1# -*- Mode: Python -*- 2# 3 4## 5# = Miscellanea 6## 7 8{ 'include': 'common.json' } 9 10## 11# @qmp_capabilities: 12# 13# Enable QMP capabilities. 14# 15# Arguments: 16# 17# @enable: An optional list of QMPCapability values to enable. The 18# client must not enable any capability that is not 19# mentioned in the QMP greeting message. If the field is not 20# provided, it means no QMP capabilities will be enabled. 21# (since 2.12) 22# 23# Example: 24# 25# -> { "execute": "qmp_capabilities", 26# "arguments": { "enable": [ "oob" ] } } 27# <- { "return": {} } 28# 29# Notes: This command is valid exactly when first connecting: it must be 30# issued before any other command will be accepted, and will fail once the 31# monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt) 32# 33# The QMP client needs to explicitly enable QMP capabilities, otherwise 34# all the QMP capabilities will be turned off by default. 35# 36# Since: 0.13 37# 38## 39{ 'command': 'qmp_capabilities', 40 'data': { '*enable': [ 'QMPCapability' ] }, 41 'allow-preconfig': true } 42 43## 44# @QMPCapability: 45# 46# Enumeration of capabilities to be advertised during initial client 47# connection, used for agreeing on particular QMP extension behaviors. 48# 49# @oob: QMP ability to support Out-Of-Band requests. 50# (Please refer to qmp-spec.txt for more information on OOB) 51# 52# Since: 2.12 53# 54## 55{ 'enum': 'QMPCapability', 56 'data': [ 'oob' ] } 57 58## 59# @VersionTriple: 60# 61# A three-part version number. 62# 63# @major: The major version number. 64# 65# @minor: The minor version number. 66# 67# @micro: The micro version number. 68# 69# Since: 2.4 70## 71{ 'struct': 'VersionTriple', 72 'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} } 73 74 75## 76# @VersionInfo: 77# 78# A description of QEMU's version. 79# 80# @qemu: The version of QEMU. By current convention, a micro 81# version of 50 signifies a development branch. A micro version 82# greater than or equal to 90 signifies a release candidate for 83# the next minor version. A micro version of less than 50 84# signifies a stable release. 85# 86# @package: QEMU will always set this field to an empty string. Downstream 87# versions of QEMU should set this to a non-empty string. The 88# exact format depends on the downstream however it highly 89# recommended that a unique name is used. 90# 91# Since: 0.14.0 92## 93{ 'struct': 'VersionInfo', 94 'data': {'qemu': 'VersionTriple', 'package': 'str'} } 95 96## 97# @query-version: 98# 99# Returns the current version of QEMU. 100# 101# Returns: A @VersionInfo object describing the current version of QEMU. 102# 103# Since: 0.14.0 104# 105# Example: 106# 107# -> { "execute": "query-version" } 108# <- { 109# "return":{ 110# "qemu":{ 111# "major":0, 112# "minor":11, 113# "micro":5 114# }, 115# "package":"" 116# } 117# } 118# 119## 120{ 'command': 'query-version', 'returns': 'VersionInfo', 121 'allow-preconfig': true } 122 123## 124# @CommandInfo: 125# 126# Information about a QMP command 127# 128# @name: The command name 129# 130# Since: 0.14.0 131## 132{ 'struct': 'CommandInfo', 'data': {'name': 'str'} } 133 134## 135# @query-commands: 136# 137# Return a list of supported QMP commands by this server 138# 139# Returns: A list of @CommandInfo for all supported commands 140# 141# Since: 0.14.0 142# 143# Example: 144# 145# -> { "execute": "query-commands" } 146# <- { 147# "return":[ 148# { 149# "name":"query-balloon" 150# }, 151# { 152# "name":"system_powerdown" 153# } 154# ] 155# } 156# 157# Note: This example has been shortened as the real response is too long. 158# 159## 160{ 'command': 'query-commands', 'returns': ['CommandInfo'], 161 'allow-preconfig': true } 162 163## 164# @LostTickPolicy: 165# 166# Policy for handling lost ticks in timer devices. 167# 168# @discard: throw away the missed tick(s) and continue with future injection 169# normally. Guest time may be delayed, unless the OS has explicit 170# handling of lost ticks 171# 172# @delay: continue to deliver ticks at the normal rate. Guest time will be 173# delayed due to the late tick 174# 175# @merge: merge the missed tick(s) into one tick and inject. Guest time 176# may be delayed, depending on how the OS reacts to the merging 177# of ticks 178# 179# @slew: deliver ticks at a higher rate to catch up with the missed tick. The 180# guest time should not be delayed once catchup is complete. 181# 182# Since: 2.0 183## 184{ 'enum': 'LostTickPolicy', 185 'data': ['discard', 'delay', 'merge', 'slew' ] } 186 187## 188# @add_client: 189# 190# Allow client connections for VNC, Spice and socket based 191# character devices to be passed in to QEMU via SCM_RIGHTS. 192# 193# @protocol: protocol name. Valid names are "vnc", "spice" or the 194# name of a character device (eg. from -chardev id=XXXX) 195# 196# @fdname: file descriptor name previously passed via 'getfd' command 197# 198# @skipauth: whether to skip authentication. Only applies 199# to "vnc" and "spice" protocols 200# 201# @tls: whether to perform TLS. Only applies to the "spice" 202# protocol 203# 204# Returns: nothing on success. 205# 206# Since: 0.14.0 207# 208# Example: 209# 210# -> { "execute": "add_client", "arguments": { "protocol": "vnc", 211# "fdname": "myclient" } } 212# <- { "return": {} } 213# 214## 215{ 'command': 'add_client', 216 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool', 217 '*tls': 'bool' } } 218 219## 220# @NameInfo: 221# 222# Guest name information. 223# 224# @name: The name of the guest 225# 226# Since: 0.14.0 227## 228{ 'struct': 'NameInfo', 'data': {'*name': 'str'} } 229 230## 231# @query-name: 232# 233# Return the name information of a guest. 234# 235# Returns: @NameInfo of the guest 236# 237# Since: 0.14.0 238# 239# Example: 240# 241# -> { "execute": "query-name" } 242# <- { "return": { "name": "qemu-name" } } 243# 244## 245{ 'command': 'query-name', 'returns': 'NameInfo', 'allow-preconfig': true } 246 247## 248# @KvmInfo: 249# 250# Information about support for KVM acceleration 251# 252# @enabled: true if KVM acceleration is active 253# 254# @present: true if KVM acceleration is built into this executable 255# 256# Since: 0.14.0 257## 258{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} } 259 260## 261# @query-kvm: 262# 263# Returns information about KVM acceleration 264# 265# Returns: @KvmInfo 266# 267# Since: 0.14.0 268# 269# Example: 270# 271# -> { "execute": "query-kvm" } 272# <- { "return": { "enabled": true, "present": true } } 273# 274## 275{ 'command': 'query-kvm', 'returns': 'KvmInfo' } 276 277## 278# @UuidInfo: 279# 280# Guest UUID information (Universally Unique Identifier). 281# 282# @UUID: the UUID of the guest 283# 284# Since: 0.14.0 285# 286# Notes: If no UUID was specified for the guest, a null UUID is returned. 287## 288{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} } 289 290## 291# @query-uuid: 292# 293# Query the guest UUID information. 294# 295# Returns: The @UuidInfo for the guest 296# 297# Since: 0.14.0 298# 299# Example: 300# 301# -> { "execute": "query-uuid" } 302# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } } 303# 304## 305{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true } 306 307## 308# @EventInfo: 309# 310# Information about a QMP event 311# 312# @name: The event name 313# 314# Since: 1.2.0 315## 316{ 'struct': 'EventInfo', 'data': {'name': 'str'} } 317 318## 319# @query-events: 320# 321# Return a list of supported QMP events by this server 322# 323# Returns: A list of @EventInfo for all supported events 324# 325# Since: 1.2.0 326# 327# Example: 328# 329# -> { "execute": "query-events" } 330# <- { 331# "return": [ 332# { 333# "name":"SHUTDOWN" 334# }, 335# { 336# "name":"RESET" 337# } 338# ] 339# } 340# 341# Note: This example has been shortened as the real response is too long. 342# 343## 344{ 'command': 'query-events', 'returns': ['EventInfo'] } 345 346## 347# @CpuInfoArch: 348# 349# An enumeration of cpu types that enable additional information during 350# @query-cpus and @query-cpus-fast. 351# 352# @s390: since 2.12 353# 354# @riscv: since 2.12 355# 356# Since: 2.6 357## 358{ 'enum': 'CpuInfoArch', 359 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] } 360 361## 362# @CpuInfo: 363# 364# Information about a virtual CPU 365# 366# @CPU: the index of the virtual CPU 367# 368# @current: this only exists for backwards compatibility and should be ignored 369# 370# @halted: true if the virtual CPU is in the halt state. Halt usually refers 371# to a processor specific low power mode. 372# 373# @qom_path: path to the CPU object in the QOM tree (since 2.4) 374# 375# @thread_id: ID of the underlying host thread 376# 377# @props: properties describing to which node/socket/core/thread 378# virtual CPU belongs to, provided if supported by board (since 2.10) 379# 380# @arch: architecture of the cpu, which determines which additional fields 381# will be listed (since 2.6) 382# 383# Since: 0.14.0 384# 385# Notes: @halted is a transient state that changes frequently. By the time the 386# data is sent to the client, the guest may no longer be halted. 387## 388{ 'union': 'CpuInfo', 389 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool', 390 'qom_path': 'str', 'thread_id': 'int', 391 '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' }, 392 'discriminator': 'arch', 393 'data': { 'x86': 'CpuInfoX86', 394 'sparc': 'CpuInfoSPARC', 395 'ppc': 'CpuInfoPPC', 396 'mips': 'CpuInfoMIPS', 397 'tricore': 'CpuInfoTricore', 398 's390': 'CpuInfoS390', 399 'riscv': 'CpuInfoRISCV' } } 400 401## 402# @CpuInfoX86: 403# 404# Additional information about a virtual i386 or x86_64 CPU 405# 406# @pc: the 64-bit instruction pointer 407# 408# Since: 2.6 409## 410{ 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } } 411 412## 413# @CpuInfoSPARC: 414# 415# Additional information about a virtual SPARC CPU 416# 417# @pc: the PC component of the instruction pointer 418# 419# @npc: the NPC component of the instruction pointer 420# 421# Since: 2.6 422## 423{ 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } } 424 425## 426# @CpuInfoPPC: 427# 428# Additional information about a virtual PPC CPU 429# 430# @nip: the instruction pointer 431# 432# Since: 2.6 433## 434{ 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } } 435 436## 437# @CpuInfoMIPS: 438# 439# Additional information about a virtual MIPS CPU 440# 441# @PC: the instruction pointer 442# 443# Since: 2.6 444## 445{ 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } } 446 447## 448# @CpuInfoTricore: 449# 450# Additional information about a virtual Tricore CPU 451# 452# @PC: the instruction pointer 453# 454# Since: 2.6 455## 456{ 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } } 457 458## 459# @CpuInfoRISCV: 460# 461# Additional information about a virtual RISCV CPU 462# 463# @pc: the instruction pointer 464# 465# Since 2.12 466## 467{ 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } } 468 469## 470# @CpuS390State: 471# 472# An enumeration of cpu states that can be assumed by a virtual 473# S390 CPU 474# 475# Since: 2.12 476## 477{ 'enum': 'CpuS390State', 478 'prefix': 'S390_CPU_STATE', 479 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] } 480 481## 482# @CpuInfoS390: 483# 484# Additional information about a virtual S390 CPU 485# 486# @cpu-state: the virtual CPU's state 487# 488# Since: 2.12 489## 490{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } } 491 492## 493# @query-cpus: 494# 495# Returns a list of information about each virtual CPU. 496# 497# This command causes vCPU threads to exit to userspace, which causes 498# a small interruption to guest CPU execution. This will have a negative 499# impact on realtime guests and other latency sensitive guest workloads. 500# It is recommended to use @query-cpus-fast instead of this command to 501# avoid the vCPU interruption. 502# 503# Returns: a list of @CpuInfo for each virtual CPU 504# 505# Since: 0.14.0 506# 507# Example: 508# 509# -> { "execute": "query-cpus" } 510# <- { "return": [ 511# { 512# "CPU":0, 513# "current":true, 514# "halted":false, 515# "qom_path":"/machine/unattached/device[0]", 516# "arch":"x86", 517# "pc":3227107138, 518# "thread_id":3134 519# }, 520# { 521# "CPU":1, 522# "current":false, 523# "halted":true, 524# "qom_path":"/machine/unattached/device[2]", 525# "arch":"x86", 526# "pc":7108165, 527# "thread_id":3135 528# } 529# ] 530# } 531# 532# Notes: This interface is deprecated (since 2.12.0), and it is strongly 533# recommended that you avoid using it. Use @query-cpus-fast to 534# obtain information about virtual CPUs. 535# 536## 537{ 'command': 'query-cpus', 'returns': ['CpuInfo'] } 538 539## 540# @CpuInfoFast: 541# 542# Information about a virtual CPU 543# 544# @cpu-index: index of the virtual CPU 545# 546# @qom-path: path to the CPU object in the QOM tree 547# 548# @thread-id: ID of the underlying host thread 549# 550# @props: properties describing to which node/socket/core/thread 551# virtual CPU belongs to, provided if supported by board 552# 553# @arch: base architecture of the cpu; deprecated since 3.0.0 in favor 554# of @target 555# 556# @target: the QEMU system emulation target, which determines which 557# additional fields will be listed (since 3.0) 558# 559# Since: 2.12 560# 561## 562{ 'union' : 'CpuInfoFast', 563 'base' : { 'cpu-index' : 'int', 564 'qom-path' : 'str', 565 'thread-id' : 'int', 566 '*props' : 'CpuInstanceProperties', 567 'arch' : 'CpuInfoArch', 568 'target' : 'SysEmuTarget' }, 569 'discriminator' : 'target', 570 'data' : { 's390x' : 'CpuInfoS390' } } 571 572## 573# @query-cpus-fast: 574# 575# Returns information about all virtual CPUs. This command does not 576# incur a performance penalty and should be used in production 577# instead of query-cpus. 578# 579# Returns: list of @CpuInfoFast 580# 581# Since: 2.12 582# 583# Example: 584# 585# -> { "execute": "query-cpus-fast" } 586# <- { "return": [ 587# { 588# "thread-id": 25627, 589# "props": { 590# "core-id": 0, 591# "thread-id": 0, 592# "socket-id": 0 593# }, 594# "qom-path": "/machine/unattached/device[0]", 595# "arch":"x86", 596# "target":"x86_64", 597# "cpu-index": 0 598# }, 599# { 600# "thread-id": 25628, 601# "props": { 602# "core-id": 0, 603# "thread-id": 0, 604# "socket-id": 1 605# }, 606# "qom-path": "/machine/unattached/device[2]", 607# "arch":"x86", 608# "target":"x86_64", 609# "cpu-index": 1 610# } 611# ] 612# } 613## 614{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] } 615 616## 617# @IOThreadInfo: 618# 619# Information about an iothread 620# 621# @id: the identifier of the iothread 622# 623# @thread-id: ID of the underlying host thread 624# 625# @poll-max-ns: maximum polling time in ns, 0 means polling is disabled 626# (since 2.9) 627# 628# @poll-grow: how many ns will be added to polling time, 0 means that it's not 629# configured (since 2.9) 630# 631# @poll-shrink: how many ns will be removed from polling time, 0 means that 632# it's not configured (since 2.9) 633# 634# Since: 2.0 635## 636{ 'struct': 'IOThreadInfo', 637 'data': {'id': 'str', 638 'thread-id': 'int', 639 'poll-max-ns': 'int', 640 'poll-grow': 'int', 641 'poll-shrink': 'int' } } 642 643## 644# @query-iothreads: 645# 646# Returns a list of information about each iothread. 647# 648# Note: this list excludes the QEMU main loop thread, which is not declared 649# using the -object iothread command-line option. It is always the main thread 650# of the process. 651# 652# Returns: a list of @IOThreadInfo for each iothread 653# 654# Since: 2.0 655# 656# Example: 657# 658# -> { "execute": "query-iothreads" } 659# <- { "return": [ 660# { 661# "id":"iothread0", 662# "thread-id":3134 663# }, 664# { 665# "id":"iothread1", 666# "thread-id":3135 667# } 668# ] 669# } 670# 671## 672{ 'command': 'query-iothreads', 'returns': ['IOThreadInfo'], 673 'allow-preconfig': true } 674 675## 676# @BalloonInfo: 677# 678# Information about the guest balloon device. 679# 680# @actual: the number of bytes the balloon currently contains 681# 682# Since: 0.14.0 683# 684## 685{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } } 686 687## 688# @query-balloon: 689# 690# Return information about the balloon device. 691# 692# Returns: @BalloonInfo on success 693# 694# If the balloon driver is enabled but not functional because the KVM 695# kernel module cannot support it, KvmMissingCap 696# 697# If no balloon device is present, DeviceNotActive 698# 699# Since: 0.14.0 700# 701# Example: 702# 703# -> { "execute": "query-balloon" } 704# <- { "return": { 705# "actual": 1073741824, 706# } 707# } 708# 709## 710{ 'command': 'query-balloon', 'returns': 'BalloonInfo' } 711 712## 713# @BALLOON_CHANGE: 714# 715# Emitted when the guest changes the actual BALLOON level. This value is 716# equivalent to the @actual field return by the 'query-balloon' command 717# 718# @actual: actual level of the guest memory balloon in bytes 719# 720# Note: this event is rate-limited. 721# 722# Since: 1.2 723# 724# Example: 725# 726# <- { "event": "BALLOON_CHANGE", 727# "data": { "actual": 944766976 }, 728# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } } 729# 730## 731{ 'event': 'BALLOON_CHANGE', 732 'data': { 'actual': 'int' } } 733 734## 735# @PciMemoryRange: 736# 737# A PCI device memory region 738# 739# @base: the starting address (guest physical) 740# 741# @limit: the ending address (guest physical) 742# 743# Since: 0.14.0 744## 745{ 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} } 746 747## 748# @PciMemoryRegion: 749# 750# Information about a PCI device I/O region. 751# 752# @bar: the index of the Base Address Register for this region 753# 754# @type: 'io' if the region is a PIO region 755# 'memory' if the region is a MMIO region 756# 757# @size: memory size 758# 759# @prefetch: if @type is 'memory', true if the memory is prefetchable 760# 761# @mem_type_64: if @type is 'memory', true if the BAR is 64-bit 762# 763# Since: 0.14.0 764## 765{ 'struct': 'PciMemoryRegion', 766 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int', 767 '*prefetch': 'bool', '*mem_type_64': 'bool' } } 768 769## 770# @PciBusInfo: 771# 772# Information about a bus of a PCI Bridge device 773# 774# @number: primary bus interface number. This should be the number of the 775# bus the device resides on. 776# 777# @secondary: secondary bus interface number. This is the number of the 778# main bus for the bridge 779# 780# @subordinate: This is the highest number bus that resides below the 781# bridge. 782# 783# @io_range: The PIO range for all devices on this bridge 784# 785# @memory_range: The MMIO range for all devices on this bridge 786# 787# @prefetchable_range: The range of prefetchable MMIO for all devices on 788# this bridge 789# 790# Since: 2.4 791## 792{ 'struct': 'PciBusInfo', 793 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int', 794 'io_range': 'PciMemoryRange', 795 'memory_range': 'PciMemoryRange', 796 'prefetchable_range': 'PciMemoryRange' } } 797 798## 799# @PciBridgeInfo: 800# 801# Information about a PCI Bridge device 802# 803# @bus: information about the bus the device resides on 804# 805# @devices: a list of @PciDeviceInfo for each device on this bridge 806# 807# Since: 0.14.0 808## 809{ 'struct': 'PciBridgeInfo', 810 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} } 811 812## 813# @PciDeviceClass: 814# 815# Information about the Class of a PCI device 816# 817# @desc: a string description of the device's class 818# 819# @class: the class code of the device 820# 821# Since: 2.4 822## 823{ 'struct': 'PciDeviceClass', 824 'data': {'*desc': 'str', 'class': 'int'} } 825 826## 827# @PciDeviceId: 828# 829# Information about the Id of a PCI device 830# 831# @device: the PCI device id 832# 833# @vendor: the PCI vendor id 834# 835# Since: 2.4 836## 837{ 'struct': 'PciDeviceId', 838 'data': {'device': 'int', 'vendor': 'int'} } 839 840## 841# @PciDeviceInfo: 842# 843# Information about a PCI device 844# 845# @bus: the bus number of the device 846# 847# @slot: the slot the device is located in 848# 849# @function: the function of the slot used by the device 850# 851# @class_info: the class of the device 852# 853# @id: the PCI device id 854# 855# @irq: if an IRQ is assigned to the device, the IRQ number 856# 857# @qdev_id: the device name of the PCI device 858# 859# @pci_bridge: if the device is a PCI bridge, the bridge information 860# 861# @regions: a list of the PCI I/O regions associated with the device 862# 863# Notes: the contents of @class_info.desc are not stable and should only be 864# treated as informational. 865# 866# Since: 0.14.0 867## 868{ 'struct': 'PciDeviceInfo', 869 'data': {'bus': 'int', 'slot': 'int', 'function': 'int', 870 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId', 871 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo', 872 'regions': ['PciMemoryRegion']} } 873 874## 875# @PciInfo: 876# 877# Information about a PCI bus 878# 879# @bus: the bus index 880# 881# @devices: a list of devices on this bus 882# 883# Since: 0.14.0 884## 885{ 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} } 886 887## 888# @query-pci: 889# 890# Return information about the PCI bus topology of the guest. 891# 892# Returns: a list of @PciInfo for each PCI bus. Each bus is 893# represented by a json-object, which has a key with a json-array of 894# all PCI devices attached to it. Each device is represented by a 895# json-object. 896# 897# Since: 0.14.0 898# 899# Example: 900# 901# -> { "execute": "query-pci" } 902# <- { "return": [ 903# { 904# "bus": 0, 905# "devices": [ 906# { 907# "bus": 0, 908# "qdev_id": "", 909# "slot": 0, 910# "class_info": { 911# "class": 1536, 912# "desc": "Host bridge" 913# }, 914# "id": { 915# "device": 32902, 916# "vendor": 4663 917# }, 918# "function": 0, 919# "regions": [ 920# ] 921# }, 922# { 923# "bus": 0, 924# "qdev_id": "", 925# "slot": 1, 926# "class_info": { 927# "class": 1537, 928# "desc": "ISA bridge" 929# }, 930# "id": { 931# "device": 32902, 932# "vendor": 28672 933# }, 934# "function": 0, 935# "regions": [ 936# ] 937# }, 938# { 939# "bus": 0, 940# "qdev_id": "", 941# "slot": 1, 942# "class_info": { 943# "class": 257, 944# "desc": "IDE controller" 945# }, 946# "id": { 947# "device": 32902, 948# "vendor": 28688 949# }, 950# "function": 1, 951# "regions": [ 952# { 953# "bar": 4, 954# "size": 16, 955# "address": 49152, 956# "type": "io" 957# } 958# ] 959# }, 960# { 961# "bus": 0, 962# "qdev_id": "", 963# "slot": 2, 964# "class_info": { 965# "class": 768, 966# "desc": "VGA controller" 967# }, 968# "id": { 969# "device": 4115, 970# "vendor": 184 971# }, 972# "function": 0, 973# "regions": [ 974# { 975# "prefetch": true, 976# "mem_type_64": false, 977# "bar": 0, 978# "size": 33554432, 979# "address": 4026531840, 980# "type": "memory" 981# }, 982# { 983# "prefetch": false, 984# "mem_type_64": false, 985# "bar": 1, 986# "size": 4096, 987# "address": 4060086272, 988# "type": "memory" 989# }, 990# { 991# "prefetch": false, 992# "mem_type_64": false, 993# "bar": 6, 994# "size": 65536, 995# "address": -1, 996# "type": "memory" 997# } 998# ] 999# }, 1000# { 1001# "bus": 0, 1002# "qdev_id": "", 1003# "irq": 11, 1004# "slot": 4, 1005# "class_info": { 1006# "class": 1280, 1007# "desc": "RAM controller" 1008# }, 1009# "id": { 1010# "device": 6900, 1011# "vendor": 4098 1012# }, 1013# "function": 0, 1014# "regions": [ 1015# { 1016# "bar": 0, 1017# "size": 32, 1018# "address": 49280, 1019# "type": "io" 1020# } 1021# ] 1022# } 1023# ] 1024# } 1025# ] 1026# } 1027# 1028# Note: This example has been shortened as the real response is too long. 1029# 1030## 1031{ 'command': 'query-pci', 'returns': ['PciInfo'] } 1032 1033## 1034# @quit: 1035# 1036# This command will cause the QEMU process to exit gracefully. While every 1037# attempt is made to send the QMP response before terminating, this is not 1038# guaranteed. When using this interface, a premature EOF would not be 1039# unexpected. 1040# 1041# Since: 0.14.0 1042# 1043# Example: 1044# 1045# -> { "execute": "quit" } 1046# <- { "return": {} } 1047## 1048{ 'command': 'quit' } 1049 1050## 1051# @stop: 1052# 1053# Stop all guest VCPU execution. 1054# 1055# Since: 0.14.0 1056# 1057# Notes: This function will succeed even if the guest is already in the stopped 1058# state. In "inmigrate" state, it will ensure that the guest 1059# remains paused once migration finishes, as if the -S option was 1060# passed on the command line. 1061# 1062# Example: 1063# 1064# -> { "execute": "stop" } 1065# <- { "return": {} } 1066# 1067## 1068{ 'command': 'stop' } 1069 1070## 1071# @system_reset: 1072# 1073# Performs a hard reset of a guest. 1074# 1075# Since: 0.14.0 1076# 1077# Example: 1078# 1079# -> { "execute": "system_reset" } 1080# <- { "return": {} } 1081# 1082## 1083{ 'command': 'system_reset' } 1084 1085## 1086# @system_powerdown: 1087# 1088# Requests that a guest perform a powerdown operation. 1089# 1090# Since: 0.14.0 1091# 1092# Notes: A guest may or may not respond to this command. This command 1093# returning does not indicate that a guest has accepted the request or 1094# that it has shut down. Many guests will respond to this command by 1095# prompting the user in some way. 1096# Example: 1097# 1098# -> { "execute": "system_powerdown" } 1099# <- { "return": {} } 1100# 1101## 1102{ 'command': 'system_powerdown' } 1103 1104## 1105# @cpu-add: 1106# 1107# Adds CPU with specified ID 1108# 1109# @id: ID of CPU to be created, valid values [0..max_cpus) 1110# 1111# Returns: Nothing on success 1112# 1113# Since: 1.5 1114# 1115# Example: 1116# 1117# -> { "execute": "cpu-add", "arguments": { "id": 2 } } 1118# <- { "return": {} } 1119# 1120## 1121{ 'command': 'cpu-add', 'data': {'id': 'int'} } 1122 1123## 1124# @memsave: 1125# 1126# Save a portion of guest memory to a file. 1127# 1128# @val: the virtual address of the guest to start from 1129# 1130# @size: the size of memory region to save 1131# 1132# @filename: the file to save the memory to as binary data 1133# 1134# @cpu-index: the index of the virtual CPU to use for translating the 1135# virtual address (defaults to CPU 0) 1136# 1137# Returns: Nothing on success 1138# 1139# Since: 0.14.0 1140# 1141# Notes: Errors were not reliably returned until 1.1 1142# 1143# Example: 1144# 1145# -> { "execute": "memsave", 1146# "arguments": { "val": 10, 1147# "size": 100, 1148# "filename": "/tmp/virtual-mem-dump" } } 1149# <- { "return": {} } 1150# 1151## 1152{ 'command': 'memsave', 1153 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} } 1154 1155## 1156# @pmemsave: 1157# 1158# Save a portion of guest physical memory to a file. 1159# 1160# @val: the physical address of the guest to start from 1161# 1162# @size: the size of memory region to save 1163# 1164# @filename: the file to save the memory to as binary data 1165# 1166# Returns: Nothing on success 1167# 1168# Since: 0.14.0 1169# 1170# Notes: Errors were not reliably returned until 1.1 1171# 1172# Example: 1173# 1174# -> { "execute": "pmemsave", 1175# "arguments": { "val": 10, 1176# "size": 100, 1177# "filename": "/tmp/physical-mem-dump" } } 1178# <- { "return": {} } 1179# 1180## 1181{ 'command': 'pmemsave', 1182 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} } 1183 1184## 1185# @cont: 1186# 1187# Resume guest VCPU execution. 1188# 1189# Since: 0.14.0 1190# 1191# Returns: If successful, nothing 1192# 1193# Notes: This command will succeed if the guest is currently running. It 1194# will also succeed if the guest is in the "inmigrate" state; in 1195# this case, the effect of the command is to make sure the guest 1196# starts once migration finishes, removing the effect of the -S 1197# command line option if it was passed. 1198# 1199# Example: 1200# 1201# -> { "execute": "cont" } 1202# <- { "return": {} } 1203# 1204## 1205{ 'command': 'cont' } 1206 1207## 1208# @exit-preconfig: 1209# 1210# Exit from "preconfig" state 1211# 1212# This command makes QEMU exit the preconfig state and proceed with 1213# VM initialization using configuration data provided on the command line 1214# and via the QMP monitor during the preconfig state. The command is only 1215# available during the preconfig state (i.e. when the --preconfig command 1216# line option was in use). 1217# 1218# Since 3.0 1219# 1220# Returns: nothing 1221# 1222# Example: 1223# 1224# -> { "execute": "exit-preconfig" } 1225# <- { "return": {} } 1226# 1227## 1228{ 'command': 'exit-preconfig', 'allow-preconfig': true } 1229 1230## 1231# @system_wakeup: 1232# 1233# Wakeup guest from suspend. Does nothing in case the guest isn't suspended. 1234# 1235# Since: 1.1 1236# 1237# Returns: nothing. 1238# 1239# Example: 1240# 1241# -> { "execute": "system_wakeup" } 1242# <- { "return": {} } 1243# 1244## 1245{ 'command': 'system_wakeup' } 1246 1247## 1248# @inject-nmi: 1249# 1250# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64). 1251# The command fails when the guest doesn't support injecting. 1252# 1253# Returns: If successful, nothing 1254# 1255# Since: 0.14.0 1256# 1257# Note: prior to 2.1, this command was only supported for x86 and s390 VMs 1258# 1259# Example: 1260# 1261# -> { "execute": "inject-nmi" } 1262# <- { "return": {} } 1263# 1264## 1265{ 'command': 'inject-nmi' } 1266 1267## 1268# @balloon: 1269# 1270# Request the balloon driver to change its balloon size. 1271# 1272# @value: the target size of the balloon in bytes 1273# 1274# Returns: Nothing on success 1275# If the balloon driver is enabled but not functional because the KVM 1276# kernel module cannot support it, KvmMissingCap 1277# If no balloon device is present, DeviceNotActive 1278# 1279# Notes: This command just issues a request to the guest. When it returns, 1280# the balloon size may not have changed. A guest can change the balloon 1281# size independent of this command. 1282# 1283# Since: 0.14.0 1284# 1285# Example: 1286# 1287# -> { "execute": "balloon", "arguments": { "value": 536870912 } } 1288# <- { "return": {} } 1289# 1290## 1291{ 'command': 'balloon', 'data': {'value': 'int'} } 1292 1293## 1294# @human-monitor-command: 1295# 1296# Execute a command on the human monitor and return the output. 1297# 1298# @command-line: the command to execute in the human monitor 1299# 1300# @cpu-index: The CPU to use for commands that require an implicit CPU 1301# 1302# Returns: the output of the command as a string 1303# 1304# Since: 0.14.0 1305# 1306# Notes: This command only exists as a stop-gap. Its use is highly 1307# discouraged. The semantics of this command are not 1308# guaranteed: this means that command names, arguments and 1309# responses can change or be removed at ANY time. Applications 1310# that rely on long term stability guarantees should NOT 1311# use this command. 1312# 1313# Known limitations: 1314# 1315# * This command is stateless, this means that commands that depend 1316# on state information (such as getfd) might not work 1317# 1318# * Commands that prompt the user for data don't currently work 1319# 1320# Example: 1321# 1322# -> { "execute": "human-monitor-command", 1323# "arguments": { "command-line": "info kvm" } } 1324# <- { "return": "kvm support: enabled\r\n" } 1325# 1326## 1327{ 'command': 'human-monitor-command', 1328 'data': {'command-line': 'str', '*cpu-index': 'int'}, 1329 'returns': 'str' } 1330 1331## 1332# @ObjectPropertyInfo: 1333# 1334# @name: the name of the property 1335# 1336# @type: the type of the property. This will typically come in one of four 1337# forms: 1338# 1339# 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'. 1340# These types are mapped to the appropriate JSON type. 1341# 1342# 2) A child type in the form 'child<subtype>' where subtype is a qdev 1343# device type name. Child properties create the composition tree. 1344# 1345# 3) A link type in the form 'link<subtype>' where subtype is a qdev 1346# device type name. Link properties form the device model graph. 1347# 1348# @description: if specified, the description of the property. 1349# 1350# Since: 1.2 1351## 1352{ 'struct': 'ObjectPropertyInfo', 1353 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } } 1354 1355## 1356# @qom-list: 1357# 1358# This command will list any properties of a object given a path in the object 1359# model. 1360# 1361# @path: the path within the object model. See @qom-get for a description of 1362# this parameter. 1363# 1364# Returns: a list of @ObjectPropertyInfo that describe the properties of the 1365# object. 1366# 1367# Since: 1.2 1368## 1369{ 'command': 'qom-list', 1370 'data': { 'path': 'str' }, 1371 'returns': [ 'ObjectPropertyInfo' ], 1372 'allow-preconfig': true } 1373 1374## 1375# @qom-get: 1376# 1377# This command will get a property from a object model path and return the 1378# value. 1379# 1380# @path: The path within the object model. There are two forms of supported 1381# paths--absolute and partial paths. 1382# 1383# Absolute paths are derived from the root object and can follow child<> 1384# or link<> properties. Since they can follow link<> properties, they 1385# can be arbitrarily long. Absolute paths look like absolute filenames 1386# and are prefixed with a leading slash. 1387# 1388# Partial paths look like relative filenames. They do not begin 1389# with a prefix. The matching rules for partial paths are subtle but 1390# designed to make specifying objects easy. At each level of the 1391# composition tree, the partial path is matched as an absolute path. 1392# The first match is not returned. At least two matches are searched 1393# for. A successful result is only returned if only one match is 1394# found. If more than one match is found, a flag is return to 1395# indicate that the match was ambiguous. 1396# 1397# @property: The property name to read 1398# 1399# Returns: The property value. The type depends on the property 1400# type. child<> and link<> properties are returned as #str 1401# pathnames. All integer property types (u8, u16, etc) are 1402# returned as #int. 1403# 1404# Since: 1.2 1405## 1406{ 'command': 'qom-get', 1407 'data': { 'path': 'str', 'property': 'str' }, 1408 'returns': 'any', 1409 'allow-preconfig': true } 1410 1411## 1412# @qom-set: 1413# 1414# This command will set a property from a object model path. 1415# 1416# @path: see @qom-get for a description of this parameter 1417# 1418# @property: the property name to set 1419# 1420# @value: a value who's type is appropriate for the property type. See @qom-get 1421# for a description of type mapping. 1422# 1423# Since: 1.2 1424## 1425{ 'command': 'qom-set', 1426 'data': { 'path': 'str', 'property': 'str', 'value': 'any' }, 1427 'allow-preconfig': true } 1428 1429## 1430# @change: 1431# 1432# This command is multiple commands multiplexed together. 1433# 1434# @device: This is normally the name of a block device but it may also be 'vnc'. 1435# when it's 'vnc', then sub command depends on @target 1436# 1437# @target: If @device is a block device, then this is the new filename. 1438# If @device is 'vnc', then if the value 'password' selects the vnc 1439# change password command. Otherwise, this specifies a new server URI 1440# address to listen to for VNC connections. 1441# 1442# @arg: If @device is a block device, then this is an optional format to open 1443# the device with. 1444# If @device is 'vnc' and @target is 'password', this is the new VNC 1445# password to set. See change-vnc-password for additional notes. 1446# 1447# Returns: Nothing on success. 1448# If @device is not a valid block device, DeviceNotFound 1449# 1450# Notes: This interface is deprecated, and it is strongly recommended that you 1451# avoid using it. For changing block devices, use 1452# blockdev-change-medium; for changing VNC parameters, use 1453# change-vnc-password. 1454# 1455# Since: 0.14.0 1456# 1457# Example: 1458# 1459# 1. Change a removable medium 1460# 1461# -> { "execute": "change", 1462# "arguments": { "device": "ide1-cd0", 1463# "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } } 1464# <- { "return": {} } 1465# 1466# 2. Change VNC password 1467# 1468# -> { "execute": "change", 1469# "arguments": { "device": "vnc", "target": "password", 1470# "arg": "foobar1" } } 1471# <- { "return": {} } 1472# 1473## 1474{ 'command': 'change', 1475 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} } 1476 1477## 1478# @ObjectTypeInfo: 1479# 1480# This structure describes a search result from @qom-list-types 1481# 1482# @name: the type name found in the search 1483# 1484# @abstract: the type is abstract and can't be directly instantiated. 1485# Omitted if false. (since 2.10) 1486# 1487# @parent: Name of parent type, if any (since 2.10) 1488# 1489# Since: 1.1 1490## 1491{ 'struct': 'ObjectTypeInfo', 1492 'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } } 1493 1494## 1495# @qom-list-types: 1496# 1497# This command will return a list of types given search parameters 1498# 1499# @implements: if specified, only return types that implement this type name 1500# 1501# @abstract: if true, include abstract types in the results 1502# 1503# Returns: a list of @ObjectTypeInfo or an empty list if no results are found 1504# 1505# Since: 1.1 1506## 1507{ 'command': 'qom-list-types', 1508 'data': { '*implements': 'str', '*abstract': 'bool' }, 1509 'returns': [ 'ObjectTypeInfo' ], 1510 'allow-preconfig': true } 1511 1512## 1513# @device-list-properties: 1514# 1515# List properties associated with a device. 1516# 1517# @typename: the type name of a device 1518# 1519# Returns: a list of ObjectPropertyInfo describing a devices properties 1520# 1521# Note: objects can create properties at runtime, for example to describe 1522# links between different devices and/or objects. These properties 1523# are not included in the output of this command. 1524# 1525# Since: 1.2 1526## 1527{ 'command': 'device-list-properties', 1528 'data': { 'typename': 'str'}, 1529 'returns': [ 'ObjectPropertyInfo' ] } 1530 1531## 1532# @qom-list-properties: 1533# 1534# List properties associated with a QOM object. 1535# 1536# @typename: the type name of an object 1537# 1538# Note: objects can create properties at runtime, for example to describe 1539# links between different devices and/or objects. These properties 1540# are not included in the output of this command. 1541# 1542# Returns: a list of ObjectPropertyInfo describing object properties 1543# 1544# Since: 2.12 1545## 1546{ 'command': 'qom-list-properties', 1547 'data': { 'typename': 'str'}, 1548 'returns': [ 'ObjectPropertyInfo' ], 1549 'allow-preconfig': true } 1550 1551## 1552# @xen-set-global-dirty-log: 1553# 1554# Enable or disable the global dirty log mode. 1555# 1556# @enable: true to enable, false to disable. 1557# 1558# Returns: nothing 1559# 1560# Since: 1.3 1561# 1562# Example: 1563# 1564# -> { "execute": "xen-set-global-dirty-log", 1565# "arguments": { "enable": true } } 1566# <- { "return": {} } 1567# 1568## 1569{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1570 1571## 1572# @device_add: 1573# 1574# @driver: the name of the new device's driver 1575# 1576# @bus: the device's parent bus (device tree path) 1577# 1578# @id: the device's ID, must be unique 1579# 1580# Additional arguments depend on the type. 1581# 1582# Add a device. 1583# 1584# Notes: 1585# 1. For detailed information about this command, please refer to the 1586# 'docs/qdev-device-use.txt' file. 1587# 1588# 2. It's possible to list device properties by running QEMU with the 1589# "-device DEVICE,help" command-line argument, where DEVICE is the 1590# device's name 1591# 1592# Example: 1593# 1594# -> { "execute": "device_add", 1595# "arguments": { "driver": "e1000", "id": "net1", 1596# "bus": "pci.0", 1597# "mac": "52:54:00:12:34:56" } } 1598# <- { "return": {} } 1599# 1600# TODO: This command effectively bypasses QAPI completely due to its 1601# "additional arguments" business. It shouldn't have been added to 1602# the schema in this form. It should be qapified properly, or 1603# replaced by a properly qapified command. 1604# 1605# Since: 0.13 1606## 1607{ 'command': 'device_add', 1608 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'}, 1609 'gen': false } # so we can get the additional arguments 1610 1611## 1612# @device_del: 1613# 1614# Remove a device from a guest 1615# 1616# @id: the device's ID or QOM path 1617# 1618# Returns: Nothing on success 1619# If @id is not a valid device, DeviceNotFound 1620# 1621# Notes: When this command completes, the device may not be removed from the 1622# guest. Hot removal is an operation that requires guest cooperation. 1623# This command merely requests that the guest begin the hot removal 1624# process. Completion of the device removal process is signaled with a 1625# DEVICE_DELETED event. Guest reset will automatically complete removal 1626# for all devices. 1627# 1628# Since: 0.14.0 1629# 1630# Example: 1631# 1632# -> { "execute": "device_del", 1633# "arguments": { "id": "net1" } } 1634# <- { "return": {} } 1635# 1636# -> { "execute": "device_del", 1637# "arguments": { "id": "/machine/peripheral-anon/device[0]" } } 1638# <- { "return": {} } 1639# 1640## 1641{ 'command': 'device_del', 'data': {'id': 'str'} } 1642 1643## 1644# @DEVICE_DELETED: 1645# 1646# Emitted whenever the device removal completion is acknowledged by the guest. 1647# At this point, it's safe to reuse the specified device ID. Device removal can 1648# be initiated by the guest or by HMP/QMP commands. 1649# 1650# @device: device name 1651# 1652# @path: device path 1653# 1654# Since: 1.5 1655# 1656# Example: 1657# 1658# <- { "event": "DEVICE_DELETED", 1659# "data": { "device": "virtio-net-pci-0", 1660# "path": "/machine/peripheral/virtio-net-pci-0" }, 1661# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 1662# 1663## 1664{ 'event': 'DEVICE_DELETED', 1665 'data': { '*device': 'str', 'path': 'str' } } 1666 1667## 1668# @DumpGuestMemoryFormat: 1669# 1670# An enumeration of guest-memory-dump's format. 1671# 1672# @elf: elf format 1673# 1674# @kdump-zlib: kdump-compressed format with zlib-compressed 1675# 1676# @kdump-lzo: kdump-compressed format with lzo-compressed 1677# 1678# @kdump-snappy: kdump-compressed format with snappy-compressed 1679# 1680# Since: 2.0 1681## 1682{ 'enum': 'DumpGuestMemoryFormat', 1683 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy' ] } 1684 1685## 1686# @dump-guest-memory: 1687# 1688# Dump guest's memory to vmcore. It is a synchronous operation that can take 1689# very long depending on the amount of guest memory. 1690# 1691# @paging: if true, do paging to get guest's memory mapping. This allows 1692# using gdb to process the core file. 1693# 1694# IMPORTANT: this option can make QEMU allocate several gigabytes 1695# of RAM. This can happen for a large guest, or a 1696# malicious guest pretending to be large. 1697# 1698# Also, paging=true has the following limitations: 1699# 1700# 1. The guest may be in a catastrophic state or can have corrupted 1701# memory, which cannot be trusted 1702# 2. The guest can be in real-mode even if paging is enabled. For 1703# example, the guest uses ACPI to sleep, and ACPI sleep state 1704# goes in real-mode 1705# 3. Currently only supported on i386 and x86_64. 1706# 1707# @protocol: the filename or file descriptor of the vmcore. The supported 1708# protocols are: 1709# 1710# 1. file: the protocol starts with "file:", and the following 1711# string is the file's path. 1712# 2. fd: the protocol starts with "fd:", and the following string 1713# is the fd's name. 1714# 1715# @detach: if true, QMP will return immediately rather than 1716# waiting for the dump to finish. The user can track progress 1717# using "query-dump". (since 2.6). 1718# 1719# @begin: if specified, the starting physical address. 1720# 1721# @length: if specified, the memory size, in bytes. If you don't 1722# want to dump all guest's memory, please specify the start @begin 1723# and @length 1724# 1725# @format: if specified, the format of guest memory dump. But non-elf 1726# format is conflict with paging and filter, ie. @paging, @begin and 1727# @length is not allowed to be specified with non-elf @format at the 1728# same time (since 2.0) 1729# 1730# Note: All boolean arguments default to false 1731# 1732# Returns: nothing on success 1733# 1734# Since: 1.2 1735# 1736# Example: 1737# 1738# -> { "execute": "dump-guest-memory", 1739# "arguments": { "protocol": "fd:dump" } } 1740# <- { "return": {} } 1741# 1742## 1743{ 'command': 'dump-guest-memory', 1744 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool', 1745 '*begin': 'int', '*length': 'int', 1746 '*format': 'DumpGuestMemoryFormat'} } 1747 1748## 1749# @DumpStatus: 1750# 1751# Describe the status of a long-running background guest memory dump. 1752# 1753# @none: no dump-guest-memory has started yet. 1754# 1755# @active: there is one dump running in background. 1756# 1757# @completed: the last dump has finished successfully. 1758# 1759# @failed: the last dump has failed. 1760# 1761# Since: 2.6 1762## 1763{ 'enum': 'DumpStatus', 1764 'data': [ 'none', 'active', 'completed', 'failed' ] } 1765 1766## 1767# @DumpQueryResult: 1768# 1769# The result format for 'query-dump'. 1770# 1771# @status: enum of @DumpStatus, which shows current dump status 1772# 1773# @completed: bytes written in latest dump (uncompressed) 1774# 1775# @total: total bytes to be written in latest dump (uncompressed) 1776# 1777# Since: 2.6 1778## 1779{ 'struct': 'DumpQueryResult', 1780 'data': { 'status': 'DumpStatus', 1781 'completed': 'int', 1782 'total': 'int' } } 1783 1784## 1785# @query-dump: 1786# 1787# Query latest dump status. 1788# 1789# Returns: A @DumpStatus object showing the dump status. 1790# 1791# Since: 2.6 1792# 1793# Example: 1794# 1795# -> { "execute": "query-dump" } 1796# <- { "return": { "status": "active", "completed": 1024000, 1797# "total": 2048000 } } 1798# 1799## 1800{ 'command': 'query-dump', 'returns': 'DumpQueryResult' } 1801 1802## 1803# @DUMP_COMPLETED: 1804# 1805# Emitted when background dump has completed 1806# 1807# @result: final dump status 1808# 1809# @error: human-readable error string that provides 1810# hint on why dump failed. Only presents on failure. The 1811# user should not try to interpret the error string. 1812# 1813# Since: 2.6 1814# 1815# Example: 1816# 1817# { "event": "DUMP_COMPLETED", 1818# "data": {"result": {"total": 1090650112, "status": "completed", 1819# "completed": 1090650112} } } 1820# 1821## 1822{ 'event': 'DUMP_COMPLETED' , 1823 'data': { 'result': 'DumpQueryResult', '*error': 'str' } } 1824 1825## 1826# @DumpGuestMemoryCapability: 1827# 1828# A list of the available formats for dump-guest-memory 1829# 1830# Since: 2.0 1831## 1832{ 'struct': 'DumpGuestMemoryCapability', 1833 'data': { 1834 'formats': ['DumpGuestMemoryFormat'] } } 1835 1836## 1837# @query-dump-guest-memory-capability: 1838# 1839# Returns the available formats for dump-guest-memory 1840# 1841# Returns: A @DumpGuestMemoryCapability object listing available formats for 1842# dump-guest-memory 1843# 1844# Since: 2.0 1845# 1846# Example: 1847# 1848# -> { "execute": "query-dump-guest-memory-capability" } 1849# <- { "return": { "formats": 1850# ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] } 1851# 1852## 1853{ 'command': 'query-dump-guest-memory-capability', 1854 'returns': 'DumpGuestMemoryCapability' } 1855 1856## 1857# @dump-skeys: 1858# 1859# Dump guest's storage keys 1860# 1861# @filename: the path to the file to dump to 1862# 1863# This command is only supported on s390 architecture. 1864# 1865# Since: 2.5 1866# 1867# Example: 1868# 1869# -> { "execute": "dump-skeys", 1870# "arguments": { "filename": "/tmp/skeys" } } 1871# <- { "return": {} } 1872# 1873## 1874{ 'command': 'dump-skeys', 1875 'data': { 'filename': 'str' } } 1876 1877## 1878# @object-add: 1879# 1880# Create a QOM object. 1881# 1882# @qom-type: the class name for the object to be created 1883# 1884# @id: the name of the new object 1885# 1886# @props: a dictionary of properties to be passed to the backend 1887# 1888# Returns: Nothing on success 1889# Error if @qom-type is not a valid class name 1890# 1891# Since: 2.0 1892# 1893# Example: 1894# 1895# -> { "execute": "object-add", 1896# "arguments": { "qom-type": "rng-random", "id": "rng1", 1897# "props": { "filename": "/dev/hwrng" } } } 1898# <- { "return": {} } 1899# 1900## 1901{ 'command': 'object-add', 1902 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} } 1903 1904## 1905# @object-del: 1906# 1907# Remove a QOM object. 1908# 1909# @id: the name of the QOM object to remove 1910# 1911# Returns: Nothing on success 1912# Error if @id is not a valid id for a QOM object 1913# 1914# Since: 2.0 1915# 1916# Example: 1917# 1918# -> { "execute": "object-del", "arguments": { "id": "rng1" } } 1919# <- { "return": {} } 1920# 1921## 1922{ 'command': 'object-del', 'data': {'id': 'str'} } 1923 1924## 1925# @getfd: 1926# 1927# Receive a file descriptor via SCM rights and assign it a name 1928# 1929# @fdname: file descriptor name 1930# 1931# Returns: Nothing on success 1932# 1933# Since: 0.14.0 1934# 1935# Notes: If @fdname already exists, the file descriptor assigned to 1936# it will be closed and replaced by the received file 1937# descriptor. 1938# 1939# The 'closefd' command can be used to explicitly close the 1940# file descriptor when it is no longer needed. 1941# 1942# Example: 1943# 1944# -> { "execute": "getfd", "arguments": { "fdname": "fd1" } } 1945# <- { "return": {} } 1946# 1947## 1948{ 'command': 'getfd', 'data': {'fdname': 'str'} } 1949 1950## 1951# @closefd: 1952# 1953# Close a file descriptor previously passed via SCM rights 1954# 1955# @fdname: file descriptor name 1956# 1957# Returns: Nothing on success 1958# 1959# Since: 0.14.0 1960# 1961# Example: 1962# 1963# -> { "execute": "closefd", "arguments": { "fdname": "fd1" } } 1964# <- { "return": {} } 1965# 1966## 1967{ 'command': 'closefd', 'data': {'fdname': 'str'} } 1968 1969## 1970# @MachineInfo: 1971# 1972# Information describing a machine. 1973# 1974# @name: the name of the machine 1975# 1976# @alias: an alias for the machine name 1977# 1978# @is-default: whether the machine is default 1979# 1980# @cpu-max: maximum number of CPUs supported by the machine type 1981# (since 1.5.0) 1982# 1983# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0) 1984# 1985# Since: 1.2.0 1986## 1987{ 'struct': 'MachineInfo', 1988 'data': { 'name': 'str', '*alias': 'str', 1989 '*is-default': 'bool', 'cpu-max': 'int', 1990 'hotpluggable-cpus': 'bool'} } 1991 1992## 1993# @query-machines: 1994# 1995# Return a list of supported machines 1996# 1997# Returns: a list of MachineInfo 1998# 1999# Since: 1.2.0 2000## 2001{ 'command': 'query-machines', 'returns': ['MachineInfo'] } 2002 2003## 2004# @CpuDefinitionInfo: 2005# 2006# Virtual CPU definition. 2007# 2008# @name: the name of the CPU definition 2009# 2010# @migration-safe: whether a CPU definition can be safely used for 2011# migration in combination with a QEMU compatibility machine 2012# when migrating between different QMU versions and between 2013# hosts with different sets of (hardware or software) 2014# capabilities. If not provided, information is not available 2015# and callers should not assume the CPU definition to be 2016# migration-safe. (since 2.8) 2017# 2018# @static: whether a CPU definition is static and will not change depending on 2019# QEMU version, machine type, machine options and accelerator options. 2020# A static model is always migration-safe. (since 2.8) 2021# 2022# @unavailable-features: List of properties that prevent 2023# the CPU model from running in the current 2024# host. (since 2.8) 2025# @typename: Type name that can be used as argument to @device-list-properties, 2026# to introspect properties configurable using -cpu or -global. 2027# (since 2.9) 2028# 2029# @unavailable-features is a list of QOM property names that 2030# represent CPU model attributes that prevent the CPU from running. 2031# If the QOM property is read-only, that means there's no known 2032# way to make the CPU model run in the current host. Implementations 2033# that choose not to provide specific information return the 2034# property name "type". 2035# If the property is read-write, it means that it MAY be possible 2036# to run the CPU model in the current host if that property is 2037# changed. Management software can use it as hints to suggest or 2038# choose an alternative for the user, or just to generate meaningful 2039# error messages explaining why the CPU model can't be used. 2040# If @unavailable-features is an empty list, the CPU model is 2041# runnable using the current host and machine-type. 2042# If @unavailable-features is not present, runnability 2043# information for the CPU is not available. 2044# 2045# Since: 1.2.0 2046## 2047{ 'struct': 'CpuDefinitionInfo', 2048 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool', 2049 '*unavailable-features': [ 'str' ], 'typename': 'str' } } 2050 2051## 2052# @MemoryInfo: 2053# 2054# Actual memory information in bytes. 2055# 2056# @base-memory: size of "base" memory specified with command line 2057# option -m. 2058# 2059# @plugged-memory: size of memory that can be hot-unplugged. This field 2060# is omitted if target doesn't support memory hotplug 2061# (i.e. CONFIG_MEM_HOTPLUG not defined on build time). 2062# 2063# Since: 2.11.0 2064## 2065{ 'struct': 'MemoryInfo', 2066 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } } 2067 2068## 2069# @query-memory-size-summary: 2070# 2071# Return the amount of initially allocated and present hotpluggable (if 2072# enabled) memory in bytes. 2073# 2074# Example: 2075# 2076# -> { "execute": "query-memory-size-summary" } 2077# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } } 2078# 2079# Since: 2.11.0 2080## 2081{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' } 2082 2083## 2084# @query-cpu-definitions: 2085# 2086# Return a list of supported virtual CPU definitions 2087# 2088# Returns: a list of CpuDefInfo 2089# 2090# Since: 1.2.0 2091## 2092{ 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] } 2093 2094## 2095# @CpuModelInfo: 2096# 2097# Virtual CPU model. 2098# 2099# A CPU model consists of the name of a CPU definition, to which 2100# delta changes are applied (e.g. features added/removed). Most magic values 2101# that an architecture might require should be hidden behind the name. 2102# However, if required, architectures can expose relevant properties. 2103# 2104# @name: the name of the CPU definition the model is based on 2105# @props: a dictionary of QOM properties to be applied 2106# 2107# Since: 2.8.0 2108## 2109{ 'struct': 'CpuModelInfo', 2110 'data': { 'name': 'str', 2111 '*props': 'any' } } 2112 2113## 2114# @CpuModelExpansionType: 2115# 2116# An enumeration of CPU model expansion types. 2117# 2118# @static: Expand to a static CPU model, a combination of a static base 2119# model name and property delta changes. As the static base model will 2120# never change, the expanded CPU model will be the same, independent of 2121# independent of QEMU version, machine type, machine options, and 2122# accelerator options. Therefore, the resulting model can be used by 2123# tooling without having to specify a compatibility machine - e.g. when 2124# displaying the "host" model. static CPU models are migration-safe. 2125# 2126# @full: Expand all properties. The produced model is not guaranteed to be 2127# migration-safe, but allows tooling to get an insight and work with 2128# model details. 2129# 2130# Note: When a non-migration-safe CPU model is expanded in static mode, some 2131# features enabled by the CPU model may be omitted, because they can't be 2132# implemented by a static CPU model definition (e.g. cache info passthrough and 2133# PMU passthrough in x86). If you need an accurate representation of the 2134# features enabled by a non-migration-safe CPU model, use @full. If you need a 2135# static representation that will keep ABI compatibility even when changing QEMU 2136# version or machine-type, use @static (but keep in mind that some features may 2137# be omitted). 2138# 2139# Since: 2.8.0 2140## 2141{ 'enum': 'CpuModelExpansionType', 2142 'data': [ 'static', 'full' ] } 2143 2144 2145## 2146# @CpuModelExpansionInfo: 2147# 2148# The result of a cpu model expansion. 2149# 2150# @model: the expanded CpuModelInfo. 2151# 2152# Since: 2.8.0 2153## 2154{ 'struct': 'CpuModelExpansionInfo', 2155 'data': { 'model': 'CpuModelInfo' } } 2156 2157 2158## 2159# @query-cpu-model-expansion: 2160# 2161# Expands a given CPU model (or a combination of CPU model + additional options) 2162# to different granularities, allowing tooling to get an understanding what a 2163# specific CPU model looks like in QEMU under a certain configuration. 2164# 2165# This interface can be used to query the "host" CPU model. 2166# 2167# The data returned by this command may be affected by: 2168# 2169# * QEMU version: CPU models may look different depending on the QEMU version. 2170# (Except for CPU models reported as "static" in query-cpu-definitions.) 2171# * machine-type: CPU model may look different depending on the machine-type. 2172# (Except for CPU models reported as "static" in query-cpu-definitions.) 2173# * machine options (including accelerator): in some architectures, CPU models 2174# may look different depending on machine and accelerator options. (Except for 2175# CPU models reported as "static" in query-cpu-definitions.) 2176# * "-cpu" arguments and global properties: arguments to the -cpu option and 2177# global properties may affect expansion of CPU models. Using 2178# query-cpu-model-expansion while using these is not advised. 2179# 2180# Some architectures may not support all expansion types. s390x supports 2181# "full" and "static". 2182# 2183# Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is 2184# not supported, if the model cannot be expanded, if the model contains 2185# an unknown CPU definition name, unknown properties or properties 2186# with a wrong type. Also returns an error if an expansion type is 2187# not supported. 2188# 2189# Since: 2.8.0 2190## 2191{ 'command': 'query-cpu-model-expansion', 2192 'data': { 'type': 'CpuModelExpansionType', 2193 'model': 'CpuModelInfo' }, 2194 'returns': 'CpuModelExpansionInfo' } 2195 2196## 2197# @CpuModelCompareResult: 2198# 2199# An enumeration of CPU model comparison results. The result is usually 2200# calculated using e.g. CPU features or CPU generations. 2201# 2202# @incompatible: If model A is incompatible to model B, model A is not 2203# guaranteed to run where model B runs and the other way around. 2204# 2205# @identical: If model A is identical to model B, model A is guaranteed to run 2206# where model B runs and the other way around. 2207# 2208# @superset: If model A is a superset of model B, model B is guaranteed to run 2209# where model A runs. There are no guarantees about the other way. 2210# 2211# @subset: If model A is a subset of model B, model A is guaranteed to run 2212# where model B runs. There are no guarantees about the other way. 2213# 2214# Since: 2.8.0 2215## 2216{ 'enum': 'CpuModelCompareResult', 2217 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] } 2218 2219## 2220# @CpuModelCompareInfo: 2221# 2222# The result of a CPU model comparison. 2223# 2224# @result: The result of the compare operation. 2225# @responsible-properties: List of properties that led to the comparison result 2226# not being identical. 2227# 2228# @responsible-properties is a list of QOM property names that led to 2229# both CPUs not being detected as identical. For identical models, this 2230# list is empty. 2231# If a QOM property is read-only, that means there's no known way to make the 2232# CPU models identical. If the special property name "type" is included, the 2233# models are by definition not identical and cannot be made identical. 2234# 2235# Since: 2.8.0 2236## 2237{ 'struct': 'CpuModelCompareInfo', 2238 'data': {'result': 'CpuModelCompareResult', 2239 'responsible-properties': ['str'] 2240 } 2241} 2242 2243## 2244# @query-cpu-model-comparison: 2245# 2246# Compares two CPU models, returning how they compare in a specific 2247# configuration. The results indicates how both models compare regarding 2248# runnability. This result can be used by tooling to make decisions if a 2249# certain CPU model will run in a certain configuration or if a compatible 2250# CPU model has to be created by baselining. 2251# 2252# Usually, a CPU model is compared against the maximum possible CPU model 2253# of a certain configuration (e.g. the "host" model for KVM). If that CPU 2254# model is identical or a subset, it will run in that configuration. 2255# 2256# The result returned by this command may be affected by: 2257# 2258# * QEMU version: CPU models may look different depending on the QEMU version. 2259# (Except for CPU models reported as "static" in query-cpu-definitions.) 2260# * machine-type: CPU model may look different depending on the machine-type. 2261# (Except for CPU models reported as "static" in query-cpu-definitions.) 2262# * machine options (including accelerator): in some architectures, CPU models 2263# may look different depending on machine and accelerator options. (Except for 2264# CPU models reported as "static" in query-cpu-definitions.) 2265# * "-cpu" arguments and global properties: arguments to the -cpu option and 2266# global properties may affect expansion of CPU models. Using 2267# query-cpu-model-expansion while using these is not advised. 2268# 2269# Some architectures may not support comparing CPU models. s390x supports 2270# comparing CPU models. 2271# 2272# Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is 2273# not supported, if a model cannot be used, if a model contains 2274# an unknown cpu definition name, unknown properties or properties 2275# with wrong types. 2276# 2277# Since: 2.8.0 2278## 2279{ 'command': 'query-cpu-model-comparison', 2280 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' }, 2281 'returns': 'CpuModelCompareInfo' } 2282 2283## 2284# @CpuModelBaselineInfo: 2285# 2286# The result of a CPU model baseline. 2287# 2288# @model: the baselined CpuModelInfo. 2289# 2290# Since: 2.8.0 2291## 2292{ 'struct': 'CpuModelBaselineInfo', 2293 'data': { 'model': 'CpuModelInfo' } } 2294 2295## 2296# @query-cpu-model-baseline: 2297# 2298# Baseline two CPU models, creating a compatible third model. The created 2299# model will always be a static, migration-safe CPU model (see "static" 2300# CPU model expansion for details). 2301# 2302# This interface can be used by tooling to create a compatible CPU model out 2303# two CPU models. The created CPU model will be identical to or a subset of 2304# both CPU models when comparing them. Therefore, the created CPU model is 2305# guaranteed to run where the given CPU models run. 2306# 2307# The result returned by this command may be affected by: 2308# 2309# * QEMU version: CPU models may look different depending on the QEMU version. 2310# (Except for CPU models reported as "static" in query-cpu-definitions.) 2311# * machine-type: CPU model may look different depending on the machine-type. 2312# (Except for CPU models reported as "static" in query-cpu-definitions.) 2313# * machine options (including accelerator): in some architectures, CPU models 2314# may look different depending on machine and accelerator options. (Except for 2315# CPU models reported as "static" in query-cpu-definitions.) 2316# * "-cpu" arguments and global properties: arguments to the -cpu option and 2317# global properties may affect expansion of CPU models. Using 2318# query-cpu-model-expansion while using these is not advised. 2319# 2320# Some architectures may not support baselining CPU models. s390x supports 2321# baselining CPU models. 2322# 2323# Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is 2324# not supported, if a model cannot be used, if a model contains 2325# an unknown cpu definition name, unknown properties or properties 2326# with wrong types. 2327# 2328# Since: 2.8.0 2329## 2330{ 'command': 'query-cpu-model-baseline', 2331 'data': { 'modela': 'CpuModelInfo', 2332 'modelb': 'CpuModelInfo' }, 2333 'returns': 'CpuModelBaselineInfo' } 2334 2335## 2336# @AddfdInfo: 2337# 2338# Information about a file descriptor that was added to an fd set. 2339# 2340# @fdset-id: The ID of the fd set that @fd was added to. 2341# 2342# @fd: The file descriptor that was received via SCM rights and 2343# added to the fd set. 2344# 2345# Since: 1.2.0 2346## 2347{ 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} } 2348 2349## 2350# @add-fd: 2351# 2352# Add a file descriptor, that was passed via SCM rights, to an fd set. 2353# 2354# @fdset-id: The ID of the fd set to add the file descriptor to. 2355# 2356# @opaque: A free-form string that can be used to describe the fd. 2357# 2358# Returns: @AddfdInfo on success 2359# 2360# If file descriptor was not received, FdNotSupplied 2361# 2362# If @fdset-id is a negative value, InvalidParameterValue 2363# 2364# Notes: The list of fd sets is shared by all monitor connections. 2365# 2366# If @fdset-id is not specified, a new fd set will be created. 2367# 2368# Since: 1.2.0 2369# 2370# Example: 2371# 2372# -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } } 2373# <- { "return": { "fdset-id": 1, "fd": 3 } } 2374# 2375## 2376{ 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'}, 2377 'returns': 'AddfdInfo' } 2378 2379## 2380# @remove-fd: 2381# 2382# Remove a file descriptor from an fd set. 2383# 2384# @fdset-id: The ID of the fd set that the file descriptor belongs to. 2385# 2386# @fd: The file descriptor that is to be removed. 2387# 2388# Returns: Nothing on success 2389# If @fdset-id or @fd is not found, FdNotFound 2390# 2391# Since: 1.2.0 2392# 2393# Notes: The list of fd sets is shared by all monitor connections. 2394# 2395# If @fd is not specified, all file descriptors in @fdset-id 2396# will be removed. 2397# 2398# Example: 2399# 2400# -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } } 2401# <- { "return": {} } 2402# 2403## 2404{ 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} } 2405 2406## 2407# @FdsetFdInfo: 2408# 2409# Information about a file descriptor that belongs to an fd set. 2410# 2411# @fd: The file descriptor value. 2412# 2413# @opaque: A free-form string that can be used to describe the fd. 2414# 2415# Since: 1.2.0 2416## 2417{ 'struct': 'FdsetFdInfo', 2418 'data': {'fd': 'int', '*opaque': 'str'} } 2419 2420## 2421# @FdsetInfo: 2422# 2423# Information about an fd set. 2424# 2425# @fdset-id: The ID of the fd set. 2426# 2427# @fds: A list of file descriptors that belong to this fd set. 2428# 2429# Since: 1.2.0 2430## 2431{ 'struct': 'FdsetInfo', 2432 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} } 2433 2434## 2435# @query-fdsets: 2436# 2437# Return information describing all fd sets. 2438# 2439# Returns: A list of @FdsetInfo 2440# 2441# Since: 1.2.0 2442# 2443# Note: The list of fd sets is shared by all monitor connections. 2444# 2445# Example: 2446# 2447# -> { "execute": "query-fdsets" } 2448# <- { "return": [ 2449# { 2450# "fds": [ 2451# { 2452# "fd": 30, 2453# "opaque": "rdonly:/path/to/file" 2454# }, 2455# { 2456# "fd": 24, 2457# "opaque": "rdwr:/path/to/file" 2458# } 2459# ], 2460# "fdset-id": 1 2461# }, 2462# { 2463# "fds": [ 2464# { 2465# "fd": 28 2466# }, 2467# { 2468# "fd": 29 2469# } 2470# ], 2471# "fdset-id": 0 2472# } 2473# ] 2474# } 2475# 2476## 2477{ 'command': 'query-fdsets', 'returns': ['FdsetInfo'] } 2478 2479## 2480# @TargetInfo: 2481# 2482# Information describing the QEMU target. 2483# 2484# @arch: the target architecture 2485# 2486# Since: 1.2.0 2487## 2488{ 'struct': 'TargetInfo', 2489 'data': { 'arch': 'SysEmuTarget' } } 2490 2491## 2492# @query-target: 2493# 2494# Return information about the target for this QEMU 2495# 2496# Returns: TargetInfo 2497# 2498# Since: 1.2.0 2499## 2500{ 'command': 'query-target', 'returns': 'TargetInfo' } 2501 2502## 2503# @AcpiTableOptions: 2504# 2505# Specify an ACPI table on the command line to load. 2506# 2507# At most one of @file and @data can be specified. The list of files specified 2508# by any one of them is loaded and concatenated in order. If both are omitted, 2509# @data is implied. 2510# 2511# Other fields / optargs can be used to override fields of the generic ACPI 2512# table header; refer to the ACPI specification 5.0, section 5.2.6 System 2513# Description Table Header. If a header field is not overridden, then the 2514# corresponding value from the concatenated blob is used (in case of @file), or 2515# it is filled in with a hard-coded value (in case of @data). 2516# 2517# String fields are copied into the matching ACPI member from lowest address 2518# upwards, and silently truncated / NUL-padded to length. 2519# 2520# @sig: table signature / identifier (4 bytes) 2521# 2522# @rev: table revision number (dependent on signature, 1 byte) 2523# 2524# @oem_id: OEM identifier (6 bytes) 2525# 2526# @oem_table_id: OEM table identifier (8 bytes) 2527# 2528# @oem_rev: OEM-supplied revision number (4 bytes) 2529# 2530# @asl_compiler_id: identifier of the utility that created the table 2531# (4 bytes) 2532# 2533# @asl_compiler_rev: revision number of the utility that created the 2534# table (4 bytes) 2535# 2536# @file: colon (:) separated list of pathnames to load and 2537# concatenate as table data. The resultant binary blob is expected to 2538# have an ACPI table header. At least one file is required. This field 2539# excludes @data. 2540# 2541# @data: colon (:) separated list of pathnames to load and 2542# concatenate as table data. The resultant binary blob must not have an 2543# ACPI table header. At least one file is required. This field excludes 2544# @file. 2545# 2546# Since: 1.5 2547## 2548{ 'struct': 'AcpiTableOptions', 2549 'data': { 2550 '*sig': 'str', 2551 '*rev': 'uint8', 2552 '*oem_id': 'str', 2553 '*oem_table_id': 'str', 2554 '*oem_rev': 'uint32', 2555 '*asl_compiler_id': 'str', 2556 '*asl_compiler_rev': 'uint32', 2557 '*file': 'str', 2558 '*data': 'str' }} 2559 2560## 2561# @CommandLineParameterType: 2562# 2563# Possible types for an option parameter. 2564# 2565# @string: accepts a character string 2566# 2567# @boolean: accepts "on" or "off" 2568# 2569# @number: accepts a number 2570# 2571# @size: accepts a number followed by an optional suffix (K)ilo, 2572# (M)ega, (G)iga, (T)era 2573# 2574# Since: 1.5 2575## 2576{ 'enum': 'CommandLineParameterType', 2577 'data': ['string', 'boolean', 'number', 'size'] } 2578 2579## 2580# @CommandLineParameterInfo: 2581# 2582# Details about a single parameter of a command line option. 2583# 2584# @name: parameter name 2585# 2586# @type: parameter @CommandLineParameterType 2587# 2588# @help: human readable text string, not suitable for parsing. 2589# 2590# @default: default value string (since 2.1) 2591# 2592# Since: 1.5 2593## 2594{ 'struct': 'CommandLineParameterInfo', 2595 'data': { 'name': 'str', 2596 'type': 'CommandLineParameterType', 2597 '*help': 'str', 2598 '*default': 'str' } } 2599 2600## 2601# @CommandLineOptionInfo: 2602# 2603# Details about a command line option, including its list of parameter details 2604# 2605# @option: option name 2606# 2607# @parameters: an array of @CommandLineParameterInfo 2608# 2609# Since: 1.5 2610## 2611{ 'struct': 'CommandLineOptionInfo', 2612 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } } 2613 2614## 2615# @query-command-line-options: 2616# 2617# Query command line option schema. 2618# 2619# @option: option name 2620# 2621# Returns: list of @CommandLineOptionInfo for all options (or for the given 2622# @option). Returns an error if the given @option doesn't exist. 2623# 2624# Since: 1.5 2625# 2626# Example: 2627# 2628# -> { "execute": "query-command-line-options", 2629# "arguments": { "option": "option-rom" } } 2630# <- { "return": [ 2631# { 2632# "parameters": [ 2633# { 2634# "name": "romfile", 2635# "type": "string" 2636# }, 2637# { 2638# "name": "bootindex", 2639# "type": "number" 2640# } 2641# ], 2642# "option": "option-rom" 2643# } 2644# ] 2645# } 2646# 2647## 2648{'command': 'query-command-line-options', 'data': { '*option': 'str' }, 2649 'returns': ['CommandLineOptionInfo'], 2650 'allow-preconfig': true } 2651 2652## 2653# @X86CPURegister32: 2654# 2655# A X86 32-bit register 2656# 2657# Since: 1.5 2658## 2659{ 'enum': 'X86CPURegister32', 2660 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] } 2661 2662## 2663# @X86CPUFeatureWordInfo: 2664# 2665# Information about a X86 CPU feature word 2666# 2667# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word 2668# 2669# @cpuid-input-ecx: Input ECX value for CPUID instruction for that 2670# feature word 2671# 2672# @cpuid-register: Output register containing the feature bits 2673# 2674# @features: value of output register, containing the feature bits 2675# 2676# Since: 1.5 2677## 2678{ 'struct': 'X86CPUFeatureWordInfo', 2679 'data': { 'cpuid-input-eax': 'int', 2680 '*cpuid-input-ecx': 'int', 2681 'cpuid-register': 'X86CPURegister32', 2682 'features': 'int' } } 2683 2684## 2685# @DummyForceArrays: 2686# 2687# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally 2688# 2689# Since: 2.5 2690## 2691{ 'struct': 'DummyForceArrays', 2692 'data': { 'unused': ['X86CPUFeatureWordInfo'] } } 2693 2694 2695## 2696# @NumaOptionsType: 2697# 2698# @node: NUMA nodes configuration 2699# 2700# @dist: NUMA distance configuration (since 2.10) 2701# 2702# @cpu: property based CPU(s) to node mapping (Since: 2.10) 2703# 2704# Since: 2.1 2705## 2706{ 'enum': 'NumaOptionsType', 2707 'data': [ 'node', 'dist', 'cpu' ] } 2708 2709## 2710# @NumaOptions: 2711# 2712# A discriminated record of NUMA options. (for OptsVisitor) 2713# 2714# Since: 2.1 2715## 2716{ 'union': 'NumaOptions', 2717 'base': { 'type': 'NumaOptionsType' }, 2718 'discriminator': 'type', 2719 'data': { 2720 'node': 'NumaNodeOptions', 2721 'dist': 'NumaDistOptions', 2722 'cpu': 'NumaCpuOptions' }} 2723 2724## 2725# @NumaNodeOptions: 2726# 2727# Create a guest NUMA node. (for OptsVisitor) 2728# 2729# @nodeid: NUMA node ID (increase by 1 from 0 if omitted) 2730# 2731# @cpus: VCPUs belonging to this node (assign VCPUS round-robin 2732# if omitted) 2733# 2734# @mem: memory size of this node; mutually exclusive with @memdev. 2735# Equally divide total memory among nodes if both @mem and @memdev are 2736# omitted. 2737# 2738# @memdev: memory backend object. If specified for one node, 2739# it must be specified for all nodes. 2740# 2741# Since: 2.1 2742## 2743{ 'struct': 'NumaNodeOptions', 2744 'data': { 2745 '*nodeid': 'uint16', 2746 '*cpus': ['uint16'], 2747 '*mem': 'size', 2748 '*memdev': 'str' }} 2749 2750## 2751# @NumaDistOptions: 2752# 2753# Set the distance between 2 NUMA nodes. 2754# 2755# @src: source NUMA node. 2756# 2757# @dst: destination NUMA node. 2758# 2759# @val: NUMA distance from source node to destination node. 2760# When a node is unreachable from another node, set the distance 2761# between them to 255. 2762# 2763# Since: 2.10 2764## 2765{ 'struct': 'NumaDistOptions', 2766 'data': { 2767 'src': 'uint16', 2768 'dst': 'uint16', 2769 'val': 'uint8' }} 2770 2771## 2772# @NumaCpuOptions: 2773# 2774# Option "-numa cpu" overrides default cpu to node mapping. 2775# It accepts the same set of cpu properties as returned by 2776# query-hotpluggable-cpus[].props, where node-id could be used to 2777# override default node mapping. 2778# 2779# Since: 2.10 2780## 2781{ 'struct': 'NumaCpuOptions', 2782 'base': 'CpuInstanceProperties', 2783 'data' : {} } 2784 2785## 2786# @HostMemPolicy: 2787# 2788# Host memory policy types 2789# 2790# @default: restore default policy, remove any nondefault policy 2791# 2792# @preferred: set the preferred host nodes for allocation 2793# 2794# @bind: a strict policy that restricts memory allocation to the 2795# host nodes specified 2796# 2797# @interleave: memory allocations are interleaved across the set 2798# of host nodes specified 2799# 2800# Since: 2.1 2801## 2802{ 'enum': 'HostMemPolicy', 2803 'data': [ 'default', 'preferred', 'bind', 'interleave' ] } 2804 2805## 2806# @Memdev: 2807# 2808# Information about memory backend 2809# 2810# @id: backend's ID if backend has 'id' property (since 2.9) 2811# 2812# @size: memory backend size 2813# 2814# @merge: enables or disables memory merge support 2815# 2816# @dump: includes memory backend's memory in a core dump or not 2817# 2818# @prealloc: enables or disables memory preallocation 2819# 2820# @host-nodes: host nodes for its memory policy 2821# 2822# @policy: memory policy of memory backend 2823# 2824# Since: 2.1 2825## 2826{ 'struct': 'Memdev', 2827 'data': { 2828 '*id': 'str', 2829 'size': 'size', 2830 'merge': 'bool', 2831 'dump': 'bool', 2832 'prealloc': 'bool', 2833 'host-nodes': ['uint16'], 2834 'policy': 'HostMemPolicy' }} 2835 2836## 2837# @query-memdev: 2838# 2839# Returns information for all memory backends. 2840# 2841# Returns: a list of @Memdev. 2842# 2843# Since: 2.1 2844# 2845# Example: 2846# 2847# -> { "execute": "query-memdev" } 2848# <- { "return": [ 2849# { 2850# "id": "mem1", 2851# "size": 536870912, 2852# "merge": false, 2853# "dump": true, 2854# "prealloc": false, 2855# "host-nodes": [0, 1], 2856# "policy": "bind" 2857# }, 2858# { 2859# "size": 536870912, 2860# "merge": false, 2861# "dump": true, 2862# "prealloc": true, 2863# "host-nodes": [2, 3], 2864# "policy": "preferred" 2865# } 2866# ] 2867# } 2868# 2869## 2870{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true } 2871 2872## 2873# @PCDIMMDeviceInfo: 2874# 2875# PCDIMMDevice state information 2876# 2877# @id: device's ID 2878# 2879# @addr: physical address, where device is mapped 2880# 2881# @size: size of memory that the device provides 2882# 2883# @slot: slot number at which device is plugged in 2884# 2885# @node: NUMA node number where device is plugged in 2886# 2887# @memdev: memory backend linked with device 2888# 2889# @hotplugged: true if device was hotplugged 2890# 2891# @hotpluggable: true if device if could be added/removed while machine is running 2892# 2893# Since: 2.1 2894## 2895{ 'struct': 'PCDIMMDeviceInfo', 2896 'data': { '*id': 'str', 2897 'addr': 'int', 2898 'size': 'int', 2899 'slot': 'int', 2900 'node': 'int', 2901 'memdev': 'str', 2902 'hotplugged': 'bool', 2903 'hotpluggable': 'bool' 2904 } 2905} 2906 2907## 2908# @MemoryDeviceInfo: 2909# 2910# Union containing information about a memory device 2911# 2912# Since: 2.1 2913## 2914{ 'union': 'MemoryDeviceInfo', 2915 'data': { 'dimm': 'PCDIMMDeviceInfo', 2916 'nvdimm': 'PCDIMMDeviceInfo' 2917 } 2918} 2919 2920## 2921# @query-memory-devices: 2922# 2923# Lists available memory devices and their state 2924# 2925# Since: 2.1 2926# 2927# Example: 2928# 2929# -> { "execute": "query-memory-devices" } 2930# <- { "return": [ { "data": 2931# { "addr": 5368709120, 2932# "hotpluggable": true, 2933# "hotplugged": true, 2934# "id": "d1", 2935# "memdev": "/objects/memX", 2936# "node": 0, 2937# "size": 1073741824, 2938# "slot": 0}, 2939# "type": "dimm" 2940# } ] } 2941# 2942## 2943{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] } 2944 2945## 2946# @MEM_UNPLUG_ERROR: 2947# 2948# Emitted when memory hot unplug error occurs. 2949# 2950# @device: device name 2951# 2952# @msg: Informative message 2953# 2954# Since: 2.4 2955# 2956# Example: 2957# 2958# <- { "event": "MEM_UNPLUG_ERROR" 2959# "data": { "device": "dimm1", 2960# "msg": "acpi: device unplug for unsupported device" 2961# }, 2962# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 2963# 2964## 2965{ 'event': 'MEM_UNPLUG_ERROR', 2966 'data': { 'device': 'str', 'msg': 'str' } } 2967 2968## 2969# @ACPISlotType: 2970# 2971# @DIMM: memory slot 2972# @CPU: logical CPU slot (since 2.7) 2973## 2974{ 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] } 2975 2976## 2977# @ACPIOSTInfo: 2978# 2979# OSPM Status Indication for a device 2980# For description of possible values of @source and @status fields 2981# see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec. 2982# 2983# @device: device ID associated with slot 2984# 2985# @slot: slot ID, unique per slot of a given @slot-type 2986# 2987# @slot-type: type of the slot 2988# 2989# @source: an integer containing the source event 2990# 2991# @status: an integer containing the status code 2992# 2993# Since: 2.1 2994## 2995{ 'struct': 'ACPIOSTInfo', 2996 'data' : { '*device': 'str', 2997 'slot': 'str', 2998 'slot-type': 'ACPISlotType', 2999 'source': 'int', 3000 'status': 'int' } } 3001 3002## 3003# @query-acpi-ospm-status: 3004# 3005# Return a list of ACPIOSTInfo for devices that support status 3006# reporting via ACPI _OST method. 3007# 3008# Since: 2.1 3009# 3010# Example: 3011# 3012# -> { "execute": "query-acpi-ospm-status" } 3013# <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0}, 3014# { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0}, 3015# { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0}, 3016# { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0} 3017# ]} 3018# 3019## 3020{ 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] } 3021 3022## 3023# @ACPI_DEVICE_OST: 3024# 3025# Emitted when guest executes ACPI _OST method. 3026# 3027# @info: OSPM Status Indication 3028# 3029# Since: 2.1 3030# 3031# Example: 3032# 3033# <- { "event": "ACPI_DEVICE_OST", 3034# "data": { "device": "d1", "slot": "0", 3035# "slot-type": "DIMM", "source": 1, "status": 0 } } 3036# 3037## 3038{ 'event': 'ACPI_DEVICE_OST', 3039 'data': { 'info': 'ACPIOSTInfo' } } 3040 3041## 3042# @rtc-reset-reinjection: 3043# 3044# This command will reset the RTC interrupt reinjection backlog. 3045# Can be used if another mechanism to synchronize guest time 3046# is in effect, for example QEMU guest agent's guest-set-time 3047# command. 3048# 3049# Since: 2.1 3050# 3051# Example: 3052# 3053# -> { "execute": "rtc-reset-reinjection" } 3054# <- { "return": {} } 3055# 3056## 3057{ 'command': 'rtc-reset-reinjection' } 3058 3059## 3060# @RTC_CHANGE: 3061# 3062# Emitted when the guest changes the RTC time. 3063# 3064# @offset: offset between base RTC clock (as specified by -rtc base), and 3065# new RTC clock value 3066# 3067# Note: This event is rate-limited. 3068# 3069# Since: 0.13.0 3070# 3071# Example: 3072# 3073# <- { "event": "RTC_CHANGE", 3074# "data": { "offset": 78 }, 3075# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } } 3076# 3077## 3078{ 'event': 'RTC_CHANGE', 3079 'data': { 'offset': 'int' } } 3080 3081## 3082# @ReplayMode: 3083# 3084# Mode of the replay subsystem. 3085# 3086# @none: normal execution mode. Replay or record are not enabled. 3087# 3088# @record: record mode. All non-deterministic data is written into the 3089# replay log. 3090# 3091# @play: replay mode. Non-deterministic data required for system execution 3092# is read from the log. 3093# 3094# Since: 2.5 3095## 3096{ 'enum': 'ReplayMode', 3097 'data': [ 'none', 'record', 'play' ] } 3098 3099## 3100# @xen-load-devices-state: 3101# 3102# Load the state of all devices from file. The RAM and the block devices 3103# of the VM are not loaded by this command. 3104# 3105# @filename: the file to load the state of the devices from as binary 3106# data. See xen-save-devices-state.txt for a description of the binary 3107# format. 3108# 3109# Since: 2.7 3110# 3111# Example: 3112# 3113# -> { "execute": "xen-load-devices-state", 3114# "arguments": { "filename": "/tmp/resume" } } 3115# <- { "return": {} } 3116# 3117## 3118{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 3119 3120## 3121# @GICCapability: 3122# 3123# The struct describes capability for a specific GIC (Generic 3124# Interrupt Controller) version. These bits are not only decided by 3125# QEMU/KVM software version, but also decided by the hardware that 3126# the program is running upon. 3127# 3128# @version: version of GIC to be described. Currently, only 2 and 3 3129# are supported. 3130# 3131# @emulated: whether current QEMU/hardware supports emulated GIC 3132# device in user space. 3133# 3134# @kernel: whether current QEMU/hardware supports hardware 3135# accelerated GIC device in kernel. 3136# 3137# Since: 2.6 3138## 3139{ 'struct': 'GICCapability', 3140 'data': { 'version': 'int', 3141 'emulated': 'bool', 3142 'kernel': 'bool' } } 3143 3144## 3145# @query-gic-capabilities: 3146# 3147# This command is ARM-only. It will return a list of GICCapability 3148# objects that describe its capability bits. 3149# 3150# Returns: a list of GICCapability objects. 3151# 3152# Since: 2.6 3153# 3154# Example: 3155# 3156# -> { "execute": "query-gic-capabilities" } 3157# <- { "return": [{ "version": 2, "emulated": true, "kernel": false }, 3158# { "version": 3, "emulated": false, "kernel": true } ] } 3159# 3160## 3161{ 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] } 3162 3163## 3164# @CpuInstanceProperties: 3165# 3166# List of properties to be used for hotplugging a CPU instance, 3167# it should be passed by management with device_add command when 3168# a CPU is being hotplugged. 3169# 3170# @node-id: NUMA node ID the CPU belongs to 3171# @socket-id: socket number within node/board the CPU belongs to 3172# @core-id: core number within socket the CPU belongs to 3173# @thread-id: thread number within core the CPU belongs to 3174# 3175# Note: currently there are 4 properties that could be present 3176# but management should be prepared to pass through other 3177# properties with device_add command to allow for future 3178# interface extension. This also requires the filed names to be kept in 3179# sync with the properties passed to -device/device_add. 3180# 3181# Since: 2.7 3182## 3183{ 'struct': 'CpuInstanceProperties', 3184 'data': { '*node-id': 'int', 3185 '*socket-id': 'int', 3186 '*core-id': 'int', 3187 '*thread-id': 'int' 3188 } 3189} 3190 3191## 3192# @HotpluggableCPU: 3193# 3194# @type: CPU object type for usage with device_add command 3195# @props: list of properties to be used for hotplugging CPU 3196# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides 3197# @qom-path: link to existing CPU object if CPU is present or 3198# omitted if CPU is not present. 3199# 3200# Since: 2.7 3201## 3202{ 'struct': 'HotpluggableCPU', 3203 'data': { 'type': 'str', 3204 'vcpus-count': 'int', 3205 'props': 'CpuInstanceProperties', 3206 '*qom-path': 'str' 3207 } 3208} 3209 3210## 3211# @query-hotpluggable-cpus: 3212# 3213# Returns: a list of HotpluggableCPU objects. 3214# 3215# Since: 2.7 3216# 3217# Example: 3218# 3219# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8: 3220# 3221# -> { "execute": "query-hotpluggable-cpus" } 3222# <- {"return": [ 3223# { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core", 3224# "vcpus-count": 1 }, 3225# { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core", 3226# "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"} 3227# ]}' 3228# 3229# For pc machine type started with -smp 1,maxcpus=2: 3230# 3231# -> { "execute": "query-hotpluggable-cpus" } 3232# <- {"return": [ 3233# { 3234# "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 3235# "props": {"core-id": 0, "socket-id": 1, "thread-id": 0} 3236# }, 3237# { 3238# "qom-path": "/machine/unattached/device[0]", 3239# "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 3240# "props": {"core-id": 0, "socket-id": 0, "thread-id": 0} 3241# } 3242# ]} 3243# 3244# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu 3245# (Since: 2.11): 3246# 3247# -> { "execute": "query-hotpluggable-cpus" } 3248# <- {"return": [ 3249# { 3250# "type": "qemu-s390x-cpu", "vcpus-count": 1, 3251# "props": { "core-id": 1 } 3252# }, 3253# { 3254# "qom-path": "/machine/unattached/device[0]", 3255# "type": "qemu-s390x-cpu", "vcpus-count": 1, 3256# "props": { "core-id": 0 } 3257# } 3258# ]} 3259# 3260## 3261{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'], 3262 'allow-preconfig': true } 3263 3264## 3265# @GuidInfo: 3266# 3267# GUID information. 3268# 3269# @guid: the globally unique identifier 3270# 3271# Since: 2.9 3272## 3273{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} } 3274 3275## 3276# @query-vm-generation-id: 3277# 3278# Show Virtual Machine Generation ID 3279# 3280# Since: 2.9 3281## 3282{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' } 3283 3284 3285## 3286# @SevState: 3287# 3288# An enumeration of SEV state information used during @query-sev. 3289# 3290# @uninit: The guest is uninitialized. 3291# 3292# @launch-update: The guest is currently being launched; plaintext data and 3293# register state is being imported. 3294# 3295# @launch-secret: The guest is currently being launched; ciphertext data 3296# is being imported. 3297# 3298# @running: The guest is fully launched or migrated in. 3299# 3300# @send-update: The guest is currently being migrated out to another machine. 3301# 3302# @receive-update: The guest is currently being migrated from another machine. 3303# 3304# Since: 2.12 3305## 3306{ 'enum': 'SevState', 3307 'data': ['uninit', 'launch-update', 'launch-secret', 'running', 3308 'send-update', 'receive-update' ] } 3309 3310## 3311# @SevInfo: 3312# 3313# Information about Secure Encrypted Virtualization (SEV) support 3314# 3315# @enabled: true if SEV is active 3316# 3317# @api-major: SEV API major version 3318# 3319# @api-minor: SEV API minor version 3320# 3321# @build-id: SEV FW build id 3322# 3323# @policy: SEV policy value 3324# 3325# @state: SEV guest state 3326# 3327# @handle: SEV firmware handle 3328# 3329# Since: 2.12 3330## 3331{ 'struct': 'SevInfo', 3332 'data': { 'enabled': 'bool', 3333 'api-major': 'uint8', 3334 'api-minor' : 'uint8', 3335 'build-id' : 'uint8', 3336 'policy' : 'uint32', 3337 'state' : 'SevState', 3338 'handle' : 'uint32' 3339 } 3340} 3341 3342## 3343# @query-sev: 3344# 3345# Returns information about SEV 3346# 3347# Returns: @SevInfo 3348# 3349# Since: 2.12 3350# 3351# Example: 3352# 3353# -> { "execute": "query-sev" } 3354# <- { "return": { "enabled": true, "api-major" : 0, "api-minor" : 0, 3355# "build-id" : 0, "policy" : 0, "state" : "running", 3356# "handle" : 1 } } 3357# 3358## 3359{ 'command': 'query-sev', 'returns': 'SevInfo' } 3360 3361## 3362# @SevLaunchMeasureInfo: 3363# 3364# SEV Guest Launch measurement information 3365# 3366# @data: the measurement value encoded in base64 3367# 3368# Since: 2.12 3369# 3370## 3371{ 'struct': 'SevLaunchMeasureInfo', 'data': {'data': 'str'} } 3372 3373## 3374# @query-sev-launch-measure: 3375# 3376# Query the SEV guest launch information. 3377# 3378# Returns: The @SevLaunchMeasureInfo for the guest 3379# 3380# Since: 2.12 3381# 3382# Example: 3383# 3384# -> { "execute": "query-sev-launch-measure" } 3385# <- { "return": { "data": "4l8LXeNlSPUDlXPJG5966/8%YZ" } } 3386# 3387## 3388{ 'command': 'query-sev-launch-measure', 'returns': 'SevLaunchMeasureInfo' } 3389 3390## 3391# @SevCapability: 3392# 3393# The struct describes capability for a Secure Encrypted Virtualization 3394# feature. 3395# 3396# @pdh: Platform Diffie-Hellman key (base64 encoded) 3397# 3398# @cert-chain: PDH certificate chain (base64 encoded) 3399# 3400# @cbitpos: C-bit location in page table entry 3401# 3402# @reduced-phys-bits: Number of physical Address bit reduction when SEV is 3403# enabled 3404# 3405# Since: 2.12 3406## 3407{ 'struct': 'SevCapability', 3408 'data': { 'pdh': 'str', 3409 'cert-chain': 'str', 3410 'cbitpos': 'int', 3411 'reduced-phys-bits': 'int'} } 3412 3413## 3414# @query-sev-capabilities: 3415# 3416# This command is used to get the SEV capabilities, and is supported on AMD 3417# X86 platforms only. 3418# 3419# Returns: SevCapability objects. 3420# 3421# Since: 2.12 3422# 3423# Example: 3424# 3425# -> { "execute": "query-sev-capabilities" } 3426# <- { "return": { "pdh": "8CCDD8DDD", "cert-chain": "888CCCDDDEE", 3427# "cbitpos": 47, "reduced-phys-bits": 5}} 3428# 3429## 3430{ 'command': 'query-sev-capabilities', 'returns': 'SevCapability' } 3431 3432## 3433# @CommandDropReason: 3434# 3435# Reasons that caused one command to be dropped. 3436# 3437# @queue-full: the command queue is full. This can only occur when 3438# the client sends a new non-oob command before the 3439# response to the previous non-oob command has been 3440# received. 3441# 3442# Since: 2.12 3443## 3444{ 'enum': 'CommandDropReason', 3445 'data': [ 'queue-full' ] } 3446 3447## 3448# @COMMAND_DROPPED: 3449# 3450# Emitted when a command is dropped due to some reason. Commands can 3451# only be dropped when the oob capability is enabled. 3452# 3453# @id: The dropped command's "id" field. 3454# 3455# @reason: The reason why the command is dropped. 3456# 3457# Since: 2.12 3458# 3459# Example: 3460# 3461# { "event": "COMMAND_DROPPED", 3462# "data": {"result": {"id": "libvirt-102", 3463# "reason": "queue-full" } } } 3464# 3465## 3466{ 'event': 'COMMAND_DROPPED' , 3467 'data': { 'id': 'any', 'reason': 'CommandDropReason' } } 3468 3469## 3470# @x-oob-test: 3471# 3472# Test OOB functionality. When sending this command with lock=true, 3473# it'll try to hang the dispatcher. When sending it with lock=false, 3474# it'll try to notify the locked thread to continue. Note: it should 3475# only be used by QMP test program rather than anything else. 3476# 3477# Since: 2.12 3478# 3479# Example: 3480# 3481# { "execute": "x-oob-test", 3482# "arguments": { "lock": true } } 3483## 3484{ 'command': 'x-oob-test', 'data' : { 'lock': 'bool' }, 3485 'allow-oob': true } 3486 3487## 3488# @set-numa-node: 3489# 3490# Runtime equivalent of '-numa' CLI option, available at 3491# preconfigure stage to configure numa mapping before initializing 3492# machine. 3493# 3494# Since 3.0 3495## 3496{ 'command': 'set-numa-node', 'boxed': true, 3497 'data': 'NumaOptions', 3498 'allow-preconfig': true 3499} 3500