option is: 2457@table @option 2458@item -chardev @var{backend},id=@var{id}[,mux=on|off][,@var{options}] 2459@findex -chardev 2460Backend is one of: 2461@option{null}, 2462@option{socket}, 2463@option{udp}, 2464@option{msmouse}, 2465@option{vc}, 2466@option{ringbuf}, 2467@option{file}, 2468@option{pipe}, 2469@option{console}, 2470@option{serial}, 2471@option{pty}, 2472@option{stdio}, 2473@option{braille}, 2474@option{tty}, 2475@option{parallel}, 2476@option{parport}, 2477@option{spicevmc}, 2478@option{spiceport}. 2479The specific backend will determine the applicable options. 2480 2481Use @code{-chardev help} to print all available chardev backend types. 2482 2483All devices must have an id, which can be any string up to 127 characters long. 2484It is used to uniquely identify this device in other command line directives. 2485 2486A character device may be used in multiplexing mode by multiple front-ends. 2487Specify @option{mux=on} to enable this mode. 2488A multiplexer is a "1:N" device, and here the "1" end is your specified chardev 2489backend, and the "N" end is the various parts of QEMU that can talk to a chardev. 2490If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will 2491create a multiplexer with your specified ID, and you can then configure multiple 2492front ends to use that chardev ID for their input/output. Up to four different 2493front ends can be connected to a single multiplexed chardev. (Without 2494multiplexing enabled, a chardev can only be used by a single front end.) 2495For instance you could use this to allow a single stdio chardev to be used by 2496two serial ports and the QEMU monitor: 2497 2498@example 2499-chardev stdio,mux=on,id=char0 \ 2500-mon chardev=char0,mode=readline \ 2501-serial chardev:char0 \ 2502-serial chardev:char0 2503@end example 2504 2505You can have more than one multiplexer in a system configuration; for instance 2506you could have a TCP port multiplexed between UART 0 and UART 1, and stdio 2507multiplexed between the QEMU monitor and a parallel port: 2508 2509@example 2510-chardev stdio,mux=on,id=char0 \ 2511-mon chardev=char0,mode=readline \ 2512-parallel chardev:char0 \ 2513-chardev tcp,...,mux=on,id=char1 \ 2514-serial chardev:char1 \ 2515-serial chardev:char1 2516@end example 2517 2518When you're using a multiplexed character device, some escape sequences are 2519interpreted in the input. @xref{mux_keys, Keys in the character backend 2520multiplexer}. 2521 2522Note that some other command line options may implicitly create multiplexed 2523character backends; for instance @option{-serial mon:stdio} creates a 2524multiplexed stdio backend connected to the serial port and the QEMU monitor, 2525and @option{-nographic} also multiplexes the console and the monitor to 2526stdio. 2527 2528There is currently no support for multiplexing in the other direction 2529(where a single QEMU front end takes input and output from multiple chardevs). 2530 2531Every backend supports the @option{logfile} option, which supplies the path 2532to a file to record all data transmitted via the backend. The @option{logappend} 2533option controls whether the log file will be truncated or appended to when 2534opened. 2535 2536@end table 2537 2538The available backends are: 2539 2540@table @option 2541@item -chardev null,id=@var{id} 2542A void device. This device will not emit any data, and will drop any data it 2543receives. The null backend does not take any options. 2544 2545@item -chardev socket,id=@var{id}[,@var{TCP options} or @var{unix options}][,server][,nowait][,telnet][,websocket][,reconnect=@var{seconds}][,tls-creds=@var{id}] 2546 2547Create a two-way stream socket, which can be either a TCP or a unix socket. A 2548unix socket will be created if @option{path} is specified. Behaviour is 2549undefined if TCP options are specified for a unix socket. 2550 2551@option{server} specifies that the socket shall be a listening socket. 2552 2553@option{nowait} specifies that QEMU should not block waiting for a client to 2554connect to a listening socket. 2555 2556@option{telnet} specifies that traffic on the socket should interpret telnet 2557escape sequences. 2558 2559@option{websocket} specifies that the socket uses WebSocket protocol for 2560communication. 2561 2562@option{reconnect} sets the timeout for reconnecting on non-server sockets when 2563the remote end goes away. qemu will delay this many seconds and then attempt 2564to reconnect. Zero disables reconnecting, and is the default. 2565 2566@option{tls-creds} requests enablement of the TLS protocol for encryption, 2567and specifies the id of the TLS credentials to use for the handshake. The 2568credentials must be previously created with the @option{-object tls-creds} 2569argument. 2570 2571TCP and unix socket options are given below: 2572 2573@table @option 2574 2575@item TCP options: port=@var{port}[,host=@var{host}][,to=@var{to}][,ipv4][,ipv6][,nodelay] 2576 2577@option{host} for a listening socket specifies the local address to be bound. 2578For a connecting socket species the remote host to connect to. @option{host} is 2579optional for listening sockets. If not specified it defaults to @code{0.0.0.0}. 2580 2581@option{port} for a listening socket specifies the local port to be bound. For a 2582connecting socket specifies the port on the remote host to connect to. 2583@option{port} can be given as either a port number or a service name. 2584@option{port} is required. 2585 2586@option{to} is only relevant to listening sockets. If it is specified, and 2587@option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up 2588to and including @option{to} until it succeeds. @option{to} must be specified 2589as a port number. 2590 2591@option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used. 2592If neither is specified the socket may use either protocol. 2593 2594@option{nodelay} disables the Nagle algorithm. 2595 2596@item unix options: path=@var{path} 2597 2598@option{path} specifies the local path of the unix socket. @option{path} is 2599required. 2600 2601@end table 2602 2603@item -chardev udp,id=@var{id}[,host=@var{host}],port=@var{port}[,localaddr=@var{localaddr}][,localport=@var{localport}][,ipv4][,ipv6] 2604 2605Sends all traffic from the guest to a remote host over UDP. 2606 2607@option{host} specifies the remote host to connect to. If not specified it 2608defaults to @code{localhost}. 2609 2610@option{port} specifies the port on the remote host to connect to. @option{port} 2611is required. 2612 2613@option{localaddr} specifies the local address to bind to. If not specified it 2614defaults to @code{0.0.0.0}. 2615 2616@option{localport} specifies the local port to bind to. If not specified any 2617available local port will be used. 2618 2619@option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used. 2620If neither is specified the device may use either protocol. 2621 2622@item -chardev msmouse,id=@var{id} 2623 2624Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not 2625take any options. 2626 2627@item -chardev vc,id=@var{id}[[,width=@var{width}][,height=@var{height}]][[,cols=@var{cols}][,rows=@var{rows}]] 2628 2629Connect to a QEMU text console. @option{vc} may optionally be given a specific 2630size. 2631 2632@option{width} and @option{height} specify the width and height respectively of 2633the console, in pixels. 2634 2635@option{cols} and @option{rows} specify that the console be sized to fit a text 2636console with the given dimensions. 2637 2638@item -chardev ringbuf,id=@var{id}[,size=@var{size}] 2639 2640Create a ring buffer with fixed size @option{size}. 2641@var{size} must be a power of two and defaults to @code{64K}. 2642 2643@item -chardev file,id=@var{id},path=@var{path} 2644 2645Log all traffic received from the guest to a file. 2646 2647@option{path} specifies the path of the file to be opened. This file will be 2648created if it does not already exist, and overwritten if it does. @option{path} 2649is required. 2650 2651@item -chardev pipe,id=@var{id},path=@var{path} 2652 2653Create a two-way connection to the guest. The behaviour differs slightly between 2654Windows hosts and other hosts: 2655 2656On Windows, a single duplex pipe will be created at 2657@file{\\.pipe\@option{path}}. 2658 2659On other hosts, 2 pipes will be created called @file{@option{path}.in} and 2660@file{@option{path}.out}. Data written to @file{@option{path}.in} will be 2661received by the guest. Data written by the guest can be read from 2662@file{@option{path}.out}. QEMU will not create these fifos, and requires them to 2663be present. 2664 2665@option{path} forms part of the pipe path as described above. @option{path} is 2666required. 2667 2668@item -chardev console,id=@var{id} 2669 2670Send traffic from the guest to QEMU's standard output. @option{console} does not 2671take any options. 2672 2673@option{console} is only available on Windows hosts. 2674 2675@item -chardev serial,id=@var{id},path=@option{path} 2676 2677Send traffic from the guest to a serial device on the host. 2678 2679On Unix hosts serial will actually accept any tty device, 2680not only serial lines. 2681 2682@option{path} specifies the name of the serial device to open. 2683 2684@item -chardev pty,id=@var{id} 2685 2686Create a new pseudo-terminal on the host and connect to it. @option{pty} does 2687not take any options. 2688 2689@option{pty} is not available on Windows hosts. 2690 2691@item -chardev stdio,id=@var{id}[,signal=on|off] 2692Connect to standard input and standard output of the QEMU process. 2693 2694@option{signal} controls if signals are enabled on the terminal, that includes 2695exiting QEMU with the key sequence @key{Control-c}. This option is enabled by 2696default, use @option{signal=off} to disable it. 2697 2698@item -chardev braille,id=@var{id} 2699 2700Connect to a local BrlAPI server. @option{braille} does not take any options. 2701 2702@item -chardev tty,id=@var{id},path=@var{path} 2703 2704@option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and 2705DragonFlyBSD hosts. It is an alias for @option{serial}. 2706 2707@option{path} specifies the path to the tty. @option{path} is required. 2708 2709@item -chardev parallel,id=@var{id},path=@var{path} 2710@itemx -chardev parport,id=@var{id},path=@var{path} 2711 2712@option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts. 2713 2714Connect to a local parallel port. 2715 2716@option{path} specifies the path to the parallel port device. @option{path} is 2717required. 2718 2719@item -chardev spicevmc,id=@var{id},debug=@var{debug},name=@var{name} 2720 2721@option{spicevmc} is only available when spice support is built in. 2722 2723@option{debug} debug level for spicevmc 2724 2725@option{name} name of spice channel to connect to 2726 2727Connect to a spice virtual machine channel, such as vdiport. 2728 2729@item -chardev spiceport,id=@var{id},debug=@var{debug},name=@var{name} 2730 2731@option{spiceport} is only available when spice support is built in. 2732 2733@option{debug} debug level for spicevmc 2734 2735@option{name} name of spice port to connect to 2736 2737Connect to a spice port, allowing a Spice client to handle the traffic 2738identified by a name (preferably a fqdn). 2739ETEXI 2740 2741STEXI 2742@end table 2743ETEXI 2744DEFHEADING() 2745 2746DEFHEADING(Bluetooth(R) options:) 2747STEXI 2748@table @option 2749ETEXI 2750 2751DEF("bt", HAS_ARG, QEMU_OPTION_bt, \ 2752 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \ 2753 "-bt hci,host[:id]\n" \ 2754 " use host's HCI with the given name\n" \ 2755 "-bt hci[,vlan=n]\n" \ 2756 " emulate a standard HCI in virtual scatternet 'n'\n" \ 2757 "-bt vhci[,vlan=n]\n" \ 2758 " add host computer to virtual scatternet 'n' using VHCI\n" \ 2759 "-bt device:dev[,vlan=n]\n" \ 2760 " emulate a bluetooth device 'dev' in scatternet 'n'\n", 2761 QEMU_ARCH_ALL) 2762STEXI 2763@item -bt hci[...] 2764@findex -bt 2765Defines the function of the corresponding Bluetooth HCI. -bt options 2766are matched with the HCIs present in the chosen machine type. For 2767example when emulating a machine with only one HCI built into it, only 2768the first @code{-bt hci[...]} option is valid and defines the HCI's 2769logic. The Transport Layer is decided by the machine type. Currently 2770the machines @code{n800} and @code{n810} have one HCI and all other 2771machines have none. 2772 2773Note: This option and the whole bluetooth subsystem is considered as deprecated. 2774If you still use it, please send a mail to @email{qemu-devel@@nongnu.org} where 2775you describe your usecase. 2776 2777@anchor{bt-hcis} 2778The following three types are recognized: 2779 2780@table @option 2781@item -bt hci,null 2782(default) The corresponding Bluetooth HCI assumes no internal logic 2783and will not respond to any HCI commands or emit events. 2784 2785@item -bt hci,host[:@var{id}] 2786(@code{bluez} only) The corresponding HCI passes commands / events 2787to / from the physical HCI identified by the name @var{id} (default: 2788@code{hci0}) on the computer running QEMU. Only available on @code{bluez} 2789capable systems like Linux. 2790 2791@item -bt hci[,vlan=@var{n}] 2792Add a virtual, standard HCI that will participate in the Bluetooth 2793scatternet @var{n} (default @code{0}). Similarly to @option{-net} 2794VLANs, devices inside a bluetooth network @var{n} can only communicate 2795with other devices in the same network (scatternet). 2796@end table 2797 2798@item -bt vhci[,vlan=@var{n}] 2799(Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached 2800to the host bluetooth stack instead of to the emulated target. This 2801allows the host and target machines to participate in a common scatternet 2802and communicate. Requires the Linux @code{vhci} driver installed. Can 2803be used as following: 2804 2805@example 2806qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5 2807@end example 2808 2809@item -bt device:@var{dev}[,vlan=@var{n}] 2810Emulate a bluetooth device @var{dev} and place it in network @var{n} 2811(default @code{0}). QEMU can only emulate one type of bluetooth devices 2812currently: 2813 2814@table @option 2815@item keyboard 2816Virtual wireless keyboard implementing the HIDP bluetooth profile. 2817@end table 2818ETEXI 2819 2820STEXI 2821@end table 2822ETEXI 2823DEFHEADING() 2824 2825#ifdef CONFIG_TPM 2826DEFHEADING(TPM device options:) 2827 2828DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \ 2829 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n" 2830 " use path to provide path to a character device; default is /dev/tpm0\n" 2831 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n" 2832 " not provided it will be searched for in /sys/class/misc/tpm?/device\n" 2833 "-tpmdev emulator,id=id,chardev=dev\n" 2834 " configure the TPM device using chardev backend\n", 2835 QEMU_ARCH_ALL) 2836STEXI 2837 2838The general form of a TPM device option is: 2839@table @option 2840 2841@item -tpmdev @var{backend},id=@var{id}[,@var{options}] 2842@findex -tpmdev 2843 2844The specific backend type will determine the applicable options. 2845The @code{-tpmdev} option creates the TPM backend and requires a 2846@code{-device} option that specifies the TPM frontend interface model. 2847 2848Use @code{-tpmdev help} to print all available TPM backend types. 2849 2850@end table 2851 2852The available backends are: 2853 2854@table @option 2855 2856@item -tpmdev passthrough,id=@var{id},path=@var{path},cancel-path=@var{cancel-path} 2857 2858(Linux-host only) Enable access to the host's TPM using the passthrough 2859driver. 2860 2861@option{path} specifies the path to the host's TPM device, i.e., on 2862a Linux host this would be @code{/dev/tpm0}. 2863@option{path} is optional and by default @code{/dev/tpm0} is used. 2864 2865@option{cancel-path} specifies the path to the host TPM device's sysfs 2866entry allowing for cancellation of an ongoing TPM command. 2867@option{cancel-path} is optional and by default QEMU will search for the 2868sysfs entry to use. 2869 2870Some notes about using the host's TPM with the passthrough driver: 2871 2872The TPM device accessed by the passthrough driver must not be 2873used by any other application on the host. 2874 2875Since the host's firmware (BIOS/UEFI) has already initialized the TPM, 2876the VM's firmware (BIOS/UEFI) will not be able to initialize the 2877TPM again and may therefore not show a TPM-specific menu that would 2878otherwise allow the user to configure the TPM, e.g., allow the user to 2879enable/disable or activate/deactivate the TPM. 2880Further, if TPM ownership is released from within a VM then the host's TPM 2881will get disabled and deactivated. To enable and activate the 2882TPM again afterwards, the host has to be rebooted and the user is 2883required to enter the firmware's menu to enable and activate the TPM. 2884If the TPM is left disabled and/or deactivated most TPM commands will fail. 2885 2886To create a passthrough TPM use the following two options: 2887@example 2888-tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0 2889@end example 2890Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by 2891@code{tpmdev=tpm0} in the device option. 2892 2893@item -tpmdev emulator,id=@var{id},chardev=@var{dev} 2894 2895(Linux-host only) Enable access to a TPM emulator using Unix domain socket based 2896chardev backend. 2897 2898@option{chardev} specifies the unique ID of a character device backend that provides connection to the software TPM server. 2899 2900To create a TPM emulator backend device with chardev socket backend: 2901@example 2902 2903-chardev socket,id=chrtpm,path=/tmp/swtpm-sock -tpmdev emulator,id=tpm0,chardev=chrtpm -device tpm-tis,tpmdev=tpm0 2904 2905@end example 2906 2907ETEXI 2908 2909STEXI 2910@end table 2911ETEXI 2912DEFHEADING() 2913 2914#endif 2915 2916DEFHEADING(Linux/Multiboot boot specific:) 2917STEXI 2918 2919When using these options, you can use a given Linux or Multiboot 2920kernel without installing it in the disk image. It can be useful 2921for easier testing of various kernels. 2922 2923@table @option 2924ETEXI 2925 2926DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \ 2927 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL) 2928STEXI 2929@item -kernel @var{bzImage} 2930@findex -kernel 2931Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel 2932or in multiboot format. 2933ETEXI 2934 2935DEF("append", HAS_ARG, QEMU_OPTION_append, \ 2936 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL) 2937STEXI 2938@item -append @var{cmdline} 2939@findex -append 2940Use @var{cmdline} as kernel command line 2941ETEXI 2942 2943DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \ 2944 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL) 2945STEXI 2946@item -initrd @var{file} 2947@findex -initrd 2948Use @var{file} as initial ram disk. 2949 2950@item -initrd "@var{file1} arg=foo,@var{file2}" 2951 2952This syntax is only available with multiboot. 2953 2954Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the 2955first module. 2956ETEXI 2957 2958DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \ 2959 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL) 2960STEXI 2961@item -dtb @var{file} 2962@findex -dtb 2963Use @var{file} as a device tree binary (dtb) image and pass it to the kernel 2964on boot. 2965ETEXI 2966 2967STEXI 2968@end table 2969ETEXI 2970DEFHEADING() 2971 2972DEFHEADING(Debug/Expert options:) 2973STEXI 2974@table @option 2975ETEXI 2976 2977DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg, 2978 "-fw_cfg [name=]<name>,file=<file>\n" 2979 " add named fw_cfg entry with contents from file\n" 2980 "-fw_cfg [name=]<name>,string=<str>\n" 2981 " add named fw_cfg entry with contents from string\n", 2982 QEMU_ARCH_ALL) 2983STEXI 2984 2985@item -fw_cfg [name=]@var{name},file=@var{file} 2986@findex -fw_cfg 2987Add named fw_cfg entry with contents from file @var{file}. 2988 2989@item -fw_cfg [name=]@var{name},string=@var{str} 2990Add named fw_cfg entry with contents from string @var{str}. 2991 2992The terminating NUL character of the contents of @var{str} will not be 2993included as part of the fw_cfg item data. To insert contents with 2994embedded NUL characters, you have to use the @var{file} parameter. 2995 2996The fw_cfg entries are passed by QEMU through to the guest. 2997 2998Example: 2999@example 3000 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin 3001@end example 3002creates an fw_cfg entry named opt/com.mycompany/blob with contents 3003from ./my_blob.bin. 3004 3005ETEXI 3006 3007DEF("serial", HAS_ARG, QEMU_OPTION_serial, \ 3008 "-serial dev redirect the serial port to char device 'dev'\n", 3009 QEMU_ARCH_ALL) 3010STEXI 3011@item -serial @var{dev} 3012@findex -serial 3013Redirect the virtual serial port to host character device 3014@var{dev}. The default device is @code{vc} in graphical mode and 3015@code{stdio} in non graphical mode. 3016 3017This option can be used several times to simulate up to 4 serial 3018ports. 3019 3020Use @code{-serial none} to disable all serial ports. 3021 3022Available character devices are: 3023@table @option 3024@item vc[:@var{W}x@var{H}] 3025Virtual console. Optionally, a width and height can be given in pixel with 3026@example 3027vc:800x600 3028@end example 3029It is also possible to specify width or height in characters: 3030@example 3031vc:80Cx24C 3032@end example 3033@item pty 3034[Linux only] Pseudo TTY (a new PTY is automatically allocated) 3035@item none 3036No device is allocated. 3037@item null 3038void device 3039@item chardev:@var{id} 3040Use a named character device defined with the @code{-chardev} option. 3041@item /dev/XXX 3042[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port 3043parameters are set according to the emulated ones. 3044@item /dev/parport@var{N} 3045[Linux only, parallel port only] Use host parallel port 3046@var{N}. Currently SPP and EPP parallel port features can be used. 3047@item file:@var{filename} 3048Write output to @var{filename}. No character can be read. 3049@item stdio 3050[Unix only] standard input/output 3051@item pipe:@var{filename} 3052name pipe @var{filename} 3053@item COM@var{n} 3054[Windows only] Use host serial port @var{n} 3055@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}] 3056This implements UDP Net Console. 3057When @var{remote_host} or @var{src_ip} are not specified 3058they default to @code{0.0.0.0}. 3059When not using a specified @var{src_port} a random port is automatically chosen. 3060 3061If you just want a simple readonly console you can use @code{netcat} or 3062@code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as: 3063@code{nc -u -l -p 4555}. Any time QEMU writes something to that port it 3064will appear in the netconsole session. 3065 3066If you plan to send characters back via netconsole or you want to stop 3067and start QEMU a lot of times, you should have QEMU use the same 3068source port each time by using something like @code{-serial 3069udp::4555@@:4556} to QEMU. Another approach is to use a patched 3070version of netcat which can listen to a TCP port and send and receive 3071characters via udp. If you have a patched version of netcat which 3072activates telnet remote echo and single char transfer, then you can 3073use the following options to set up a netcat redirector to allow 3074telnet on port 5555 to access the QEMU port. 3075@table @code 3076@item QEMU Options: 3077-serial udp::4555@@:4556 3078@item netcat options: 3079-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T 3080@item telnet options: 3081localhost 5555 3082@end table 3083 3084@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}] 3085The TCP Net Console has two modes of operation. It can send the serial 3086I/O to a location or wait for a connection from a location. By default 3087the TCP Net Console is sent to @var{host} at the @var{port}. If you use 3088the @var{server} option QEMU will wait for a client socket application 3089to connect to the port before continuing, unless the @code{nowait} 3090option was specified. The @code{nodelay} option disables the Nagle buffering 3091algorithm. The @code{reconnect} option only applies if @var{noserver} is 3092set, if the connection goes down it will attempt to reconnect at the 3093given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only 3094one TCP connection at a time is accepted. You can use @code{telnet} to 3095connect to the corresponding character device. 3096@table @code 3097@item Example to send tcp console to 192.168.0.2 port 4444 3098-serial tcp:192.168.0.2:4444 3099@item Example to listen and wait on port 4444 for connection 3100-serial tcp::4444,server 3101@item Example to not wait and listen on ip 192.168.0.100 port 4444 3102-serial tcp:192.168.0.100:4444,server,nowait 3103@end table 3104 3105@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay] 3106The telnet protocol is used instead of raw tcp sockets. The options 3107work the same as if you had specified @code{-serial tcp}. The 3108difference is that the port acts like a telnet server or client using 3109telnet option negotiation. This will also allow you to send the 3110MAGIC_SYSRQ sequence if you use a telnet that supports sending the break 3111sequence. Typically in unix telnet you do it with Control-] and then 3112type "send break" followed by pressing the enter key. 3113 3114@item websocket:@var{host}:@var{port},server[,nowait][,nodelay] 3115The WebSocket protocol is used instead of raw tcp socket. The port acts as 3116a WebSocket server. Client mode is not supported. 3117 3118@item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}] 3119A unix domain socket is used instead of a tcp socket. The option works the 3120same as if you had specified @code{-serial tcp} except the unix domain socket 3121@var{path} is used for connections. 3122 3123@item mon:@var{dev_string} 3124This is a special option to allow the monitor to be multiplexed onto 3125another serial port. The monitor is accessed with key sequence of 3126@key{Control-a} and then pressing @key{c}. 3127@var{dev_string} should be any one of the serial devices specified 3128above. An example to multiplex the monitor onto a telnet server 3129listening on port 4444 would be: 3130@table @code 3131@item -serial mon:telnet::4444,server,nowait 3132@end table 3133When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate 3134QEMU any more but will be passed to the guest instead. 3135 3136@item braille 3137Braille device. This will use BrlAPI to display the braille output on a real 3138or fake device. 3139 3140@item msmouse 3141Three button serial mouse. Configure the guest to use Microsoft protocol. 3142@end table 3143ETEXI 3144 3145DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \ 3146 "-parallel dev redirect the parallel port to char device 'dev'\n", 3147 QEMU_ARCH_ALL) 3148STEXI 3149@item -parallel @var{dev} 3150@findex -parallel 3151Redirect the virtual parallel port to host device @var{dev} (same 3152devices as the serial port). On Linux hosts, @file{/dev/parportN} can 3153be used to use hardware devices connected on the corresponding host 3154parallel port. 3155 3156This option can be used several times to simulate up to 3 parallel 3157ports. 3158 3159Use @code{-parallel none} to disable all parallel ports. 3160ETEXI 3161 3162DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \ 3163 "-monitor dev redirect the monitor to char device 'dev'\n", 3164 QEMU_ARCH_ALL) 3165STEXI 3166@item -monitor @var{dev} 3167@findex -monitor 3168Redirect the monitor to host device @var{dev} (same devices as the 3169serial port). 3170The default device is @code{vc} in graphical mode and @code{stdio} in 3171non graphical mode. 3172Use @code{-monitor none} to disable the default monitor. 3173ETEXI 3174DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \ 3175 "-qmp dev like -monitor but opens in 'control' mode\n", 3176 QEMU_ARCH_ALL) 3177STEXI 3178@item -qmp @var{dev} 3179@findex -qmp 3180Like -monitor but opens in 'control' mode. 3181ETEXI 3182DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \ 3183 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n", 3184 QEMU_ARCH_ALL) 3185STEXI 3186@item -qmp-pretty @var{dev} 3187@findex -qmp-pretty 3188Like -qmp but uses pretty JSON formatting. 3189ETEXI 3190 3191DEF("mon", HAS_ARG, QEMU_OPTION_mon, \ 3192 "-mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]\n", QEMU_ARCH_ALL) 3193STEXI 3194@item -mon [chardev=]name[,mode=readline|control][,pretty[=on|off]] 3195@findex -mon 3196Setup monitor on chardev @var{name}. @code{pretty} turns on JSON pretty printing 3197easing human reading and debugging. 3198ETEXI 3199 3200DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \ 3201 "-debugcon dev redirect the debug console to char device 'dev'\n", 3202 QEMU_ARCH_ALL) 3203STEXI 3204@item -debugcon @var{dev} 3205@findex -debugcon 3206Redirect the debug console to host device @var{dev} (same devices as the 3207serial port). The debug console is an I/O port which is typically port 32080xe9; writing to that I/O port sends output to this device. 3209The default device is @code{vc} in graphical mode and @code{stdio} in 3210non graphical mode. 3211ETEXI 3212 3213DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \ 3214 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL) 3215STEXI 3216@item -pidfile @var{file} 3217@findex -pidfile 3218Store the QEMU process PID in @var{file}. It is useful if you launch QEMU 3219from a script. 3220ETEXI 3221 3222DEF("singlestep", 0, QEMU_OPTION_singlestep, \ 3223 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL) 3224STEXI 3225@item -singlestep 3226@findex -singlestep 3227Run the emulation in single step mode. 3228ETEXI 3229 3230DEF("preconfig", 0, QEMU_OPTION_preconfig, \ 3231 "--preconfig pause QEMU before machine is initialized (experimental)\n", 3232 QEMU_ARCH_ALL) 3233STEXI 3234@item --preconfig 3235@findex --preconfig 3236Pause QEMU for interactive configuration before the machine is created, 3237which allows querying and configuring properties that will affect 3238machine initialization. Use QMP command 'x-exit-preconfig' to exit 3239the preconfig state and move to the next state (i.e. run guest if -S 3240isn't used or pause the second time if -S is used). This option is 3241experimental. 3242ETEXI 3243 3244DEF("S", 0, QEMU_OPTION_S, \ 3245 "-S freeze CPU at startup (use 'c' to start execution)\n", 3246 QEMU_ARCH_ALL) 3247STEXI 3248@item -S 3249@findex -S 3250Do not start CPU at startup (you must type 'c' in the monitor). 3251ETEXI 3252 3253DEF("realtime", HAS_ARG, QEMU_OPTION_realtime, 3254 "-realtime [mlock=on|off]\n" 3255 " run qemu with realtime features\n" 3256 " mlock=on|off controls mlock support (default: on)\n", 3257 QEMU_ARCH_ALL) 3258STEXI 3259@item -realtime mlock=on|off 3260@findex -realtime 3261Run qemu with realtime features. 3262mlocking qemu and guest memory can be enabled via @option{mlock=on} 3263(enabled by default). 3264ETEXI 3265 3266DEF("overcommit", HAS_ARG, QEMU_OPTION_overcommit, 3267 "-overcommit [mem-lock=on|off][cpu-pm=on|off]\n" 3268 " run qemu with overcommit hints\n" 3269 " mem-lock=on|off controls memory lock support (default: off)\n" 3270 " cpu-pm=on|off controls cpu power management (default: off)\n", 3271 QEMU_ARCH_ALL) 3272STEXI 3273@item -overcommit mem-lock=on|off 3274@item -overcommit cpu-pm=on|off 3275@findex -overcommit 3276Run qemu with hints about host resource overcommit. The default is 3277to assume that host overcommits all resources. 3278 3279Locking qemu and guest memory can be enabled via @option{mem-lock=on} (disabled 3280by default). This works when host memory is not overcommitted and reduces the 3281worst-case latency for guest. This is equivalent to @option{realtime}. 3282 3283Guest ability to manage power state of host cpus (increasing latency for other 3284processes on the same host cpu, but decreasing latency for guest) can be 3285enabled via @option{cpu-pm=on} (disabled by default). This works best when 3286host CPU is not overcommitted. When used, host estimates of CPU cycle and power 3287utilization will be incorrect, not taking into account guest idle time. 3288ETEXI 3289 3290DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \ 3291 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL) 3292STEXI 3293@item -gdb @var{dev} 3294@findex -gdb 3295Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical 3296connections will likely be TCP-based, but also UDP, pseudo TTY, or even 3297stdio are reasonable use case. The latter is allowing to start QEMU from 3298within gdb and establish the connection via a pipe: 3299@example 3300(gdb) target remote | exec qemu-system-i386 -gdb stdio ... 3301@end example 3302ETEXI 3303 3304DEF("s", 0, QEMU_OPTION_s, \ 3305 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n", 3306 QEMU_ARCH_ALL) 3307STEXI 3308@item -s 3309@findex -s 3310Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234 3311(@pxref{gdb_usage}). 3312ETEXI 3313 3314DEF("d", HAS_ARG, QEMU_OPTION_d, \ 3315 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n", 3316 QEMU_ARCH_ALL) 3317STEXI 3318@item -d @var{item1}[,...] 3319@findex -d 3320Enable logging of specified items. Use '-d help' for a list of log items. 3321ETEXI 3322 3323DEF("D", HAS_ARG, QEMU_OPTION_D, \ 3324 "-D logfile output log to logfile (default stderr)\n", 3325 QEMU_ARCH_ALL) 3326STEXI 3327@item -D @var{logfile} 3328@findex -D 3329Output log in @var{logfile} instead of to stderr 3330ETEXI 3331 3332DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \ 3333 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n", 3334 QEMU_ARCH_ALL) 3335STEXI 3336@item -dfilter @var{range1}[,...] 3337@findex -dfilter 3338Filter debug output to that relevant to a range of target addresses. The filter 3339spec can be either @var{start}+@var{size}, @var{start}-@var{size} or 3340@var{start}..@var{end} where @var{start} @var{end} and @var{size} are the 3341addresses and sizes required. For example: 3342@example 3343 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000 3344@end example 3345Will dump output for any code in the 0x1000 sized block starting at 0x8000 and 3346the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized 3347block starting at 0xffffffc00005f000. 3348ETEXI 3349 3350DEF("L", HAS_ARG, QEMU_OPTION_L, \ 3351 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n", 3352 QEMU_ARCH_ALL) 3353STEXI 3354@item -L @var{path} 3355@findex -L 3356Set the directory for the BIOS, VGA BIOS and keymaps. 3357 3358To list all the data directories, use @code{-L help}. 3359ETEXI 3360 3361DEF("bios", HAS_ARG, QEMU_OPTION_bios, \ 3362 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL) 3363STEXI 3364@item -bios @var{file} 3365@findex -bios 3366Set the filename for the BIOS. 3367ETEXI 3368 3369DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \ 3370 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL) 3371STEXI 3372@item -enable-kvm 3373@findex -enable-kvm 3374Enable KVM full virtualization support. This option is only available 3375if KVM support is enabled when compiling. 3376ETEXI 3377 3378DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid, 3379 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL) 3380DEF("xen-attach", 0, QEMU_OPTION_xen_attach, 3381 "-xen-attach attach to existing xen domain\n" 3382 " libxl will use this when starting QEMU\n", 3383 QEMU_ARCH_ALL) 3384DEF("xen-domid-restrict", 0, QEMU_OPTION_xen_domid_restrict, 3385 "-xen-domid-restrict restrict set of available xen operations\n" 3386 " to specified domain id. (Does not affect\n" 3387 " xenpv machine type).\n", 3388 QEMU_ARCH_ALL) 3389STEXI 3390@item -xen-domid @var{id} 3391@findex -xen-domid 3392Specify xen guest domain @var{id} (XEN only). 3393@item -xen-attach 3394@findex -xen-attach 3395Attach to existing xen domain. 3396libxl will use this when starting QEMU (XEN only). 3397@findex -xen-domid-restrict 3398Restrict set of available xen operations to specified domain id (XEN only). 3399ETEXI 3400 3401DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \ 3402 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL) 3403STEXI 3404@item -no-reboot 3405@findex -no-reboot 3406Exit instead of rebooting. 3407ETEXI 3408 3409DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \ 3410 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL) 3411STEXI 3412@item -no-shutdown 3413@findex -no-shutdown 3414Don't exit QEMU on guest shutdown, but instead only stop the emulation. 3415This allows for instance switching to monitor to commit changes to the 3416disk image. 3417ETEXI 3418 3419DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \ 3420 "-loadvm [tag|id]\n" \ 3421 " start right away with a saved state (loadvm in monitor)\n", 3422 QEMU_ARCH_ALL) 3423STEXI 3424@item -loadvm @var{file} 3425@findex -loadvm 3426Start right away with a saved state (@code{loadvm} in monitor) 3427ETEXI 3428 3429#ifndef _WIN32 3430DEF("daemonize", 0, QEMU_OPTION_daemonize, \ 3431 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL) 3432#endif 3433STEXI 3434@item -daemonize 3435@findex -daemonize 3436Daemonize the QEMU process after initialization. QEMU will not detach from 3437standard IO until it is ready to receive connections on any of its devices. 3438This option is a useful way for external programs to launch QEMU without having 3439to cope with initialization race conditions. 3440ETEXI 3441 3442DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \ 3443 "-option-rom rom load a file, rom, into the option ROM space\n", 3444 QEMU_ARCH_ALL) 3445STEXI 3446@item -option-rom @var{file} 3447@findex -option-rom 3448Load the contents of @var{file} as an option ROM. 3449This option is useful to load things like EtherBoot. 3450ETEXI 3451 3452DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \ 3453 "-rtc [base=utc|localtime|<datetime>][,clock=host|rt|vm][,driftfix=none|slew]\n" \ 3454 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n", 3455 QEMU_ARCH_ALL) 3456 3457STEXI 3458 3459@item -rtc [base=utc|localtime|@var{datetime}][,clock=host|rt|vm][,driftfix=none|slew] 3460@findex -rtc 3461Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current 3462UTC or local time, respectively. @code{localtime} is required for correct date in 3463MS-DOS or Windows. To start at a specific point in time, provide @var{datetime} in the 3464format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC. 3465 3466By default the RTC is driven by the host system time. This allows using of the 3467RTC as accurate reference clock inside the guest, specifically if the host 3468time is smoothly following an accurate external reference clock, e.g. via NTP. 3469If you want to isolate the guest time from the host, you can set @option{clock} 3470to @code{rt} instead, which provides a host monotonic clock if host support it. 3471To even prevent the RTC from progressing during suspension, you can set @option{clock} 3472to @code{vm} (virtual clock). @samp{clock=vm} is recommended especially in 3473icount mode in order to preserve determinism; however, note that in icount mode 3474the speed of the virtual clock is variable and can in general differ from the 3475host clock. 3476 3477Enable @option{driftfix} (i386 targets only) if you experience time drift problems, 3478specifically with Windows' ACPI HAL. This option will try to figure out how 3479many timer interrupts were not processed by the Windows guest and will 3480re-inject them. 3481ETEXI 3482 3483DEF("icount", HAS_ARG, QEMU_OPTION_icount, \ 3484 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>,rrsnapshot=<snapshot>]\n" \ 3485 " enable virtual instruction counter with 2^N clock ticks per\n" \ 3486 " instruction, enable aligning the host and virtual clocks\n" \ 3487 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL) 3488STEXI 3489@item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename},rrsnapshot=@var{snapshot}] 3490@findex -icount 3491Enable virtual instruction counter. The virtual cpu will execute one 3492instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified 3493then the virtual cpu speed will be automatically adjusted to keep virtual 3494time within a few seconds of real time. 3495 3496When the virtual cpu is sleeping, the virtual time will advance at default 3497speed unless @option{sleep=on|off} is specified. 3498With @option{sleep=on|off}, the virtual time will jump to the next timer deadline 3499instantly whenever the virtual cpu goes to sleep mode and will not advance 3500if no timer is enabled. This behavior give deterministic execution times from 3501the guest point of view. 3502 3503Note that while this option can give deterministic behavior, it does not 3504provide cycle accurate emulation. Modern CPUs contain superscalar out of 3505order cores with complex cache hierarchies. The number of instructions 3506executed often has little or no correlation with actual performance. 3507 3508@option{align=on} will activate the delay algorithm which will try 3509to synchronise the host clock and the virtual clock. The goal is to 3510have a guest running at the real frequency imposed by the shift option. 3511Whenever the guest clock is behind the host clock and if 3512@option{align=on} is specified then we print a message to the user 3513to inform about the delay. 3514Currently this option does not work when @option{shift} is @code{auto}. 3515Note: The sync algorithm will work for those shift values for which 3516the guest clock runs ahead of the host clock. Typically this happens 3517when the shift value is high (how high depends on the host machine). 3518 3519When @option{rr} option is specified deterministic record/replay is enabled. 3520Replay log is written into @var{filename} file in record mode and 3521read from this file in replay mode. 3522 3523Option rrsnapshot is used to create new vm snapshot named @var{snapshot} 3524at the start of execution recording. In replay mode this option is used 3525to load the initial VM state. 3526ETEXI 3527 3528DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \ 3529 "-watchdog model\n" \ 3530 " enable virtual hardware watchdog [default=none]\n", 3531 QEMU_ARCH_ALL) 3532STEXI 3533@item -watchdog @var{model} 3534@findex -watchdog 3535Create a virtual hardware watchdog device. Once enabled (by a guest 3536action), the watchdog must be periodically polled by an agent inside 3537the guest or else the guest will be restarted. Choose a model for 3538which your guest has drivers. 3539 3540The @var{model} is the model of hardware watchdog to emulate. Use 3541@code{-watchdog help} to list available hardware models. Only one 3542watchdog can be enabled for a guest. 3543 3544The following models may be available: 3545@table @option 3546@item ib700 3547iBASE 700 is a very simple ISA watchdog with a single timer. 3548@item i6300esb 3549Intel 6300ESB I/O controller hub is a much more featureful PCI-based 3550dual-timer watchdog. 3551@item diag288 3552A virtual watchdog for s390x backed by the diagnose 288 hypercall 3553(currently KVM only). 3554@end table 3555ETEXI 3556 3557DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \ 3558 "-watchdog-action reset|shutdown|poweroff|inject-nmi|pause|debug|none\n" \ 3559 " action when watchdog fires [default=reset]\n", 3560 QEMU_ARCH_ALL) 3561STEXI 3562@item -watchdog-action @var{action} 3563@findex -watchdog-action 3564 3565The @var{action} controls what QEMU will do when the watchdog timer 3566expires. 3567The default is 3568@code{reset} (forcefully reset the guest). 3569Other possible actions are: 3570@code{shutdown} (attempt to gracefully shutdown the guest), 3571@code{poweroff} (forcefully poweroff the guest), 3572@code{inject-nmi} (inject a NMI into the guest), 3573@code{pause} (pause the guest), 3574@code{debug} (print a debug message and continue), or 3575@code{none} (do nothing). 3576 3577Note that the @code{shutdown} action requires that the guest responds 3578to ACPI signals, which it may not be able to do in the sort of 3579situations where the watchdog would have expired, and thus 3580@code{-watchdog-action shutdown} is not recommended for production use. 3581 3582Examples: 3583 3584@table @code 3585@item -watchdog i6300esb -watchdog-action pause 3586@itemx -watchdog ib700 3587@end table 3588ETEXI 3589 3590DEF("echr", HAS_ARG, QEMU_OPTION_echr, \ 3591 "-echr chr set terminal escape character instead of ctrl-a\n", 3592 QEMU_ARCH_ALL) 3593STEXI 3594 3595@item -echr @var{numeric_ascii_value} 3596@findex -echr 3597Change the escape character used for switching to the monitor when using 3598monitor and serial sharing. The default is @code{0x01} when using the 3599@code{-nographic} option. @code{0x01} is equal to pressing 3600@code{Control-a}. You can select a different character from the ascii 3601control keys where 1 through 26 map to Control-a through Control-z. For 3602instance you could use the either of the following to change the escape 3603character to Control-t. 3604@table @code 3605@item -echr 0x14 3606@itemx -echr 20 3607@end table 3608ETEXI 3609 3610DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \ 3611 "-show-cursor show cursor\n", QEMU_ARCH_ALL) 3612STEXI 3613@item -show-cursor 3614@findex -show-cursor 3615Show cursor. 3616ETEXI 3617 3618DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \ 3619 "-tb-size n set TB size\n", QEMU_ARCH_ALL) 3620STEXI 3621@item -tb-size @var{n} 3622@findex -tb-size 3623Set TB size. 3624ETEXI 3625 3626DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \ 3627 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \ 3628 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \ 3629 "-incoming unix:socketpath\n" \ 3630 " prepare for incoming migration, listen on\n" \ 3631 " specified protocol and socket address\n" \ 3632 "-incoming fd:fd\n" \ 3633 "-incoming exec:cmdline\n" \ 3634 " accept incoming migration on given file descriptor\n" \ 3635 " or from given external command\n" \ 3636 "-incoming defer\n" \ 3637 " wait for the URI to be specified via migrate_incoming\n", 3638 QEMU_ARCH_ALL) 3639STEXI 3640@item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6] 3641@itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6] 3642@findex -incoming 3643Prepare for incoming migration, listen on a given tcp port. 3644 3645@item -incoming unix:@var{socketpath} 3646Prepare for incoming migration, listen on a given unix socket. 3647 3648@item -incoming fd:@var{fd} 3649Accept incoming migration from a given filedescriptor. 3650 3651@item -incoming exec:@var{cmdline} 3652Accept incoming migration as an output from specified external command. 3653 3654@item -incoming defer 3655Wait for the URI to be specified via migrate_incoming. The monitor can 3656be used to change settings (such as migration parameters) prior to issuing 3657the migrate_incoming to allow the migration to begin. 3658ETEXI 3659 3660DEF("only-migratable", 0, QEMU_OPTION_only_migratable, \ 3661 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL) 3662STEXI 3663@item -only-migratable 3664@findex -only-migratable 3665Only allow migratable devices. Devices will not be allowed to enter an 3666unmigratable state. 3667ETEXI 3668 3669DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \ 3670 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL) 3671STEXI 3672@item -nodefaults 3673@findex -nodefaults 3674Don't create default devices. Normally, QEMU sets the default devices like serial 3675port, parallel port, virtual console, monitor device, VGA adapter, floppy and 3676CD-ROM drive and others. The @code{-nodefaults} option will disable all those 3677default devices. 3678ETEXI 3679 3680#ifndef _WIN32 3681DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \ 3682 "-chroot dir chroot to dir just before starting the VM\n", 3683 QEMU_ARCH_ALL) 3684#endif 3685STEXI 3686@item -chroot @var{dir} 3687@findex -chroot 3688Immediately before starting guest execution, chroot to the specified 3689directory. Especially useful in combination with -runas. 3690ETEXI 3691 3692#ifndef _WIN32 3693DEF("runas", HAS_ARG, QEMU_OPTION_runas, \ 3694 "-runas user change to user id user just before starting the VM\n" \ 3695 " user can be numeric uid:gid instead\n", 3696 QEMU_ARCH_ALL) 3697#endif 3698STEXI 3699@item -runas @var{user} 3700@findex -runas 3701Immediately before starting guest execution, drop root privileges, switching 3702to the specified user. 3703ETEXI 3704 3705DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env, 3706 "-prom-env variable=value\n" 3707 " set OpenBIOS nvram variables\n", 3708 QEMU_ARCH_PPC | QEMU_ARCH_SPARC) 3709STEXI 3710@item -prom-env @var{variable}=@var{value} 3711@findex -prom-env 3712Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only). 3713ETEXI 3714DEF("semihosting", 0, QEMU_OPTION_semihosting, 3715 "-semihosting semihosting mode\n", 3716 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 | 3717 QEMU_ARCH_MIPS) 3718STEXI 3719@item -semihosting 3720@findex -semihosting 3721Enable semihosting mode (ARM, M68K, Xtensa, MIPS only). 3722ETEXI 3723DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config, 3724 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]\n" \ 3725 " semihosting configuration\n", 3726QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 | 3727QEMU_ARCH_MIPS) 3728STEXI 3729@item -semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]] 3730@findex -semihosting-config 3731Enable and configure semihosting (ARM, M68K, Xtensa, MIPS only). 3732@table @option 3733@item target=@code{native|gdb|auto} 3734Defines where the semihosting calls will be addressed, to QEMU (@code{native}) 3735or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb} 3736during debug sessions and @code{native} otherwise. 3737@item arg=@var{str1},arg=@var{str2},... 3738Allows the user to pass input arguments, and can be used multiple times to build 3739up a list. The old-style @code{-kernel}/@code{-append} method of passing a 3740command line is still supported for backward compatibility. If both the 3741@code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are 3742specified, the former is passed to semihosting as it always takes precedence. 3743@end table 3744ETEXI 3745DEF("old-param", 0, QEMU_OPTION_old_param, 3746 "-old-param old param mode\n", QEMU_ARCH_ARM) 3747STEXI 3748@item -old-param 3749@findex -old-param (ARM) 3750Old param mode (ARM only). 3751ETEXI 3752 3753DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \ 3754 "-sandbox on[,obsolete=allow|deny][,elevateprivileges=allow|deny|children]\n" \ 3755 " [,spawn=allow|deny][,resourcecontrol=allow|deny]\n" \ 3756 " Enable seccomp mode 2 system call filter (default 'off').\n" \ 3757 " use 'obsolete' to allow obsolete system calls that are provided\n" \ 3758 " by the kernel, but typically no longer used by modern\n" \ 3759 " C library implementations.\n" \ 3760 " use 'elevateprivileges' to allow or deny QEMU process to elevate\n" \ 3761 " its privileges by blacklisting all set*uid|gid system calls.\n" \ 3762 " The value 'children' will deny set*uid|gid system calls for\n" \ 3763 " main QEMU process but will allow forks and execves to run unprivileged\n" \ 3764 " use 'spawn' to avoid QEMU to spawn new threads or processes by\n" \ 3765 " blacklisting *fork and execve\n" \ 3766 " use 'resourcecontrol' to disable process affinity and schedular priority\n", 3767 QEMU_ARCH_ALL) 3768STEXI 3769@item -sandbox @var{arg}[,obsolete=@var{string}][,elevateprivileges=@var{string}][,spawn=@var{string}][,resourcecontrol=@var{string}] 3770@findex -sandbox 3771Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will 3772disable it. The default is 'off'. 3773@table @option 3774@item obsolete=@var{string} 3775Enable Obsolete system calls 3776@item elevateprivileges=@var{string} 3777Disable set*uid|gid system calls 3778@item spawn=@var{string} 3779Disable *fork and execve 3780@item resourcecontrol=@var{string} 3781Disable process affinity and schedular priority 3782@end table 3783ETEXI 3784 3785DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig, 3786 "-readconfig <file>\n", QEMU_ARCH_ALL) 3787STEXI 3788@item -readconfig @var{file} 3789@findex -readconfig 3790Read device configuration from @var{file}. This approach is useful when you want to spawn 3791QEMU process with many command line options but you don't want to exceed the command line 3792character limit. 3793ETEXI 3794DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig, 3795 "-writeconfig <file>\n" 3796 " read/write config file\n", QEMU_ARCH_ALL) 3797STEXI 3798@item -writeconfig @var{file} 3799@findex -writeconfig 3800Write device configuration to @var{file}. The @var{file} can be either filename to save 3801command line and device configuration into file or dash @code{-}) character to print the 3802output to stdout. This can be later used as input file for @code{-readconfig} option. 3803ETEXI 3804 3805DEF("no-user-config", 0, QEMU_OPTION_nouserconfig, 3806 "-no-user-config\n" 3807 " do not load default user-provided config files at startup\n", 3808 QEMU_ARCH_ALL) 3809STEXI 3810@item -no-user-config 3811@findex -no-user-config 3812The @code{-no-user-config} option makes QEMU not load any of the user-provided 3813config files on @var{sysconfdir}. 3814ETEXI 3815 3816DEF("trace", HAS_ARG, QEMU_OPTION_trace, 3817 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n" 3818 " specify tracing options\n", 3819 QEMU_ARCH_ALL) 3820STEXI 3821HXCOMM This line is not accurate, as some sub-options are backend-specific but 3822HXCOMM HX does not support conditional compilation of text. 3823@item -trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}] 3824@findex -trace 3825@include qemu-option-trace.texi 3826ETEXI 3827 3828HXCOMM Internal use 3829DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL) 3830DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL) 3831 3832#ifdef __linux__ 3833DEF("enable-fips", 0, QEMU_OPTION_enablefips, 3834 "-enable-fips enable FIPS 140-2 compliance\n", 3835 QEMU_ARCH_ALL) 3836#endif 3837STEXI 3838@item -enable-fips 3839@findex -enable-fips 3840Enable FIPS 140-2 compliance mode. 3841ETEXI 3842 3843HXCOMM Deprecated by -machine accel=tcg property 3844DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386) 3845 3846DEF("msg", HAS_ARG, QEMU_OPTION_msg, 3847 "-msg timestamp[=on|off]\n" 3848 " change the format of messages\n" 3849 " on|off controls leading timestamps (default:on)\n", 3850 QEMU_ARCH_ALL) 3851STEXI 3852@item -msg timestamp[=on|off] 3853@findex -msg 3854prepend a timestamp to each log message.(default:on) 3855ETEXI 3856 3857DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate, 3858 "-dump-vmstate <file>\n" 3859 " Output vmstate information in JSON format to file.\n" 3860 " Use the scripts/vmstate-static-checker.py file to\n" 3861 " check for possible regressions in migration code\n" 3862 " by comparing two such vmstate dumps.\n", 3863 QEMU_ARCH_ALL) 3864STEXI 3865@item -dump-vmstate @var{file} 3866@findex -dump-vmstate 3867Dump json-encoded vmstate information for current machine type to file 3868in @var{file} 3869ETEXI 3870 3871DEF("enable-sync-profile", 0, QEMU_OPTION_enable_sync_profile, 3872 "-enable-sync-profile\n" 3873 " enable synchronization profiling\n", 3874 QEMU_ARCH_ALL) 3875STEXI 3876@item -enable-sync-profile 3877@findex -enable-sync-profile 3878Enable synchronization profiling. 3879ETEXI 3880 3881STEXI 3882@end table 3883ETEXI 3884DEFHEADING() 3885 3886DEFHEADING(Generic object creation:) 3887STEXI 3888@table @option 3889ETEXI 3890 3891DEF("object", HAS_ARG, QEMU_OPTION_object, 3892 "-object TYPENAME[,PROP1=VALUE1,...]\n" 3893 " create a new object of type TYPENAME setting properties\n" 3894 " in the order they are specified. Note that the 'id'\n" 3895 " property must be set. These objects are placed in the\n" 3896 " '/objects' path.\n", 3897 QEMU_ARCH_ALL) 3898STEXI 3899@item -object @var{typename}[,@var{prop1}=@var{value1},...] 3900@findex -object 3901Create a new object of type @var{typename} setting properties 3902in the order they are specified. Note that the 'id' 3903property must be set. These objects are placed in the 3904'/objects' path. 3905 3906@table @option 3907 3908@item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off},discard-data=@var{on|off},merge=@var{on|off},dump=@var{on|off},prealloc=@var{on|off},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave},align=@var{align} 3909 3910Creates a memory file backend object, which can be used to back 3911the guest RAM with huge pages. 3912 3913The @option{id} parameter is a unique ID that will be used to reference this 3914memory region when configuring the @option{-numa} argument. 3915 3916The @option{size} option provides the size of the memory region, and accepts 3917common suffixes, eg @option{500M}. 3918 3919The @option{mem-path} provides the path to either a shared memory or huge page 3920filesystem mount. 3921 3922The @option{share} boolean option determines whether the memory 3923region is marked as private to QEMU, or shared. The latter allows 3924a co-operating external process to access the QEMU memory region. 3925 3926The @option{share} is also required for pvrdma devices due to 3927limitations in the RDMA API provided by Linux. 3928 3929Setting share=on might affect the ability to configure NUMA 3930bindings for the memory backend under some circumstances, see 3931Documentation/vm/numa_memory_policy.txt on the Linux kernel 3932source tree for additional details. 3933 3934Setting the @option{discard-data} boolean option to @var{on} 3935indicates that file contents can be destroyed when QEMU exits, 3936to avoid unnecessarily flushing data to the backing file. Note 3937that @option{discard-data} is only an optimization, and QEMU 3938might not discard file contents if it aborts unexpectedly or is 3939terminated using SIGKILL. 3940 3941The @option{merge} boolean option enables memory merge, also known as 3942MADV_MERGEABLE, so that Kernel Samepage Merging will consider the pages for 3943memory deduplication. 3944 3945Setting the @option{dump} boolean option to @var{off} excludes the memory from 3946core dumps. This feature is also known as MADV_DONTDUMP. 3947 3948The @option{prealloc} boolean option enables memory preallocation. 3949 3950The @option{host-nodes} option binds the memory range to a list of NUMA host 3951nodes. 3952 3953The @option{policy} option sets the NUMA policy to one of the following values: 3954 3955@table @option 3956@item @var{default} 3957default host policy 3958 3959@item @var{preferred} 3960prefer the given host node list for allocation 3961 3962@item @var{bind} 3963restrict memory allocation to the given host node list 3964 3965@item @var{interleave} 3966interleave memory allocations across the given host node list 3967@end table 3968 3969The @option{align} option specifies the base address alignment when 3970QEMU mmap(2) @option{mem-path}, and accepts common suffixes, eg 3971@option{2M}. Some backend store specified by @option{mem-path} 3972requires an alignment different than the default one used by QEMU, eg 3973the device DAX /dev/dax0.0 requires 2M alignment rather than 4K. In 3974such cases, users can specify the required alignment via this option. 3975 3976The @option{pmem} option specifies whether the backing file specified 3977by @option{mem-path} is in host persistent memory that can be accessed 3978using the SNIA NVM programming model (e.g. Intel NVDIMM). 3979If @option{pmem} is set to 'on', QEMU will take necessary operations to 3980guarantee the persistence of its own writes to @option{mem-path} 3981(e.g. in vNVDIMM label emulation and live migration). 3982 3983@item -object memory-backend-ram,id=@var{id},merge=@var{on|off},dump=@var{on|off},share=@var{on|off},prealloc=@var{on|off},size=@var{size},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave} 3984 3985Creates a memory backend object, which can be used to back the guest RAM. 3986Memory backend objects offer more control than the @option{-m} option that is 3987traditionally used to define guest RAM. Please refer to 3988@option{memory-backend-file} for a description of the options. 3989 3990@item -object memory-backend-memfd,id=@var{id},merge=@var{on|off},dump=@var{on|off},share=@var{on|off},prealloc=@var{on|off},size=@var{size},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave},seal=@var{on|off},hugetlb=@var{on|off},hugetlbsize=@var{size} 3991 3992Creates an anonymous memory file backend object, which allows QEMU to 3993share the memory with an external process (e.g. when using 3994vhost-user). The memory is allocated with memfd and optional 3995sealing. (Linux only) 3996 3997The @option{seal} option creates a sealed-file, that will block 3998further resizing the memory ('on' by default). 3999 4000The @option{hugetlb} option specify the file to be created resides in 4001the hugetlbfs filesystem (since Linux 4.14). Used in conjunction with 4002the @option{hugetlb} option, the @option{hugetlbsize} option specify 4003the hugetlb page size on systems that support multiple hugetlb page 4004sizes (it must be a power of 2 value supported by the system). 4005 4006In some versions of Linux, the @option{hugetlb} option is incompatible 4007with the @option{seal} option (requires at least Linux 4.16). 4008 4009Please refer to @option{memory-backend-file} for a description of the 4010other options. 4011 4012The @option{share} boolean option is @var{on} by default with memfd. 4013 4014@item -object rng-random,id=@var{id},filename=@var{/dev/random} 4015 4016Creates a random number generator backend which obtains entropy from 4017a device on the host. The @option{id} parameter is a unique ID that 4018will be used to reference this entropy backend from the @option{virtio-rng} 4019device. The @option{filename} parameter specifies which file to obtain 4020entropy from and if omitted defaults to @option{/dev/random}. 4021 4022@item -object rng-egd,id=@var{id},chardev=@var{chardevid} 4023 4024Creates a random number generator backend which obtains entropy from 4025an external daemon running on the host. The @option{id} parameter is 4026a unique ID that will be used to reference this entropy backend from 4027the @option{virtio-rng} device. The @option{chardev} parameter is 4028the unique ID of a character device backend that provides the connection 4029to the RNG daemon. 4030 4031@item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off} 4032 4033Creates a TLS anonymous credentials object, which can be used to provide 4034TLS support on network backends. The @option{id} parameter is a unique 4035ID which network backends will use to access the credentials. The 4036@option{endpoint} is either @option{server} or @option{client} depending 4037on whether the QEMU network backend that uses the credentials will be 4038acting as a client or as a server. If @option{verify-peer} is enabled 4039(the default) then once the handshake is completed, the peer credentials 4040will be verified, though this is a no-op for anonymous credentials. 4041 4042The @var{dir} parameter tells QEMU where to find the credential 4043files. For server endpoints, this directory may contain a file 4044@var{dh-params.pem} providing diffie-hellman parameters to use 4045for the TLS server. If the file is missing, QEMU will generate 4046a set of DH parameters at startup. This is a computationally 4047expensive operation that consumes random pool entropy, so it is 4048recommended that a persistent set of parameters be generated 4049upfront and saved. 4050 4051@item -object tls-creds-psk,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/keys/dir}[,username=@var{username}] 4052 4053Creates a TLS Pre-Shared Keys (PSK) credentials object, which can be used to provide 4054TLS support on network backends. The @option{id} parameter is a unique 4055ID which network backends will use to access the credentials. The 4056@option{endpoint} is either @option{server} or @option{client} depending 4057on whether the QEMU network backend that uses the credentials will be 4058acting as a client or as a server. For clients only, @option{username} 4059is the username which will be sent to the server. If omitted 4060it defaults to ``qemu''. 4061 4062The @var{dir} parameter tells QEMU where to find the keys file. 4063It is called ``@var{dir}/keys.psk'' and contains ``username:key'' 4064pairs. This file can most easily be created using the GnuTLS 4065@code{psktool} program. 4066 4067For server endpoints, @var{dir} may also contain a file 4068@var{dh-params.pem} providing diffie-hellman parameters to use 4069for the TLS server. If the file is missing, QEMU will generate 4070a set of DH parameters at startup. This is a computationally 4071expensive operation that consumes random pool entropy, so it is 4072recommended that a persistent set of parameters be generated 4073up front and saved. 4074 4075@item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},priority=@var{priority},verify-peer=@var{on|off},passwordid=@var{id} 4076 4077Creates a TLS anonymous credentials object, which can be used to provide 4078TLS support on network backends. The @option{id} parameter is a unique 4079ID which network backends will use to access the credentials. The 4080@option{endpoint} is either @option{server} or @option{client} depending 4081on whether the QEMU network backend that uses the credentials will be 4082acting as a client or as a server. If @option{verify-peer} is enabled 4083(the default) then once the handshake is completed, the peer credentials 4084will be verified. With x509 certificates, this implies that the clients 4085must be provided with valid client certificates too. 4086 4087The @var{dir} parameter tells QEMU where to find the credential 4088files. For server endpoints, this directory may contain a file 4089@var{dh-params.pem} providing diffie-hellman parameters to use 4090for the TLS server. If the file is missing, QEMU will generate 4091a set of DH parameters at startup. This is a computationally 4092expensive operation that consumes random pool entropy, so it is 4093recommended that a persistent set of parameters be generated 4094upfront and saved. 4095 4096For x509 certificate credentials the directory will contain further files 4097providing the x509 certificates. The certificates must be stored 4098in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional), 4099@var{server-cert.pem} (only servers), @var{server-key.pem} (only servers), 4100@var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients). 4101 4102For the @var{server-key.pem} and @var{client-key.pem} files which 4103contain sensitive private keys, it is possible to use an encrypted 4104version by providing the @var{passwordid} parameter. This provides 4105the ID of a previously created @code{secret} object containing the 4106password for decryption. 4107 4108The @var{priority} parameter allows to override the global default 4109priority used by gnutls. This can be useful if the system administrator 4110needs to use a weaker set of crypto priorities for QEMU without 4111potentially forcing the weakness onto all applications. Or conversely 4112if one wants wants a stronger default for QEMU than for all other 4113applications, they can do this through this parameter. Its format is 4114a gnutls priority string as described at 4115@url{https://gnutls.org/manual/html_node/Priority-Strings.html}. 4116 4117@item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}] 4118 4119Interval @var{t} can't be 0, this filter batches the packet delivery: all 4120packets arriving in a given interval on netdev @var{netdevid} are delayed 4121until the end of the interval. Interval is in microseconds. 4122@option{status} is optional that indicate whether the netfilter is 4123on (enabled) or off (disabled), the default status for netfilter will be 'on'. 4124 4125queue @var{all|rx|tx} is an option that can be applied to any netfilter. 4126 4127@option{all}: the filter is attached both to the receive and the transmit 4128 queue of the netdev (default). 4129 4130@option{rx}: the filter is attached to the receive queue of the netdev, 4131 where it will receive packets sent to the netdev. 4132 4133@option{tx}: the filter is attached to the transmit queue of the netdev, 4134 where it will receive packets sent by the netdev. 4135 4136@item -object filter-mirror,id=@var{id},netdev=@var{netdevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support] 4137 4138filter-mirror on netdev @var{netdevid},mirror net packet to chardev@var{chardevid}, if it has the vnet_hdr_support flag, filter-mirror will mirror packet with vnet_hdr_len. 4139 4140@item -object filter-redirector,id=@var{id},netdev=@var{netdevid},indev=@var{chardevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support] 4141 4142filter-redirector on netdev @var{netdevid},redirect filter's net packet to chardev 4143@var{chardevid},and redirect indev's packet to filter.if it has the vnet_hdr_support flag, 4144filter-redirector will redirect packet with vnet_hdr_len. 4145Create a filter-redirector we need to differ outdev id from indev id, id can not 4146be the same. we can just use indev or outdev, but at least one of indev or outdev 4147need to be specified. 4148 4149@item -object filter-rewriter,id=@var{id},netdev=@var{netdevid},queue=@var{all|rx|tx},[vnet_hdr_support] 4150 4151Filter-rewriter is a part of COLO project.It will rewrite tcp packet to 4152secondary from primary to keep secondary tcp connection,and rewrite 4153tcp packet to primary from secondary make tcp packet can be handled by 4154client.if it has the vnet_hdr_support flag, we can parse packet with vnet header. 4155 4156usage: 4157colo secondary: 4158-object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0 4159-object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1 4160-object filter-rewriter,id=rew0,netdev=hn0,queue=all 4161 4162@item -object filter-dump,id=@var{id},netdev=@var{dev}[,file=@var{filename}][,maxlen=@var{len}] 4163 4164Dump the network traffic on netdev @var{dev} to the file specified by 4165@var{filename}. At most @var{len} bytes (64k by default) per packet are stored. 4166The file format is libpcap, so it can be analyzed with tools such as tcpdump 4167or Wireshark. 4168 4169@item -object colo-compare,id=@var{id},primary_in=@var{chardevid},secondary_in=@var{chardevid},outdev=@var{chardevid}[,vnet_hdr_support] 4170 4171Colo-compare gets packet from primary_in@var{chardevid} and secondary_in@var{chardevid}, than compare primary packet with 4172secondary packet. If the packets are same, we will output primary 4173packet to outdev@var{chardevid}, else we will notify colo-frame 4174do checkpoint and send primary packet to outdev@var{chardevid}. 4175if it has the vnet_hdr_support flag, colo compare will send/recv packet with vnet_hdr_len. 4176 4177we must use it with the help of filter-mirror and filter-redirector. 4178 4179@example 4180 4181primary: 4182-netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown 4183-device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66 4184-chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait 4185-chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait 4186-chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait 4187-chardev socket,id=compare0-0,host=3.3.3.3,port=9001 4188-chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait 4189-chardev socket,id=compare_out0,host=3.3.3.3,port=9005 4190-object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0 4191-object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out 4192-object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0 4193-object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0 4194 4195secondary: 4196-netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown 4197-device e1000,netdev=hn0,mac=52:a4:00:12:78:66 4198-chardev socket,id=red0,host=3.3.3.3,port=9003 4199-chardev socket,id=red1,host=3.3.3.3,port=9004 4200-object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0 4201-object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1 4202 4203@end example 4204 4205If you want to know the detail of above command line, you can read 4206the colo-compare git log. 4207 4208@item -object cryptodev-backend-builtin,id=@var{id}[,queues=@var{queues}] 4209 4210Creates a cryptodev backend which executes crypto opreation from 4211the QEMU cipher APIS. The @var{id} parameter is 4212a unique ID that will be used to reference this cryptodev backend from 4213the @option{virtio-crypto} device. The @var{queues} parameter is optional, 4214which specify the queue number of cryptodev backend, the default of 4215@var{queues} is 1. 4216 4217@example 4218 4219 # qemu-system-x86_64 \ 4220 [...] \ 4221 -object cryptodev-backend-builtin,id=cryptodev0 \ 4222 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \ 4223 [...] 4224@end example 4225 4226@item -object cryptodev-vhost-user,id=@var{id},chardev=@var{chardevid}[,queues=@var{queues}] 4227 4228Creates a vhost-user cryptodev backend, backed by a chardev @var{chardevid}. 4229The @var{id} parameter is a unique ID that will be used to reference this 4230cryptodev backend from the @option{virtio-crypto} device. 4231The chardev should be a unix domain socket backed one. The vhost-user uses 4232a specifically defined protocol to pass vhost ioctl replacement messages 4233to an application on the other end of the socket. 4234The @var{queues} parameter is optional, which specify the queue number 4235of cryptodev backend for multiqueue vhost-user, the default of @var{queues} is 1. 4236 4237@example 4238 4239 # qemu-system-x86_64 \ 4240 [...] \ 4241 -chardev socket,id=chardev0,path=/path/to/socket \ 4242 -object cryptodev-vhost-user,id=cryptodev0,chardev=chardev0 \ 4243 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \ 4244 [...] 4245@end example 4246 4247@item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}] 4248@item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}] 4249 4250Defines a secret to store a password, encryption key, or some other sensitive 4251data. The sensitive data can either be passed directly via the @var{data} 4252parameter, or indirectly via the @var{file} parameter. Using the @var{data} 4253parameter is insecure unless the sensitive data is encrypted. 4254 4255The sensitive data can be provided in raw format (the default), or base64. 4256When encoded as JSON, the raw format only supports valid UTF-8 characters, 4257so base64 is recommended for sending binary data. QEMU will convert from 4258which ever format is provided to the format it needs internally. eg, an 4259RBD password can be provided in raw format, even though it will be base64 4260encoded when passed onto the RBD sever. 4261 4262For added protection, it is possible to encrypt the data associated with 4263a secret using the AES-256-CBC cipher. Use of encryption is indicated 4264by providing the @var{keyid} and @var{iv} parameters. The @var{keyid} 4265parameter provides the ID of a previously defined secret that contains 4266the AES-256 decryption key. This key should be 32-bytes long and be 4267base64 encoded. The @var{iv} parameter provides the random initialization 4268vector used for encryption of this particular secret and should be a 4269base64 encrypted string of the 16-byte IV. 4270 4271The simplest (insecure) usage is to provide the secret inline 4272 4273@example 4274 4275 # $QEMU -object secret,id=sec0,data=letmein,format=raw 4276 4277@end example 4278 4279The simplest secure usage is to provide the secret via a file 4280 4281 # printf "letmein" > mypasswd.txt 4282 # $QEMU -object secret,id=sec0,file=mypasswd.txt,format=raw 4283 4284For greater security, AES-256-CBC should be used. To illustrate usage, 4285consider the openssl command line tool which can encrypt the data. Note 4286that when encrypting, the plaintext must be padded to the cipher block 4287size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm. 4288 4289First a master key needs to be created in base64 encoding: 4290 4291@example 4292 # openssl rand -base64 32 > key.b64 4293 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"') 4294@end example 4295 4296Each secret to be encrypted needs to have a random initialization vector 4297generated. These do not need to be kept secret 4298 4299@example 4300 # openssl rand -base64 16 > iv.b64 4301 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"') 4302@end example 4303 4304The secret to be defined can now be encrypted, in this case we're 4305telling openssl to base64 encode the result, but it could be left 4306as raw bytes if desired. 4307 4308@example 4309 # SECRET=$(printf "letmein" | 4310 openssl enc -aes-256-cbc -a -K $KEY -iv $IV) 4311@end example 4312 4313When launching QEMU, create a master secret pointing to @code{key.b64} 4314and specify that to be used to decrypt the user password. Pass the 4315contents of @code{iv.b64} to the second secret 4316 4317@example 4318 # $QEMU \ 4319 -object secret,id=secmaster0,format=base64,file=key.b64 \ 4320 -object secret,id=sec0,keyid=secmaster0,format=base64,\ 4321 data=$SECRET,iv=$(<iv.b64) 4322@end example 4323 4324@item -object sev-guest,id=@var{id},cbitpos=@var{cbitpos},reduced-phys-bits=@var{val},[sev-device=@var{string},policy=@var{policy},handle=@var{handle},dh-cert-file=@var{file},session-file=@var{file}] 4325 4326Create a Secure Encrypted Virtualization (SEV) guest object, which can be used 4327to provide the guest memory encryption support on AMD processors. 4328 4329When memory encryption is enabled, one of the physical address bit (aka the 4330C-bit) is utilized to mark if a memory page is protected. The @option{cbitpos} 4331is used to provide the C-bit position. The C-bit position is Host family dependent 4332hence user must provide this value. On EPYC, the value should be 47. 4333 4334When memory encryption is enabled, we loose certain bits in physical address space. 4335The @option{reduced-phys-bits} is used to provide the number of bits we loose in 4336physical address space. Similar to C-bit, the value is Host family dependent. 4337On EPYC, the value should be 5. 4338 4339The @option{sev-device} provides the device file to use for communicating with 4340the SEV firmware running inside AMD Secure Processor. The default device is 4341'/dev/sev'. If hardware supports memory encryption then /dev/sev devices are 4342created by CCP driver. 4343 4344The @option{policy} provides the guest policy to be enforced by the SEV firmware 4345and restrict what configuration and operational commands can be performed on this 4346guest by the hypervisor. The policy should be provided by the guest owner and is 4347bound to the guest and cannot be changed throughout the lifetime of the guest. 4348The default is 0. 4349 4350If guest @option{policy} allows sharing the key with another SEV guest then 4351@option{handle} can be use to provide handle of the guest from which to share 4352the key. 4353 4354The @option{dh-cert-file} and @option{session-file} provides the guest owner's 4355Public Diffie-Hillman key defined in SEV spec. The PDH and session parameters 4356are used for establishing a cryptographic session with the guest owner to 4357negotiate keys used for attestation. The file must be encoded in base64. 4358 4359e.g to launch a SEV guest 4360@example 4361 # $QEMU \ 4362 ...... 4363 -object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=5 \ 4364 -machine ...,memory-encryption=sev0 4365 ..... 4366 4367@end example 4368 4369 4370@item -object authz-simple,id=@var{id},identity=@var{string} 4371 4372Create an authorization object that will control access to network services. 4373 4374The @option{identity} parameter is identifies the user and its format 4375depends on the network service that authorization object is associated 4376with. For authorizing based on TLS x509 certificates, the identity must 4377be the x509 distinguished name. Note that care must be taken to escape 4378any commas in the distinguished name. 4379 4380An example authorization object to validate a x509 distinguished name 4381would look like: 4382@example 4383 # $QEMU \ 4384 ... 4385 -object 'authz-simple,id=auth0,identity=CN=laptop.example.com,,O=Example Org,,L=London,,ST=London,,C=GB' \ 4386 ... 4387@end example 4388 4389Note the use of quotes due to the x509 distinguished name containing 4390whitespace, and escaping of ','. 4391 4392@item -object authz-listfile,id=@var{id},filename=@var{path},refresh=@var{yes|no} 4393 4394Create an authorization object that will control access to network services. 4395 4396The @option{filename} parameter is the fully qualified path to a file 4397containing the access control list rules in JSON format. 4398 4399An example set of rules that match against SASL usernames might look 4400like: 4401 4402@example 4403 @{ 4404 "rules": [ 4405 @{ "match": "fred", "policy": "allow", "format": "exact" @}, 4406 @{ "match": "bob", "policy": "allow", "format": "exact" @}, 4407 @{ "match": "danb", "policy": "deny", "format": "glob" @}, 4408 @{ "match": "dan*", "policy": "allow", "format": "exact" @}, 4409 ], 4410 "policy": "deny" 4411 @} 4412@end example 4413 4414When checking access the object will iterate over all the rules and 4415the first rule to match will have its @option{policy} value returned 4416as the result. If no rules match, then the default @option{policy} 4417value is returned. 4418 4419The rules can either be an exact string match, or they can use the 4420simple UNIX glob pattern matching to allow wildcards to be used. 4421 4422If @option{refresh} is set to true the file will be monitored 4423and automatically reloaded whenever its content changes. 4424 4425As with the @code{authz-simple} object, the format of the identity 4426strings being matched depends on the network service, but is usually 4427a TLS x509 distinguished name, or a SASL username. 4428 4429An example authorization object to validate a SASL username 4430would look like: 4431@example 4432 # $QEMU \ 4433 ... 4434 -object authz-simple,id=auth0,filename=/etc/qemu/vnc-sasl.acl,refresh=yes 4435 ... 4436@end example 4437 4438@item -object authz-pam,id=@var{id},service=@var{string} 4439 4440Create an authorization object that will control access to network services. 4441 4442The @option{service} parameter provides the name of a PAM service to use 4443for authorization. It requires that a file @code{/etc/pam.d/@var{service}} 4444exist to provide the configuration for the @code{account} subsystem. 4445 4446An example authorization object to validate a TLS x509 distinguished 4447name would look like: 4448 4449@example 4450 # $QEMU \ 4451 ... 4452 -object authz-pam,id=auth0,service=qemu-vnc 4453 ... 4454@end example 4455 4456There would then be a corresponding config file for PAM at 4457@code{/etc/pam.d/qemu-vnc} that contains: 4458 4459@example 4460account requisite pam_listfile.so item=user sense=allow \ 4461 file=/etc/qemu/vnc.allow 4462@end example 4463 4464Finally the @code{/etc/qemu/vnc.allow} file would contain 4465the list of x509 distingished names that are permitted 4466access 4467 4468@example 4469CN=laptop.example.com,O=Example Home,L=London,ST=London,C=GB 4470@end example 4471 4472 4473@end table 4474 4475ETEXI 4476 4477 4478HXCOMM This is the last statement. Insert new options before this line! 4479STEXI 4480@end table 4481ETEXI 4482