xref: /openbmc/qemu/qapi/misc.json (revision be0aa7ac)
1# -*- Mode: Python -*-
2#
3
4##
5# = Miscellanea
6##
7
8##
9# @qmp_capabilities:
10#
11# Enable QMP capabilities.
12#
13# Arguments: None.
14#
15# Example:
16#
17# -> { "execute": "qmp_capabilities" }
18# <- { "return": {} }
19#
20# Notes: This command is valid exactly when first connecting: it must be
21# issued before any other command will be accepted, and will fail once the
22# monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
23#
24# Since: 0.13
25#
26##
27{ 'command': 'qmp_capabilities' }
28
29##
30# @VersionTriple:
31#
32# A three-part version number.
33#
34# @major:  The major version number.
35#
36# @minor:  The minor version number.
37#
38# @micro:  The micro version number.
39#
40# Since: 2.4
41##
42{ 'struct': 'VersionTriple',
43  'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
44
45
46##
47# @VersionInfo:
48#
49# A description of QEMU's version.
50#
51# @qemu:        The version of QEMU.  By current convention, a micro
52#               version of 50 signifies a development branch.  A micro version
53#               greater than or equal to 90 signifies a release candidate for
54#               the next minor version.  A micro version of less than 50
55#               signifies a stable release.
56#
57# @package:     QEMU will always set this field to an empty string.  Downstream
58#               versions of QEMU should set this to a non-empty string.  The
59#               exact format depends on the downstream however it highly
60#               recommended that a unique name is used.
61#
62# Since: 0.14.0
63##
64{ 'struct': 'VersionInfo',
65  'data': {'qemu': 'VersionTriple', 'package': 'str'} }
66
67##
68# @query-version:
69#
70# Returns the current version of QEMU.
71#
72# Returns:  A @VersionInfo object describing the current version of QEMU.
73#
74# Since: 0.14.0
75#
76# Example:
77#
78# -> { "execute": "query-version" }
79# <- {
80#       "return":{
81#          "qemu":{
82#             "major":0,
83#             "minor":11,
84#             "micro":5
85#          },
86#          "package":""
87#       }
88#    }
89#
90##
91{ 'command': 'query-version', 'returns': 'VersionInfo' }
92
93##
94# @CommandInfo:
95#
96# Information about a QMP command
97#
98# @name: The command name
99#
100# Since: 0.14.0
101##
102{ 'struct': 'CommandInfo', 'data': {'name': 'str'} }
103
104##
105# @query-commands:
106#
107# Return a list of supported QMP commands by this server
108#
109# Returns: A list of @CommandInfo for all supported commands
110#
111# Since: 0.14.0
112#
113# Example:
114#
115# -> { "execute": "query-commands" }
116# <- {
117#      "return":[
118#         {
119#            "name":"query-balloon"
120#         },
121#         {
122#            "name":"system_powerdown"
123#         }
124#      ]
125#    }
126#
127# Note: This example has been shortened as the real response is too long.
128#
129##
130{ 'command': 'query-commands', 'returns': ['CommandInfo'] }
131
132##
133# @LostTickPolicy:
134#
135# Policy for handling lost ticks in timer devices.
136#
137# @discard: throw away the missed tick(s) and continue with future injection
138#           normally.  Guest time may be delayed, unless the OS has explicit
139#           handling of lost ticks
140#
141# @delay: continue to deliver ticks at the normal rate.  Guest time will be
142#         delayed due to the late tick
143#
144# @merge: merge the missed tick(s) into one tick and inject.  Guest time
145#         may be delayed, depending on how the OS reacts to the merging
146#         of ticks
147#
148# @slew: deliver ticks at a higher rate to catch up with the missed tick. The
149#        guest time should not be delayed once catchup is complete.
150#
151# Since: 2.0
152##
153{ 'enum': 'LostTickPolicy',
154  'data': ['discard', 'delay', 'merge', 'slew' ] }
155
156##
157# @add_client:
158#
159# Allow client connections for VNC, Spice and socket based
160# character devices to be passed in to QEMU via SCM_RIGHTS.
161#
162# @protocol: protocol name. Valid names are "vnc", "spice" or the
163#            name of a character device (eg. from -chardev id=XXXX)
164#
165# @fdname: file descriptor name previously passed via 'getfd' command
166#
167# @skipauth: whether to skip authentication. Only applies
168#            to "vnc" and "spice" protocols
169#
170# @tls: whether to perform TLS. Only applies to the "spice"
171#       protocol
172#
173# Returns: nothing on success.
174#
175# Since: 0.14.0
176#
177# Example:
178#
179# -> { "execute": "add_client", "arguments": { "protocol": "vnc",
180#                                              "fdname": "myclient" } }
181# <- { "return": {} }
182#
183##
184{ 'command': 'add_client',
185  'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
186            '*tls': 'bool' } }
187
188##
189# @NameInfo:
190#
191# Guest name information.
192#
193# @name: The name of the guest
194#
195# Since: 0.14.0
196##
197{ 'struct': 'NameInfo', 'data': {'*name': 'str'} }
198
199##
200# @query-name:
201#
202# Return the name information of a guest.
203#
204# Returns: @NameInfo of the guest
205#
206# Since: 0.14.0
207#
208# Example:
209#
210# -> { "execute": "query-name" }
211# <- { "return": { "name": "qemu-name" } }
212#
213##
214{ 'command': 'query-name', 'returns': 'NameInfo' }
215
216##
217# @KvmInfo:
218#
219# Information about support for KVM acceleration
220#
221# @enabled: true if KVM acceleration is active
222#
223# @present: true if KVM acceleration is built into this executable
224#
225# Since: 0.14.0
226##
227{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
228
229##
230# @query-kvm:
231#
232# Returns information about KVM acceleration
233#
234# Returns: @KvmInfo
235#
236# Since: 0.14.0
237#
238# Example:
239#
240# -> { "execute": "query-kvm" }
241# <- { "return": { "enabled": true, "present": true } }
242#
243##
244{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
245
246##
247# @UuidInfo:
248#
249# Guest UUID information (Universally Unique Identifier).
250#
251# @UUID: the UUID of the guest
252#
253# Since: 0.14.0
254#
255# Notes: If no UUID was specified for the guest, a null UUID is returned.
256##
257{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
258
259##
260# @query-uuid:
261#
262# Query the guest UUID information.
263#
264# Returns: The @UuidInfo for the guest
265#
266# Since: 0.14.0
267#
268# Example:
269#
270# -> { "execute": "query-uuid" }
271# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
272#
273##
274{ 'command': 'query-uuid', 'returns': 'UuidInfo' }
275
276##
277# @EventInfo:
278#
279# Information about a QMP event
280#
281# @name: The event name
282#
283# Since: 1.2.0
284##
285{ 'struct': 'EventInfo', 'data': {'name': 'str'} }
286
287##
288# @query-events:
289#
290# Return a list of supported QMP events by this server
291#
292# Returns: A list of @EventInfo for all supported events
293#
294# Since: 1.2.0
295#
296# Example:
297#
298# -> { "execute": "query-events" }
299# <- {
300#      "return": [
301#          {
302#             "name":"SHUTDOWN"
303#          },
304#          {
305#             "name":"RESET"
306#          }
307#       ]
308#    }
309#
310# Note: This example has been shortened as the real response is too long.
311#
312##
313{ 'command': 'query-events', 'returns': ['EventInfo'] }
314
315##
316# @CpuInfoArch:
317#
318# An enumeration of cpu types that enable additional information during
319# @query-cpus and @query-cpus-fast.
320#
321# @s390: since 2.12
322#
323# @riscv: since 2.12
324#
325# Since: 2.6
326##
327{ 'enum': 'CpuInfoArch',
328  'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] }
329
330##
331# @CpuInfo:
332#
333# Information about a virtual CPU
334#
335# @CPU: the index of the virtual CPU
336#
337# @current: this only exists for backwards compatibility and should be ignored
338#
339# @halted: true if the virtual CPU is in the halt state.  Halt usually refers
340#          to a processor specific low power mode.
341#
342# @qom_path: path to the CPU object in the QOM tree (since 2.4)
343#
344# @thread_id: ID of the underlying host thread
345#
346# @props: properties describing to which node/socket/core/thread
347#         virtual CPU belongs to, provided if supported by board (since 2.10)
348#
349# @arch: architecture of the cpu, which determines which additional fields
350#        will be listed (since 2.6)
351#
352# Since: 0.14.0
353#
354# Notes: @halted is a transient state that changes frequently.  By the time the
355#        data is sent to the client, the guest may no longer be halted.
356##
357{ 'union': 'CpuInfo',
358  'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
359           'qom_path': 'str', 'thread_id': 'int',
360           '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
361  'discriminator': 'arch',
362  'data': { 'x86': 'CpuInfoX86',
363            'sparc': 'CpuInfoSPARC',
364            'ppc': 'CpuInfoPPC',
365            'mips': 'CpuInfoMIPS',
366            'tricore': 'CpuInfoTricore',
367            's390': 'CpuInfoS390',
368            'riscv': 'CpuInfoRISCV',
369            'other': 'CpuInfoOther' } }
370
371##
372# @CpuInfoX86:
373#
374# Additional information about a virtual i386 or x86_64 CPU
375#
376# @pc: the 64-bit instruction pointer
377#
378# Since: 2.6
379##
380{ 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
381
382##
383# @CpuInfoSPARC:
384#
385# Additional information about a virtual SPARC CPU
386#
387# @pc: the PC component of the instruction pointer
388#
389# @npc: the NPC component of the instruction pointer
390#
391# Since: 2.6
392##
393{ 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
394
395##
396# @CpuInfoPPC:
397#
398# Additional information about a virtual PPC CPU
399#
400# @nip: the instruction pointer
401#
402# Since: 2.6
403##
404{ 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
405
406##
407# @CpuInfoMIPS:
408#
409# Additional information about a virtual MIPS CPU
410#
411# @PC: the instruction pointer
412#
413# Since: 2.6
414##
415{ 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
416
417##
418# @CpuInfoTricore:
419#
420# Additional information about a virtual Tricore CPU
421#
422# @PC: the instruction pointer
423#
424# Since: 2.6
425##
426{ 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
427
428##
429# @CpuInfoRISCV:
430#
431# Additional information about a virtual RISCV CPU
432#
433# @pc: the instruction pointer
434#
435# Since 2.12
436##
437{ 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } }
438
439##
440# @CpuInfoOther:
441#
442# No additional information is available about the virtual CPU
443#
444# Since: 2.6
445#
446##
447{ 'struct': 'CpuInfoOther', 'data': { } }
448
449##
450# @CpuS390State:
451#
452# An enumeration of cpu states that can be assumed by a virtual
453# S390 CPU
454#
455# Since: 2.12
456##
457{ 'enum': 'CpuS390State',
458  'prefix': 'S390_CPU_STATE',
459  'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
460
461##
462# @CpuInfoS390:
463#
464# Additional information about a virtual S390 CPU
465#
466# @cpu-state: the virtual CPU's state
467#
468# Since: 2.12
469##
470{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
471
472##
473# @query-cpus:
474#
475# Returns a list of information about each virtual CPU.
476#
477# This command causes vCPU threads to exit to userspace, which causes
478# a small interruption to guest CPU execution. This will have a negative
479# impact on realtime guests and other latency sensitive guest workloads.
480# It is recommended to use @query-cpus-fast instead of this command to
481# avoid the vCPU interruption.
482#
483# Returns: a list of @CpuInfo for each virtual CPU
484#
485# Since: 0.14.0
486#
487# Example:
488#
489# -> { "execute": "query-cpus" }
490# <- { "return": [
491#          {
492#             "CPU":0,
493#             "current":true,
494#             "halted":false,
495#             "qom_path":"/machine/unattached/device[0]",
496#             "arch":"x86",
497#             "pc":3227107138,
498#             "thread_id":3134
499#          },
500#          {
501#             "CPU":1,
502#             "current":false,
503#             "halted":true,
504#             "qom_path":"/machine/unattached/device[2]",
505#             "arch":"x86",
506#             "pc":7108165,
507#             "thread_id":3135
508#          }
509#       ]
510#    }
511#
512# Notes: This interface is deprecated (since 2.12.0), and it is strongly
513#        recommended that you avoid using it. Use @query-cpus-fast to
514#        obtain information about virtual CPUs.
515#
516##
517{ 'command': 'query-cpus', 'returns': ['CpuInfo'] }
518
519##
520# @CpuInfoFast:
521#
522# Information about a virtual CPU
523#
524# @cpu-index: index of the virtual CPU
525#
526# @qom-path: path to the CPU object in the QOM tree
527#
528# @thread-id: ID of the underlying host thread
529#
530# @props: properties describing to which node/socket/core/thread
531#         virtual CPU belongs to, provided if supported by board
532#
533# @arch: architecture of the cpu, which determines which additional fields
534#        will be listed
535#
536# Since: 2.12
537#
538##
539{ 'union': 'CpuInfoFast',
540  'base': {'cpu-index': 'int', 'qom-path': 'str',
541           'thread-id': 'int', '*props': 'CpuInstanceProperties',
542           'arch': 'CpuInfoArch' },
543  'discriminator': 'arch',
544  'data': { 'x86': 'CpuInfoOther',
545            'sparc': 'CpuInfoOther',
546            'ppc': 'CpuInfoOther',
547            'mips': 'CpuInfoOther',
548            'tricore': 'CpuInfoOther',
549            's390': 'CpuInfoS390',
550            'riscv': 'CpuInfoRISCV',
551            'other': 'CpuInfoOther' } }
552
553##
554# @query-cpus-fast:
555#
556# Returns information about all virtual CPUs. This command does not
557# incur a performance penalty and should be used in production
558# instead of query-cpus.
559#
560# Returns: list of @CpuInfoFast
561#
562# Since: 2.12
563#
564# Example:
565#
566# -> { "execute": "query-cpus-fast" }
567# <- { "return": [
568#         {
569#             "thread-id": 25627,
570#             "props": {
571#                 "core-id": 0,
572#                 "thread-id": 0,
573#                 "socket-id": 0
574#             },
575#             "qom-path": "/machine/unattached/device[0]",
576#             "arch":"x86",
577#             "cpu-index": 0
578#         },
579#         {
580#             "thread-id": 25628,
581#             "props": {
582#                 "core-id": 0,
583#                 "thread-id": 0,
584#                 "socket-id": 1
585#             },
586#             "qom-path": "/machine/unattached/device[2]",
587#             "arch":"x86",
588#             "cpu-index": 1
589#         }
590#     ]
591# }
592##
593{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
594
595##
596# @IOThreadInfo:
597#
598# Information about an iothread
599#
600# @id: the identifier of the iothread
601#
602# @thread-id: ID of the underlying host thread
603#
604# @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
605#               (since 2.9)
606#
607# @poll-grow: how many ns will be added to polling time, 0 means that it's not
608#             configured (since 2.9)
609#
610# @poll-shrink: how many ns will be removed from polling time, 0 means that
611#               it's not configured (since 2.9)
612#
613# Since: 2.0
614##
615{ 'struct': 'IOThreadInfo',
616  'data': {'id': 'str',
617           'thread-id': 'int',
618           'poll-max-ns': 'int',
619           'poll-grow': 'int',
620           'poll-shrink': 'int' } }
621
622##
623# @query-iothreads:
624#
625# Returns a list of information about each iothread.
626#
627# Note: this list excludes the QEMU main loop thread, which is not declared
628# using the -object iothread command-line option.  It is always the main thread
629# of the process.
630#
631# Returns: a list of @IOThreadInfo for each iothread
632#
633# Since: 2.0
634#
635# Example:
636#
637# -> { "execute": "query-iothreads" }
638# <- { "return": [
639#          {
640#             "id":"iothread0",
641#             "thread-id":3134
642#          },
643#          {
644#             "id":"iothread1",
645#             "thread-id":3135
646#          }
647#       ]
648#    }
649#
650##
651{ 'command': 'query-iothreads', 'returns': ['IOThreadInfo'] }
652
653##
654# @BalloonInfo:
655#
656# Information about the guest balloon device.
657#
658# @actual: the number of bytes the balloon currently contains
659#
660# Since: 0.14.0
661#
662##
663{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
664
665##
666# @query-balloon:
667#
668# Return information about the balloon device.
669#
670# Returns: @BalloonInfo on success
671#
672#          If the balloon driver is enabled but not functional because the KVM
673#          kernel module cannot support it, KvmMissingCap
674#
675#          If no balloon device is present, DeviceNotActive
676#
677# Since: 0.14.0
678#
679# Example:
680#
681# -> { "execute": "query-balloon" }
682# <- { "return": {
683#          "actual": 1073741824,
684#       }
685#    }
686#
687##
688{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
689
690##
691# @BALLOON_CHANGE:
692#
693# Emitted when the guest changes the actual BALLOON level. This value is
694# equivalent to the @actual field return by the 'query-balloon' command
695#
696# @actual: actual level of the guest memory balloon in bytes
697#
698# Note: this event is rate-limited.
699#
700# Since: 1.2
701#
702# Example:
703#
704# <- { "event": "BALLOON_CHANGE",
705#      "data": { "actual": 944766976 },
706#      "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
707#
708##
709{ 'event': 'BALLOON_CHANGE',
710  'data': { 'actual': 'int' } }
711
712##
713# @PciMemoryRange:
714#
715# A PCI device memory region
716#
717# @base: the starting address (guest physical)
718#
719# @limit: the ending address (guest physical)
720#
721# Since: 0.14.0
722##
723{ 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
724
725##
726# @PciMemoryRegion:
727#
728# Information about a PCI device I/O region.
729#
730# @bar: the index of the Base Address Register for this region
731#
732# @type: 'io' if the region is a PIO region
733#        'memory' if the region is a MMIO region
734#
735# @size: memory size
736#
737# @prefetch: if @type is 'memory', true if the memory is prefetchable
738#
739# @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
740#
741# Since: 0.14.0
742##
743{ 'struct': 'PciMemoryRegion',
744  'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
745           '*prefetch': 'bool', '*mem_type_64': 'bool' } }
746
747##
748# @PciBusInfo:
749#
750# Information about a bus of a PCI Bridge device
751#
752# @number: primary bus interface number.  This should be the number of the
753#          bus the device resides on.
754#
755# @secondary: secondary bus interface number.  This is the number of the
756#             main bus for the bridge
757#
758# @subordinate: This is the highest number bus that resides below the
759#               bridge.
760#
761# @io_range: The PIO range for all devices on this bridge
762#
763# @memory_range: The MMIO range for all devices on this bridge
764#
765# @prefetchable_range: The range of prefetchable MMIO for all devices on
766#                      this bridge
767#
768# Since: 2.4
769##
770{ 'struct': 'PciBusInfo',
771  'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
772           'io_range': 'PciMemoryRange',
773           'memory_range': 'PciMemoryRange',
774           'prefetchable_range': 'PciMemoryRange' } }
775
776##
777# @PciBridgeInfo:
778#
779# Information about a PCI Bridge device
780#
781# @bus: information about the bus the device resides on
782#
783# @devices: a list of @PciDeviceInfo for each device on this bridge
784#
785# Since: 0.14.0
786##
787{ 'struct': 'PciBridgeInfo',
788  'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
789
790##
791# @PciDeviceClass:
792#
793# Information about the Class of a PCI device
794#
795# @desc: a string description of the device's class
796#
797# @class: the class code of the device
798#
799# Since: 2.4
800##
801{ 'struct': 'PciDeviceClass',
802  'data': {'*desc': 'str', 'class': 'int'} }
803
804##
805# @PciDeviceId:
806#
807# Information about the Id of a PCI device
808#
809# @device: the PCI device id
810#
811# @vendor: the PCI vendor id
812#
813# Since: 2.4
814##
815{ 'struct': 'PciDeviceId',
816  'data': {'device': 'int', 'vendor': 'int'} }
817
818##
819# @PciDeviceInfo:
820#
821# Information about a PCI device
822#
823# @bus: the bus number of the device
824#
825# @slot: the slot the device is located in
826#
827# @function: the function of the slot used by the device
828#
829# @class_info: the class of the device
830#
831# @id: the PCI device id
832#
833# @irq: if an IRQ is assigned to the device, the IRQ number
834#
835# @qdev_id: the device name of the PCI device
836#
837# @pci_bridge: if the device is a PCI bridge, the bridge information
838#
839# @regions: a list of the PCI I/O regions associated with the device
840#
841# Notes: the contents of @class_info.desc are not stable and should only be
842#        treated as informational.
843#
844# Since: 0.14.0
845##
846{ 'struct': 'PciDeviceInfo',
847  'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
848           'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
849           '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
850           'regions': ['PciMemoryRegion']} }
851
852##
853# @PciInfo:
854#
855# Information about a PCI bus
856#
857# @bus: the bus index
858#
859# @devices: a list of devices on this bus
860#
861# Since: 0.14.0
862##
863{ 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
864
865##
866# @query-pci:
867#
868# Return information about the PCI bus topology of the guest.
869#
870# Returns: a list of @PciInfo for each PCI bus. Each bus is
871# represented by a json-object, which has a key with a json-array of
872# all PCI devices attached to it. Each device is represented by a
873# json-object.
874#
875# Since: 0.14.0
876#
877# Example:
878#
879# -> { "execute": "query-pci" }
880# <- { "return": [
881#          {
882#             "bus": 0,
883#             "devices": [
884#                {
885#                   "bus": 0,
886#                   "qdev_id": "",
887#                   "slot": 0,
888#                   "class_info": {
889#                      "class": 1536,
890#                      "desc": "Host bridge"
891#                   },
892#                   "id": {
893#                      "device": 32902,
894#                      "vendor": 4663
895#                   },
896#                   "function": 0,
897#                   "regions": [
898#                   ]
899#                },
900#                {
901#                   "bus": 0,
902#                   "qdev_id": "",
903#                   "slot": 1,
904#                   "class_info": {
905#                      "class": 1537,
906#                      "desc": "ISA bridge"
907#                   },
908#                   "id": {
909#                      "device": 32902,
910#                      "vendor": 28672
911#                   },
912#                   "function": 0,
913#                   "regions": [
914#                   ]
915#                },
916#                {
917#                   "bus": 0,
918#                   "qdev_id": "",
919#                   "slot": 1,
920#                   "class_info": {
921#                      "class": 257,
922#                      "desc": "IDE controller"
923#                   },
924#                   "id": {
925#                      "device": 32902,
926#                      "vendor": 28688
927#                   },
928#                   "function": 1,
929#                   "regions": [
930#                      {
931#                         "bar": 4,
932#                         "size": 16,
933#                         "address": 49152,
934#                         "type": "io"
935#                      }
936#                   ]
937#                },
938#                {
939#                   "bus": 0,
940#                   "qdev_id": "",
941#                   "slot": 2,
942#                   "class_info": {
943#                      "class": 768,
944#                      "desc": "VGA controller"
945#                   },
946#                   "id": {
947#                      "device": 4115,
948#                      "vendor": 184
949#                   },
950#                   "function": 0,
951#                   "regions": [
952#                      {
953#                         "prefetch": true,
954#                         "mem_type_64": false,
955#                         "bar": 0,
956#                         "size": 33554432,
957#                         "address": 4026531840,
958#                         "type": "memory"
959#                      },
960#                      {
961#                         "prefetch": false,
962#                         "mem_type_64": false,
963#                         "bar": 1,
964#                         "size": 4096,
965#                         "address": 4060086272,
966#                         "type": "memory"
967#                      },
968#                      {
969#                         "prefetch": false,
970#                         "mem_type_64": false,
971#                         "bar": 6,
972#                         "size": 65536,
973#                         "address": -1,
974#                         "type": "memory"
975#                      }
976#                   ]
977#                },
978#                {
979#                   "bus": 0,
980#                   "qdev_id": "",
981#                   "irq": 11,
982#                   "slot": 4,
983#                   "class_info": {
984#                      "class": 1280,
985#                      "desc": "RAM controller"
986#                   },
987#                   "id": {
988#                      "device": 6900,
989#                      "vendor": 4098
990#                   },
991#                   "function": 0,
992#                   "regions": [
993#                      {
994#                         "bar": 0,
995#                         "size": 32,
996#                         "address": 49280,
997#                         "type": "io"
998#                      }
999#                   ]
1000#                }
1001#             ]
1002#          }
1003#       ]
1004#    }
1005#
1006# Note: This example has been shortened as the real response is too long.
1007#
1008##
1009{ 'command': 'query-pci', 'returns': ['PciInfo'] }
1010
1011##
1012# @quit:
1013#
1014# This command will cause the QEMU process to exit gracefully.  While every
1015# attempt is made to send the QMP response before terminating, this is not
1016# guaranteed.  When using this interface, a premature EOF would not be
1017# unexpected.
1018#
1019# Since: 0.14.0
1020#
1021# Example:
1022#
1023# -> { "execute": "quit" }
1024# <- { "return": {} }
1025##
1026{ 'command': 'quit' }
1027
1028##
1029# @stop:
1030#
1031# Stop all guest VCPU execution.
1032#
1033# Since:  0.14.0
1034#
1035# Notes:  This function will succeed even if the guest is already in the stopped
1036#         state.  In "inmigrate" state, it will ensure that the guest
1037#         remains paused once migration finishes, as if the -S option was
1038#         passed on the command line.
1039#
1040# Example:
1041#
1042# -> { "execute": "stop" }
1043# <- { "return": {} }
1044#
1045##
1046{ 'command': 'stop' }
1047
1048##
1049# @system_reset:
1050#
1051# Performs a hard reset of a guest.
1052#
1053# Since: 0.14.0
1054#
1055# Example:
1056#
1057# -> { "execute": "system_reset" }
1058# <- { "return": {} }
1059#
1060##
1061{ 'command': 'system_reset' }
1062
1063##
1064# @system_powerdown:
1065#
1066# Requests that a guest perform a powerdown operation.
1067#
1068# Since: 0.14.0
1069#
1070# Notes: A guest may or may not respond to this command.  This command
1071#        returning does not indicate that a guest has accepted the request or
1072#        that it has shut down.  Many guests will respond to this command by
1073#        prompting the user in some way.
1074# Example:
1075#
1076# -> { "execute": "system_powerdown" }
1077# <- { "return": {} }
1078#
1079##
1080{ 'command': 'system_powerdown' }
1081
1082##
1083# @cpu-add:
1084#
1085# Adds CPU with specified ID
1086#
1087# @id: ID of CPU to be created, valid values [0..max_cpus)
1088#
1089# Returns: Nothing on success
1090#
1091# Since: 1.5
1092#
1093# Example:
1094#
1095# -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1096# <- { "return": {} }
1097#
1098##
1099{ 'command': 'cpu-add', 'data': {'id': 'int'} }
1100
1101##
1102# @memsave:
1103#
1104# Save a portion of guest memory to a file.
1105#
1106# @val: the virtual address of the guest to start from
1107#
1108# @size: the size of memory region to save
1109#
1110# @filename: the file to save the memory to as binary data
1111#
1112# @cpu-index: the index of the virtual CPU to use for translating the
1113#                       virtual address (defaults to CPU 0)
1114#
1115# Returns: Nothing on success
1116#
1117# Since: 0.14.0
1118#
1119# Notes: Errors were not reliably returned until 1.1
1120#
1121# Example:
1122#
1123# -> { "execute": "memsave",
1124#      "arguments": { "val": 10,
1125#                     "size": 100,
1126#                     "filename": "/tmp/virtual-mem-dump" } }
1127# <- { "return": {} }
1128#
1129##
1130{ 'command': 'memsave',
1131  'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1132
1133##
1134# @pmemsave:
1135#
1136# Save a portion of guest physical memory to a file.
1137#
1138# @val: the physical address of the guest to start from
1139#
1140# @size: the size of memory region to save
1141#
1142# @filename: the file to save the memory to as binary data
1143#
1144# Returns: Nothing on success
1145#
1146# Since: 0.14.0
1147#
1148# Notes: Errors were not reliably returned until 1.1
1149#
1150# Example:
1151#
1152# -> { "execute": "pmemsave",
1153#      "arguments": { "val": 10,
1154#                     "size": 100,
1155#                     "filename": "/tmp/physical-mem-dump" } }
1156# <- { "return": {} }
1157#
1158##
1159{ 'command': 'pmemsave',
1160  'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1161
1162##
1163# @cont:
1164#
1165# Resume guest VCPU execution.
1166#
1167# Since:  0.14.0
1168#
1169# Returns:  If successful, nothing
1170#
1171# Notes:  This command will succeed if the guest is currently running.  It
1172#         will also succeed if the guest is in the "inmigrate" state; in
1173#         this case, the effect of the command is to make sure the guest
1174#         starts once migration finishes, removing the effect of the -S
1175#         command line option if it was passed.
1176#
1177# Example:
1178#
1179# -> { "execute": "cont" }
1180# <- { "return": {} }
1181#
1182##
1183{ 'command': 'cont' }
1184
1185##
1186# @system_wakeup:
1187#
1188# Wakeup guest from suspend.  Does nothing in case the guest isn't suspended.
1189#
1190# Since:  1.1
1191#
1192# Returns:  nothing.
1193#
1194# Example:
1195#
1196# -> { "execute": "system_wakeup" }
1197# <- { "return": {} }
1198#
1199##
1200{ 'command': 'system_wakeup' }
1201
1202##
1203# @inject-nmi:
1204#
1205# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1206# The command fails when the guest doesn't support injecting.
1207#
1208# Returns:  If successful, nothing
1209#
1210# Since:  0.14.0
1211#
1212# Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1213#
1214# Example:
1215#
1216# -> { "execute": "inject-nmi" }
1217# <- { "return": {} }
1218#
1219##
1220{ 'command': 'inject-nmi' }
1221
1222##
1223# @balloon:
1224#
1225# Request the balloon driver to change its balloon size.
1226#
1227# @value: the target size of the balloon in bytes
1228#
1229# Returns: Nothing on success
1230#          If the balloon driver is enabled but not functional because the KVM
1231#            kernel module cannot support it, KvmMissingCap
1232#          If no balloon device is present, DeviceNotActive
1233#
1234# Notes: This command just issues a request to the guest.  When it returns,
1235#        the balloon size may not have changed.  A guest can change the balloon
1236#        size independent of this command.
1237#
1238# Since: 0.14.0
1239#
1240# Example:
1241#
1242# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1243# <- { "return": {} }
1244#
1245##
1246{ 'command': 'balloon', 'data': {'value': 'int'} }
1247
1248##
1249# @human-monitor-command:
1250#
1251# Execute a command on the human monitor and return the output.
1252#
1253# @command-line: the command to execute in the human monitor
1254#
1255# @cpu-index: The CPU to use for commands that require an implicit CPU
1256#
1257# Returns: the output of the command as a string
1258#
1259# Since: 0.14.0
1260#
1261# Notes: This command only exists as a stop-gap.  Its use is highly
1262#        discouraged.  The semantics of this command are not
1263#        guaranteed: this means that command names, arguments and
1264#        responses can change or be removed at ANY time.  Applications
1265#        that rely on long term stability guarantees should NOT
1266#        use this command.
1267#
1268#        Known limitations:
1269#
1270#        * This command is stateless, this means that commands that depend
1271#          on state information (such as getfd) might not work
1272#
1273#        * Commands that prompt the user for data don't currently work
1274#
1275# Example:
1276#
1277# -> { "execute": "human-monitor-command",
1278#      "arguments": { "command-line": "info kvm" } }
1279# <- { "return": "kvm support: enabled\r\n" }
1280#
1281##
1282{ 'command': 'human-monitor-command',
1283  'data': {'command-line': 'str', '*cpu-index': 'int'},
1284  'returns': 'str' }
1285
1286##
1287# @ObjectPropertyInfo:
1288#
1289# @name: the name of the property
1290#
1291# @type: the type of the property.  This will typically come in one of four
1292#        forms:
1293#
1294#        1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1295#           These types are mapped to the appropriate JSON type.
1296#
1297#        2) A child type in the form 'child<subtype>' where subtype is a qdev
1298#           device type name.  Child properties create the composition tree.
1299#
1300#        3) A link type in the form 'link<subtype>' where subtype is a qdev
1301#           device type name.  Link properties form the device model graph.
1302#
1303# @description: if specified, the description of the property.
1304#
1305# Since: 1.2
1306##
1307{ 'struct': 'ObjectPropertyInfo',
1308  'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
1309
1310##
1311# @qom-list:
1312#
1313# This command will list any properties of a object given a path in the object
1314# model.
1315#
1316# @path: the path within the object model.  See @qom-get for a description of
1317#        this parameter.
1318#
1319# Returns: a list of @ObjectPropertyInfo that describe the properties of the
1320#          object.
1321#
1322# Since: 1.2
1323##
1324{ 'command': 'qom-list',
1325  'data': { 'path': 'str' },
1326  'returns': [ 'ObjectPropertyInfo' ] }
1327
1328##
1329# @qom-get:
1330#
1331# This command will get a property from a object model path and return the
1332# value.
1333#
1334# @path: The path within the object model.  There are two forms of supported
1335#        paths--absolute and partial paths.
1336#
1337#        Absolute paths are derived from the root object and can follow child<>
1338#        or link<> properties.  Since they can follow link<> properties, they
1339#        can be arbitrarily long.  Absolute paths look like absolute filenames
1340#        and are prefixed  with a leading slash.
1341#
1342#        Partial paths look like relative filenames.  They do not begin
1343#        with a prefix.  The matching rules for partial paths are subtle but
1344#        designed to make specifying objects easy.  At each level of the
1345#        composition tree, the partial path is matched as an absolute path.
1346#        The first match is not returned.  At least two matches are searched
1347#        for.  A successful result is only returned if only one match is
1348#        found.  If more than one match is found, a flag is return to
1349#        indicate that the match was ambiguous.
1350#
1351# @property: The property name to read
1352#
1353# Returns: The property value.  The type depends on the property
1354#          type. child<> and link<> properties are returned as #str
1355#          pathnames.  All integer property types (u8, u16, etc) are
1356#          returned as #int.
1357#
1358# Since: 1.2
1359##
1360{ 'command': 'qom-get',
1361  'data': { 'path': 'str', 'property': 'str' },
1362  'returns': 'any' }
1363
1364##
1365# @qom-set:
1366#
1367# This command will set a property from a object model path.
1368#
1369# @path: see @qom-get for a description of this parameter
1370#
1371# @property: the property name to set
1372#
1373# @value: a value who's type is appropriate for the property type.  See @qom-get
1374#         for a description of type mapping.
1375#
1376# Since: 1.2
1377##
1378{ 'command': 'qom-set',
1379  'data': { 'path': 'str', 'property': 'str', 'value': 'any' } }
1380
1381##
1382# @change:
1383#
1384# This command is multiple commands multiplexed together.
1385#
1386# @device: This is normally the name of a block device but it may also be 'vnc'.
1387#          when it's 'vnc', then sub command depends on @target
1388#
1389# @target: If @device is a block device, then this is the new filename.
1390#          If @device is 'vnc', then if the value 'password' selects the vnc
1391#          change password command.   Otherwise, this specifies a new server URI
1392#          address to listen to for VNC connections.
1393#
1394# @arg:    If @device is a block device, then this is an optional format to open
1395#          the device with.
1396#          If @device is 'vnc' and @target is 'password', this is the new VNC
1397#          password to set.  See change-vnc-password for additional notes.
1398#
1399# Returns: Nothing on success.
1400#          If @device is not a valid block device, DeviceNotFound
1401#
1402# Notes:  This interface is deprecated, and it is strongly recommended that you
1403#         avoid using it.  For changing block devices, use
1404#         blockdev-change-medium; for changing VNC parameters, use
1405#         change-vnc-password.
1406#
1407# Since: 0.14.0
1408#
1409# Example:
1410#
1411# 1. Change a removable medium
1412#
1413# -> { "execute": "change",
1414#      "arguments": { "device": "ide1-cd0",
1415#                     "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1416# <- { "return": {} }
1417#
1418# 2. Change VNC password
1419#
1420# -> { "execute": "change",
1421#      "arguments": { "device": "vnc", "target": "password",
1422#                     "arg": "foobar1" } }
1423# <- { "return": {} }
1424#
1425##
1426{ 'command': 'change',
1427  'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1428
1429##
1430# @ObjectTypeInfo:
1431#
1432# This structure describes a search result from @qom-list-types
1433#
1434# @name: the type name found in the search
1435#
1436# @abstract: the type is abstract and can't be directly instantiated.
1437#            Omitted if false. (since 2.10)
1438#
1439# @parent: Name of parent type, if any (since 2.10)
1440#
1441# Since: 1.1
1442##
1443{ 'struct': 'ObjectTypeInfo',
1444  'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1445
1446##
1447# @qom-list-types:
1448#
1449# This command will return a list of types given search parameters
1450#
1451# @implements: if specified, only return types that implement this type name
1452#
1453# @abstract: if true, include abstract types in the results
1454#
1455# Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1456#
1457# Since: 1.1
1458##
1459{ 'command': 'qom-list-types',
1460  'data': { '*implements': 'str', '*abstract': 'bool' },
1461  'returns': [ 'ObjectTypeInfo' ] }
1462
1463##
1464# @device-list-properties:
1465#
1466# List properties associated with a device.
1467#
1468# @typename: the type name of a device
1469#
1470# Returns: a list of ObjectPropertyInfo describing a devices properties
1471#
1472# Since: 1.2
1473##
1474{ 'command': 'device-list-properties',
1475  'data': { 'typename': 'str'},
1476  'returns': [ 'ObjectPropertyInfo' ] }
1477
1478##
1479# @qom-list-properties:
1480#
1481# List properties associated with a QOM object.
1482#
1483# @typename: the type name of an object
1484#
1485# Returns: a list of ObjectPropertyInfo describing object properties
1486#
1487# Since: 2.12
1488##
1489{ 'command': 'qom-list-properties',
1490  'data': { 'typename': 'str'},
1491  'returns': [ 'ObjectPropertyInfo' ] }
1492
1493##
1494# @xen-set-global-dirty-log:
1495#
1496# Enable or disable the global dirty log mode.
1497#
1498# @enable: true to enable, false to disable.
1499#
1500# Returns: nothing
1501#
1502# Since: 1.3
1503#
1504# Example:
1505#
1506# -> { "execute": "xen-set-global-dirty-log",
1507#      "arguments": { "enable": true } }
1508# <- { "return": {} }
1509#
1510##
1511{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1512
1513##
1514# @device_add:
1515#
1516# @driver: the name of the new device's driver
1517#
1518# @bus: the device's parent bus (device tree path)
1519#
1520# @id: the device's ID, must be unique
1521#
1522# Additional arguments depend on the type.
1523#
1524# Add a device.
1525#
1526# Notes:
1527# 1. For detailed information about this command, please refer to the
1528#    'docs/qdev-device-use.txt' file.
1529#
1530# 2. It's possible to list device properties by running QEMU with the
1531#    "-device DEVICE,help" command-line argument, where DEVICE is the
1532#    device's name
1533#
1534# Example:
1535#
1536# -> { "execute": "device_add",
1537#      "arguments": { "driver": "e1000", "id": "net1",
1538#                     "bus": "pci.0",
1539#                     "mac": "52:54:00:12:34:56" } }
1540# <- { "return": {} }
1541#
1542# TODO: This command effectively bypasses QAPI completely due to its
1543# "additional arguments" business.  It shouldn't have been added to
1544# the schema in this form.  It should be qapified properly, or
1545# replaced by a properly qapified command.
1546#
1547# Since: 0.13
1548##
1549{ 'command': 'device_add',
1550  'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1551  'gen': false } # so we can get the additional arguments
1552
1553##
1554# @device_del:
1555#
1556# Remove a device from a guest
1557#
1558# @id: the device's ID or QOM path
1559#
1560# Returns: Nothing on success
1561#          If @id is not a valid device, DeviceNotFound
1562#
1563# Notes: When this command completes, the device may not be removed from the
1564#        guest.  Hot removal is an operation that requires guest cooperation.
1565#        This command merely requests that the guest begin the hot removal
1566#        process.  Completion of the device removal process is signaled with a
1567#        DEVICE_DELETED event. Guest reset will automatically complete removal
1568#        for all devices.
1569#
1570# Since: 0.14.0
1571#
1572# Example:
1573#
1574# -> { "execute": "device_del",
1575#      "arguments": { "id": "net1" } }
1576# <- { "return": {} }
1577#
1578# -> { "execute": "device_del",
1579#      "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1580# <- { "return": {} }
1581#
1582##
1583{ 'command': 'device_del', 'data': {'id': 'str'} }
1584
1585##
1586# @DEVICE_DELETED:
1587#
1588# Emitted whenever the device removal completion is acknowledged by the guest.
1589# At this point, it's safe to reuse the specified device ID. Device removal can
1590# be initiated by the guest or by HMP/QMP commands.
1591#
1592# @device: device name
1593#
1594# @path: device path
1595#
1596# Since: 1.5
1597#
1598# Example:
1599#
1600# <- { "event": "DEVICE_DELETED",
1601#      "data": { "device": "virtio-net-pci-0",
1602#                "path": "/machine/peripheral/virtio-net-pci-0" },
1603#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1604#
1605##
1606{ 'event': 'DEVICE_DELETED',
1607  'data': { '*device': 'str', 'path': 'str' } }
1608
1609##
1610# @DumpGuestMemoryFormat:
1611#
1612# An enumeration of guest-memory-dump's format.
1613#
1614# @elf: elf format
1615#
1616# @kdump-zlib: kdump-compressed format with zlib-compressed
1617#
1618# @kdump-lzo: kdump-compressed format with lzo-compressed
1619#
1620# @kdump-snappy: kdump-compressed format with snappy-compressed
1621#
1622# Since: 2.0
1623##
1624{ 'enum': 'DumpGuestMemoryFormat',
1625  'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy' ] }
1626
1627##
1628# @dump-guest-memory:
1629#
1630# Dump guest's memory to vmcore. It is a synchronous operation that can take
1631# very long depending on the amount of guest memory.
1632#
1633# @paging: if true, do paging to get guest's memory mapping. This allows
1634#          using gdb to process the core file.
1635#
1636#          IMPORTANT: this option can make QEMU allocate several gigabytes
1637#                     of RAM. This can happen for a large guest, or a
1638#                     malicious guest pretending to be large.
1639#
1640#          Also, paging=true has the following limitations:
1641#
1642#             1. The guest may be in a catastrophic state or can have corrupted
1643#                memory, which cannot be trusted
1644#             2. The guest can be in real-mode even if paging is enabled. For
1645#                example, the guest uses ACPI to sleep, and ACPI sleep state
1646#                goes in real-mode
1647#             3. Currently only supported on i386 and x86_64.
1648#
1649# @protocol: the filename or file descriptor of the vmcore. The supported
1650#            protocols are:
1651#
1652#            1. file: the protocol starts with "file:", and the following
1653#               string is the file's path.
1654#            2. fd: the protocol starts with "fd:", and the following string
1655#               is the fd's name.
1656#
1657# @detach: if true, QMP will return immediately rather than
1658#          waiting for the dump to finish. The user can track progress
1659#          using "query-dump". (since 2.6).
1660#
1661# @begin: if specified, the starting physical address.
1662#
1663# @length: if specified, the memory size, in bytes. If you don't
1664#          want to dump all guest's memory, please specify the start @begin
1665#          and @length
1666#
1667# @format: if specified, the format of guest memory dump. But non-elf
1668#          format is conflict with paging and filter, ie. @paging, @begin and
1669#          @length is not allowed to be specified with non-elf @format at the
1670#          same time (since 2.0)
1671#
1672# Note: All boolean arguments default to false
1673#
1674# Returns: nothing on success
1675#
1676# Since: 1.2
1677#
1678# Example:
1679#
1680# -> { "execute": "dump-guest-memory",
1681#      "arguments": { "protocol": "fd:dump" } }
1682# <- { "return": {} }
1683#
1684##
1685{ 'command': 'dump-guest-memory',
1686  'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1687            '*begin': 'int', '*length': 'int',
1688            '*format': 'DumpGuestMemoryFormat'} }
1689
1690##
1691# @DumpStatus:
1692#
1693# Describe the status of a long-running background guest memory dump.
1694#
1695# @none: no dump-guest-memory has started yet.
1696#
1697# @active: there is one dump running in background.
1698#
1699# @completed: the last dump has finished successfully.
1700#
1701# @failed: the last dump has failed.
1702#
1703# Since: 2.6
1704##
1705{ 'enum': 'DumpStatus',
1706  'data': [ 'none', 'active', 'completed', 'failed' ] }
1707
1708##
1709# @DumpQueryResult:
1710#
1711# The result format for 'query-dump'.
1712#
1713# @status: enum of @DumpStatus, which shows current dump status
1714#
1715# @completed: bytes written in latest dump (uncompressed)
1716#
1717# @total: total bytes to be written in latest dump (uncompressed)
1718#
1719# Since: 2.6
1720##
1721{ 'struct': 'DumpQueryResult',
1722  'data': { 'status': 'DumpStatus',
1723            'completed': 'int',
1724            'total': 'int' } }
1725
1726##
1727# @query-dump:
1728#
1729# Query latest dump status.
1730#
1731# Returns: A @DumpStatus object showing the dump status.
1732#
1733# Since: 2.6
1734#
1735# Example:
1736#
1737# -> { "execute": "query-dump" }
1738# <- { "return": { "status": "active", "completed": 1024000,
1739#                  "total": 2048000 } }
1740#
1741##
1742{ 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1743
1744##
1745# @DUMP_COMPLETED:
1746#
1747# Emitted when background dump has completed
1748#
1749# @result: final dump status
1750#
1751# @error: human-readable error string that provides
1752#         hint on why dump failed. Only presents on failure. The
1753#         user should not try to interpret the error string.
1754#
1755# Since: 2.6
1756#
1757# Example:
1758#
1759# { "event": "DUMP_COMPLETED",
1760#   "data": {"result": {"total": 1090650112, "status": "completed",
1761#                       "completed": 1090650112} } }
1762#
1763##
1764{ 'event': 'DUMP_COMPLETED' ,
1765  'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1766
1767##
1768# @DumpGuestMemoryCapability:
1769#
1770# A list of the available formats for dump-guest-memory
1771#
1772# Since: 2.0
1773##
1774{ 'struct': 'DumpGuestMemoryCapability',
1775  'data': {
1776      'formats': ['DumpGuestMemoryFormat'] } }
1777
1778##
1779# @query-dump-guest-memory-capability:
1780#
1781# Returns the available formats for dump-guest-memory
1782#
1783# Returns:  A @DumpGuestMemoryCapability object listing available formats for
1784#           dump-guest-memory
1785#
1786# Since: 2.0
1787#
1788# Example:
1789#
1790# -> { "execute": "query-dump-guest-memory-capability" }
1791# <- { "return": { "formats":
1792#                  ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1793#
1794##
1795{ 'command': 'query-dump-guest-memory-capability',
1796  'returns': 'DumpGuestMemoryCapability' }
1797
1798##
1799# @dump-skeys:
1800#
1801# Dump guest's storage keys
1802#
1803# @filename: the path to the file to dump to
1804#
1805# This command is only supported on s390 architecture.
1806#
1807# Since: 2.5
1808#
1809# Example:
1810#
1811# -> { "execute": "dump-skeys",
1812#      "arguments": { "filename": "/tmp/skeys" } }
1813# <- { "return": {} }
1814#
1815##
1816{ 'command': 'dump-skeys',
1817  'data': { 'filename': 'str' } }
1818
1819##
1820# @object-add:
1821#
1822# Create a QOM object.
1823#
1824# @qom-type: the class name for the object to be created
1825#
1826# @id: the name of the new object
1827#
1828# @props: a dictionary of properties to be passed to the backend
1829#
1830# Returns: Nothing on success
1831#          Error if @qom-type is not a valid class name
1832#
1833# Since: 2.0
1834#
1835# Example:
1836#
1837# -> { "execute": "object-add",
1838#      "arguments": { "qom-type": "rng-random", "id": "rng1",
1839#                     "props": { "filename": "/dev/hwrng" } } }
1840# <- { "return": {} }
1841#
1842##
1843{ 'command': 'object-add',
1844  'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1845
1846##
1847# @object-del:
1848#
1849# Remove a QOM object.
1850#
1851# @id: the name of the QOM object to remove
1852#
1853# Returns: Nothing on success
1854#          Error if @id is not a valid id for a QOM object
1855#
1856# Since: 2.0
1857#
1858# Example:
1859#
1860# -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1861# <- { "return": {} }
1862#
1863##
1864{ 'command': 'object-del', 'data': {'id': 'str'} }
1865
1866##
1867# @getfd:
1868#
1869# Receive a file descriptor via SCM rights and assign it a name
1870#
1871# @fdname: file descriptor name
1872#
1873# Returns: Nothing on success
1874#
1875# Since: 0.14.0
1876#
1877# Notes: If @fdname already exists, the file descriptor assigned to
1878#        it will be closed and replaced by the received file
1879#        descriptor.
1880#
1881#        The 'closefd' command can be used to explicitly close the
1882#        file descriptor when it is no longer needed.
1883#
1884# Example:
1885#
1886# -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1887# <- { "return": {} }
1888#
1889##
1890{ 'command': 'getfd', 'data': {'fdname': 'str'} }
1891
1892##
1893# @closefd:
1894#
1895# Close a file descriptor previously passed via SCM rights
1896#
1897# @fdname: file descriptor name
1898#
1899# Returns: Nothing on success
1900#
1901# Since: 0.14.0
1902#
1903# Example:
1904#
1905# -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1906# <- { "return": {} }
1907#
1908##
1909{ 'command': 'closefd', 'data': {'fdname': 'str'} }
1910
1911##
1912# @MachineInfo:
1913#
1914# Information describing a machine.
1915#
1916# @name: the name of the machine
1917#
1918# @alias: an alias for the machine name
1919#
1920# @is-default: whether the machine is default
1921#
1922# @cpu-max: maximum number of CPUs supported by the machine type
1923#           (since 1.5.0)
1924#
1925# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
1926#
1927# Since: 1.2.0
1928##
1929{ 'struct': 'MachineInfo',
1930  'data': { 'name': 'str', '*alias': 'str',
1931            '*is-default': 'bool', 'cpu-max': 'int',
1932            'hotpluggable-cpus': 'bool'} }
1933
1934##
1935# @query-machines:
1936#
1937# Return a list of supported machines
1938#
1939# Returns: a list of MachineInfo
1940#
1941# Since: 1.2.0
1942##
1943{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
1944
1945##
1946# @CpuDefinitionInfo:
1947#
1948# Virtual CPU definition.
1949#
1950# @name: the name of the CPU definition
1951#
1952# @migration-safe: whether a CPU definition can be safely used for
1953#                  migration in combination with a QEMU compatibility machine
1954#                  when migrating between different QMU versions and between
1955#                  hosts with different sets of (hardware or software)
1956#                  capabilities. If not provided, information is not available
1957#                  and callers should not assume the CPU definition to be
1958#                  migration-safe. (since 2.8)
1959#
1960# @static: whether a CPU definition is static and will not change depending on
1961#          QEMU version, machine type, machine options and accelerator options.
1962#          A static model is always migration-safe. (since 2.8)
1963#
1964# @unavailable-features: List of properties that prevent
1965#                        the CPU model from running in the current
1966#                        host. (since 2.8)
1967# @typename: Type name that can be used as argument to @device-list-properties,
1968#            to introspect properties configurable using -cpu or -global.
1969#            (since 2.9)
1970#
1971# @unavailable-features is a list of QOM property names that
1972# represent CPU model attributes that prevent the CPU from running.
1973# If the QOM property is read-only, that means there's no known
1974# way to make the CPU model run in the current host. Implementations
1975# that choose not to provide specific information return the
1976# property name "type".
1977# If the property is read-write, it means that it MAY be possible
1978# to run the CPU model in the current host if that property is
1979# changed. Management software can use it as hints to suggest or
1980# choose an alternative for the user, or just to generate meaningful
1981# error messages explaining why the CPU model can't be used.
1982# If @unavailable-features is an empty list, the CPU model is
1983# runnable using the current host and machine-type.
1984# If @unavailable-features is not present, runnability
1985# information for the CPU is not available.
1986#
1987# Since: 1.2.0
1988##
1989{ 'struct': 'CpuDefinitionInfo',
1990  'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
1991            '*unavailable-features': [ 'str' ], 'typename': 'str' } }
1992
1993##
1994# @MemoryInfo:
1995#
1996# Actual memory information in bytes.
1997#
1998# @base-memory: size of "base" memory specified with command line
1999#               option -m.
2000#
2001# @plugged-memory: size of memory that can be hot-unplugged. This field
2002#                  is omitted if target doesn't support memory hotplug
2003#                  (i.e. CONFIG_MEM_HOTPLUG not defined on build time).
2004#
2005# Since: 2.11.0
2006##
2007{ 'struct': 'MemoryInfo',
2008  'data'  : { 'base-memory': 'size', '*plugged-memory': 'size' } }
2009
2010##
2011# @query-memory-size-summary:
2012#
2013# Return the amount of initially allocated and present hotpluggable (if
2014# enabled) memory in bytes.
2015#
2016# Example:
2017#
2018# -> { "execute": "query-memory-size-summary" }
2019# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
2020#
2021# Since: 2.11.0
2022##
2023{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
2024
2025##
2026# @query-cpu-definitions:
2027#
2028# Return a list of supported virtual CPU definitions
2029#
2030# Returns: a list of CpuDefInfo
2031#
2032# Since: 1.2.0
2033##
2034{ 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
2035
2036##
2037# @CpuModelInfo:
2038#
2039# Virtual CPU model.
2040#
2041# A CPU model consists of the name of a CPU definition, to which
2042# delta changes are applied (e.g. features added/removed). Most magic values
2043# that an architecture might require should be hidden behind the name.
2044# However, if required, architectures can expose relevant properties.
2045#
2046# @name: the name of the CPU definition the model is based on
2047# @props: a dictionary of QOM properties to be applied
2048#
2049# Since: 2.8.0
2050##
2051{ 'struct': 'CpuModelInfo',
2052  'data': { 'name': 'str',
2053            '*props': 'any' } }
2054
2055##
2056# @CpuModelExpansionType:
2057#
2058# An enumeration of CPU model expansion types.
2059#
2060# @static: Expand to a static CPU model, a combination of a static base
2061#          model name and property delta changes. As the static base model will
2062#          never change, the expanded CPU model will be the same, independent of
2063#          independent of QEMU version, machine type, machine options, and
2064#          accelerator options. Therefore, the resulting model can be used by
2065#          tooling without having to specify a compatibility machine - e.g. when
2066#          displaying the "host" model. static CPU models are migration-safe.
2067#
2068# @full: Expand all properties. The produced model is not guaranteed to be
2069#        migration-safe, but allows tooling to get an insight and work with
2070#        model details.
2071#
2072# Note: When a non-migration-safe CPU model is expanded in static mode, some
2073# features enabled by the CPU model may be omitted, because they can't be
2074# implemented by a static CPU model definition (e.g. cache info passthrough and
2075# PMU passthrough in x86). If you need an accurate representation of the
2076# features enabled by a non-migration-safe CPU model, use @full. If you need a
2077# static representation that will keep ABI compatibility even when changing QEMU
2078# version or machine-type, use @static (but keep in mind that some features may
2079# be omitted).
2080#
2081# Since: 2.8.0
2082##
2083{ 'enum': 'CpuModelExpansionType',
2084  'data': [ 'static', 'full' ] }
2085
2086
2087##
2088# @CpuModelExpansionInfo:
2089#
2090# The result of a cpu model expansion.
2091#
2092# @model: the expanded CpuModelInfo.
2093#
2094# Since: 2.8.0
2095##
2096{ 'struct': 'CpuModelExpansionInfo',
2097  'data': { 'model': 'CpuModelInfo' } }
2098
2099
2100##
2101# @query-cpu-model-expansion:
2102#
2103# Expands a given CPU model (or a combination of CPU model + additional options)
2104# to different granularities, allowing tooling to get an understanding what a
2105# specific CPU model looks like in QEMU under a certain configuration.
2106#
2107# This interface can be used to query the "host" CPU model.
2108#
2109# The data returned by this command may be affected by:
2110#
2111# * QEMU version: CPU models may look different depending on the QEMU version.
2112#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2113# * machine-type: CPU model  may look different depending on the machine-type.
2114#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2115# * machine options (including accelerator): in some architectures, CPU models
2116#   may look different depending on machine and accelerator options. (Except for
2117#   CPU models reported as "static" in query-cpu-definitions.)
2118# * "-cpu" arguments and global properties: arguments to the -cpu option and
2119#   global properties may affect expansion of CPU models. Using
2120#   query-cpu-model-expansion while using these is not advised.
2121#
2122# Some architectures may not support all expansion types. s390x supports
2123# "full" and "static".
2124#
2125# Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
2126#          not supported, if the model cannot be expanded, if the model contains
2127#          an unknown CPU definition name, unknown properties or properties
2128#          with a wrong type. Also returns an error if an expansion type is
2129#          not supported.
2130#
2131# Since: 2.8.0
2132##
2133{ 'command': 'query-cpu-model-expansion',
2134  'data': { 'type': 'CpuModelExpansionType',
2135            'model': 'CpuModelInfo' },
2136  'returns': 'CpuModelExpansionInfo' }
2137
2138##
2139# @CpuModelCompareResult:
2140#
2141# An enumeration of CPU model comparison results. The result is usually
2142# calculated using e.g. CPU features or CPU generations.
2143#
2144# @incompatible: If model A is incompatible to model B, model A is not
2145#                guaranteed to run where model B runs and the other way around.
2146#
2147# @identical: If model A is identical to model B, model A is guaranteed to run
2148#             where model B runs and the other way around.
2149#
2150# @superset: If model A is a superset of model B, model B is guaranteed to run
2151#            where model A runs. There are no guarantees about the other way.
2152#
2153# @subset: If model A is a subset of model B, model A is guaranteed to run
2154#          where model B runs. There are no guarantees about the other way.
2155#
2156# Since: 2.8.0
2157##
2158{ 'enum': 'CpuModelCompareResult',
2159  'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2160
2161##
2162# @CpuModelCompareInfo:
2163#
2164# The result of a CPU model comparison.
2165#
2166# @result: The result of the compare operation.
2167# @responsible-properties: List of properties that led to the comparison result
2168#                          not being identical.
2169#
2170# @responsible-properties is a list of QOM property names that led to
2171# both CPUs not being detected as identical. For identical models, this
2172# list is empty.
2173# If a QOM property is read-only, that means there's no known way to make the
2174# CPU models identical. If the special property name "type" is included, the
2175# models are by definition not identical and cannot be made identical.
2176#
2177# Since: 2.8.0
2178##
2179{ 'struct': 'CpuModelCompareInfo',
2180  'data': {'result': 'CpuModelCompareResult',
2181           'responsible-properties': ['str']
2182          }
2183}
2184
2185##
2186# @query-cpu-model-comparison:
2187#
2188# Compares two CPU models, returning how they compare in a specific
2189# configuration. The results indicates how both models compare regarding
2190# runnability. This result can be used by tooling to make decisions if a
2191# certain CPU model will run in a certain configuration or if a compatible
2192# CPU model has to be created by baselining.
2193#
2194# Usually, a CPU model is compared against the maximum possible CPU model
2195# of a certain configuration (e.g. the "host" model for KVM). If that CPU
2196# model is identical or a subset, it will run in that configuration.
2197#
2198# The result returned by this command may be affected by:
2199#
2200# * QEMU version: CPU models may look different depending on the QEMU version.
2201#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2202# * machine-type: CPU model may look different depending on the machine-type.
2203#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2204# * machine options (including accelerator): in some architectures, CPU models
2205#   may look different depending on machine and accelerator options. (Except for
2206#   CPU models reported as "static" in query-cpu-definitions.)
2207# * "-cpu" arguments and global properties: arguments to the -cpu option and
2208#   global properties may affect expansion of CPU models. Using
2209#   query-cpu-model-expansion while using these is not advised.
2210#
2211# Some architectures may not support comparing CPU models. s390x supports
2212# comparing CPU models.
2213#
2214# Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
2215#          not supported, if a model cannot be used, if a model contains
2216#          an unknown cpu definition name, unknown properties or properties
2217#          with wrong types.
2218#
2219# Since: 2.8.0
2220##
2221{ 'command': 'query-cpu-model-comparison',
2222  'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
2223  'returns': 'CpuModelCompareInfo' }
2224
2225##
2226# @CpuModelBaselineInfo:
2227#
2228# The result of a CPU model baseline.
2229#
2230# @model: the baselined CpuModelInfo.
2231#
2232# Since: 2.8.0
2233##
2234{ 'struct': 'CpuModelBaselineInfo',
2235  'data': { 'model': 'CpuModelInfo' } }
2236
2237##
2238# @query-cpu-model-baseline:
2239#
2240# Baseline two CPU models, creating a compatible third model. The created
2241# model will always be a static, migration-safe CPU model (see "static"
2242# CPU model expansion for details).
2243#
2244# This interface can be used by tooling to create a compatible CPU model out
2245# two CPU models. The created CPU model will be identical to or a subset of
2246# both CPU models when comparing them. Therefore, the created CPU model is
2247# guaranteed to run where the given CPU models run.
2248#
2249# The result returned by this command may be affected by:
2250#
2251# * QEMU version: CPU models may look different depending on the QEMU version.
2252#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2253# * machine-type: CPU model may look different depending on the machine-type.
2254#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2255# * machine options (including accelerator): in some architectures, CPU models
2256#   may look different depending on machine and accelerator options. (Except for
2257#   CPU models reported as "static" in query-cpu-definitions.)
2258# * "-cpu" arguments and global properties: arguments to the -cpu option and
2259#   global properties may affect expansion of CPU models. Using
2260#   query-cpu-model-expansion while using these is not advised.
2261#
2262# Some architectures may not support baselining CPU models. s390x supports
2263# baselining CPU models.
2264#
2265# Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
2266#          not supported, if a model cannot be used, if a model contains
2267#          an unknown cpu definition name, unknown properties or properties
2268#          with wrong types.
2269#
2270# Since: 2.8.0
2271##
2272{ 'command': 'query-cpu-model-baseline',
2273  'data': { 'modela': 'CpuModelInfo',
2274            'modelb': 'CpuModelInfo' },
2275  'returns': 'CpuModelBaselineInfo' }
2276
2277##
2278# @AddfdInfo:
2279#
2280# Information about a file descriptor that was added to an fd set.
2281#
2282# @fdset-id: The ID of the fd set that @fd was added to.
2283#
2284# @fd: The file descriptor that was received via SCM rights and
2285#      added to the fd set.
2286#
2287# Since: 1.2.0
2288##
2289{ 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2290
2291##
2292# @add-fd:
2293#
2294# Add a file descriptor, that was passed via SCM rights, to an fd set.
2295#
2296# @fdset-id: The ID of the fd set to add the file descriptor to.
2297#
2298# @opaque: A free-form string that can be used to describe the fd.
2299#
2300# Returns: @AddfdInfo on success
2301#
2302#          If file descriptor was not received, FdNotSupplied
2303#
2304#          If @fdset-id is a negative value, InvalidParameterValue
2305#
2306# Notes: The list of fd sets is shared by all monitor connections.
2307#
2308#        If @fdset-id is not specified, a new fd set will be created.
2309#
2310# Since: 1.2.0
2311#
2312# Example:
2313#
2314# -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2315# <- { "return": { "fdset-id": 1, "fd": 3 } }
2316#
2317##
2318{ 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
2319  'returns': 'AddfdInfo' }
2320
2321##
2322# @remove-fd:
2323#
2324# Remove a file descriptor from an fd set.
2325#
2326# @fdset-id: The ID of the fd set that the file descriptor belongs to.
2327#
2328# @fd: The file descriptor that is to be removed.
2329#
2330# Returns: Nothing on success
2331#          If @fdset-id or @fd is not found, FdNotFound
2332#
2333# Since: 1.2.0
2334#
2335# Notes: The list of fd sets is shared by all monitor connections.
2336#
2337#        If @fd is not specified, all file descriptors in @fdset-id
2338#        will be removed.
2339#
2340# Example:
2341#
2342# -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2343# <- { "return": {} }
2344#
2345##
2346{ 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2347
2348##
2349# @FdsetFdInfo:
2350#
2351# Information about a file descriptor that belongs to an fd set.
2352#
2353# @fd: The file descriptor value.
2354#
2355# @opaque: A free-form string that can be used to describe the fd.
2356#
2357# Since: 1.2.0
2358##
2359{ 'struct': 'FdsetFdInfo',
2360  'data': {'fd': 'int', '*opaque': 'str'} }
2361
2362##
2363# @FdsetInfo:
2364#
2365# Information about an fd set.
2366#
2367# @fdset-id: The ID of the fd set.
2368#
2369# @fds: A list of file descriptors that belong to this fd set.
2370#
2371# Since: 1.2.0
2372##
2373{ 'struct': 'FdsetInfo',
2374  'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2375
2376##
2377# @query-fdsets:
2378#
2379# Return information describing all fd sets.
2380#
2381# Returns: A list of @FdsetInfo
2382#
2383# Since: 1.2.0
2384#
2385# Note: The list of fd sets is shared by all monitor connections.
2386#
2387# Example:
2388#
2389# -> { "execute": "query-fdsets" }
2390# <- { "return": [
2391#        {
2392#          "fds": [
2393#            {
2394#              "fd": 30,
2395#              "opaque": "rdonly:/path/to/file"
2396#            },
2397#            {
2398#              "fd": 24,
2399#              "opaque": "rdwr:/path/to/file"
2400#            }
2401#          ],
2402#          "fdset-id": 1
2403#        },
2404#        {
2405#          "fds": [
2406#            {
2407#              "fd": 28
2408#            },
2409#            {
2410#              "fd": 29
2411#            }
2412#          ],
2413#          "fdset-id": 0
2414#        }
2415#      ]
2416#    }
2417#
2418##
2419{ 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2420
2421##
2422# @TargetInfo:
2423#
2424# Information describing the QEMU target.
2425#
2426# @arch: the target architecture (eg "x86_64", "i386", etc)
2427#
2428# Since: 1.2.0
2429##
2430{ 'struct': 'TargetInfo',
2431  'data': { 'arch': 'str' } }
2432
2433##
2434# @query-target:
2435#
2436# Return information about the target for this QEMU
2437#
2438# Returns: TargetInfo
2439#
2440# Since: 1.2.0
2441##
2442{ 'command': 'query-target', 'returns': 'TargetInfo' }
2443
2444##
2445# @AcpiTableOptions:
2446#
2447# Specify an ACPI table on the command line to load.
2448#
2449# At most one of @file and @data can be specified. The list of files specified
2450# by any one of them is loaded and concatenated in order. If both are omitted,
2451# @data is implied.
2452#
2453# Other fields / optargs can be used to override fields of the generic ACPI
2454# table header; refer to the ACPI specification 5.0, section 5.2.6 System
2455# Description Table Header. If a header field is not overridden, then the
2456# corresponding value from the concatenated blob is used (in case of @file), or
2457# it is filled in with a hard-coded value (in case of @data).
2458#
2459# String fields are copied into the matching ACPI member from lowest address
2460# upwards, and silently truncated / NUL-padded to length.
2461#
2462# @sig: table signature / identifier (4 bytes)
2463#
2464# @rev: table revision number (dependent on signature, 1 byte)
2465#
2466# @oem_id: OEM identifier (6 bytes)
2467#
2468# @oem_table_id: OEM table identifier (8 bytes)
2469#
2470# @oem_rev: OEM-supplied revision number (4 bytes)
2471#
2472# @asl_compiler_id: identifier of the utility that created the table
2473#                   (4 bytes)
2474#
2475# @asl_compiler_rev: revision number of the utility that created the
2476#                    table (4 bytes)
2477#
2478# @file: colon (:) separated list of pathnames to load and
2479#        concatenate as table data. The resultant binary blob is expected to
2480#        have an ACPI table header. At least one file is required. This field
2481#        excludes @data.
2482#
2483# @data: colon (:) separated list of pathnames to load and
2484#        concatenate as table data. The resultant binary blob must not have an
2485#        ACPI table header. At least one file is required. This field excludes
2486#        @file.
2487#
2488# Since: 1.5
2489##
2490{ 'struct': 'AcpiTableOptions',
2491  'data': {
2492    '*sig':               'str',
2493    '*rev':               'uint8',
2494    '*oem_id':            'str',
2495    '*oem_table_id':      'str',
2496    '*oem_rev':           'uint32',
2497    '*asl_compiler_id':   'str',
2498    '*asl_compiler_rev':  'uint32',
2499    '*file':              'str',
2500    '*data':              'str' }}
2501
2502##
2503# @CommandLineParameterType:
2504#
2505# Possible types for an option parameter.
2506#
2507# @string: accepts a character string
2508#
2509# @boolean: accepts "on" or "off"
2510#
2511# @number: accepts a number
2512#
2513# @size: accepts a number followed by an optional suffix (K)ilo,
2514#        (M)ega, (G)iga, (T)era
2515#
2516# Since: 1.5
2517##
2518{ 'enum': 'CommandLineParameterType',
2519  'data': ['string', 'boolean', 'number', 'size'] }
2520
2521##
2522# @CommandLineParameterInfo:
2523#
2524# Details about a single parameter of a command line option.
2525#
2526# @name: parameter name
2527#
2528# @type: parameter @CommandLineParameterType
2529#
2530# @help: human readable text string, not suitable for parsing.
2531#
2532# @default: default value string (since 2.1)
2533#
2534# Since: 1.5
2535##
2536{ 'struct': 'CommandLineParameterInfo',
2537  'data': { 'name': 'str',
2538            'type': 'CommandLineParameterType',
2539            '*help': 'str',
2540            '*default': 'str' } }
2541
2542##
2543# @CommandLineOptionInfo:
2544#
2545# Details about a command line option, including its list of parameter details
2546#
2547# @option: option name
2548#
2549# @parameters: an array of @CommandLineParameterInfo
2550#
2551# Since: 1.5
2552##
2553{ 'struct': 'CommandLineOptionInfo',
2554  'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2555
2556##
2557# @query-command-line-options:
2558#
2559# Query command line option schema.
2560#
2561# @option: option name
2562#
2563# Returns: list of @CommandLineOptionInfo for all options (or for the given
2564#          @option).  Returns an error if the given @option doesn't exist.
2565#
2566# Since: 1.5
2567#
2568# Example:
2569#
2570# -> { "execute": "query-command-line-options",
2571#      "arguments": { "option": "option-rom" } }
2572# <- { "return": [
2573#         {
2574#             "parameters": [
2575#                 {
2576#                     "name": "romfile",
2577#                     "type": "string"
2578#                 },
2579#                 {
2580#                     "name": "bootindex",
2581#                     "type": "number"
2582#                 }
2583#             ],
2584#             "option": "option-rom"
2585#         }
2586#      ]
2587#    }
2588#
2589##
2590{'command': 'query-command-line-options', 'data': { '*option': 'str' },
2591 'returns': ['CommandLineOptionInfo'] }
2592
2593##
2594# @X86CPURegister32:
2595#
2596# A X86 32-bit register
2597#
2598# Since: 1.5
2599##
2600{ 'enum': 'X86CPURegister32',
2601  'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2602
2603##
2604# @X86CPUFeatureWordInfo:
2605#
2606# Information about a X86 CPU feature word
2607#
2608# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2609#
2610# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2611#                   feature word
2612#
2613# @cpuid-register: Output register containing the feature bits
2614#
2615# @features: value of output register, containing the feature bits
2616#
2617# Since: 1.5
2618##
2619{ 'struct': 'X86CPUFeatureWordInfo',
2620  'data': { 'cpuid-input-eax': 'int',
2621            '*cpuid-input-ecx': 'int',
2622            'cpuid-register': 'X86CPURegister32',
2623            'features': 'int' } }
2624
2625##
2626# @DummyForceArrays:
2627#
2628# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2629#
2630# Since: 2.5
2631##
2632{ 'struct': 'DummyForceArrays',
2633  'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2634
2635
2636##
2637# @NumaOptionsType:
2638#
2639# @node: NUMA nodes configuration
2640#
2641# @dist: NUMA distance configuration (since 2.10)
2642#
2643# @cpu: property based CPU(s) to node mapping (Since: 2.10)
2644#
2645# Since: 2.1
2646##
2647{ 'enum': 'NumaOptionsType',
2648  'data': [ 'node', 'dist', 'cpu' ] }
2649
2650##
2651# @NumaOptions:
2652#
2653# A discriminated record of NUMA options. (for OptsVisitor)
2654#
2655# Since: 2.1
2656##
2657{ 'union': 'NumaOptions',
2658  'base': { 'type': 'NumaOptionsType' },
2659  'discriminator': 'type',
2660  'data': {
2661    'node': 'NumaNodeOptions',
2662    'dist': 'NumaDistOptions',
2663    'cpu': 'NumaCpuOptions' }}
2664
2665##
2666# @NumaNodeOptions:
2667#
2668# Create a guest NUMA node. (for OptsVisitor)
2669#
2670# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2671#
2672# @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2673#         if omitted)
2674#
2675# @mem: memory size of this node; mutually exclusive with @memdev.
2676#       Equally divide total memory among nodes if both @mem and @memdev are
2677#       omitted.
2678#
2679# @memdev: memory backend object.  If specified for one node,
2680#          it must be specified for all nodes.
2681#
2682# Since: 2.1
2683##
2684{ 'struct': 'NumaNodeOptions',
2685  'data': {
2686   '*nodeid': 'uint16',
2687   '*cpus':   ['uint16'],
2688   '*mem':    'size',
2689   '*memdev': 'str' }}
2690
2691##
2692# @NumaDistOptions:
2693#
2694# Set the distance between 2 NUMA nodes.
2695#
2696# @src: source NUMA node.
2697#
2698# @dst: destination NUMA node.
2699#
2700# @val: NUMA distance from source node to destination node.
2701#       When a node is unreachable from another node, set the distance
2702#       between them to 255.
2703#
2704# Since: 2.10
2705##
2706{ 'struct': 'NumaDistOptions',
2707  'data': {
2708   'src': 'uint16',
2709   'dst': 'uint16',
2710   'val': 'uint8' }}
2711
2712##
2713# @NumaCpuOptions:
2714#
2715# Option "-numa cpu" overrides default cpu to node mapping.
2716# It accepts the same set of cpu properties as returned by
2717# query-hotpluggable-cpus[].props, where node-id could be used to
2718# override default node mapping.
2719#
2720# Since: 2.10
2721##
2722{ 'struct': 'NumaCpuOptions',
2723   'base': 'CpuInstanceProperties',
2724   'data' : {} }
2725
2726##
2727# @HostMemPolicy:
2728#
2729# Host memory policy types
2730#
2731# @default: restore default policy, remove any nondefault policy
2732#
2733# @preferred: set the preferred host nodes for allocation
2734#
2735# @bind: a strict policy that restricts memory allocation to the
2736#        host nodes specified
2737#
2738# @interleave: memory allocations are interleaved across the set
2739#              of host nodes specified
2740#
2741# Since: 2.1
2742##
2743{ 'enum': 'HostMemPolicy',
2744  'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2745
2746##
2747# @Memdev:
2748#
2749# Information about memory backend
2750#
2751# @id: backend's ID if backend has 'id' property (since 2.9)
2752#
2753# @size: memory backend size
2754#
2755# @merge: enables or disables memory merge support
2756#
2757# @dump: includes memory backend's memory in a core dump or not
2758#
2759# @prealloc: enables or disables memory preallocation
2760#
2761# @host-nodes: host nodes for its memory policy
2762#
2763# @policy: memory policy of memory backend
2764#
2765# Since: 2.1
2766##
2767{ 'struct': 'Memdev',
2768  'data': {
2769    '*id':        'str',
2770    'size':       'size',
2771    'merge':      'bool',
2772    'dump':       'bool',
2773    'prealloc':   'bool',
2774    'host-nodes': ['uint16'],
2775    'policy':     'HostMemPolicy' }}
2776
2777##
2778# @query-memdev:
2779#
2780# Returns information for all memory backends.
2781#
2782# Returns: a list of @Memdev.
2783#
2784# Since: 2.1
2785#
2786# Example:
2787#
2788# -> { "execute": "query-memdev" }
2789# <- { "return": [
2790#        {
2791#          "id": "mem1",
2792#          "size": 536870912,
2793#          "merge": false,
2794#          "dump": true,
2795#          "prealloc": false,
2796#          "host-nodes": [0, 1],
2797#          "policy": "bind"
2798#        },
2799#        {
2800#          "size": 536870912,
2801#          "merge": false,
2802#          "dump": true,
2803#          "prealloc": true,
2804#          "host-nodes": [2, 3],
2805#          "policy": "preferred"
2806#        }
2807#      ]
2808#    }
2809#
2810##
2811{ 'command': 'query-memdev', 'returns': ['Memdev'] }
2812
2813##
2814# @PCDIMMDeviceInfo:
2815#
2816# PCDIMMDevice state information
2817#
2818# @id: device's ID
2819#
2820# @addr: physical address, where device is mapped
2821#
2822# @size: size of memory that the device provides
2823#
2824# @slot: slot number at which device is plugged in
2825#
2826# @node: NUMA node number where device is plugged in
2827#
2828# @memdev: memory backend linked with device
2829#
2830# @hotplugged: true if device was hotplugged
2831#
2832# @hotpluggable: true if device if could be added/removed while machine is running
2833#
2834# Since: 2.1
2835##
2836{ 'struct': 'PCDIMMDeviceInfo',
2837  'data': { '*id': 'str',
2838            'addr': 'int',
2839            'size': 'int',
2840            'slot': 'int',
2841            'node': 'int',
2842            'memdev': 'str',
2843            'hotplugged': 'bool',
2844            'hotpluggable': 'bool'
2845          }
2846}
2847
2848##
2849# @MemoryDeviceInfo:
2850#
2851# Union containing information about a memory device
2852#
2853# Since: 2.1
2854##
2855{ 'union': 'MemoryDeviceInfo', 'data': {'dimm': 'PCDIMMDeviceInfo'} }
2856
2857##
2858# @query-memory-devices:
2859#
2860# Lists available memory devices and their state
2861#
2862# Since: 2.1
2863#
2864# Example:
2865#
2866# -> { "execute": "query-memory-devices" }
2867# <- { "return": [ { "data":
2868#                       { "addr": 5368709120,
2869#                         "hotpluggable": true,
2870#                         "hotplugged": true,
2871#                         "id": "d1",
2872#                         "memdev": "/objects/memX",
2873#                         "node": 0,
2874#                         "size": 1073741824,
2875#                         "slot": 0},
2876#                    "type": "dimm"
2877#                  } ] }
2878#
2879##
2880{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2881
2882##
2883# @MEM_UNPLUG_ERROR:
2884#
2885# Emitted when memory hot unplug error occurs.
2886#
2887# @device: device name
2888#
2889# @msg: Informative message
2890#
2891# Since: 2.4
2892#
2893# Example:
2894#
2895# <- { "event": "MEM_UNPLUG_ERROR"
2896#      "data": { "device": "dimm1",
2897#                "msg": "acpi: device unplug for unsupported device"
2898#      },
2899#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2900#
2901##
2902{ 'event': 'MEM_UNPLUG_ERROR',
2903  'data': { 'device': 'str', 'msg': 'str' } }
2904
2905##
2906# @ACPISlotType:
2907#
2908# @DIMM: memory slot
2909# @CPU: logical CPU slot (since 2.7)
2910##
2911{ 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
2912
2913##
2914# @ACPIOSTInfo:
2915#
2916# OSPM Status Indication for a device
2917# For description of possible values of @source and @status fields
2918# see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
2919#
2920# @device: device ID associated with slot
2921#
2922# @slot: slot ID, unique per slot of a given @slot-type
2923#
2924# @slot-type: type of the slot
2925#
2926# @source: an integer containing the source event
2927#
2928# @status: an integer containing the status code
2929#
2930# Since: 2.1
2931##
2932{ 'struct': 'ACPIOSTInfo',
2933  'data'  : { '*device': 'str',
2934              'slot': 'str',
2935              'slot-type': 'ACPISlotType',
2936              'source': 'int',
2937              'status': 'int' } }
2938
2939##
2940# @query-acpi-ospm-status:
2941#
2942# Return a list of ACPIOSTInfo for devices that support status
2943# reporting via ACPI _OST method.
2944#
2945# Since: 2.1
2946#
2947# Example:
2948#
2949# -> { "execute": "query-acpi-ospm-status" }
2950# <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
2951#                  { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
2952#                  { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
2953#                  { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
2954#    ]}
2955#
2956##
2957{ 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
2958
2959##
2960# @ACPI_DEVICE_OST:
2961#
2962# Emitted when guest executes ACPI _OST method.
2963#
2964# @info: OSPM Status Indication
2965#
2966# Since: 2.1
2967#
2968# Example:
2969#
2970# <- { "event": "ACPI_DEVICE_OST",
2971#      "data": { "device": "d1", "slot": "0",
2972#                "slot-type": "DIMM", "source": 1, "status": 0 } }
2973#
2974##
2975{ 'event': 'ACPI_DEVICE_OST',
2976     'data': { 'info': 'ACPIOSTInfo' } }
2977
2978##
2979# @rtc-reset-reinjection:
2980#
2981# This command will reset the RTC interrupt reinjection backlog.
2982# Can be used if another mechanism to synchronize guest time
2983# is in effect, for example QEMU guest agent's guest-set-time
2984# command.
2985#
2986# Since: 2.1
2987#
2988# Example:
2989#
2990# -> { "execute": "rtc-reset-reinjection" }
2991# <- { "return": {} }
2992#
2993##
2994{ 'command': 'rtc-reset-reinjection' }
2995
2996##
2997# @RTC_CHANGE:
2998#
2999# Emitted when the guest changes the RTC time.
3000#
3001# @offset: offset between base RTC clock (as specified by -rtc base), and
3002#          new RTC clock value
3003#
3004# Note: This event is rate-limited.
3005#
3006# Since: 0.13.0
3007#
3008# Example:
3009#
3010# <-   { "event": "RTC_CHANGE",
3011#        "data": { "offset": 78 },
3012#        "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
3013#
3014##
3015{ 'event': 'RTC_CHANGE',
3016  'data': { 'offset': 'int' } }
3017
3018##
3019# @ReplayMode:
3020#
3021# Mode of the replay subsystem.
3022#
3023# @none: normal execution mode. Replay or record are not enabled.
3024#
3025# @record: record mode. All non-deterministic data is written into the
3026#          replay log.
3027#
3028# @play: replay mode. Non-deterministic data required for system execution
3029#        is read from the log.
3030#
3031# Since: 2.5
3032##
3033{ 'enum': 'ReplayMode',
3034  'data': [ 'none', 'record', 'play' ] }
3035
3036##
3037# @xen-load-devices-state:
3038#
3039# Load the state of all devices from file. The RAM and the block devices
3040# of the VM are not loaded by this command.
3041#
3042# @filename: the file to load the state of the devices from as binary
3043# data. See xen-save-devices-state.txt for a description of the binary
3044# format.
3045#
3046# Since: 2.7
3047#
3048# Example:
3049#
3050# -> { "execute": "xen-load-devices-state",
3051#      "arguments": { "filename": "/tmp/resume" } }
3052# <- { "return": {} }
3053#
3054##
3055{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
3056
3057##
3058# @GICCapability:
3059#
3060# The struct describes capability for a specific GIC (Generic
3061# Interrupt Controller) version. These bits are not only decided by
3062# QEMU/KVM software version, but also decided by the hardware that
3063# the program is running upon.
3064#
3065# @version:  version of GIC to be described. Currently, only 2 and 3
3066#            are supported.
3067#
3068# @emulated: whether current QEMU/hardware supports emulated GIC
3069#            device in user space.
3070#
3071# @kernel:   whether current QEMU/hardware supports hardware
3072#            accelerated GIC device in kernel.
3073#
3074# Since: 2.6
3075##
3076{ 'struct': 'GICCapability',
3077  'data': { 'version': 'int',
3078            'emulated': 'bool',
3079            'kernel': 'bool' } }
3080
3081##
3082# @query-gic-capabilities:
3083#
3084# This command is ARM-only. It will return a list of GICCapability
3085# objects that describe its capability bits.
3086#
3087# Returns: a list of GICCapability objects.
3088#
3089# Since: 2.6
3090#
3091# Example:
3092#
3093# -> { "execute": "query-gic-capabilities" }
3094# <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
3095#                 { "version": 3, "emulated": false, "kernel": true } ] }
3096#
3097##
3098{ 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
3099
3100##
3101# @CpuInstanceProperties:
3102#
3103# List of properties to be used for hotplugging a CPU instance,
3104# it should be passed by management with device_add command when
3105# a CPU is being hotplugged.
3106#
3107# @node-id: NUMA node ID the CPU belongs to
3108# @socket-id: socket number within node/board the CPU belongs to
3109# @core-id: core number within socket the CPU belongs to
3110# @thread-id: thread number within core the CPU belongs to
3111#
3112# Note: currently there are 4 properties that could be present
3113# but management should be prepared to pass through other
3114# properties with device_add command to allow for future
3115# interface extension. This also requires the filed names to be kept in
3116# sync with the properties passed to -device/device_add.
3117#
3118# Since: 2.7
3119##
3120{ 'struct': 'CpuInstanceProperties',
3121  'data': { '*node-id': 'int',
3122            '*socket-id': 'int',
3123            '*core-id': 'int',
3124            '*thread-id': 'int'
3125  }
3126}
3127
3128##
3129# @HotpluggableCPU:
3130#
3131# @type: CPU object type for usage with device_add command
3132# @props: list of properties to be used for hotplugging CPU
3133# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
3134# @qom-path: link to existing CPU object if CPU is present or
3135#            omitted if CPU is not present.
3136#
3137# Since: 2.7
3138##
3139{ 'struct': 'HotpluggableCPU',
3140  'data': { 'type': 'str',
3141            'vcpus-count': 'int',
3142            'props': 'CpuInstanceProperties',
3143            '*qom-path': 'str'
3144          }
3145}
3146
3147##
3148# @query-hotpluggable-cpus:
3149#
3150# Returns: a list of HotpluggableCPU objects.
3151#
3152# Since: 2.7
3153#
3154# Example:
3155#
3156# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
3157#
3158# -> { "execute": "query-hotpluggable-cpus" }
3159# <- {"return": [
3160#      { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
3161#        "vcpus-count": 1 },
3162#      { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
3163#        "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
3164#    ]}'
3165#
3166# For pc machine type started with -smp 1,maxcpus=2:
3167#
3168# -> { "execute": "query-hotpluggable-cpus" }
3169# <- {"return": [
3170#      {
3171#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3172#         "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
3173#      },
3174#      {
3175#         "qom-path": "/machine/unattached/device[0]",
3176#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3177#         "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
3178#      }
3179#    ]}
3180#
3181# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
3182# (Since: 2.11):
3183#
3184# -> { "execute": "query-hotpluggable-cpus" }
3185# <- {"return": [
3186#      {
3187#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
3188#         "props": { "core-id": 1 }
3189#      },
3190#      {
3191#         "qom-path": "/machine/unattached/device[0]",
3192#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
3193#         "props": { "core-id": 0 }
3194#      }
3195#    ]}
3196#
3197##
3198{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'] }
3199
3200##
3201# @GuidInfo:
3202#
3203# GUID information.
3204#
3205# @guid: the globally unique identifier
3206#
3207# Since: 2.9
3208##
3209{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3210
3211##
3212# @query-vm-generation-id:
3213#
3214# Show Virtual Machine Generation ID
3215#
3216# Since: 2.9
3217##
3218{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
3219