1# -*- Mode: Python -*- 2# 3 4## 5# = Miscellanea 6## 7 8{ 'include': 'common.json' } 9 10## 11# @qmp_capabilities: 12# 13# Enable QMP capabilities. 14# 15# Arguments: 16# 17# @enable: An optional list of QMPCapability values to enable. The 18# client must not enable any capability that is not 19# mentioned in the QMP greeting message. If the field is not 20# provided, it means no QMP capabilities will be enabled. 21# (since 2.12) 22# 23# Example: 24# 25# -> { "execute": "qmp_capabilities", 26# "arguments": { "enable": [ "oob" ] } } 27# <- { "return": {} } 28# 29# Notes: This command is valid exactly when first connecting: it must be 30# issued before any other command will be accepted, and will fail once the 31# monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt) 32# 33# The QMP client needs to explicitly enable QMP capabilities, otherwise 34# all the QMP capabilities will be turned off by default. 35# 36# Since: 0.13 37# 38## 39{ 'command': 'qmp_capabilities', 40 'data': { '*enable': [ 'QMPCapability' ] }, 41 'allow-preconfig': true } 42 43## 44# @QMPCapability: 45# 46# Enumeration of capabilities to be advertised during initial client 47# connection, used for agreeing on particular QMP extension behaviors. 48# 49# @oob: QMP ability to support out-of-band requests. 50# (Please refer to qmp-spec.txt for more information on OOB) 51# 52# Since: 2.12 53# 54## 55{ 'enum': 'QMPCapability', 56 'data': [ 'oob' ] } 57 58## 59# @VersionTriple: 60# 61# A three-part version number. 62# 63# @major: The major version number. 64# 65# @minor: The minor version number. 66# 67# @micro: The micro version number. 68# 69# Since: 2.4 70## 71{ 'struct': 'VersionTriple', 72 'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} } 73 74 75## 76# @VersionInfo: 77# 78# A description of QEMU's version. 79# 80# @qemu: The version of QEMU. By current convention, a micro 81# version of 50 signifies a development branch. A micro version 82# greater than or equal to 90 signifies a release candidate for 83# the next minor version. A micro version of less than 50 84# signifies a stable release. 85# 86# @package: QEMU will always set this field to an empty string. Downstream 87# versions of QEMU should set this to a non-empty string. The 88# exact format depends on the downstream however it highly 89# recommended that a unique name is used. 90# 91# Since: 0.14.0 92## 93{ 'struct': 'VersionInfo', 94 'data': {'qemu': 'VersionTriple', 'package': 'str'} } 95 96## 97# @query-version: 98# 99# Returns the current version of QEMU. 100# 101# Returns: A @VersionInfo object describing the current version of QEMU. 102# 103# Since: 0.14.0 104# 105# Example: 106# 107# -> { "execute": "query-version" } 108# <- { 109# "return":{ 110# "qemu":{ 111# "major":0, 112# "minor":11, 113# "micro":5 114# }, 115# "package":"" 116# } 117# } 118# 119## 120{ 'command': 'query-version', 'returns': 'VersionInfo', 121 'allow-preconfig': true } 122 123## 124# @CommandInfo: 125# 126# Information about a QMP command 127# 128# @name: The command name 129# 130# Since: 0.14.0 131## 132{ 'struct': 'CommandInfo', 'data': {'name': 'str'} } 133 134## 135# @query-commands: 136# 137# Return a list of supported QMP commands by this server 138# 139# Returns: A list of @CommandInfo for all supported commands 140# 141# Since: 0.14.0 142# 143# Example: 144# 145# -> { "execute": "query-commands" } 146# <- { 147# "return":[ 148# { 149# "name":"query-balloon" 150# }, 151# { 152# "name":"system_powerdown" 153# } 154# ] 155# } 156# 157# Note: This example has been shortened as the real response is too long. 158# 159## 160{ 'command': 'query-commands', 'returns': ['CommandInfo'], 161 'allow-preconfig': true } 162 163## 164# @LostTickPolicy: 165# 166# Policy for handling lost ticks in timer devices. 167# 168# @discard: throw away the missed tick(s) and continue with future injection 169# normally. Guest time may be delayed, unless the OS has explicit 170# handling of lost ticks 171# 172# @delay: continue to deliver ticks at the normal rate. Guest time will be 173# delayed due to the late tick 174# 175# @merge: merge the missed tick(s) into one tick and inject. Guest time 176# may be delayed, depending on how the OS reacts to the merging 177# of ticks 178# 179# @slew: deliver ticks at a higher rate to catch up with the missed tick. The 180# guest time should not be delayed once catchup is complete. 181# 182# Since: 2.0 183## 184{ 'enum': 'LostTickPolicy', 185 'data': ['discard', 'delay', 'merge', 'slew' ] } 186 187## 188# @add_client: 189# 190# Allow client connections for VNC, Spice and socket based 191# character devices to be passed in to QEMU via SCM_RIGHTS. 192# 193# @protocol: protocol name. Valid names are "vnc", "spice" or the 194# name of a character device (eg. from -chardev id=XXXX) 195# 196# @fdname: file descriptor name previously passed via 'getfd' command 197# 198# @skipauth: whether to skip authentication. Only applies 199# to "vnc" and "spice" protocols 200# 201# @tls: whether to perform TLS. Only applies to the "spice" 202# protocol 203# 204# Returns: nothing on success. 205# 206# Since: 0.14.0 207# 208# Example: 209# 210# -> { "execute": "add_client", "arguments": { "protocol": "vnc", 211# "fdname": "myclient" } } 212# <- { "return": {} } 213# 214## 215{ 'command': 'add_client', 216 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool', 217 '*tls': 'bool' } } 218 219## 220# @NameInfo: 221# 222# Guest name information. 223# 224# @name: The name of the guest 225# 226# Since: 0.14.0 227## 228{ 'struct': 'NameInfo', 'data': {'*name': 'str'} } 229 230## 231# @query-name: 232# 233# Return the name information of a guest. 234# 235# Returns: @NameInfo of the guest 236# 237# Since: 0.14.0 238# 239# Example: 240# 241# -> { "execute": "query-name" } 242# <- { "return": { "name": "qemu-name" } } 243# 244## 245{ 'command': 'query-name', 'returns': 'NameInfo', 'allow-preconfig': true } 246 247## 248# @KvmInfo: 249# 250# Information about support for KVM acceleration 251# 252# @enabled: true if KVM acceleration is active 253# 254# @present: true if KVM acceleration is built into this executable 255# 256# Since: 0.14.0 257## 258{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} } 259 260## 261# @query-kvm: 262# 263# Returns information about KVM acceleration 264# 265# Returns: @KvmInfo 266# 267# Since: 0.14.0 268# 269# Example: 270# 271# -> { "execute": "query-kvm" } 272# <- { "return": { "enabled": true, "present": true } } 273# 274## 275{ 'command': 'query-kvm', 'returns': 'KvmInfo' } 276 277## 278# @UuidInfo: 279# 280# Guest UUID information (Universally Unique Identifier). 281# 282# @UUID: the UUID of the guest 283# 284# Since: 0.14.0 285# 286# Notes: If no UUID was specified for the guest, a null UUID is returned. 287## 288{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} } 289 290## 291# @query-uuid: 292# 293# Query the guest UUID information. 294# 295# Returns: The @UuidInfo for the guest 296# 297# Since: 0.14.0 298# 299# Example: 300# 301# -> { "execute": "query-uuid" } 302# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } } 303# 304## 305{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true } 306 307## 308# @EventInfo: 309# 310# Information about a QMP event 311# 312# @name: The event name 313# 314# Since: 1.2.0 315## 316{ 'struct': 'EventInfo', 'data': {'name': 'str'} } 317 318## 319# @query-events: 320# 321# Return a list of supported QMP events by this server 322# 323# Returns: A list of @EventInfo for all supported events 324# 325# Since: 1.2.0 326# 327# Example: 328# 329# -> { "execute": "query-events" } 330# <- { 331# "return": [ 332# { 333# "name":"SHUTDOWN" 334# }, 335# { 336# "name":"RESET" 337# } 338# ] 339# } 340# 341# Note: This example has been shortened as the real response is too long. 342# 343## 344{ 'command': 'query-events', 'returns': ['EventInfo'] } 345 346## 347# @CpuInfoArch: 348# 349# An enumeration of cpu types that enable additional information during 350# @query-cpus and @query-cpus-fast. 351# 352# @s390: since 2.12 353# 354# @riscv: since 2.12 355# 356# Since: 2.6 357## 358{ 'enum': 'CpuInfoArch', 359 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] } 360 361## 362# @CpuInfo: 363# 364# Information about a virtual CPU 365# 366# @CPU: the index of the virtual CPU 367# 368# @current: this only exists for backwards compatibility and should be ignored 369# 370# @halted: true if the virtual CPU is in the halt state. Halt usually refers 371# to a processor specific low power mode. 372# 373# @qom_path: path to the CPU object in the QOM tree (since 2.4) 374# 375# @thread_id: ID of the underlying host thread 376# 377# @props: properties describing to which node/socket/core/thread 378# virtual CPU belongs to, provided if supported by board (since 2.10) 379# 380# @arch: architecture of the cpu, which determines which additional fields 381# will be listed (since 2.6) 382# 383# Since: 0.14.0 384# 385# Notes: @halted is a transient state that changes frequently. By the time the 386# data is sent to the client, the guest may no longer be halted. 387## 388{ 'union': 'CpuInfo', 389 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool', 390 'qom_path': 'str', 'thread_id': 'int', 391 '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' }, 392 'discriminator': 'arch', 393 'data': { 'x86': 'CpuInfoX86', 394 'sparc': 'CpuInfoSPARC', 395 'ppc': 'CpuInfoPPC', 396 'mips': 'CpuInfoMIPS', 397 'tricore': 'CpuInfoTricore', 398 's390': 'CpuInfoS390', 399 'riscv': 'CpuInfoRISCV' } } 400 401## 402# @CpuInfoX86: 403# 404# Additional information about a virtual i386 or x86_64 CPU 405# 406# @pc: the 64-bit instruction pointer 407# 408# Since: 2.6 409## 410{ 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } } 411 412## 413# @CpuInfoSPARC: 414# 415# Additional information about a virtual SPARC CPU 416# 417# @pc: the PC component of the instruction pointer 418# 419# @npc: the NPC component of the instruction pointer 420# 421# Since: 2.6 422## 423{ 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } } 424 425## 426# @CpuInfoPPC: 427# 428# Additional information about a virtual PPC CPU 429# 430# @nip: the instruction pointer 431# 432# Since: 2.6 433## 434{ 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } } 435 436## 437# @CpuInfoMIPS: 438# 439# Additional information about a virtual MIPS CPU 440# 441# @PC: the instruction pointer 442# 443# Since: 2.6 444## 445{ 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } } 446 447## 448# @CpuInfoTricore: 449# 450# Additional information about a virtual Tricore CPU 451# 452# @PC: the instruction pointer 453# 454# Since: 2.6 455## 456{ 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } } 457 458## 459# @CpuInfoRISCV: 460# 461# Additional information about a virtual RISCV CPU 462# 463# @pc: the instruction pointer 464# 465# Since 2.12 466## 467{ 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } } 468 469## 470# @CpuS390State: 471# 472# An enumeration of cpu states that can be assumed by a virtual 473# S390 CPU 474# 475# Since: 2.12 476## 477{ 'enum': 'CpuS390State', 478 'prefix': 'S390_CPU_STATE', 479 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] } 480 481## 482# @CpuInfoS390: 483# 484# Additional information about a virtual S390 CPU 485# 486# @cpu-state: the virtual CPU's state 487# 488# Since: 2.12 489## 490{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } } 491 492## 493# @query-cpus: 494# 495# Returns a list of information about each virtual CPU. 496# 497# This command causes vCPU threads to exit to userspace, which causes 498# a small interruption to guest CPU execution. This will have a negative 499# impact on realtime guests and other latency sensitive guest workloads. 500# It is recommended to use @query-cpus-fast instead of this command to 501# avoid the vCPU interruption. 502# 503# Returns: a list of @CpuInfo for each virtual CPU 504# 505# Since: 0.14.0 506# 507# Example: 508# 509# -> { "execute": "query-cpus" } 510# <- { "return": [ 511# { 512# "CPU":0, 513# "current":true, 514# "halted":false, 515# "qom_path":"/machine/unattached/device[0]", 516# "arch":"x86", 517# "pc":3227107138, 518# "thread_id":3134 519# }, 520# { 521# "CPU":1, 522# "current":false, 523# "halted":true, 524# "qom_path":"/machine/unattached/device[2]", 525# "arch":"x86", 526# "pc":7108165, 527# "thread_id":3135 528# } 529# ] 530# } 531# 532# Notes: This interface is deprecated (since 2.12.0), and it is strongly 533# recommended that you avoid using it. Use @query-cpus-fast to 534# obtain information about virtual CPUs. 535# 536## 537{ 'command': 'query-cpus', 'returns': ['CpuInfo'] } 538 539## 540# @CpuInfoFast: 541# 542# Information about a virtual CPU 543# 544# @cpu-index: index of the virtual CPU 545# 546# @qom-path: path to the CPU object in the QOM tree 547# 548# @thread-id: ID of the underlying host thread 549# 550# @props: properties describing to which node/socket/core/thread 551# virtual CPU belongs to, provided if supported by board 552# 553# @arch: base architecture of the cpu; deprecated since 3.0.0 in favor 554# of @target 555# 556# @target: the QEMU system emulation target, which determines which 557# additional fields will be listed (since 3.0) 558# 559# Since: 2.12 560# 561## 562{ 'union' : 'CpuInfoFast', 563 'base' : { 'cpu-index' : 'int', 564 'qom-path' : 'str', 565 'thread-id' : 'int', 566 '*props' : 'CpuInstanceProperties', 567 'arch' : 'CpuInfoArch', 568 'target' : 'SysEmuTarget' }, 569 'discriminator' : 'target', 570 'data' : { 's390x' : 'CpuInfoS390' } } 571 572## 573# @query-cpus-fast: 574# 575# Returns information about all virtual CPUs. This command does not 576# incur a performance penalty and should be used in production 577# instead of query-cpus. 578# 579# Returns: list of @CpuInfoFast 580# 581# Since: 2.12 582# 583# Example: 584# 585# -> { "execute": "query-cpus-fast" } 586# <- { "return": [ 587# { 588# "thread-id": 25627, 589# "props": { 590# "core-id": 0, 591# "thread-id": 0, 592# "socket-id": 0 593# }, 594# "qom-path": "/machine/unattached/device[0]", 595# "arch":"x86", 596# "target":"x86_64", 597# "cpu-index": 0 598# }, 599# { 600# "thread-id": 25628, 601# "props": { 602# "core-id": 0, 603# "thread-id": 0, 604# "socket-id": 1 605# }, 606# "qom-path": "/machine/unattached/device[2]", 607# "arch":"x86", 608# "target":"x86_64", 609# "cpu-index": 1 610# } 611# ] 612# } 613## 614{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] } 615 616## 617# @IOThreadInfo: 618# 619# Information about an iothread 620# 621# @id: the identifier of the iothread 622# 623# @thread-id: ID of the underlying host thread 624# 625# @poll-max-ns: maximum polling time in ns, 0 means polling is disabled 626# (since 2.9) 627# 628# @poll-grow: how many ns will be added to polling time, 0 means that it's not 629# configured (since 2.9) 630# 631# @poll-shrink: how many ns will be removed from polling time, 0 means that 632# it's not configured (since 2.9) 633# 634# Since: 2.0 635## 636{ 'struct': 'IOThreadInfo', 637 'data': {'id': 'str', 638 'thread-id': 'int', 639 'poll-max-ns': 'int', 640 'poll-grow': 'int', 641 'poll-shrink': 'int' } } 642 643## 644# @query-iothreads: 645# 646# Returns a list of information about each iothread. 647# 648# Note: this list excludes the QEMU main loop thread, which is not declared 649# using the -object iothread command-line option. It is always the main thread 650# of the process. 651# 652# Returns: a list of @IOThreadInfo for each iothread 653# 654# Since: 2.0 655# 656# Example: 657# 658# -> { "execute": "query-iothreads" } 659# <- { "return": [ 660# { 661# "id":"iothread0", 662# "thread-id":3134 663# }, 664# { 665# "id":"iothread1", 666# "thread-id":3135 667# } 668# ] 669# } 670# 671## 672{ 'command': 'query-iothreads', 'returns': ['IOThreadInfo'], 673 'allow-preconfig': true } 674 675## 676# @BalloonInfo: 677# 678# Information about the guest balloon device. 679# 680# @actual: the number of bytes the balloon currently contains 681# 682# Since: 0.14.0 683# 684## 685{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } } 686 687## 688# @query-balloon: 689# 690# Return information about the balloon device. 691# 692# Returns: @BalloonInfo on success 693# 694# If the balloon driver is enabled but not functional because the KVM 695# kernel module cannot support it, KvmMissingCap 696# 697# If no balloon device is present, DeviceNotActive 698# 699# Since: 0.14.0 700# 701# Example: 702# 703# -> { "execute": "query-balloon" } 704# <- { "return": { 705# "actual": 1073741824, 706# } 707# } 708# 709## 710{ 'command': 'query-balloon', 'returns': 'BalloonInfo' } 711 712## 713# @BALLOON_CHANGE: 714# 715# Emitted when the guest changes the actual BALLOON level. This value is 716# equivalent to the @actual field return by the 'query-balloon' command 717# 718# @actual: actual level of the guest memory balloon in bytes 719# 720# Note: this event is rate-limited. 721# 722# Since: 1.2 723# 724# Example: 725# 726# <- { "event": "BALLOON_CHANGE", 727# "data": { "actual": 944766976 }, 728# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } } 729# 730## 731{ 'event': 'BALLOON_CHANGE', 732 'data': { 'actual': 'int' } } 733 734## 735# @PciMemoryRange: 736# 737# A PCI device memory region 738# 739# @base: the starting address (guest physical) 740# 741# @limit: the ending address (guest physical) 742# 743# Since: 0.14.0 744## 745{ 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} } 746 747## 748# @PciMemoryRegion: 749# 750# Information about a PCI device I/O region. 751# 752# @bar: the index of the Base Address Register for this region 753# 754# @type: 'io' if the region is a PIO region 755# 'memory' if the region is a MMIO region 756# 757# @size: memory size 758# 759# @prefetch: if @type is 'memory', true if the memory is prefetchable 760# 761# @mem_type_64: if @type is 'memory', true if the BAR is 64-bit 762# 763# Since: 0.14.0 764## 765{ 'struct': 'PciMemoryRegion', 766 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int', 767 '*prefetch': 'bool', '*mem_type_64': 'bool' } } 768 769## 770# @PciBusInfo: 771# 772# Information about a bus of a PCI Bridge device 773# 774# @number: primary bus interface number. This should be the number of the 775# bus the device resides on. 776# 777# @secondary: secondary bus interface number. This is the number of the 778# main bus for the bridge 779# 780# @subordinate: This is the highest number bus that resides below the 781# bridge. 782# 783# @io_range: The PIO range for all devices on this bridge 784# 785# @memory_range: The MMIO range for all devices on this bridge 786# 787# @prefetchable_range: The range of prefetchable MMIO for all devices on 788# this bridge 789# 790# Since: 2.4 791## 792{ 'struct': 'PciBusInfo', 793 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int', 794 'io_range': 'PciMemoryRange', 795 'memory_range': 'PciMemoryRange', 796 'prefetchable_range': 'PciMemoryRange' } } 797 798## 799# @PciBridgeInfo: 800# 801# Information about a PCI Bridge device 802# 803# @bus: information about the bus the device resides on 804# 805# @devices: a list of @PciDeviceInfo for each device on this bridge 806# 807# Since: 0.14.0 808## 809{ 'struct': 'PciBridgeInfo', 810 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} } 811 812## 813# @PciDeviceClass: 814# 815# Information about the Class of a PCI device 816# 817# @desc: a string description of the device's class 818# 819# @class: the class code of the device 820# 821# Since: 2.4 822## 823{ 'struct': 'PciDeviceClass', 824 'data': {'*desc': 'str', 'class': 'int'} } 825 826## 827# @PciDeviceId: 828# 829# Information about the Id of a PCI device 830# 831# @device: the PCI device id 832# 833# @vendor: the PCI vendor id 834# 835# @subsystem: the PCI subsystem id (since 3.1) 836# 837# @subsystem-vendor: the PCI subsystem vendor id (since 3.1) 838# 839# Since: 2.4 840## 841{ 'struct': 'PciDeviceId', 842 'data': {'device': 'int', 'vendor': 'int', '*subsystem': 'int', 843 '*subsystem-vendor': 'int'} } 844 845## 846# @PciDeviceInfo: 847# 848# Information about a PCI device 849# 850# @bus: the bus number of the device 851# 852# @slot: the slot the device is located in 853# 854# @function: the function of the slot used by the device 855# 856# @class_info: the class of the device 857# 858# @id: the PCI device id 859# 860# @irq: if an IRQ is assigned to the device, the IRQ number 861# 862# @qdev_id: the device name of the PCI device 863# 864# @pci_bridge: if the device is a PCI bridge, the bridge information 865# 866# @regions: a list of the PCI I/O regions associated with the device 867# 868# Notes: the contents of @class_info.desc are not stable and should only be 869# treated as informational. 870# 871# Since: 0.14.0 872## 873{ 'struct': 'PciDeviceInfo', 874 'data': {'bus': 'int', 'slot': 'int', 'function': 'int', 875 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId', 876 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo', 877 'regions': ['PciMemoryRegion']} } 878 879## 880# @PciInfo: 881# 882# Information about a PCI bus 883# 884# @bus: the bus index 885# 886# @devices: a list of devices on this bus 887# 888# Since: 0.14.0 889## 890{ 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} } 891 892## 893# @query-pci: 894# 895# Return information about the PCI bus topology of the guest. 896# 897# Returns: a list of @PciInfo for each PCI bus. Each bus is 898# represented by a json-object, which has a key with a json-array of 899# all PCI devices attached to it. Each device is represented by a 900# json-object. 901# 902# Since: 0.14.0 903# 904# Example: 905# 906# -> { "execute": "query-pci" } 907# <- { "return": [ 908# { 909# "bus": 0, 910# "devices": [ 911# { 912# "bus": 0, 913# "qdev_id": "", 914# "slot": 0, 915# "class_info": { 916# "class": 1536, 917# "desc": "Host bridge" 918# }, 919# "id": { 920# "device": 32902, 921# "vendor": 4663 922# }, 923# "function": 0, 924# "regions": [ 925# ] 926# }, 927# { 928# "bus": 0, 929# "qdev_id": "", 930# "slot": 1, 931# "class_info": { 932# "class": 1537, 933# "desc": "ISA bridge" 934# }, 935# "id": { 936# "device": 32902, 937# "vendor": 28672 938# }, 939# "function": 0, 940# "regions": [ 941# ] 942# }, 943# { 944# "bus": 0, 945# "qdev_id": "", 946# "slot": 1, 947# "class_info": { 948# "class": 257, 949# "desc": "IDE controller" 950# }, 951# "id": { 952# "device": 32902, 953# "vendor": 28688 954# }, 955# "function": 1, 956# "regions": [ 957# { 958# "bar": 4, 959# "size": 16, 960# "address": 49152, 961# "type": "io" 962# } 963# ] 964# }, 965# { 966# "bus": 0, 967# "qdev_id": "", 968# "slot": 2, 969# "class_info": { 970# "class": 768, 971# "desc": "VGA controller" 972# }, 973# "id": { 974# "device": 4115, 975# "vendor": 184 976# }, 977# "function": 0, 978# "regions": [ 979# { 980# "prefetch": true, 981# "mem_type_64": false, 982# "bar": 0, 983# "size": 33554432, 984# "address": 4026531840, 985# "type": "memory" 986# }, 987# { 988# "prefetch": false, 989# "mem_type_64": false, 990# "bar": 1, 991# "size": 4096, 992# "address": 4060086272, 993# "type": "memory" 994# }, 995# { 996# "prefetch": false, 997# "mem_type_64": false, 998# "bar": 6, 999# "size": 65536, 1000# "address": -1, 1001# "type": "memory" 1002# } 1003# ] 1004# }, 1005# { 1006# "bus": 0, 1007# "qdev_id": "", 1008# "irq": 11, 1009# "slot": 4, 1010# "class_info": { 1011# "class": 1280, 1012# "desc": "RAM controller" 1013# }, 1014# "id": { 1015# "device": 6900, 1016# "vendor": 4098 1017# }, 1018# "function": 0, 1019# "regions": [ 1020# { 1021# "bar": 0, 1022# "size": 32, 1023# "address": 49280, 1024# "type": "io" 1025# } 1026# ] 1027# } 1028# ] 1029# } 1030# ] 1031# } 1032# 1033# Note: This example has been shortened as the real response is too long. 1034# 1035## 1036{ 'command': 'query-pci', 'returns': ['PciInfo'] } 1037 1038## 1039# @quit: 1040# 1041# This command will cause the QEMU process to exit gracefully. While every 1042# attempt is made to send the QMP response before terminating, this is not 1043# guaranteed. When using this interface, a premature EOF would not be 1044# unexpected. 1045# 1046# Since: 0.14.0 1047# 1048# Example: 1049# 1050# -> { "execute": "quit" } 1051# <- { "return": {} } 1052## 1053{ 'command': 'quit' } 1054 1055## 1056# @stop: 1057# 1058# Stop all guest VCPU execution. 1059# 1060# Since: 0.14.0 1061# 1062# Notes: This function will succeed even if the guest is already in the stopped 1063# state. In "inmigrate" state, it will ensure that the guest 1064# remains paused once migration finishes, as if the -S option was 1065# passed on the command line. 1066# 1067# Example: 1068# 1069# -> { "execute": "stop" } 1070# <- { "return": {} } 1071# 1072## 1073{ 'command': 'stop' } 1074 1075## 1076# @system_reset: 1077# 1078# Performs a hard reset of a guest. 1079# 1080# Since: 0.14.0 1081# 1082# Example: 1083# 1084# -> { "execute": "system_reset" } 1085# <- { "return": {} } 1086# 1087## 1088{ 'command': 'system_reset' } 1089 1090## 1091# @system_powerdown: 1092# 1093# Requests that a guest perform a powerdown operation. 1094# 1095# Since: 0.14.0 1096# 1097# Notes: A guest may or may not respond to this command. This command 1098# returning does not indicate that a guest has accepted the request or 1099# that it has shut down. Many guests will respond to this command by 1100# prompting the user in some way. 1101# Example: 1102# 1103# -> { "execute": "system_powerdown" } 1104# <- { "return": {} } 1105# 1106## 1107{ 'command': 'system_powerdown' } 1108 1109## 1110# @cpu-add: 1111# 1112# Adds CPU with specified ID. 1113# 1114# @id: ID of CPU to be created, valid values [0..max_cpus) 1115# 1116# Returns: Nothing on success 1117# 1118# Since: 1.5 1119# 1120# Note: This command is deprecated. The `device_add` command should be 1121# used instead. See the `query-hotpluggable-cpus` command for 1122# details. 1123# 1124# Example: 1125# 1126# -> { "execute": "cpu-add", "arguments": { "id": 2 } } 1127# <- { "return": {} } 1128# 1129## 1130{ 'command': 'cpu-add', 'data': {'id': 'int'} } 1131 1132## 1133# @memsave: 1134# 1135# Save a portion of guest memory to a file. 1136# 1137# @val: the virtual address of the guest to start from 1138# 1139# @size: the size of memory region to save 1140# 1141# @filename: the file to save the memory to as binary data 1142# 1143# @cpu-index: the index of the virtual CPU to use for translating the 1144# virtual address (defaults to CPU 0) 1145# 1146# Returns: Nothing on success 1147# 1148# Since: 0.14.0 1149# 1150# Notes: Errors were not reliably returned until 1.1 1151# 1152# Example: 1153# 1154# -> { "execute": "memsave", 1155# "arguments": { "val": 10, 1156# "size": 100, 1157# "filename": "/tmp/virtual-mem-dump" } } 1158# <- { "return": {} } 1159# 1160## 1161{ 'command': 'memsave', 1162 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} } 1163 1164## 1165# @pmemsave: 1166# 1167# Save a portion of guest physical memory to a file. 1168# 1169# @val: the physical address of the guest to start from 1170# 1171# @size: the size of memory region to save 1172# 1173# @filename: the file to save the memory to as binary data 1174# 1175# Returns: Nothing on success 1176# 1177# Since: 0.14.0 1178# 1179# Notes: Errors were not reliably returned until 1.1 1180# 1181# Example: 1182# 1183# -> { "execute": "pmemsave", 1184# "arguments": { "val": 10, 1185# "size": 100, 1186# "filename": "/tmp/physical-mem-dump" } } 1187# <- { "return": {} } 1188# 1189## 1190{ 'command': 'pmemsave', 1191 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} } 1192 1193## 1194# @cont: 1195# 1196# Resume guest VCPU execution. 1197# 1198# Since: 0.14.0 1199# 1200# Returns: If successful, nothing 1201# 1202# Notes: This command will succeed if the guest is currently running. It 1203# will also succeed if the guest is in the "inmigrate" state; in 1204# this case, the effect of the command is to make sure the guest 1205# starts once migration finishes, removing the effect of the -S 1206# command line option if it was passed. 1207# 1208# Example: 1209# 1210# -> { "execute": "cont" } 1211# <- { "return": {} } 1212# 1213## 1214{ 'command': 'cont' } 1215 1216## 1217# @x-exit-preconfig: 1218# 1219# Exit from "preconfig" state 1220# 1221# This command makes QEMU exit the preconfig state and proceed with 1222# VM initialization using configuration data provided on the command line 1223# and via the QMP monitor during the preconfig state. The command is only 1224# available during the preconfig state (i.e. when the --preconfig command 1225# line option was in use). 1226# 1227# Since 3.0 1228# 1229# Returns: nothing 1230# 1231# Example: 1232# 1233# -> { "execute": "x-exit-preconfig" } 1234# <- { "return": {} } 1235# 1236## 1237{ 'command': 'x-exit-preconfig', 'allow-preconfig': true } 1238 1239## 1240# @system_wakeup: 1241# 1242# Wakeup guest from suspend. Does nothing in case the guest isn't suspended. 1243# 1244# Since: 1.1 1245# 1246# Returns: nothing. 1247# 1248# Example: 1249# 1250# -> { "execute": "system_wakeup" } 1251# <- { "return": {} } 1252# 1253## 1254{ 'command': 'system_wakeup' } 1255 1256## 1257# @inject-nmi: 1258# 1259# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64). 1260# The command fails when the guest doesn't support injecting. 1261# 1262# Returns: If successful, nothing 1263# 1264# Since: 0.14.0 1265# 1266# Note: prior to 2.1, this command was only supported for x86 and s390 VMs 1267# 1268# Example: 1269# 1270# -> { "execute": "inject-nmi" } 1271# <- { "return": {} } 1272# 1273## 1274{ 'command': 'inject-nmi' } 1275 1276## 1277# @balloon: 1278# 1279# Request the balloon driver to change its balloon size. 1280# 1281# @value: the target size of the balloon in bytes 1282# 1283# Returns: Nothing on success 1284# If the balloon driver is enabled but not functional because the KVM 1285# kernel module cannot support it, KvmMissingCap 1286# If no balloon device is present, DeviceNotActive 1287# 1288# Notes: This command just issues a request to the guest. When it returns, 1289# the balloon size may not have changed. A guest can change the balloon 1290# size independent of this command. 1291# 1292# Since: 0.14.0 1293# 1294# Example: 1295# 1296# -> { "execute": "balloon", "arguments": { "value": 536870912 } } 1297# <- { "return": {} } 1298# 1299## 1300{ 'command': 'balloon', 'data': {'value': 'int'} } 1301 1302## 1303# @human-monitor-command: 1304# 1305# Execute a command on the human monitor and return the output. 1306# 1307# @command-line: the command to execute in the human monitor 1308# 1309# @cpu-index: The CPU to use for commands that require an implicit CPU 1310# 1311# Returns: the output of the command as a string 1312# 1313# Since: 0.14.0 1314# 1315# Notes: This command only exists as a stop-gap. Its use is highly 1316# discouraged. The semantics of this command are not 1317# guaranteed: this means that command names, arguments and 1318# responses can change or be removed at ANY time. Applications 1319# that rely on long term stability guarantees should NOT 1320# use this command. 1321# 1322# Known limitations: 1323# 1324# * This command is stateless, this means that commands that depend 1325# on state information (such as getfd) might not work 1326# 1327# * Commands that prompt the user for data don't currently work 1328# 1329# Example: 1330# 1331# -> { "execute": "human-monitor-command", 1332# "arguments": { "command-line": "info kvm" } } 1333# <- { "return": "kvm support: enabled\r\n" } 1334# 1335## 1336{ 'command': 'human-monitor-command', 1337 'data': {'command-line': 'str', '*cpu-index': 'int'}, 1338 'returns': 'str' } 1339 1340## 1341# @ObjectPropertyInfo: 1342# 1343# @name: the name of the property 1344# 1345# @type: the type of the property. This will typically come in one of four 1346# forms: 1347# 1348# 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'. 1349# These types are mapped to the appropriate JSON type. 1350# 1351# 2) A child type in the form 'child<subtype>' where subtype is a qdev 1352# device type name. Child properties create the composition tree. 1353# 1354# 3) A link type in the form 'link<subtype>' where subtype is a qdev 1355# device type name. Link properties form the device model graph. 1356# 1357# @description: if specified, the description of the property. 1358# 1359# Since: 1.2 1360## 1361{ 'struct': 'ObjectPropertyInfo', 1362 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } } 1363 1364## 1365# @qom-list: 1366# 1367# This command will list any properties of a object given a path in the object 1368# model. 1369# 1370# @path: the path within the object model. See @qom-get for a description of 1371# this parameter. 1372# 1373# Returns: a list of @ObjectPropertyInfo that describe the properties of the 1374# object. 1375# 1376# Since: 1.2 1377## 1378{ 'command': 'qom-list', 1379 'data': { 'path': 'str' }, 1380 'returns': [ 'ObjectPropertyInfo' ], 1381 'allow-preconfig': true } 1382 1383## 1384# @qom-get: 1385# 1386# This command will get a property from a object model path and return the 1387# value. 1388# 1389# @path: The path within the object model. There are two forms of supported 1390# paths--absolute and partial paths. 1391# 1392# Absolute paths are derived from the root object and can follow child<> 1393# or link<> properties. Since they can follow link<> properties, they 1394# can be arbitrarily long. Absolute paths look like absolute filenames 1395# and are prefixed with a leading slash. 1396# 1397# Partial paths look like relative filenames. They do not begin 1398# with a prefix. The matching rules for partial paths are subtle but 1399# designed to make specifying objects easy. At each level of the 1400# composition tree, the partial path is matched as an absolute path. 1401# The first match is not returned. At least two matches are searched 1402# for. A successful result is only returned if only one match is 1403# found. If more than one match is found, a flag is return to 1404# indicate that the match was ambiguous. 1405# 1406# @property: The property name to read 1407# 1408# Returns: The property value. The type depends on the property 1409# type. child<> and link<> properties are returned as #str 1410# pathnames. All integer property types (u8, u16, etc) are 1411# returned as #int. 1412# 1413# Since: 1.2 1414## 1415{ 'command': 'qom-get', 1416 'data': { 'path': 'str', 'property': 'str' }, 1417 'returns': 'any', 1418 'allow-preconfig': true } 1419 1420## 1421# @qom-set: 1422# 1423# This command will set a property from a object model path. 1424# 1425# @path: see @qom-get for a description of this parameter 1426# 1427# @property: the property name to set 1428# 1429# @value: a value who's type is appropriate for the property type. See @qom-get 1430# for a description of type mapping. 1431# 1432# Since: 1.2 1433## 1434{ 'command': 'qom-set', 1435 'data': { 'path': 'str', 'property': 'str', 'value': 'any' }, 1436 'allow-preconfig': true } 1437 1438## 1439# @change: 1440# 1441# This command is multiple commands multiplexed together. 1442# 1443# @device: This is normally the name of a block device but it may also be 'vnc'. 1444# when it's 'vnc', then sub command depends on @target 1445# 1446# @target: If @device is a block device, then this is the new filename. 1447# If @device is 'vnc', then if the value 'password' selects the vnc 1448# change password command. Otherwise, this specifies a new server URI 1449# address to listen to for VNC connections. 1450# 1451# @arg: If @device is a block device, then this is an optional format to open 1452# the device with. 1453# If @device is 'vnc' and @target is 'password', this is the new VNC 1454# password to set. See change-vnc-password for additional notes. 1455# 1456# Returns: Nothing on success. 1457# If @device is not a valid block device, DeviceNotFound 1458# 1459# Notes: This interface is deprecated, and it is strongly recommended that you 1460# avoid using it. For changing block devices, use 1461# blockdev-change-medium; for changing VNC parameters, use 1462# change-vnc-password. 1463# 1464# Since: 0.14.0 1465# 1466# Example: 1467# 1468# 1. Change a removable medium 1469# 1470# -> { "execute": "change", 1471# "arguments": { "device": "ide1-cd0", 1472# "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } } 1473# <- { "return": {} } 1474# 1475# 2. Change VNC password 1476# 1477# -> { "execute": "change", 1478# "arguments": { "device": "vnc", "target": "password", 1479# "arg": "foobar1" } } 1480# <- { "return": {} } 1481# 1482## 1483{ 'command': 'change', 1484 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} } 1485 1486## 1487# @ObjectTypeInfo: 1488# 1489# This structure describes a search result from @qom-list-types 1490# 1491# @name: the type name found in the search 1492# 1493# @abstract: the type is abstract and can't be directly instantiated. 1494# Omitted if false. (since 2.10) 1495# 1496# @parent: Name of parent type, if any (since 2.10) 1497# 1498# Since: 1.1 1499## 1500{ 'struct': 'ObjectTypeInfo', 1501 'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } } 1502 1503## 1504# @qom-list-types: 1505# 1506# This command will return a list of types given search parameters 1507# 1508# @implements: if specified, only return types that implement this type name 1509# 1510# @abstract: if true, include abstract types in the results 1511# 1512# Returns: a list of @ObjectTypeInfo or an empty list if no results are found 1513# 1514# Since: 1.1 1515## 1516{ 'command': 'qom-list-types', 1517 'data': { '*implements': 'str', '*abstract': 'bool' }, 1518 'returns': [ 'ObjectTypeInfo' ], 1519 'allow-preconfig': true } 1520 1521## 1522# @device-list-properties: 1523# 1524# List properties associated with a device. 1525# 1526# @typename: the type name of a device 1527# 1528# Returns: a list of ObjectPropertyInfo describing a devices properties 1529# 1530# Note: objects can create properties at runtime, for example to describe 1531# links between different devices and/or objects. These properties 1532# are not included in the output of this command. 1533# 1534# Since: 1.2 1535## 1536{ 'command': 'device-list-properties', 1537 'data': { 'typename': 'str'}, 1538 'returns': [ 'ObjectPropertyInfo' ] } 1539 1540## 1541# @qom-list-properties: 1542# 1543# List properties associated with a QOM object. 1544# 1545# @typename: the type name of an object 1546# 1547# Note: objects can create properties at runtime, for example to describe 1548# links between different devices and/or objects. These properties 1549# are not included in the output of this command. 1550# 1551# Returns: a list of ObjectPropertyInfo describing object properties 1552# 1553# Since: 2.12 1554## 1555{ 'command': 'qom-list-properties', 1556 'data': { 'typename': 'str'}, 1557 'returns': [ 'ObjectPropertyInfo' ], 1558 'allow-preconfig': true } 1559 1560## 1561# @xen-set-global-dirty-log: 1562# 1563# Enable or disable the global dirty log mode. 1564# 1565# @enable: true to enable, false to disable. 1566# 1567# Returns: nothing 1568# 1569# Since: 1.3 1570# 1571# Example: 1572# 1573# -> { "execute": "xen-set-global-dirty-log", 1574# "arguments": { "enable": true } } 1575# <- { "return": {} } 1576# 1577## 1578{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1579 1580## 1581# @device_add: 1582# 1583# @driver: the name of the new device's driver 1584# 1585# @bus: the device's parent bus (device tree path) 1586# 1587# @id: the device's ID, must be unique 1588# 1589# Additional arguments depend on the type. 1590# 1591# Add a device. 1592# 1593# Notes: 1594# 1. For detailed information about this command, please refer to the 1595# 'docs/qdev-device-use.txt' file. 1596# 1597# 2. It's possible to list device properties by running QEMU with the 1598# "-device DEVICE,help" command-line argument, where DEVICE is the 1599# device's name 1600# 1601# Example: 1602# 1603# -> { "execute": "device_add", 1604# "arguments": { "driver": "e1000", "id": "net1", 1605# "bus": "pci.0", 1606# "mac": "52:54:00:12:34:56" } } 1607# <- { "return": {} } 1608# 1609# TODO: This command effectively bypasses QAPI completely due to its 1610# "additional arguments" business. It shouldn't have been added to 1611# the schema in this form. It should be qapified properly, or 1612# replaced by a properly qapified command. 1613# 1614# Since: 0.13 1615## 1616{ 'command': 'device_add', 1617 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'}, 1618 'gen': false } # so we can get the additional arguments 1619 1620## 1621# @device_del: 1622# 1623# Remove a device from a guest 1624# 1625# @id: the device's ID or QOM path 1626# 1627# Returns: Nothing on success 1628# If @id is not a valid device, DeviceNotFound 1629# 1630# Notes: When this command completes, the device may not be removed from the 1631# guest. Hot removal is an operation that requires guest cooperation. 1632# This command merely requests that the guest begin the hot removal 1633# process. Completion of the device removal process is signaled with a 1634# DEVICE_DELETED event. Guest reset will automatically complete removal 1635# for all devices. 1636# 1637# Since: 0.14.0 1638# 1639# Example: 1640# 1641# -> { "execute": "device_del", 1642# "arguments": { "id": "net1" } } 1643# <- { "return": {} } 1644# 1645# -> { "execute": "device_del", 1646# "arguments": { "id": "/machine/peripheral-anon/device[0]" } } 1647# <- { "return": {} } 1648# 1649## 1650{ 'command': 'device_del', 'data': {'id': 'str'} } 1651 1652## 1653# @DEVICE_DELETED: 1654# 1655# Emitted whenever the device removal completion is acknowledged by the guest. 1656# At this point, it's safe to reuse the specified device ID. Device removal can 1657# be initiated by the guest or by HMP/QMP commands. 1658# 1659# @device: device name 1660# 1661# @path: device path 1662# 1663# Since: 1.5 1664# 1665# Example: 1666# 1667# <- { "event": "DEVICE_DELETED", 1668# "data": { "device": "virtio-net-pci-0", 1669# "path": "/machine/peripheral/virtio-net-pci-0" }, 1670# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 1671# 1672## 1673{ 'event': 'DEVICE_DELETED', 1674 'data': { '*device': 'str', 'path': 'str' } } 1675 1676## 1677# @DumpGuestMemoryFormat: 1678# 1679# An enumeration of guest-memory-dump's format. 1680# 1681# @elf: elf format 1682# 1683# @kdump-zlib: kdump-compressed format with zlib-compressed 1684# 1685# @kdump-lzo: kdump-compressed format with lzo-compressed 1686# 1687# @kdump-snappy: kdump-compressed format with snappy-compressed 1688# 1689# @win-dmp: Windows full crashdump format, 1690# can be used instead of ELF converting (since 2.13) 1691# 1692# Since: 2.0 1693## 1694{ 'enum': 'DumpGuestMemoryFormat', 1695 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy', 'win-dmp' ] } 1696 1697## 1698# @dump-guest-memory: 1699# 1700# Dump guest's memory to vmcore. It is a synchronous operation that can take 1701# very long depending on the amount of guest memory. 1702# 1703# @paging: if true, do paging to get guest's memory mapping. This allows 1704# using gdb to process the core file. 1705# 1706# IMPORTANT: this option can make QEMU allocate several gigabytes 1707# of RAM. This can happen for a large guest, or a 1708# malicious guest pretending to be large. 1709# 1710# Also, paging=true has the following limitations: 1711# 1712# 1. The guest may be in a catastrophic state or can have corrupted 1713# memory, which cannot be trusted 1714# 2. The guest can be in real-mode even if paging is enabled. For 1715# example, the guest uses ACPI to sleep, and ACPI sleep state 1716# goes in real-mode 1717# 3. Currently only supported on i386 and x86_64. 1718# 1719# @protocol: the filename or file descriptor of the vmcore. The supported 1720# protocols are: 1721# 1722# 1. file: the protocol starts with "file:", and the following 1723# string is the file's path. 1724# 2. fd: the protocol starts with "fd:", and the following string 1725# is the fd's name. 1726# 1727# @detach: if true, QMP will return immediately rather than 1728# waiting for the dump to finish. The user can track progress 1729# using "query-dump". (since 2.6). 1730# 1731# @begin: if specified, the starting physical address. 1732# 1733# @length: if specified, the memory size, in bytes. If you don't 1734# want to dump all guest's memory, please specify the start @begin 1735# and @length 1736# 1737# @format: if specified, the format of guest memory dump. But non-elf 1738# format is conflict with paging and filter, ie. @paging, @begin and 1739# @length is not allowed to be specified with non-elf @format at the 1740# same time (since 2.0) 1741# 1742# Note: All boolean arguments default to false 1743# 1744# Returns: nothing on success 1745# 1746# Since: 1.2 1747# 1748# Example: 1749# 1750# -> { "execute": "dump-guest-memory", 1751# "arguments": { "protocol": "fd:dump" } } 1752# <- { "return": {} } 1753# 1754## 1755{ 'command': 'dump-guest-memory', 1756 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool', 1757 '*begin': 'int', '*length': 'int', 1758 '*format': 'DumpGuestMemoryFormat'} } 1759 1760## 1761# @DumpStatus: 1762# 1763# Describe the status of a long-running background guest memory dump. 1764# 1765# @none: no dump-guest-memory has started yet. 1766# 1767# @active: there is one dump running in background. 1768# 1769# @completed: the last dump has finished successfully. 1770# 1771# @failed: the last dump has failed. 1772# 1773# Since: 2.6 1774## 1775{ 'enum': 'DumpStatus', 1776 'data': [ 'none', 'active', 'completed', 'failed' ] } 1777 1778## 1779# @DumpQueryResult: 1780# 1781# The result format for 'query-dump'. 1782# 1783# @status: enum of @DumpStatus, which shows current dump status 1784# 1785# @completed: bytes written in latest dump (uncompressed) 1786# 1787# @total: total bytes to be written in latest dump (uncompressed) 1788# 1789# Since: 2.6 1790## 1791{ 'struct': 'DumpQueryResult', 1792 'data': { 'status': 'DumpStatus', 1793 'completed': 'int', 1794 'total': 'int' } } 1795 1796## 1797# @query-dump: 1798# 1799# Query latest dump status. 1800# 1801# Returns: A @DumpStatus object showing the dump status. 1802# 1803# Since: 2.6 1804# 1805# Example: 1806# 1807# -> { "execute": "query-dump" } 1808# <- { "return": { "status": "active", "completed": 1024000, 1809# "total": 2048000 } } 1810# 1811## 1812{ 'command': 'query-dump', 'returns': 'DumpQueryResult' } 1813 1814## 1815# @DUMP_COMPLETED: 1816# 1817# Emitted when background dump has completed 1818# 1819# @result: final dump status 1820# 1821# @error: human-readable error string that provides 1822# hint on why dump failed. Only presents on failure. The 1823# user should not try to interpret the error string. 1824# 1825# Since: 2.6 1826# 1827# Example: 1828# 1829# { "event": "DUMP_COMPLETED", 1830# "data": {"result": {"total": 1090650112, "status": "completed", 1831# "completed": 1090650112} } } 1832# 1833## 1834{ 'event': 'DUMP_COMPLETED' , 1835 'data': { 'result': 'DumpQueryResult', '*error': 'str' } } 1836 1837## 1838# @DumpGuestMemoryCapability: 1839# 1840# A list of the available formats for dump-guest-memory 1841# 1842# Since: 2.0 1843## 1844{ 'struct': 'DumpGuestMemoryCapability', 1845 'data': { 1846 'formats': ['DumpGuestMemoryFormat'] } } 1847 1848## 1849# @query-dump-guest-memory-capability: 1850# 1851# Returns the available formats for dump-guest-memory 1852# 1853# Returns: A @DumpGuestMemoryCapability object listing available formats for 1854# dump-guest-memory 1855# 1856# Since: 2.0 1857# 1858# Example: 1859# 1860# -> { "execute": "query-dump-guest-memory-capability" } 1861# <- { "return": { "formats": 1862# ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] } 1863# 1864## 1865{ 'command': 'query-dump-guest-memory-capability', 1866 'returns': 'DumpGuestMemoryCapability' } 1867 1868## 1869# @dump-skeys: 1870# 1871# Dump guest's storage keys 1872# 1873# @filename: the path to the file to dump to 1874# 1875# This command is only supported on s390 architecture. 1876# 1877# Since: 2.5 1878# 1879# Example: 1880# 1881# -> { "execute": "dump-skeys", 1882# "arguments": { "filename": "/tmp/skeys" } } 1883# <- { "return": {} } 1884# 1885## 1886{ 'command': 'dump-skeys', 1887 'data': { 'filename': 'str' } } 1888 1889## 1890# @object-add: 1891# 1892# Create a QOM object. 1893# 1894# @qom-type: the class name for the object to be created 1895# 1896# @id: the name of the new object 1897# 1898# @props: a dictionary of properties to be passed to the backend 1899# 1900# Returns: Nothing on success 1901# Error if @qom-type is not a valid class name 1902# 1903# Since: 2.0 1904# 1905# Example: 1906# 1907# -> { "execute": "object-add", 1908# "arguments": { "qom-type": "rng-random", "id": "rng1", 1909# "props": { "filename": "/dev/hwrng" } } } 1910# <- { "return": {} } 1911# 1912## 1913{ 'command': 'object-add', 1914 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} } 1915 1916## 1917# @object-del: 1918# 1919# Remove a QOM object. 1920# 1921# @id: the name of the QOM object to remove 1922# 1923# Returns: Nothing on success 1924# Error if @id is not a valid id for a QOM object 1925# 1926# Since: 2.0 1927# 1928# Example: 1929# 1930# -> { "execute": "object-del", "arguments": { "id": "rng1" } } 1931# <- { "return": {} } 1932# 1933## 1934{ 'command': 'object-del', 'data': {'id': 'str'} } 1935 1936## 1937# @getfd: 1938# 1939# Receive a file descriptor via SCM rights and assign it a name 1940# 1941# @fdname: file descriptor name 1942# 1943# Returns: Nothing on success 1944# 1945# Since: 0.14.0 1946# 1947# Notes: If @fdname already exists, the file descriptor assigned to 1948# it will be closed and replaced by the received file 1949# descriptor. 1950# 1951# The 'closefd' command can be used to explicitly close the 1952# file descriptor when it is no longer needed. 1953# 1954# Example: 1955# 1956# -> { "execute": "getfd", "arguments": { "fdname": "fd1" } } 1957# <- { "return": {} } 1958# 1959## 1960{ 'command': 'getfd', 'data': {'fdname': 'str'} } 1961 1962## 1963# @closefd: 1964# 1965# Close a file descriptor previously passed via SCM rights 1966# 1967# @fdname: file descriptor name 1968# 1969# Returns: Nothing on success 1970# 1971# Since: 0.14.0 1972# 1973# Example: 1974# 1975# -> { "execute": "closefd", "arguments": { "fdname": "fd1" } } 1976# <- { "return": {} } 1977# 1978## 1979{ 'command': 'closefd', 'data': {'fdname': 'str'} } 1980 1981## 1982# @MachineInfo: 1983# 1984# Information describing a machine. 1985# 1986# @name: the name of the machine 1987# 1988# @alias: an alias for the machine name 1989# 1990# @is-default: whether the machine is default 1991# 1992# @cpu-max: maximum number of CPUs supported by the machine type 1993# (since 1.5.0) 1994# 1995# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0) 1996# 1997# Since: 1.2.0 1998## 1999{ 'struct': 'MachineInfo', 2000 'data': { 'name': 'str', '*alias': 'str', 2001 '*is-default': 'bool', 'cpu-max': 'int', 2002 'hotpluggable-cpus': 'bool'} } 2003 2004## 2005# @query-machines: 2006# 2007# Return a list of supported machines 2008# 2009# Returns: a list of MachineInfo 2010# 2011# Since: 1.2.0 2012## 2013{ 'command': 'query-machines', 'returns': ['MachineInfo'] } 2014 2015## 2016# @CpuDefinitionInfo: 2017# 2018# Virtual CPU definition. 2019# 2020# @name: the name of the CPU definition 2021# 2022# @migration-safe: whether a CPU definition can be safely used for 2023# migration in combination with a QEMU compatibility machine 2024# when migrating between different QEMU versions and between 2025# hosts with different sets of (hardware or software) 2026# capabilities. If not provided, information is not available 2027# and callers should not assume the CPU definition to be 2028# migration-safe. (since 2.8) 2029# 2030# @static: whether a CPU definition is static and will not change depending on 2031# QEMU version, machine type, machine options and accelerator options. 2032# A static model is always migration-safe. (since 2.8) 2033# 2034# @unavailable-features: List of properties that prevent 2035# the CPU model from running in the current 2036# host. (since 2.8) 2037# @typename: Type name that can be used as argument to @device-list-properties, 2038# to introspect properties configurable using -cpu or -global. 2039# (since 2.9) 2040# 2041# @unavailable-features is a list of QOM property names that 2042# represent CPU model attributes that prevent the CPU from running. 2043# If the QOM property is read-only, that means there's no known 2044# way to make the CPU model run in the current host. Implementations 2045# that choose not to provide specific information return the 2046# property name "type". 2047# If the property is read-write, it means that it MAY be possible 2048# to run the CPU model in the current host if that property is 2049# changed. Management software can use it as hints to suggest or 2050# choose an alternative for the user, or just to generate meaningful 2051# error messages explaining why the CPU model can't be used. 2052# If @unavailable-features is an empty list, the CPU model is 2053# runnable using the current host and machine-type. 2054# If @unavailable-features is not present, runnability 2055# information for the CPU is not available. 2056# 2057# Since: 1.2.0 2058## 2059{ 'struct': 'CpuDefinitionInfo', 2060 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool', 2061 '*unavailable-features': [ 'str' ], 'typename': 'str' } } 2062 2063## 2064# @MemoryInfo: 2065# 2066# Actual memory information in bytes. 2067# 2068# @base-memory: size of "base" memory specified with command line 2069# option -m. 2070# 2071# @plugged-memory: size of memory that can be hot-unplugged. This field 2072# is omitted if target doesn't support memory hotplug 2073# (i.e. CONFIG_MEM_DEVICE not defined at build time). 2074# 2075# Since: 2.11.0 2076## 2077{ 'struct': 'MemoryInfo', 2078 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } } 2079 2080## 2081# @query-memory-size-summary: 2082# 2083# Return the amount of initially allocated and present hotpluggable (if 2084# enabled) memory in bytes. 2085# 2086# Example: 2087# 2088# -> { "execute": "query-memory-size-summary" } 2089# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } } 2090# 2091# Since: 2.11.0 2092## 2093{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' } 2094 2095## 2096# @query-cpu-definitions: 2097# 2098# Return a list of supported virtual CPU definitions 2099# 2100# Returns: a list of CpuDefInfo 2101# 2102# Since: 1.2.0 2103## 2104{ 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] } 2105 2106## 2107# @CpuModelInfo: 2108# 2109# Virtual CPU model. 2110# 2111# A CPU model consists of the name of a CPU definition, to which 2112# delta changes are applied (e.g. features added/removed). Most magic values 2113# that an architecture might require should be hidden behind the name. 2114# However, if required, architectures can expose relevant properties. 2115# 2116# @name: the name of the CPU definition the model is based on 2117# @props: a dictionary of QOM properties to be applied 2118# 2119# Since: 2.8.0 2120## 2121{ 'struct': 'CpuModelInfo', 2122 'data': { 'name': 'str', 2123 '*props': 'any' } } 2124 2125## 2126# @CpuModelExpansionType: 2127# 2128# An enumeration of CPU model expansion types. 2129# 2130# @static: Expand to a static CPU model, a combination of a static base 2131# model name and property delta changes. As the static base model will 2132# never change, the expanded CPU model will be the same, independent of 2133# QEMU version, machine type, machine options, and accelerator options. 2134# Therefore, the resulting model can be used by tooling without having 2135# to specify a compatibility machine - e.g. when displaying the "host" 2136# model. The @static CPU models are migration-safe. 2137 2138# @full: Expand all properties. The produced model is not guaranteed to be 2139# migration-safe, but allows tooling to get an insight and work with 2140# model details. 2141# 2142# Note: When a non-migration-safe CPU model is expanded in static mode, some 2143# features enabled by the CPU model may be omitted, because they can't be 2144# implemented by a static CPU model definition (e.g. cache info passthrough and 2145# PMU passthrough in x86). If you need an accurate representation of the 2146# features enabled by a non-migration-safe CPU model, use @full. If you need a 2147# static representation that will keep ABI compatibility even when changing QEMU 2148# version or machine-type, use @static (but keep in mind that some features may 2149# be omitted). 2150# 2151# Since: 2.8.0 2152## 2153{ 'enum': 'CpuModelExpansionType', 2154 'data': [ 'static', 'full' ] } 2155 2156 2157## 2158# @CpuModelExpansionInfo: 2159# 2160# The result of a cpu model expansion. 2161# 2162# @model: the expanded CpuModelInfo. 2163# 2164# Since: 2.8.0 2165## 2166{ 'struct': 'CpuModelExpansionInfo', 2167 'data': { 'model': 'CpuModelInfo' } } 2168 2169 2170## 2171# @query-cpu-model-expansion: 2172# 2173# Expands a given CPU model (or a combination of CPU model + additional options) 2174# to different granularities, allowing tooling to get an understanding what a 2175# specific CPU model looks like in QEMU under a certain configuration. 2176# 2177# This interface can be used to query the "host" CPU model. 2178# 2179# The data returned by this command may be affected by: 2180# 2181# * QEMU version: CPU models may look different depending on the QEMU version. 2182# (Except for CPU models reported as "static" in query-cpu-definitions.) 2183# * machine-type: CPU model may look different depending on the machine-type. 2184# (Except for CPU models reported as "static" in query-cpu-definitions.) 2185# * machine options (including accelerator): in some architectures, CPU models 2186# may look different depending on machine and accelerator options. (Except for 2187# CPU models reported as "static" in query-cpu-definitions.) 2188# * "-cpu" arguments and global properties: arguments to the -cpu option and 2189# global properties may affect expansion of CPU models. Using 2190# query-cpu-model-expansion while using these is not advised. 2191# 2192# Some architectures may not support all expansion types. s390x supports 2193# "full" and "static". 2194# 2195# Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is 2196# not supported, if the model cannot be expanded, if the model contains 2197# an unknown CPU definition name, unknown properties or properties 2198# with a wrong type. Also returns an error if an expansion type is 2199# not supported. 2200# 2201# Since: 2.8.0 2202## 2203{ 'command': 'query-cpu-model-expansion', 2204 'data': { 'type': 'CpuModelExpansionType', 2205 'model': 'CpuModelInfo' }, 2206 'returns': 'CpuModelExpansionInfo' } 2207 2208## 2209# @CpuModelCompareResult: 2210# 2211# An enumeration of CPU model comparison results. The result is usually 2212# calculated using e.g. CPU features or CPU generations. 2213# 2214# @incompatible: If model A is incompatible to model B, model A is not 2215# guaranteed to run where model B runs and the other way around. 2216# 2217# @identical: If model A is identical to model B, model A is guaranteed to run 2218# where model B runs and the other way around. 2219# 2220# @superset: If model A is a superset of model B, model B is guaranteed to run 2221# where model A runs. There are no guarantees about the other way. 2222# 2223# @subset: If model A is a subset of model B, model A is guaranteed to run 2224# where model B runs. There are no guarantees about the other way. 2225# 2226# Since: 2.8.0 2227## 2228{ 'enum': 'CpuModelCompareResult', 2229 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] } 2230 2231## 2232# @CpuModelCompareInfo: 2233# 2234# The result of a CPU model comparison. 2235# 2236# @result: The result of the compare operation. 2237# @responsible-properties: List of properties that led to the comparison result 2238# not being identical. 2239# 2240# @responsible-properties is a list of QOM property names that led to 2241# both CPUs not being detected as identical. For identical models, this 2242# list is empty. 2243# If a QOM property is read-only, that means there's no known way to make the 2244# CPU models identical. If the special property name "type" is included, the 2245# models are by definition not identical and cannot be made identical. 2246# 2247# Since: 2.8.0 2248## 2249{ 'struct': 'CpuModelCompareInfo', 2250 'data': {'result': 'CpuModelCompareResult', 2251 'responsible-properties': ['str'] 2252 } 2253} 2254 2255## 2256# @query-cpu-model-comparison: 2257# 2258# Compares two CPU models, returning how they compare in a specific 2259# configuration. The results indicates how both models compare regarding 2260# runnability. This result can be used by tooling to make decisions if a 2261# certain CPU model will run in a certain configuration or if a compatible 2262# CPU model has to be created by baselining. 2263# 2264# Usually, a CPU model is compared against the maximum possible CPU model 2265# of a certain configuration (e.g. the "host" model for KVM). If that CPU 2266# model is identical or a subset, it will run in that configuration. 2267# 2268# The result returned by this command may be affected by: 2269# 2270# * QEMU version: CPU models may look different depending on the QEMU version. 2271# (Except for CPU models reported as "static" in query-cpu-definitions.) 2272# * machine-type: CPU model may look different depending on the machine-type. 2273# (Except for CPU models reported as "static" in query-cpu-definitions.) 2274# * machine options (including accelerator): in some architectures, CPU models 2275# may look different depending on machine and accelerator options. (Except for 2276# CPU models reported as "static" in query-cpu-definitions.) 2277# * "-cpu" arguments and global properties: arguments to the -cpu option and 2278# global properties may affect expansion of CPU models. Using 2279# query-cpu-model-expansion while using these is not advised. 2280# 2281# Some architectures may not support comparing CPU models. s390x supports 2282# comparing CPU models. 2283# 2284# Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is 2285# not supported, if a model cannot be used, if a model contains 2286# an unknown cpu definition name, unknown properties or properties 2287# with wrong types. 2288# 2289# Since: 2.8.0 2290## 2291{ 'command': 'query-cpu-model-comparison', 2292 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' }, 2293 'returns': 'CpuModelCompareInfo' } 2294 2295## 2296# @CpuModelBaselineInfo: 2297# 2298# The result of a CPU model baseline. 2299# 2300# @model: the baselined CpuModelInfo. 2301# 2302# Since: 2.8.0 2303## 2304{ 'struct': 'CpuModelBaselineInfo', 2305 'data': { 'model': 'CpuModelInfo' } } 2306 2307## 2308# @query-cpu-model-baseline: 2309# 2310# Baseline two CPU models, creating a compatible third model. The created 2311# model will always be a static, migration-safe CPU model (see "static" 2312# CPU model expansion for details). 2313# 2314# This interface can be used by tooling to create a compatible CPU model out 2315# two CPU models. The created CPU model will be identical to or a subset of 2316# both CPU models when comparing them. Therefore, the created CPU model is 2317# guaranteed to run where the given CPU models run. 2318# 2319# The result returned by this command may be affected by: 2320# 2321# * QEMU version: CPU models may look different depending on the QEMU version. 2322# (Except for CPU models reported as "static" in query-cpu-definitions.) 2323# * machine-type: CPU model may look different depending on the machine-type. 2324# (Except for CPU models reported as "static" in query-cpu-definitions.) 2325# * machine options (including accelerator): in some architectures, CPU models 2326# may look different depending on machine and accelerator options. (Except for 2327# CPU models reported as "static" in query-cpu-definitions.) 2328# * "-cpu" arguments and global properties: arguments to the -cpu option and 2329# global properties may affect expansion of CPU models. Using 2330# query-cpu-model-expansion while using these is not advised. 2331# 2332# Some architectures may not support baselining CPU models. s390x supports 2333# baselining CPU models. 2334# 2335# Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is 2336# not supported, if a model cannot be used, if a model contains 2337# an unknown cpu definition name, unknown properties or properties 2338# with wrong types. 2339# 2340# Since: 2.8.0 2341## 2342{ 'command': 'query-cpu-model-baseline', 2343 'data': { 'modela': 'CpuModelInfo', 2344 'modelb': 'CpuModelInfo' }, 2345 'returns': 'CpuModelBaselineInfo' } 2346 2347## 2348# @AddfdInfo: 2349# 2350# Information about a file descriptor that was added to an fd set. 2351# 2352# @fdset-id: The ID of the fd set that @fd was added to. 2353# 2354# @fd: The file descriptor that was received via SCM rights and 2355# added to the fd set. 2356# 2357# Since: 1.2.0 2358## 2359{ 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} } 2360 2361## 2362# @add-fd: 2363# 2364# Add a file descriptor, that was passed via SCM rights, to an fd set. 2365# 2366# @fdset-id: The ID of the fd set to add the file descriptor to. 2367# 2368# @opaque: A free-form string that can be used to describe the fd. 2369# 2370# Returns: @AddfdInfo on success 2371# 2372# If file descriptor was not received, FdNotSupplied 2373# 2374# If @fdset-id is a negative value, InvalidParameterValue 2375# 2376# Notes: The list of fd sets is shared by all monitor connections. 2377# 2378# If @fdset-id is not specified, a new fd set will be created. 2379# 2380# Since: 1.2.0 2381# 2382# Example: 2383# 2384# -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } } 2385# <- { "return": { "fdset-id": 1, "fd": 3 } } 2386# 2387## 2388{ 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'}, 2389 'returns': 'AddfdInfo' } 2390 2391## 2392# @remove-fd: 2393# 2394# Remove a file descriptor from an fd set. 2395# 2396# @fdset-id: The ID of the fd set that the file descriptor belongs to. 2397# 2398# @fd: The file descriptor that is to be removed. 2399# 2400# Returns: Nothing on success 2401# If @fdset-id or @fd is not found, FdNotFound 2402# 2403# Since: 1.2.0 2404# 2405# Notes: The list of fd sets is shared by all monitor connections. 2406# 2407# If @fd is not specified, all file descriptors in @fdset-id 2408# will be removed. 2409# 2410# Example: 2411# 2412# -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } } 2413# <- { "return": {} } 2414# 2415## 2416{ 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} } 2417 2418## 2419# @FdsetFdInfo: 2420# 2421# Information about a file descriptor that belongs to an fd set. 2422# 2423# @fd: The file descriptor value. 2424# 2425# @opaque: A free-form string that can be used to describe the fd. 2426# 2427# Since: 1.2.0 2428## 2429{ 'struct': 'FdsetFdInfo', 2430 'data': {'fd': 'int', '*opaque': 'str'} } 2431 2432## 2433# @FdsetInfo: 2434# 2435# Information about an fd set. 2436# 2437# @fdset-id: The ID of the fd set. 2438# 2439# @fds: A list of file descriptors that belong to this fd set. 2440# 2441# Since: 1.2.0 2442## 2443{ 'struct': 'FdsetInfo', 2444 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} } 2445 2446## 2447# @query-fdsets: 2448# 2449# Return information describing all fd sets. 2450# 2451# Returns: A list of @FdsetInfo 2452# 2453# Since: 1.2.0 2454# 2455# Note: The list of fd sets is shared by all monitor connections. 2456# 2457# Example: 2458# 2459# -> { "execute": "query-fdsets" } 2460# <- { "return": [ 2461# { 2462# "fds": [ 2463# { 2464# "fd": 30, 2465# "opaque": "rdonly:/path/to/file" 2466# }, 2467# { 2468# "fd": 24, 2469# "opaque": "rdwr:/path/to/file" 2470# } 2471# ], 2472# "fdset-id": 1 2473# }, 2474# { 2475# "fds": [ 2476# { 2477# "fd": 28 2478# }, 2479# { 2480# "fd": 29 2481# } 2482# ], 2483# "fdset-id": 0 2484# } 2485# ] 2486# } 2487# 2488## 2489{ 'command': 'query-fdsets', 'returns': ['FdsetInfo'] } 2490 2491## 2492# @TargetInfo: 2493# 2494# Information describing the QEMU target. 2495# 2496# @arch: the target architecture 2497# 2498# Since: 1.2.0 2499## 2500{ 'struct': 'TargetInfo', 2501 'data': { 'arch': 'SysEmuTarget' } } 2502 2503## 2504# @query-target: 2505# 2506# Return information about the target for this QEMU 2507# 2508# Returns: TargetInfo 2509# 2510# Since: 1.2.0 2511## 2512{ 'command': 'query-target', 'returns': 'TargetInfo' } 2513 2514## 2515# @AcpiTableOptions: 2516# 2517# Specify an ACPI table on the command line to load. 2518# 2519# At most one of @file and @data can be specified. The list of files specified 2520# by any one of them is loaded and concatenated in order. If both are omitted, 2521# @data is implied. 2522# 2523# Other fields / optargs can be used to override fields of the generic ACPI 2524# table header; refer to the ACPI specification 5.0, section 5.2.6 System 2525# Description Table Header. If a header field is not overridden, then the 2526# corresponding value from the concatenated blob is used (in case of @file), or 2527# it is filled in with a hard-coded value (in case of @data). 2528# 2529# String fields are copied into the matching ACPI member from lowest address 2530# upwards, and silently truncated / NUL-padded to length. 2531# 2532# @sig: table signature / identifier (4 bytes) 2533# 2534# @rev: table revision number (dependent on signature, 1 byte) 2535# 2536# @oem_id: OEM identifier (6 bytes) 2537# 2538# @oem_table_id: OEM table identifier (8 bytes) 2539# 2540# @oem_rev: OEM-supplied revision number (4 bytes) 2541# 2542# @asl_compiler_id: identifier of the utility that created the table 2543# (4 bytes) 2544# 2545# @asl_compiler_rev: revision number of the utility that created the 2546# table (4 bytes) 2547# 2548# @file: colon (:) separated list of pathnames to load and 2549# concatenate as table data. The resultant binary blob is expected to 2550# have an ACPI table header. At least one file is required. This field 2551# excludes @data. 2552# 2553# @data: colon (:) separated list of pathnames to load and 2554# concatenate as table data. The resultant binary blob must not have an 2555# ACPI table header. At least one file is required. This field excludes 2556# @file. 2557# 2558# Since: 1.5 2559## 2560{ 'struct': 'AcpiTableOptions', 2561 'data': { 2562 '*sig': 'str', 2563 '*rev': 'uint8', 2564 '*oem_id': 'str', 2565 '*oem_table_id': 'str', 2566 '*oem_rev': 'uint32', 2567 '*asl_compiler_id': 'str', 2568 '*asl_compiler_rev': 'uint32', 2569 '*file': 'str', 2570 '*data': 'str' }} 2571 2572## 2573# @CommandLineParameterType: 2574# 2575# Possible types for an option parameter. 2576# 2577# @string: accepts a character string 2578# 2579# @boolean: accepts "on" or "off" 2580# 2581# @number: accepts a number 2582# 2583# @size: accepts a number followed by an optional suffix (K)ilo, 2584# (M)ega, (G)iga, (T)era 2585# 2586# Since: 1.5 2587## 2588{ 'enum': 'CommandLineParameterType', 2589 'data': ['string', 'boolean', 'number', 'size'] } 2590 2591## 2592# @CommandLineParameterInfo: 2593# 2594# Details about a single parameter of a command line option. 2595# 2596# @name: parameter name 2597# 2598# @type: parameter @CommandLineParameterType 2599# 2600# @help: human readable text string, not suitable for parsing. 2601# 2602# @default: default value string (since 2.1) 2603# 2604# Since: 1.5 2605## 2606{ 'struct': 'CommandLineParameterInfo', 2607 'data': { 'name': 'str', 2608 'type': 'CommandLineParameterType', 2609 '*help': 'str', 2610 '*default': 'str' } } 2611 2612## 2613# @CommandLineOptionInfo: 2614# 2615# Details about a command line option, including its list of parameter details 2616# 2617# @option: option name 2618# 2619# @parameters: an array of @CommandLineParameterInfo 2620# 2621# Since: 1.5 2622## 2623{ 'struct': 'CommandLineOptionInfo', 2624 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } } 2625 2626## 2627# @query-command-line-options: 2628# 2629# Query command line option schema. 2630# 2631# @option: option name 2632# 2633# Returns: list of @CommandLineOptionInfo for all options (or for the given 2634# @option). Returns an error if the given @option doesn't exist. 2635# 2636# Since: 1.5 2637# 2638# Example: 2639# 2640# -> { "execute": "query-command-line-options", 2641# "arguments": { "option": "option-rom" } } 2642# <- { "return": [ 2643# { 2644# "parameters": [ 2645# { 2646# "name": "romfile", 2647# "type": "string" 2648# }, 2649# { 2650# "name": "bootindex", 2651# "type": "number" 2652# } 2653# ], 2654# "option": "option-rom" 2655# } 2656# ] 2657# } 2658# 2659## 2660{'command': 'query-command-line-options', 'data': { '*option': 'str' }, 2661 'returns': ['CommandLineOptionInfo'], 2662 'allow-preconfig': true } 2663 2664## 2665# @X86CPURegister32: 2666# 2667# A X86 32-bit register 2668# 2669# Since: 1.5 2670## 2671{ 'enum': 'X86CPURegister32', 2672 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] } 2673 2674## 2675# @X86CPUFeatureWordInfo: 2676# 2677# Information about a X86 CPU feature word 2678# 2679# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word 2680# 2681# @cpuid-input-ecx: Input ECX value for CPUID instruction for that 2682# feature word 2683# 2684# @cpuid-register: Output register containing the feature bits 2685# 2686# @features: value of output register, containing the feature bits 2687# 2688# Since: 1.5 2689## 2690{ 'struct': 'X86CPUFeatureWordInfo', 2691 'data': { 'cpuid-input-eax': 'int', 2692 '*cpuid-input-ecx': 'int', 2693 'cpuid-register': 'X86CPURegister32', 2694 'features': 'int' } } 2695 2696## 2697# @DummyForceArrays: 2698# 2699# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally 2700# 2701# Since: 2.5 2702## 2703{ 'struct': 'DummyForceArrays', 2704 'data': { 'unused': ['X86CPUFeatureWordInfo'] } } 2705 2706 2707## 2708# @NumaOptionsType: 2709# 2710# @node: NUMA nodes configuration 2711# 2712# @dist: NUMA distance configuration (since 2.10) 2713# 2714# @cpu: property based CPU(s) to node mapping (Since: 2.10) 2715# 2716# Since: 2.1 2717## 2718{ 'enum': 'NumaOptionsType', 2719 'data': [ 'node', 'dist', 'cpu' ] } 2720 2721## 2722# @NumaOptions: 2723# 2724# A discriminated record of NUMA options. (for OptsVisitor) 2725# 2726# Since: 2.1 2727## 2728{ 'union': 'NumaOptions', 2729 'base': { 'type': 'NumaOptionsType' }, 2730 'discriminator': 'type', 2731 'data': { 2732 'node': 'NumaNodeOptions', 2733 'dist': 'NumaDistOptions', 2734 'cpu': 'NumaCpuOptions' }} 2735 2736## 2737# @NumaNodeOptions: 2738# 2739# Create a guest NUMA node. (for OptsVisitor) 2740# 2741# @nodeid: NUMA node ID (increase by 1 from 0 if omitted) 2742# 2743# @cpus: VCPUs belonging to this node (assign VCPUS round-robin 2744# if omitted) 2745# 2746# @mem: memory size of this node; mutually exclusive with @memdev. 2747# Equally divide total memory among nodes if both @mem and @memdev are 2748# omitted. 2749# 2750# @memdev: memory backend object. If specified for one node, 2751# it must be specified for all nodes. 2752# 2753# Since: 2.1 2754## 2755{ 'struct': 'NumaNodeOptions', 2756 'data': { 2757 '*nodeid': 'uint16', 2758 '*cpus': ['uint16'], 2759 '*mem': 'size', 2760 '*memdev': 'str' }} 2761 2762## 2763# @NumaDistOptions: 2764# 2765# Set the distance between 2 NUMA nodes. 2766# 2767# @src: source NUMA node. 2768# 2769# @dst: destination NUMA node. 2770# 2771# @val: NUMA distance from source node to destination node. 2772# When a node is unreachable from another node, set the distance 2773# between them to 255. 2774# 2775# Since: 2.10 2776## 2777{ 'struct': 'NumaDistOptions', 2778 'data': { 2779 'src': 'uint16', 2780 'dst': 'uint16', 2781 'val': 'uint8' }} 2782 2783## 2784# @NumaCpuOptions: 2785# 2786# Option "-numa cpu" overrides default cpu to node mapping. 2787# It accepts the same set of cpu properties as returned by 2788# query-hotpluggable-cpus[].props, where node-id could be used to 2789# override default node mapping. 2790# 2791# Since: 2.10 2792## 2793{ 'struct': 'NumaCpuOptions', 2794 'base': 'CpuInstanceProperties', 2795 'data' : {} } 2796 2797## 2798# @HostMemPolicy: 2799# 2800# Host memory policy types 2801# 2802# @default: restore default policy, remove any nondefault policy 2803# 2804# @preferred: set the preferred host nodes for allocation 2805# 2806# @bind: a strict policy that restricts memory allocation to the 2807# host nodes specified 2808# 2809# @interleave: memory allocations are interleaved across the set 2810# of host nodes specified 2811# 2812# Since: 2.1 2813## 2814{ 'enum': 'HostMemPolicy', 2815 'data': [ 'default', 'preferred', 'bind', 'interleave' ] } 2816 2817## 2818# @Memdev: 2819# 2820# Information about memory backend 2821# 2822# @id: backend's ID if backend has 'id' property (since 2.9) 2823# 2824# @size: memory backend size 2825# 2826# @merge: enables or disables memory merge support 2827# 2828# @dump: includes memory backend's memory in a core dump or not 2829# 2830# @prealloc: enables or disables memory preallocation 2831# 2832# @host-nodes: host nodes for its memory policy 2833# 2834# @policy: memory policy of memory backend 2835# 2836# Since: 2.1 2837## 2838{ 'struct': 'Memdev', 2839 'data': { 2840 '*id': 'str', 2841 'size': 'size', 2842 'merge': 'bool', 2843 'dump': 'bool', 2844 'prealloc': 'bool', 2845 'host-nodes': ['uint16'], 2846 'policy': 'HostMemPolicy' }} 2847 2848## 2849# @query-memdev: 2850# 2851# Returns information for all memory backends. 2852# 2853# Returns: a list of @Memdev. 2854# 2855# Since: 2.1 2856# 2857# Example: 2858# 2859# -> { "execute": "query-memdev" } 2860# <- { "return": [ 2861# { 2862# "id": "mem1", 2863# "size": 536870912, 2864# "merge": false, 2865# "dump": true, 2866# "prealloc": false, 2867# "host-nodes": [0, 1], 2868# "policy": "bind" 2869# }, 2870# { 2871# "size": 536870912, 2872# "merge": false, 2873# "dump": true, 2874# "prealloc": true, 2875# "host-nodes": [2, 3], 2876# "policy": "preferred" 2877# } 2878# ] 2879# } 2880# 2881## 2882{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true } 2883 2884## 2885# @PCDIMMDeviceInfo: 2886# 2887# PCDIMMDevice state information 2888# 2889# @id: device's ID 2890# 2891# @addr: physical address, where device is mapped 2892# 2893# @size: size of memory that the device provides 2894# 2895# @slot: slot number at which device is plugged in 2896# 2897# @node: NUMA node number where device is plugged in 2898# 2899# @memdev: memory backend linked with device 2900# 2901# @hotplugged: true if device was hotplugged 2902# 2903# @hotpluggable: true if device if could be added/removed while machine is running 2904# 2905# Since: 2.1 2906## 2907{ 'struct': 'PCDIMMDeviceInfo', 2908 'data': { '*id': 'str', 2909 'addr': 'int', 2910 'size': 'int', 2911 'slot': 'int', 2912 'node': 'int', 2913 'memdev': 'str', 2914 'hotplugged': 'bool', 2915 'hotpluggable': 'bool' 2916 } 2917} 2918 2919## 2920# @MemoryDeviceInfo: 2921# 2922# Union containing information about a memory device 2923# 2924# Since: 2.1 2925## 2926{ 'union': 'MemoryDeviceInfo', 2927 'data': { 'dimm': 'PCDIMMDeviceInfo', 2928 'nvdimm': 'PCDIMMDeviceInfo' 2929 } 2930} 2931 2932## 2933# @query-memory-devices: 2934# 2935# Lists available memory devices and their state 2936# 2937# Since: 2.1 2938# 2939# Example: 2940# 2941# -> { "execute": "query-memory-devices" } 2942# <- { "return": [ { "data": 2943# { "addr": 5368709120, 2944# "hotpluggable": true, 2945# "hotplugged": true, 2946# "id": "d1", 2947# "memdev": "/objects/memX", 2948# "node": 0, 2949# "size": 1073741824, 2950# "slot": 0}, 2951# "type": "dimm" 2952# } ] } 2953# 2954## 2955{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] } 2956 2957## 2958# @MEM_UNPLUG_ERROR: 2959# 2960# Emitted when memory hot unplug error occurs. 2961# 2962# @device: device name 2963# 2964# @msg: Informative message 2965# 2966# Since: 2.4 2967# 2968# Example: 2969# 2970# <- { "event": "MEM_UNPLUG_ERROR" 2971# "data": { "device": "dimm1", 2972# "msg": "acpi: device unplug for unsupported device" 2973# }, 2974# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 2975# 2976## 2977{ 'event': 'MEM_UNPLUG_ERROR', 2978 'data': { 'device': 'str', 'msg': 'str' } } 2979 2980## 2981# @ACPISlotType: 2982# 2983# @DIMM: memory slot 2984# @CPU: logical CPU slot (since 2.7) 2985## 2986{ 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] } 2987 2988## 2989# @ACPIOSTInfo: 2990# 2991# OSPM Status Indication for a device 2992# For description of possible values of @source and @status fields 2993# see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec. 2994# 2995# @device: device ID associated with slot 2996# 2997# @slot: slot ID, unique per slot of a given @slot-type 2998# 2999# @slot-type: type of the slot 3000# 3001# @source: an integer containing the source event 3002# 3003# @status: an integer containing the status code 3004# 3005# Since: 2.1 3006## 3007{ 'struct': 'ACPIOSTInfo', 3008 'data' : { '*device': 'str', 3009 'slot': 'str', 3010 'slot-type': 'ACPISlotType', 3011 'source': 'int', 3012 'status': 'int' } } 3013 3014## 3015# @query-acpi-ospm-status: 3016# 3017# Return a list of ACPIOSTInfo for devices that support status 3018# reporting via ACPI _OST method. 3019# 3020# Since: 2.1 3021# 3022# Example: 3023# 3024# -> { "execute": "query-acpi-ospm-status" } 3025# <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0}, 3026# { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0}, 3027# { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0}, 3028# { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0} 3029# ]} 3030# 3031## 3032{ 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] } 3033 3034## 3035# @ACPI_DEVICE_OST: 3036# 3037# Emitted when guest executes ACPI _OST method. 3038# 3039# @info: OSPM Status Indication 3040# 3041# Since: 2.1 3042# 3043# Example: 3044# 3045# <- { "event": "ACPI_DEVICE_OST", 3046# "data": { "device": "d1", "slot": "0", 3047# "slot-type": "DIMM", "source": 1, "status": 0 } } 3048# 3049## 3050{ 'event': 'ACPI_DEVICE_OST', 3051 'data': { 'info': 'ACPIOSTInfo' } } 3052 3053## 3054# @rtc-reset-reinjection: 3055# 3056# This command will reset the RTC interrupt reinjection backlog. 3057# Can be used if another mechanism to synchronize guest time 3058# is in effect, for example QEMU guest agent's guest-set-time 3059# command. 3060# 3061# Since: 2.1 3062# 3063# Example: 3064# 3065# -> { "execute": "rtc-reset-reinjection" } 3066# <- { "return": {} } 3067# 3068## 3069{ 'command': 'rtc-reset-reinjection' } 3070 3071## 3072# @RTC_CHANGE: 3073# 3074# Emitted when the guest changes the RTC time. 3075# 3076# @offset: offset between base RTC clock (as specified by -rtc base), and 3077# new RTC clock value. Note that value will be different depending 3078# on clock chosen to drive RTC (specified by -rtc clock). 3079# 3080# Note: This event is rate-limited. 3081# 3082# Since: 0.13.0 3083# 3084# Example: 3085# 3086# <- { "event": "RTC_CHANGE", 3087# "data": { "offset": 78 }, 3088# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } } 3089# 3090## 3091{ 'event': 'RTC_CHANGE', 3092 'data': { 'offset': 'int' } } 3093 3094## 3095# @ReplayMode: 3096# 3097# Mode of the replay subsystem. 3098# 3099# @none: normal execution mode. Replay or record are not enabled. 3100# 3101# @record: record mode. All non-deterministic data is written into the 3102# replay log. 3103# 3104# @play: replay mode. Non-deterministic data required for system execution 3105# is read from the log. 3106# 3107# Since: 2.5 3108## 3109{ 'enum': 'ReplayMode', 3110 'data': [ 'none', 'record', 'play' ] } 3111 3112## 3113# @xen-load-devices-state: 3114# 3115# Load the state of all devices from file. The RAM and the block devices 3116# of the VM are not loaded by this command. 3117# 3118# @filename: the file to load the state of the devices from as binary 3119# data. See xen-save-devices-state.txt for a description of the binary 3120# format. 3121# 3122# Since: 2.7 3123# 3124# Example: 3125# 3126# -> { "execute": "xen-load-devices-state", 3127# "arguments": { "filename": "/tmp/resume" } } 3128# <- { "return": {} } 3129# 3130## 3131{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 3132 3133## 3134# @GICCapability: 3135# 3136# The struct describes capability for a specific GIC (Generic 3137# Interrupt Controller) version. These bits are not only decided by 3138# QEMU/KVM software version, but also decided by the hardware that 3139# the program is running upon. 3140# 3141# @version: version of GIC to be described. Currently, only 2 and 3 3142# are supported. 3143# 3144# @emulated: whether current QEMU/hardware supports emulated GIC 3145# device in user space. 3146# 3147# @kernel: whether current QEMU/hardware supports hardware 3148# accelerated GIC device in kernel. 3149# 3150# Since: 2.6 3151## 3152{ 'struct': 'GICCapability', 3153 'data': { 'version': 'int', 3154 'emulated': 'bool', 3155 'kernel': 'bool' } } 3156 3157## 3158# @query-gic-capabilities: 3159# 3160# This command is ARM-only. It will return a list of GICCapability 3161# objects that describe its capability bits. 3162# 3163# Returns: a list of GICCapability objects. 3164# 3165# Since: 2.6 3166# 3167# Example: 3168# 3169# -> { "execute": "query-gic-capabilities" } 3170# <- { "return": [{ "version": 2, "emulated": true, "kernel": false }, 3171# { "version": 3, "emulated": false, "kernel": true } ] } 3172# 3173## 3174{ 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] } 3175 3176## 3177# @CpuInstanceProperties: 3178# 3179# List of properties to be used for hotplugging a CPU instance, 3180# it should be passed by management with device_add command when 3181# a CPU is being hotplugged. 3182# 3183# @node-id: NUMA node ID the CPU belongs to 3184# @socket-id: socket number within node/board the CPU belongs to 3185# @core-id: core number within socket the CPU belongs to 3186# @thread-id: thread number within core the CPU belongs to 3187# 3188# Note: currently there are 4 properties that could be present 3189# but management should be prepared to pass through other 3190# properties with device_add command to allow for future 3191# interface extension. This also requires the filed names to be kept in 3192# sync with the properties passed to -device/device_add. 3193# 3194# Since: 2.7 3195## 3196{ 'struct': 'CpuInstanceProperties', 3197 'data': { '*node-id': 'int', 3198 '*socket-id': 'int', 3199 '*core-id': 'int', 3200 '*thread-id': 'int' 3201 } 3202} 3203 3204## 3205# @HotpluggableCPU: 3206# 3207# @type: CPU object type for usage with device_add command 3208# @props: list of properties to be used for hotplugging CPU 3209# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides 3210# @qom-path: link to existing CPU object if CPU is present or 3211# omitted if CPU is not present. 3212# 3213# Since: 2.7 3214## 3215{ 'struct': 'HotpluggableCPU', 3216 'data': { 'type': 'str', 3217 'vcpus-count': 'int', 3218 'props': 'CpuInstanceProperties', 3219 '*qom-path': 'str' 3220 } 3221} 3222 3223## 3224# @query-hotpluggable-cpus: 3225# 3226# TODO: Better documentation; currently there is none. 3227# 3228# Returns: a list of HotpluggableCPU objects. 3229# 3230# Since: 2.7 3231# 3232# Example: 3233# 3234# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8: 3235# 3236# -> { "execute": "query-hotpluggable-cpus" } 3237# <- {"return": [ 3238# { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core", 3239# "vcpus-count": 1 }, 3240# { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core", 3241# "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"} 3242# ]}' 3243# 3244# For pc machine type started with -smp 1,maxcpus=2: 3245# 3246# -> { "execute": "query-hotpluggable-cpus" } 3247# <- {"return": [ 3248# { 3249# "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 3250# "props": {"core-id": 0, "socket-id": 1, "thread-id": 0} 3251# }, 3252# { 3253# "qom-path": "/machine/unattached/device[0]", 3254# "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 3255# "props": {"core-id": 0, "socket-id": 0, "thread-id": 0} 3256# } 3257# ]} 3258# 3259# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu 3260# (Since: 2.11): 3261# 3262# -> { "execute": "query-hotpluggable-cpus" } 3263# <- {"return": [ 3264# { 3265# "type": "qemu-s390x-cpu", "vcpus-count": 1, 3266# "props": { "core-id": 1 } 3267# }, 3268# { 3269# "qom-path": "/machine/unattached/device[0]", 3270# "type": "qemu-s390x-cpu", "vcpus-count": 1, 3271# "props": { "core-id": 0 } 3272# } 3273# ]} 3274# 3275## 3276{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'], 3277 'allow-preconfig': true } 3278 3279## 3280# @GuidInfo: 3281# 3282# GUID information. 3283# 3284# @guid: the globally unique identifier 3285# 3286# Since: 2.9 3287## 3288{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} } 3289 3290## 3291# @query-vm-generation-id: 3292# 3293# Show Virtual Machine Generation ID 3294# 3295# Since: 2.9 3296## 3297{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' } 3298 3299 3300## 3301# @SevState: 3302# 3303# An enumeration of SEV state information used during @query-sev. 3304# 3305# @uninit: The guest is uninitialized. 3306# 3307# @launch-update: The guest is currently being launched; plaintext data and 3308# register state is being imported. 3309# 3310# @launch-secret: The guest is currently being launched; ciphertext data 3311# is being imported. 3312# 3313# @running: The guest is fully launched or migrated in. 3314# 3315# @send-update: The guest is currently being migrated out to another machine. 3316# 3317# @receive-update: The guest is currently being migrated from another machine. 3318# 3319# Since: 2.12 3320## 3321{ 'enum': 'SevState', 3322 'data': ['uninit', 'launch-update', 'launch-secret', 'running', 3323 'send-update', 'receive-update' ] } 3324 3325## 3326# @SevInfo: 3327# 3328# Information about Secure Encrypted Virtualization (SEV) support 3329# 3330# @enabled: true if SEV is active 3331# 3332# @api-major: SEV API major version 3333# 3334# @api-minor: SEV API minor version 3335# 3336# @build-id: SEV FW build id 3337# 3338# @policy: SEV policy value 3339# 3340# @state: SEV guest state 3341# 3342# @handle: SEV firmware handle 3343# 3344# Since: 2.12 3345## 3346{ 'struct': 'SevInfo', 3347 'data': { 'enabled': 'bool', 3348 'api-major': 'uint8', 3349 'api-minor' : 'uint8', 3350 'build-id' : 'uint8', 3351 'policy' : 'uint32', 3352 'state' : 'SevState', 3353 'handle' : 'uint32' 3354 } 3355} 3356 3357## 3358# @query-sev: 3359# 3360# Returns information about SEV 3361# 3362# Returns: @SevInfo 3363# 3364# Since: 2.12 3365# 3366# Example: 3367# 3368# -> { "execute": "query-sev" } 3369# <- { "return": { "enabled": true, "api-major" : 0, "api-minor" : 0, 3370# "build-id" : 0, "policy" : 0, "state" : "running", 3371# "handle" : 1 } } 3372# 3373## 3374{ 'command': 'query-sev', 'returns': 'SevInfo' } 3375 3376## 3377# @SevLaunchMeasureInfo: 3378# 3379# SEV Guest Launch measurement information 3380# 3381# @data: the measurement value encoded in base64 3382# 3383# Since: 2.12 3384# 3385## 3386{ 'struct': 'SevLaunchMeasureInfo', 'data': {'data': 'str'} } 3387 3388## 3389# @query-sev-launch-measure: 3390# 3391# Query the SEV guest launch information. 3392# 3393# Returns: The @SevLaunchMeasureInfo for the guest 3394# 3395# Since: 2.12 3396# 3397# Example: 3398# 3399# -> { "execute": "query-sev-launch-measure" } 3400# <- { "return": { "data": "4l8LXeNlSPUDlXPJG5966/8%YZ" } } 3401# 3402## 3403{ 'command': 'query-sev-launch-measure', 'returns': 'SevLaunchMeasureInfo' } 3404 3405## 3406# @SevCapability: 3407# 3408# The struct describes capability for a Secure Encrypted Virtualization 3409# feature. 3410# 3411# @pdh: Platform Diffie-Hellman key (base64 encoded) 3412# 3413# @cert-chain: PDH certificate chain (base64 encoded) 3414# 3415# @cbitpos: C-bit location in page table entry 3416# 3417# @reduced-phys-bits: Number of physical Address bit reduction when SEV is 3418# enabled 3419# 3420# Since: 2.12 3421## 3422{ 'struct': 'SevCapability', 3423 'data': { 'pdh': 'str', 3424 'cert-chain': 'str', 3425 'cbitpos': 'int', 3426 'reduced-phys-bits': 'int'} } 3427 3428## 3429# @query-sev-capabilities: 3430# 3431# This command is used to get the SEV capabilities, and is supported on AMD 3432# X86 platforms only. 3433# 3434# Returns: SevCapability objects. 3435# 3436# Since: 2.12 3437# 3438# Example: 3439# 3440# -> { "execute": "query-sev-capabilities" } 3441# <- { "return": { "pdh": "8CCDD8DDD", "cert-chain": "888CCCDDDEE", 3442# "cbitpos": 47, "reduced-phys-bits": 5}} 3443# 3444## 3445{ 'command': 'query-sev-capabilities', 'returns': 'SevCapability' } 3446 3447## 3448# @CommandDropReason: 3449# 3450# Reasons that caused one command to be dropped. 3451# 3452# @queue-full: the command queue is full. This can only occur when 3453# the client sends a new non-oob command before the 3454# response to the previous non-oob command has been 3455# received. 3456# 3457# Since: 2.12 3458## 3459{ 'enum': 'CommandDropReason', 3460 'data': [ 'queue-full' ] } 3461 3462## 3463# @COMMAND_DROPPED: 3464# 3465# Emitted when a command is dropped due to some reason. Commands can 3466# only be dropped when the oob capability is enabled. 3467# 3468# @id: The dropped command's "id" field. 3469# FIXME Broken by design. Events are broadcast to all monitors. If 3470# another monitor's client has a command with the same ID in flight, 3471# the event will incorrectly claim that command was dropped. 3472# 3473# @reason: The reason why the command is dropped. 3474# 3475# Since: 2.12 3476# 3477# Example: 3478# 3479# { "event": "COMMAND_DROPPED", 3480# "data": {"result": {"id": "libvirt-102", 3481# "reason": "queue-full" } } } 3482# 3483## 3484{ 'event': 'COMMAND_DROPPED' , 3485 'data': { 'id': 'any', 'reason': 'CommandDropReason' } } 3486 3487## 3488# @set-numa-node: 3489# 3490# Runtime equivalent of '-numa' CLI option, available at 3491# preconfigure stage to configure numa mapping before initializing 3492# machine. 3493# 3494# Since 3.0 3495## 3496{ 'command': 'set-numa-node', 'boxed': true, 3497 'data': 'NumaOptions', 3498 'allow-preconfig': true 3499} 3500