xref: /openbmc/qemu/qapi/misc.json (revision 7ff5920717d413d8b7c3ba13d9a0805291b9e6ec)
1# -*- Mode: Python -*-
2#
3
4##
5# = Miscellanea
6##
7
8{ 'include': 'common.json' }
9
10##
11# @qmp_capabilities:
12#
13# Enable QMP capabilities.
14#
15# Arguments:
16#
17# @enable:   An optional list of QMPCapability values to enable.  The
18#            client must not enable any capability that is not
19#            mentioned in the QMP greeting message.  If the field is not
20#            provided, it means no QMP capabilities will be enabled.
21#            (since 2.12)
22#
23# Example:
24#
25# -> { "execute": "qmp_capabilities",
26#      "arguments": { "enable": [ "oob" ] } }
27# <- { "return": {} }
28#
29# Notes: This command is valid exactly when first connecting: it must be
30# issued before any other command will be accepted, and will fail once the
31# monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
32#
33# The QMP client needs to explicitly enable QMP capabilities, otherwise
34# all the QMP capabilities will be turned off by default.
35#
36# Since: 0.13
37#
38##
39{ 'command': 'qmp_capabilities',
40  'data': { '*enable': [ 'QMPCapability' ] },
41  'allow-preconfig': true }
42
43##
44# @QMPCapability:
45#
46# Enumeration of capabilities to be advertised during initial client
47# connection, used for agreeing on particular QMP extension behaviors.
48#
49# @oob:   QMP ability to support out-of-band requests.
50#         (Please refer to qmp-spec.txt for more information on OOB)
51#
52# Since: 2.12
53#
54##
55{ 'enum': 'QMPCapability',
56  'data': [ 'oob' ] }
57
58##
59# @VersionTriple:
60#
61# A three-part version number.
62#
63# @major:  The major version number.
64#
65# @minor:  The minor version number.
66#
67# @micro:  The micro version number.
68#
69# Since: 2.4
70##
71{ 'struct': 'VersionTriple',
72  'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
73
74
75##
76# @VersionInfo:
77#
78# A description of QEMU's version.
79#
80# @qemu:        The version of QEMU.  By current convention, a micro
81#               version of 50 signifies a development branch.  A micro version
82#               greater than or equal to 90 signifies a release candidate for
83#               the next minor version.  A micro version of less than 50
84#               signifies a stable release.
85#
86# @package:     QEMU will always set this field to an empty string.  Downstream
87#               versions of QEMU should set this to a non-empty string.  The
88#               exact format depends on the downstream however it highly
89#               recommended that a unique name is used.
90#
91# Since: 0.14.0
92##
93{ 'struct': 'VersionInfo',
94  'data': {'qemu': 'VersionTriple', 'package': 'str'} }
95
96##
97# @query-version:
98#
99# Returns the current version of QEMU.
100#
101# Returns:  A @VersionInfo object describing the current version of QEMU.
102#
103# Since: 0.14.0
104#
105# Example:
106#
107# -> { "execute": "query-version" }
108# <- {
109#       "return":{
110#          "qemu":{
111#             "major":0,
112#             "minor":11,
113#             "micro":5
114#          },
115#          "package":""
116#       }
117#    }
118#
119##
120{ 'command': 'query-version', 'returns': 'VersionInfo',
121  'allow-preconfig': true }
122
123##
124# @CommandInfo:
125#
126# Information about a QMP command
127#
128# @name: The command name
129#
130# Since: 0.14.0
131##
132{ 'struct': 'CommandInfo', 'data': {'name': 'str'} }
133
134##
135# @query-commands:
136#
137# Return a list of supported QMP commands by this server
138#
139# Returns: A list of @CommandInfo for all supported commands
140#
141# Since: 0.14.0
142#
143# Example:
144#
145# -> { "execute": "query-commands" }
146# <- {
147#      "return":[
148#         {
149#            "name":"query-balloon"
150#         },
151#         {
152#            "name":"system_powerdown"
153#         }
154#      ]
155#    }
156#
157# Note: This example has been shortened as the real response is too long.
158#
159##
160{ 'command': 'query-commands', 'returns': ['CommandInfo'],
161  'allow-preconfig': true }
162
163##
164# @LostTickPolicy:
165#
166# Policy for handling lost ticks in timer devices.
167#
168# @discard: throw away the missed tick(s) and continue with future injection
169#           normally.  Guest time may be delayed, unless the OS has explicit
170#           handling of lost ticks
171#
172# @delay: continue to deliver ticks at the normal rate.  Guest time will be
173#         delayed due to the late tick
174#
175# @merge: merge the missed tick(s) into one tick and inject.  Guest time
176#         may be delayed, depending on how the OS reacts to the merging
177#         of ticks
178#
179# @slew: deliver ticks at a higher rate to catch up with the missed tick. The
180#        guest time should not be delayed once catchup is complete.
181#
182# Since: 2.0
183##
184{ 'enum': 'LostTickPolicy',
185  'data': ['discard', 'delay', 'merge', 'slew' ] }
186
187##
188# @add_client:
189#
190# Allow client connections for VNC, Spice and socket based
191# character devices to be passed in to QEMU via SCM_RIGHTS.
192#
193# @protocol: protocol name. Valid names are "vnc", "spice" or the
194#            name of a character device (eg. from -chardev id=XXXX)
195#
196# @fdname: file descriptor name previously passed via 'getfd' command
197#
198# @skipauth: whether to skip authentication. Only applies
199#            to "vnc" and "spice" protocols
200#
201# @tls: whether to perform TLS. Only applies to the "spice"
202#       protocol
203#
204# Returns: nothing on success.
205#
206# Since: 0.14.0
207#
208# Example:
209#
210# -> { "execute": "add_client", "arguments": { "protocol": "vnc",
211#                                              "fdname": "myclient" } }
212# <- { "return": {} }
213#
214##
215{ 'command': 'add_client',
216  'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
217            '*tls': 'bool' } }
218
219##
220# @NameInfo:
221#
222# Guest name information.
223#
224# @name: The name of the guest
225#
226# Since: 0.14.0
227##
228{ 'struct': 'NameInfo', 'data': {'*name': 'str'} }
229
230##
231# @query-name:
232#
233# Return the name information of a guest.
234#
235# Returns: @NameInfo of the guest
236#
237# Since: 0.14.0
238#
239# Example:
240#
241# -> { "execute": "query-name" }
242# <- { "return": { "name": "qemu-name" } }
243#
244##
245{ 'command': 'query-name', 'returns': 'NameInfo', 'allow-preconfig': true }
246
247##
248# @KvmInfo:
249#
250# Information about support for KVM acceleration
251#
252# @enabled: true if KVM acceleration is active
253#
254# @present: true if KVM acceleration is built into this executable
255#
256# Since: 0.14.0
257##
258{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
259
260##
261# @query-kvm:
262#
263# Returns information about KVM acceleration
264#
265# Returns: @KvmInfo
266#
267# Since: 0.14.0
268#
269# Example:
270#
271# -> { "execute": "query-kvm" }
272# <- { "return": { "enabled": true, "present": true } }
273#
274##
275{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
276
277##
278# @UuidInfo:
279#
280# Guest UUID information (Universally Unique Identifier).
281#
282# @UUID: the UUID of the guest
283#
284# Since: 0.14.0
285#
286# Notes: If no UUID was specified for the guest, a null UUID is returned.
287##
288{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
289
290##
291# @query-uuid:
292#
293# Query the guest UUID information.
294#
295# Returns: The @UuidInfo for the guest
296#
297# Since: 0.14.0
298#
299# Example:
300#
301# -> { "execute": "query-uuid" }
302# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
303#
304##
305{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
306
307##
308# @EventInfo:
309#
310# Information about a QMP event
311#
312# @name: The event name
313#
314# Since: 1.2.0
315##
316{ 'struct': 'EventInfo', 'data': {'name': 'str'} }
317
318##
319# @query-events:
320#
321# Return a list of supported QMP events by this server
322#
323# Returns: A list of @EventInfo for all supported events
324#
325# Since: 1.2.0
326#
327# Example:
328#
329# -> { "execute": "query-events" }
330# <- {
331#      "return": [
332#          {
333#             "name":"SHUTDOWN"
334#          },
335#          {
336#             "name":"RESET"
337#          }
338#       ]
339#    }
340#
341# Note: This example has been shortened as the real response is too long.
342#
343##
344{ 'command': 'query-events', 'returns': ['EventInfo'] }
345
346##
347# @CpuInfoArch:
348#
349# An enumeration of cpu types that enable additional information during
350# @query-cpus and @query-cpus-fast.
351#
352# @s390: since 2.12
353#
354# @riscv: since 2.12
355#
356# Since: 2.6
357##
358{ 'enum': 'CpuInfoArch',
359  'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] }
360
361##
362# @CpuInfo:
363#
364# Information about a virtual CPU
365#
366# @CPU: the index of the virtual CPU
367#
368# @current: this only exists for backwards compatibility and should be ignored
369#
370# @halted: true if the virtual CPU is in the halt state.  Halt usually refers
371#          to a processor specific low power mode.
372#
373# @qom_path: path to the CPU object in the QOM tree (since 2.4)
374#
375# @thread_id: ID of the underlying host thread
376#
377# @props: properties describing to which node/socket/core/thread
378#         virtual CPU belongs to, provided if supported by board (since 2.10)
379#
380# @arch: architecture of the cpu, which determines which additional fields
381#        will be listed (since 2.6)
382#
383# Since: 0.14.0
384#
385# Notes: @halted is a transient state that changes frequently.  By the time the
386#        data is sent to the client, the guest may no longer be halted.
387##
388{ 'union': 'CpuInfo',
389  'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
390           'qom_path': 'str', 'thread_id': 'int',
391           '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
392  'discriminator': 'arch',
393  'data': { 'x86': 'CpuInfoX86',
394            'sparc': 'CpuInfoSPARC',
395            'ppc': 'CpuInfoPPC',
396            'mips': 'CpuInfoMIPS',
397            'tricore': 'CpuInfoTricore',
398            's390': 'CpuInfoS390',
399            'riscv': 'CpuInfoRISCV' } }
400
401##
402# @CpuInfoX86:
403#
404# Additional information about a virtual i386 or x86_64 CPU
405#
406# @pc: the 64-bit instruction pointer
407#
408# Since: 2.6
409##
410{ 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
411
412##
413# @CpuInfoSPARC:
414#
415# Additional information about a virtual SPARC CPU
416#
417# @pc: the PC component of the instruction pointer
418#
419# @npc: the NPC component of the instruction pointer
420#
421# Since: 2.6
422##
423{ 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
424
425##
426# @CpuInfoPPC:
427#
428# Additional information about a virtual PPC CPU
429#
430# @nip: the instruction pointer
431#
432# Since: 2.6
433##
434{ 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
435
436##
437# @CpuInfoMIPS:
438#
439# Additional information about a virtual MIPS CPU
440#
441# @PC: the instruction pointer
442#
443# Since: 2.6
444##
445{ 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
446
447##
448# @CpuInfoTricore:
449#
450# Additional information about a virtual Tricore CPU
451#
452# @PC: the instruction pointer
453#
454# Since: 2.6
455##
456{ 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
457
458##
459# @CpuInfoRISCV:
460#
461# Additional information about a virtual RISCV CPU
462#
463# @pc: the instruction pointer
464#
465# Since 2.12
466##
467{ 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } }
468
469##
470# @CpuS390State:
471#
472# An enumeration of cpu states that can be assumed by a virtual
473# S390 CPU
474#
475# Since: 2.12
476##
477{ 'enum': 'CpuS390State',
478  'prefix': 'S390_CPU_STATE',
479  'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
480
481##
482# @CpuInfoS390:
483#
484# Additional information about a virtual S390 CPU
485#
486# @cpu-state: the virtual CPU's state
487#
488# Since: 2.12
489##
490{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
491
492##
493# @query-cpus:
494#
495# Returns a list of information about each virtual CPU.
496#
497# This command causes vCPU threads to exit to userspace, which causes
498# a small interruption to guest CPU execution. This will have a negative
499# impact on realtime guests and other latency sensitive guest workloads.
500# It is recommended to use @query-cpus-fast instead of this command to
501# avoid the vCPU interruption.
502#
503# Returns: a list of @CpuInfo for each virtual CPU
504#
505# Since: 0.14.0
506#
507# Example:
508#
509# -> { "execute": "query-cpus" }
510# <- { "return": [
511#          {
512#             "CPU":0,
513#             "current":true,
514#             "halted":false,
515#             "qom_path":"/machine/unattached/device[0]",
516#             "arch":"x86",
517#             "pc":3227107138,
518#             "thread_id":3134
519#          },
520#          {
521#             "CPU":1,
522#             "current":false,
523#             "halted":true,
524#             "qom_path":"/machine/unattached/device[2]",
525#             "arch":"x86",
526#             "pc":7108165,
527#             "thread_id":3135
528#          }
529#       ]
530#    }
531#
532# Notes: This interface is deprecated (since 2.12.0), and it is strongly
533#        recommended that you avoid using it. Use @query-cpus-fast to
534#        obtain information about virtual CPUs.
535#
536##
537{ 'command': 'query-cpus', 'returns': ['CpuInfo'] }
538
539##
540# @CpuInfoFast:
541#
542# Information about a virtual CPU
543#
544# @cpu-index: index of the virtual CPU
545#
546# @qom-path: path to the CPU object in the QOM tree
547#
548# @thread-id: ID of the underlying host thread
549#
550# @props: properties describing to which node/socket/core/thread
551#         virtual CPU belongs to, provided if supported by board
552#
553# @arch: base architecture of the cpu; deprecated since 3.0.0 in favor
554#        of @target
555#
556# @target: the QEMU system emulation target, which determines which
557#          additional fields will be listed (since 3.0)
558#
559# Since: 2.12
560#
561##
562{ 'union'         : 'CpuInfoFast',
563  'base'          : { 'cpu-index'    : 'int',
564                      'qom-path'     : 'str',
565                      'thread-id'    : 'int',
566                      '*props'       : 'CpuInstanceProperties',
567                      'arch'         : 'CpuInfoArch',
568                      'target'       : 'SysEmuTarget' },
569  'discriminator' : 'target',
570  'data'          : { 's390x'        : 'CpuInfoS390' } }
571
572##
573# @query-cpus-fast:
574#
575# Returns information about all virtual CPUs. This command does not
576# incur a performance penalty and should be used in production
577# instead of query-cpus.
578#
579# Returns: list of @CpuInfoFast
580#
581# Since: 2.12
582#
583# Example:
584#
585# -> { "execute": "query-cpus-fast" }
586# <- { "return": [
587#         {
588#             "thread-id": 25627,
589#             "props": {
590#                 "core-id": 0,
591#                 "thread-id": 0,
592#                 "socket-id": 0
593#             },
594#             "qom-path": "/machine/unattached/device[0]",
595#             "arch":"x86",
596#             "target":"x86_64",
597#             "cpu-index": 0
598#         },
599#         {
600#             "thread-id": 25628,
601#             "props": {
602#                 "core-id": 0,
603#                 "thread-id": 0,
604#                 "socket-id": 1
605#             },
606#             "qom-path": "/machine/unattached/device[2]",
607#             "arch":"x86",
608#             "target":"x86_64",
609#             "cpu-index": 1
610#         }
611#     ]
612# }
613##
614{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
615
616##
617# @IOThreadInfo:
618#
619# Information about an iothread
620#
621# @id: the identifier of the iothread
622#
623# @thread-id: ID of the underlying host thread
624#
625# @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
626#               (since 2.9)
627#
628# @poll-grow: how many ns will be added to polling time, 0 means that it's not
629#             configured (since 2.9)
630#
631# @poll-shrink: how many ns will be removed from polling time, 0 means that
632#               it's not configured (since 2.9)
633#
634# Since: 2.0
635##
636{ 'struct': 'IOThreadInfo',
637  'data': {'id': 'str',
638           'thread-id': 'int',
639           'poll-max-ns': 'int',
640           'poll-grow': 'int',
641           'poll-shrink': 'int' } }
642
643##
644# @query-iothreads:
645#
646# Returns a list of information about each iothread.
647#
648# Note: this list excludes the QEMU main loop thread, which is not declared
649# using the -object iothread command-line option.  It is always the main thread
650# of the process.
651#
652# Returns: a list of @IOThreadInfo for each iothread
653#
654# Since: 2.0
655#
656# Example:
657#
658# -> { "execute": "query-iothreads" }
659# <- { "return": [
660#          {
661#             "id":"iothread0",
662#             "thread-id":3134
663#          },
664#          {
665#             "id":"iothread1",
666#             "thread-id":3135
667#          }
668#       ]
669#    }
670#
671##
672{ 'command': 'query-iothreads', 'returns': ['IOThreadInfo'],
673  'allow-preconfig': true }
674
675##
676# @BalloonInfo:
677#
678# Information about the guest balloon device.
679#
680# @actual: the number of bytes the balloon currently contains
681#
682# Since: 0.14.0
683#
684##
685{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
686
687##
688# @query-balloon:
689#
690# Return information about the balloon device.
691#
692# Returns: @BalloonInfo on success
693#
694#          If the balloon driver is enabled but not functional because the KVM
695#          kernel module cannot support it, KvmMissingCap
696#
697#          If no balloon device is present, DeviceNotActive
698#
699# Since: 0.14.0
700#
701# Example:
702#
703# -> { "execute": "query-balloon" }
704# <- { "return": {
705#          "actual": 1073741824,
706#       }
707#    }
708#
709##
710{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
711
712##
713# @BALLOON_CHANGE:
714#
715# Emitted when the guest changes the actual BALLOON level. This value is
716# equivalent to the @actual field return by the 'query-balloon' command
717#
718# @actual: actual level of the guest memory balloon in bytes
719#
720# Note: this event is rate-limited.
721#
722# Since: 1.2
723#
724# Example:
725#
726# <- { "event": "BALLOON_CHANGE",
727#      "data": { "actual": 944766976 },
728#      "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
729#
730##
731{ 'event': 'BALLOON_CHANGE',
732  'data': { 'actual': 'int' } }
733
734##
735# @PciMemoryRange:
736#
737# A PCI device memory region
738#
739# @base: the starting address (guest physical)
740#
741# @limit: the ending address (guest physical)
742#
743# Since: 0.14.0
744##
745{ 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
746
747##
748# @PciMemoryRegion:
749#
750# Information about a PCI device I/O region.
751#
752# @bar: the index of the Base Address Register for this region
753#
754# @type: 'io' if the region is a PIO region
755#        'memory' if the region is a MMIO region
756#
757# @size: memory size
758#
759# @prefetch: if @type is 'memory', true if the memory is prefetchable
760#
761# @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
762#
763# Since: 0.14.0
764##
765{ 'struct': 'PciMemoryRegion',
766  'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
767           '*prefetch': 'bool', '*mem_type_64': 'bool' } }
768
769##
770# @PciBusInfo:
771#
772# Information about a bus of a PCI Bridge device
773#
774# @number: primary bus interface number.  This should be the number of the
775#          bus the device resides on.
776#
777# @secondary: secondary bus interface number.  This is the number of the
778#             main bus for the bridge
779#
780# @subordinate: This is the highest number bus that resides below the
781#               bridge.
782#
783# @io_range: The PIO range for all devices on this bridge
784#
785# @memory_range: The MMIO range for all devices on this bridge
786#
787# @prefetchable_range: The range of prefetchable MMIO for all devices on
788#                      this bridge
789#
790# Since: 2.4
791##
792{ 'struct': 'PciBusInfo',
793  'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
794           'io_range': 'PciMemoryRange',
795           'memory_range': 'PciMemoryRange',
796           'prefetchable_range': 'PciMemoryRange' } }
797
798##
799# @PciBridgeInfo:
800#
801# Information about a PCI Bridge device
802#
803# @bus: information about the bus the device resides on
804#
805# @devices: a list of @PciDeviceInfo for each device on this bridge
806#
807# Since: 0.14.0
808##
809{ 'struct': 'PciBridgeInfo',
810  'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
811
812##
813# @PciDeviceClass:
814#
815# Information about the Class of a PCI device
816#
817# @desc: a string description of the device's class
818#
819# @class: the class code of the device
820#
821# Since: 2.4
822##
823{ 'struct': 'PciDeviceClass',
824  'data': {'*desc': 'str', 'class': 'int'} }
825
826##
827# @PciDeviceId:
828#
829# Information about the Id of a PCI device
830#
831# @device: the PCI device id
832#
833# @vendor: the PCI vendor id
834#
835# @subsystem: the PCI subsystem id (since 3.1)
836#
837# @subsystem-vendor: the PCI subsystem vendor id (since 3.1)
838#
839# Since: 2.4
840##
841{ 'struct': 'PciDeviceId',
842  'data': {'device': 'int', 'vendor': 'int', '*subsystem': 'int',
843            '*subsystem-vendor': 'int'} }
844
845##
846# @PciDeviceInfo:
847#
848# Information about a PCI device
849#
850# @bus: the bus number of the device
851#
852# @slot: the slot the device is located in
853#
854# @function: the function of the slot used by the device
855#
856# @class_info: the class of the device
857#
858# @id: the PCI device id
859#
860# @irq: if an IRQ is assigned to the device, the IRQ number
861#
862# @qdev_id: the device name of the PCI device
863#
864# @pci_bridge: if the device is a PCI bridge, the bridge information
865#
866# @regions: a list of the PCI I/O regions associated with the device
867#
868# Notes: the contents of @class_info.desc are not stable and should only be
869#        treated as informational.
870#
871# Since: 0.14.0
872##
873{ 'struct': 'PciDeviceInfo',
874  'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
875           'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
876           '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
877           'regions': ['PciMemoryRegion']} }
878
879##
880# @PciInfo:
881#
882# Information about a PCI bus
883#
884# @bus: the bus index
885#
886# @devices: a list of devices on this bus
887#
888# Since: 0.14.0
889##
890{ 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
891
892##
893# @query-pci:
894#
895# Return information about the PCI bus topology of the guest.
896#
897# Returns: a list of @PciInfo for each PCI bus. Each bus is
898# represented by a json-object, which has a key with a json-array of
899# all PCI devices attached to it. Each device is represented by a
900# json-object.
901#
902# Since: 0.14.0
903#
904# Example:
905#
906# -> { "execute": "query-pci" }
907# <- { "return": [
908#          {
909#             "bus": 0,
910#             "devices": [
911#                {
912#                   "bus": 0,
913#                   "qdev_id": "",
914#                   "slot": 0,
915#                   "class_info": {
916#                      "class": 1536,
917#                      "desc": "Host bridge"
918#                   },
919#                   "id": {
920#                      "device": 32902,
921#                      "vendor": 4663
922#                   },
923#                   "function": 0,
924#                   "regions": [
925#                   ]
926#                },
927#                {
928#                   "bus": 0,
929#                   "qdev_id": "",
930#                   "slot": 1,
931#                   "class_info": {
932#                      "class": 1537,
933#                      "desc": "ISA bridge"
934#                   },
935#                   "id": {
936#                      "device": 32902,
937#                      "vendor": 28672
938#                   },
939#                   "function": 0,
940#                   "regions": [
941#                   ]
942#                },
943#                {
944#                   "bus": 0,
945#                   "qdev_id": "",
946#                   "slot": 1,
947#                   "class_info": {
948#                      "class": 257,
949#                      "desc": "IDE controller"
950#                   },
951#                   "id": {
952#                      "device": 32902,
953#                      "vendor": 28688
954#                   },
955#                   "function": 1,
956#                   "regions": [
957#                      {
958#                         "bar": 4,
959#                         "size": 16,
960#                         "address": 49152,
961#                         "type": "io"
962#                      }
963#                   ]
964#                },
965#                {
966#                   "bus": 0,
967#                   "qdev_id": "",
968#                   "slot": 2,
969#                   "class_info": {
970#                      "class": 768,
971#                      "desc": "VGA controller"
972#                   },
973#                   "id": {
974#                      "device": 4115,
975#                      "vendor": 184
976#                   },
977#                   "function": 0,
978#                   "regions": [
979#                      {
980#                         "prefetch": true,
981#                         "mem_type_64": false,
982#                         "bar": 0,
983#                         "size": 33554432,
984#                         "address": 4026531840,
985#                         "type": "memory"
986#                      },
987#                      {
988#                         "prefetch": false,
989#                         "mem_type_64": false,
990#                         "bar": 1,
991#                         "size": 4096,
992#                         "address": 4060086272,
993#                         "type": "memory"
994#                      },
995#                      {
996#                         "prefetch": false,
997#                         "mem_type_64": false,
998#                         "bar": 6,
999#                         "size": 65536,
1000#                         "address": -1,
1001#                         "type": "memory"
1002#                      }
1003#                   ]
1004#                },
1005#                {
1006#                   "bus": 0,
1007#                   "qdev_id": "",
1008#                   "irq": 11,
1009#                   "slot": 4,
1010#                   "class_info": {
1011#                      "class": 1280,
1012#                      "desc": "RAM controller"
1013#                   },
1014#                   "id": {
1015#                      "device": 6900,
1016#                      "vendor": 4098
1017#                   },
1018#                   "function": 0,
1019#                   "regions": [
1020#                      {
1021#                         "bar": 0,
1022#                         "size": 32,
1023#                         "address": 49280,
1024#                         "type": "io"
1025#                      }
1026#                   ]
1027#                }
1028#             ]
1029#          }
1030#       ]
1031#    }
1032#
1033# Note: This example has been shortened as the real response is too long.
1034#
1035##
1036{ 'command': 'query-pci', 'returns': ['PciInfo'] }
1037
1038##
1039# @quit:
1040#
1041# This command will cause the QEMU process to exit gracefully.  While every
1042# attempt is made to send the QMP response before terminating, this is not
1043# guaranteed.  When using this interface, a premature EOF would not be
1044# unexpected.
1045#
1046# Since: 0.14.0
1047#
1048# Example:
1049#
1050# -> { "execute": "quit" }
1051# <- { "return": {} }
1052##
1053{ 'command': 'quit' }
1054
1055##
1056# @stop:
1057#
1058# Stop all guest VCPU execution.
1059#
1060# Since:  0.14.0
1061#
1062# Notes:  This function will succeed even if the guest is already in the stopped
1063#         state.  In "inmigrate" state, it will ensure that the guest
1064#         remains paused once migration finishes, as if the -S option was
1065#         passed on the command line.
1066#
1067# Example:
1068#
1069# -> { "execute": "stop" }
1070# <- { "return": {} }
1071#
1072##
1073{ 'command': 'stop' }
1074
1075##
1076# @system_reset:
1077#
1078# Performs a hard reset of a guest.
1079#
1080# Since: 0.14.0
1081#
1082# Example:
1083#
1084# -> { "execute": "system_reset" }
1085# <- { "return": {} }
1086#
1087##
1088{ 'command': 'system_reset' }
1089
1090##
1091# @system_powerdown:
1092#
1093# Requests that a guest perform a powerdown operation.
1094#
1095# Since: 0.14.0
1096#
1097# Notes: A guest may or may not respond to this command.  This command
1098#        returning does not indicate that a guest has accepted the request or
1099#        that it has shut down.  Many guests will respond to this command by
1100#        prompting the user in some way.
1101# Example:
1102#
1103# -> { "execute": "system_powerdown" }
1104# <- { "return": {} }
1105#
1106##
1107{ 'command': 'system_powerdown' }
1108
1109##
1110# @cpu-add:
1111#
1112# Adds CPU with specified ID.
1113#
1114# @id: ID of CPU to be created, valid values [0..max_cpus)
1115#
1116# Returns: Nothing on success
1117#
1118# Since: 1.5
1119#
1120# Note: This command is deprecated.  The `device_add` command should be
1121#       used instead.  See the `query-hotpluggable-cpus` command for
1122#       details.
1123#
1124# Example:
1125#
1126# -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1127# <- { "return": {} }
1128#
1129##
1130{ 'command': 'cpu-add', 'data': {'id': 'int'} }
1131
1132##
1133# @memsave:
1134#
1135# Save a portion of guest memory to a file.
1136#
1137# @val: the virtual address of the guest to start from
1138#
1139# @size: the size of memory region to save
1140#
1141# @filename: the file to save the memory to as binary data
1142#
1143# @cpu-index: the index of the virtual CPU to use for translating the
1144#                       virtual address (defaults to CPU 0)
1145#
1146# Returns: Nothing on success
1147#
1148# Since: 0.14.0
1149#
1150# Notes: Errors were not reliably returned until 1.1
1151#
1152# Example:
1153#
1154# -> { "execute": "memsave",
1155#      "arguments": { "val": 10,
1156#                     "size": 100,
1157#                     "filename": "/tmp/virtual-mem-dump" } }
1158# <- { "return": {} }
1159#
1160##
1161{ 'command': 'memsave',
1162  'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1163
1164##
1165# @pmemsave:
1166#
1167# Save a portion of guest physical memory to a file.
1168#
1169# @val: the physical address of the guest to start from
1170#
1171# @size: the size of memory region to save
1172#
1173# @filename: the file to save the memory to as binary data
1174#
1175# Returns: Nothing on success
1176#
1177# Since: 0.14.0
1178#
1179# Notes: Errors were not reliably returned until 1.1
1180#
1181# Example:
1182#
1183# -> { "execute": "pmemsave",
1184#      "arguments": { "val": 10,
1185#                     "size": 100,
1186#                     "filename": "/tmp/physical-mem-dump" } }
1187# <- { "return": {} }
1188#
1189##
1190{ 'command': 'pmemsave',
1191  'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1192
1193##
1194# @cont:
1195#
1196# Resume guest VCPU execution.
1197#
1198# Since:  0.14.0
1199#
1200# Returns:  If successful, nothing
1201#
1202# Notes:  This command will succeed if the guest is currently running.  It
1203#         will also succeed if the guest is in the "inmigrate" state; in
1204#         this case, the effect of the command is to make sure the guest
1205#         starts once migration finishes, removing the effect of the -S
1206#         command line option if it was passed.
1207#
1208# Example:
1209#
1210# -> { "execute": "cont" }
1211# <- { "return": {} }
1212#
1213##
1214{ 'command': 'cont' }
1215
1216##
1217# @x-exit-preconfig:
1218#
1219# Exit from "preconfig" state
1220#
1221# This command makes QEMU exit the preconfig state and proceed with
1222# VM initialization using configuration data provided on the command line
1223# and via the QMP monitor during the preconfig state. The command is only
1224# available during the preconfig state (i.e. when the --preconfig command
1225# line option was in use).
1226#
1227# Since 3.0
1228#
1229# Returns: nothing
1230#
1231# Example:
1232#
1233# -> { "execute": "x-exit-preconfig" }
1234# <- { "return": {} }
1235#
1236##
1237{ 'command': 'x-exit-preconfig', 'allow-preconfig': true }
1238
1239##
1240# @system_wakeup:
1241#
1242# Wakeup guest from suspend.  Does nothing in case the guest isn't suspended.
1243#
1244# Since:  1.1
1245#
1246# Returns:  nothing.
1247#
1248# Example:
1249#
1250# -> { "execute": "system_wakeup" }
1251# <- { "return": {} }
1252#
1253##
1254{ 'command': 'system_wakeup' }
1255
1256##
1257# @inject-nmi:
1258#
1259# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1260# The command fails when the guest doesn't support injecting.
1261#
1262# Returns:  If successful, nothing
1263#
1264# Since:  0.14.0
1265#
1266# Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1267#
1268# Example:
1269#
1270# -> { "execute": "inject-nmi" }
1271# <- { "return": {} }
1272#
1273##
1274{ 'command': 'inject-nmi' }
1275
1276##
1277# @balloon:
1278#
1279# Request the balloon driver to change its balloon size.
1280#
1281# @value: the target size of the balloon in bytes
1282#
1283# Returns: Nothing on success
1284#          If the balloon driver is enabled but not functional because the KVM
1285#            kernel module cannot support it, KvmMissingCap
1286#          If no balloon device is present, DeviceNotActive
1287#
1288# Notes: This command just issues a request to the guest.  When it returns,
1289#        the balloon size may not have changed.  A guest can change the balloon
1290#        size independent of this command.
1291#
1292# Since: 0.14.0
1293#
1294# Example:
1295#
1296# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1297# <- { "return": {} }
1298#
1299##
1300{ 'command': 'balloon', 'data': {'value': 'int'} }
1301
1302##
1303# @human-monitor-command:
1304#
1305# Execute a command on the human monitor and return the output.
1306#
1307# @command-line: the command to execute in the human monitor
1308#
1309# @cpu-index: The CPU to use for commands that require an implicit CPU
1310#
1311# Returns: the output of the command as a string
1312#
1313# Since: 0.14.0
1314#
1315# Notes: This command only exists as a stop-gap.  Its use is highly
1316#        discouraged.  The semantics of this command are not
1317#        guaranteed: this means that command names, arguments and
1318#        responses can change or be removed at ANY time.  Applications
1319#        that rely on long term stability guarantees should NOT
1320#        use this command.
1321#
1322#        Known limitations:
1323#
1324#        * This command is stateless, this means that commands that depend
1325#          on state information (such as getfd) might not work
1326#
1327#        * Commands that prompt the user for data don't currently work
1328#
1329# Example:
1330#
1331# -> { "execute": "human-monitor-command",
1332#      "arguments": { "command-line": "info kvm" } }
1333# <- { "return": "kvm support: enabled\r\n" }
1334#
1335##
1336{ 'command': 'human-monitor-command',
1337  'data': {'command-line': 'str', '*cpu-index': 'int'},
1338  'returns': 'str' }
1339
1340##
1341# @ObjectPropertyInfo:
1342#
1343# @name: the name of the property
1344#
1345# @type: the type of the property.  This will typically come in one of four
1346#        forms:
1347#
1348#        1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1349#           These types are mapped to the appropriate JSON type.
1350#
1351#        2) A child type in the form 'child<subtype>' where subtype is a qdev
1352#           device type name.  Child properties create the composition tree.
1353#
1354#        3) A link type in the form 'link<subtype>' where subtype is a qdev
1355#           device type name.  Link properties form the device model graph.
1356#
1357# @description: if specified, the description of the property.
1358#
1359# Since: 1.2
1360##
1361{ 'struct': 'ObjectPropertyInfo',
1362  'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
1363
1364##
1365# @qom-list:
1366#
1367# This command will list any properties of a object given a path in the object
1368# model.
1369#
1370# @path: the path within the object model.  See @qom-get for a description of
1371#        this parameter.
1372#
1373# Returns: a list of @ObjectPropertyInfo that describe the properties of the
1374#          object.
1375#
1376# Since: 1.2
1377##
1378{ 'command': 'qom-list',
1379  'data': { 'path': 'str' },
1380  'returns': [ 'ObjectPropertyInfo' ],
1381  'allow-preconfig': true }
1382
1383##
1384# @qom-get:
1385#
1386# This command will get a property from a object model path and return the
1387# value.
1388#
1389# @path: The path within the object model.  There are two forms of supported
1390#        paths--absolute and partial paths.
1391#
1392#        Absolute paths are derived from the root object and can follow child<>
1393#        or link<> properties.  Since they can follow link<> properties, they
1394#        can be arbitrarily long.  Absolute paths look like absolute filenames
1395#        and are prefixed  with a leading slash.
1396#
1397#        Partial paths look like relative filenames.  They do not begin
1398#        with a prefix.  The matching rules for partial paths are subtle but
1399#        designed to make specifying objects easy.  At each level of the
1400#        composition tree, the partial path is matched as an absolute path.
1401#        The first match is not returned.  At least two matches are searched
1402#        for.  A successful result is only returned if only one match is
1403#        found.  If more than one match is found, a flag is return to
1404#        indicate that the match was ambiguous.
1405#
1406# @property: The property name to read
1407#
1408# Returns: The property value.  The type depends on the property
1409#          type. child<> and link<> properties are returned as #str
1410#          pathnames.  All integer property types (u8, u16, etc) are
1411#          returned as #int.
1412#
1413# Since: 1.2
1414##
1415{ 'command': 'qom-get',
1416  'data': { 'path': 'str', 'property': 'str' },
1417  'returns': 'any',
1418  'allow-preconfig': true }
1419
1420##
1421# @qom-set:
1422#
1423# This command will set a property from a object model path.
1424#
1425# @path: see @qom-get for a description of this parameter
1426#
1427# @property: the property name to set
1428#
1429# @value: a value who's type is appropriate for the property type.  See @qom-get
1430#         for a description of type mapping.
1431#
1432# Since: 1.2
1433##
1434{ 'command': 'qom-set',
1435  'data': { 'path': 'str', 'property': 'str', 'value': 'any' },
1436  'allow-preconfig': true }
1437
1438##
1439# @change:
1440#
1441# This command is multiple commands multiplexed together.
1442#
1443# @device: This is normally the name of a block device but it may also be 'vnc'.
1444#          when it's 'vnc', then sub command depends on @target
1445#
1446# @target: If @device is a block device, then this is the new filename.
1447#          If @device is 'vnc', then if the value 'password' selects the vnc
1448#          change password command.   Otherwise, this specifies a new server URI
1449#          address to listen to for VNC connections.
1450#
1451# @arg:    If @device is a block device, then this is an optional format to open
1452#          the device with.
1453#          If @device is 'vnc' and @target is 'password', this is the new VNC
1454#          password to set.  See change-vnc-password for additional notes.
1455#
1456# Returns: Nothing on success.
1457#          If @device is not a valid block device, DeviceNotFound
1458#
1459# Notes:  This interface is deprecated, and it is strongly recommended that you
1460#         avoid using it.  For changing block devices, use
1461#         blockdev-change-medium; for changing VNC parameters, use
1462#         change-vnc-password.
1463#
1464# Since: 0.14.0
1465#
1466# Example:
1467#
1468# 1. Change a removable medium
1469#
1470# -> { "execute": "change",
1471#      "arguments": { "device": "ide1-cd0",
1472#                     "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1473# <- { "return": {} }
1474#
1475# 2. Change VNC password
1476#
1477# -> { "execute": "change",
1478#      "arguments": { "device": "vnc", "target": "password",
1479#                     "arg": "foobar1" } }
1480# <- { "return": {} }
1481#
1482##
1483{ 'command': 'change',
1484  'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1485
1486##
1487# @ObjectTypeInfo:
1488#
1489# This structure describes a search result from @qom-list-types
1490#
1491# @name: the type name found in the search
1492#
1493# @abstract: the type is abstract and can't be directly instantiated.
1494#            Omitted if false. (since 2.10)
1495#
1496# @parent: Name of parent type, if any (since 2.10)
1497#
1498# Since: 1.1
1499##
1500{ 'struct': 'ObjectTypeInfo',
1501  'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1502
1503##
1504# @qom-list-types:
1505#
1506# This command will return a list of types given search parameters
1507#
1508# @implements: if specified, only return types that implement this type name
1509#
1510# @abstract: if true, include abstract types in the results
1511#
1512# Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1513#
1514# Since: 1.1
1515##
1516{ 'command': 'qom-list-types',
1517  'data': { '*implements': 'str', '*abstract': 'bool' },
1518  'returns': [ 'ObjectTypeInfo' ],
1519  'allow-preconfig': true }
1520
1521##
1522# @device-list-properties:
1523#
1524# List properties associated with a device.
1525#
1526# @typename: the type name of a device
1527#
1528# Returns: a list of ObjectPropertyInfo describing a devices properties
1529#
1530# Note: objects can create properties at runtime, for example to describe
1531# links between different devices and/or objects. These properties
1532# are not included in the output of this command.
1533#
1534# Since: 1.2
1535##
1536{ 'command': 'device-list-properties',
1537  'data': { 'typename': 'str'},
1538  'returns': [ 'ObjectPropertyInfo' ] }
1539
1540##
1541# @qom-list-properties:
1542#
1543# List properties associated with a QOM object.
1544#
1545# @typename: the type name of an object
1546#
1547# Note: objects can create properties at runtime, for example to describe
1548# links between different devices and/or objects. These properties
1549# are not included in the output of this command.
1550#
1551# Returns: a list of ObjectPropertyInfo describing object properties
1552#
1553# Since: 2.12
1554##
1555{ 'command': 'qom-list-properties',
1556  'data': { 'typename': 'str'},
1557  'returns': [ 'ObjectPropertyInfo' ],
1558  'allow-preconfig': true }
1559
1560##
1561# @xen-set-global-dirty-log:
1562#
1563# Enable or disable the global dirty log mode.
1564#
1565# @enable: true to enable, false to disable.
1566#
1567# Returns: nothing
1568#
1569# Since: 1.3
1570#
1571# Example:
1572#
1573# -> { "execute": "xen-set-global-dirty-log",
1574#      "arguments": { "enable": true } }
1575# <- { "return": {} }
1576#
1577##
1578{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1579
1580##
1581# @device_add:
1582#
1583# @driver: the name of the new device's driver
1584#
1585# @bus: the device's parent bus (device tree path)
1586#
1587# @id: the device's ID, must be unique
1588#
1589# Additional arguments depend on the type.
1590#
1591# Add a device.
1592#
1593# Notes:
1594# 1. For detailed information about this command, please refer to the
1595#    'docs/qdev-device-use.txt' file.
1596#
1597# 2. It's possible to list device properties by running QEMU with the
1598#    "-device DEVICE,help" command-line argument, where DEVICE is the
1599#    device's name
1600#
1601# Example:
1602#
1603# -> { "execute": "device_add",
1604#      "arguments": { "driver": "e1000", "id": "net1",
1605#                     "bus": "pci.0",
1606#                     "mac": "52:54:00:12:34:56" } }
1607# <- { "return": {} }
1608#
1609# TODO: This command effectively bypasses QAPI completely due to its
1610# "additional arguments" business.  It shouldn't have been added to
1611# the schema in this form.  It should be qapified properly, or
1612# replaced by a properly qapified command.
1613#
1614# Since: 0.13
1615##
1616{ 'command': 'device_add',
1617  'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1618  'gen': false } # so we can get the additional arguments
1619
1620##
1621# @device_del:
1622#
1623# Remove a device from a guest
1624#
1625# @id: the device's ID or QOM path
1626#
1627# Returns: Nothing on success
1628#          If @id is not a valid device, DeviceNotFound
1629#
1630# Notes: When this command completes, the device may not be removed from the
1631#        guest.  Hot removal is an operation that requires guest cooperation.
1632#        This command merely requests that the guest begin the hot removal
1633#        process.  Completion of the device removal process is signaled with a
1634#        DEVICE_DELETED event. Guest reset will automatically complete removal
1635#        for all devices.
1636#
1637# Since: 0.14.0
1638#
1639# Example:
1640#
1641# -> { "execute": "device_del",
1642#      "arguments": { "id": "net1" } }
1643# <- { "return": {} }
1644#
1645# -> { "execute": "device_del",
1646#      "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1647# <- { "return": {} }
1648#
1649##
1650{ 'command': 'device_del', 'data': {'id': 'str'} }
1651
1652##
1653# @DEVICE_DELETED:
1654#
1655# Emitted whenever the device removal completion is acknowledged by the guest.
1656# At this point, it's safe to reuse the specified device ID. Device removal can
1657# be initiated by the guest or by HMP/QMP commands.
1658#
1659# @device: device name
1660#
1661# @path: device path
1662#
1663# Since: 1.5
1664#
1665# Example:
1666#
1667# <- { "event": "DEVICE_DELETED",
1668#      "data": { "device": "virtio-net-pci-0",
1669#                "path": "/machine/peripheral/virtio-net-pci-0" },
1670#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1671#
1672##
1673{ 'event': 'DEVICE_DELETED',
1674  'data': { '*device': 'str', 'path': 'str' } }
1675
1676##
1677# @DumpGuestMemoryFormat:
1678#
1679# An enumeration of guest-memory-dump's format.
1680#
1681# @elf: elf format
1682#
1683# @kdump-zlib: kdump-compressed format with zlib-compressed
1684#
1685# @kdump-lzo: kdump-compressed format with lzo-compressed
1686#
1687# @kdump-snappy: kdump-compressed format with snappy-compressed
1688#
1689# @win-dmp: Windows full crashdump format,
1690#           can be used instead of ELF converting (since 2.13)
1691#
1692# Since: 2.0
1693##
1694{ 'enum': 'DumpGuestMemoryFormat',
1695  'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy', 'win-dmp' ] }
1696
1697##
1698# @dump-guest-memory:
1699#
1700# Dump guest's memory to vmcore. It is a synchronous operation that can take
1701# very long depending on the amount of guest memory.
1702#
1703# @paging: if true, do paging to get guest's memory mapping. This allows
1704#          using gdb to process the core file.
1705#
1706#          IMPORTANT: this option can make QEMU allocate several gigabytes
1707#                     of RAM. This can happen for a large guest, or a
1708#                     malicious guest pretending to be large.
1709#
1710#          Also, paging=true has the following limitations:
1711#
1712#             1. The guest may be in a catastrophic state or can have corrupted
1713#                memory, which cannot be trusted
1714#             2. The guest can be in real-mode even if paging is enabled. For
1715#                example, the guest uses ACPI to sleep, and ACPI sleep state
1716#                goes in real-mode
1717#             3. Currently only supported on i386 and x86_64.
1718#
1719# @protocol: the filename or file descriptor of the vmcore. The supported
1720#            protocols are:
1721#
1722#            1. file: the protocol starts with "file:", and the following
1723#               string is the file's path.
1724#            2. fd: the protocol starts with "fd:", and the following string
1725#               is the fd's name.
1726#
1727# @detach: if true, QMP will return immediately rather than
1728#          waiting for the dump to finish. The user can track progress
1729#          using "query-dump". (since 2.6).
1730#
1731# @begin: if specified, the starting physical address.
1732#
1733# @length: if specified, the memory size, in bytes. If you don't
1734#          want to dump all guest's memory, please specify the start @begin
1735#          and @length
1736#
1737# @format: if specified, the format of guest memory dump. But non-elf
1738#          format is conflict with paging and filter, ie. @paging, @begin and
1739#          @length is not allowed to be specified with non-elf @format at the
1740#          same time (since 2.0)
1741#
1742# Note: All boolean arguments default to false
1743#
1744# Returns: nothing on success
1745#
1746# Since: 1.2
1747#
1748# Example:
1749#
1750# -> { "execute": "dump-guest-memory",
1751#      "arguments": { "protocol": "fd:dump" } }
1752# <- { "return": {} }
1753#
1754##
1755{ 'command': 'dump-guest-memory',
1756  'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1757            '*begin': 'int', '*length': 'int',
1758            '*format': 'DumpGuestMemoryFormat'} }
1759
1760##
1761# @DumpStatus:
1762#
1763# Describe the status of a long-running background guest memory dump.
1764#
1765# @none: no dump-guest-memory has started yet.
1766#
1767# @active: there is one dump running in background.
1768#
1769# @completed: the last dump has finished successfully.
1770#
1771# @failed: the last dump has failed.
1772#
1773# Since: 2.6
1774##
1775{ 'enum': 'DumpStatus',
1776  'data': [ 'none', 'active', 'completed', 'failed' ] }
1777
1778##
1779# @DumpQueryResult:
1780#
1781# The result format for 'query-dump'.
1782#
1783# @status: enum of @DumpStatus, which shows current dump status
1784#
1785# @completed: bytes written in latest dump (uncompressed)
1786#
1787# @total: total bytes to be written in latest dump (uncompressed)
1788#
1789# Since: 2.6
1790##
1791{ 'struct': 'DumpQueryResult',
1792  'data': { 'status': 'DumpStatus',
1793            'completed': 'int',
1794            'total': 'int' } }
1795
1796##
1797# @query-dump:
1798#
1799# Query latest dump status.
1800#
1801# Returns: A @DumpStatus object showing the dump status.
1802#
1803# Since: 2.6
1804#
1805# Example:
1806#
1807# -> { "execute": "query-dump" }
1808# <- { "return": { "status": "active", "completed": 1024000,
1809#                  "total": 2048000 } }
1810#
1811##
1812{ 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1813
1814##
1815# @DUMP_COMPLETED:
1816#
1817# Emitted when background dump has completed
1818#
1819# @result: final dump status
1820#
1821# @error: human-readable error string that provides
1822#         hint on why dump failed. Only presents on failure. The
1823#         user should not try to interpret the error string.
1824#
1825# Since: 2.6
1826#
1827# Example:
1828#
1829# { "event": "DUMP_COMPLETED",
1830#   "data": {"result": {"total": 1090650112, "status": "completed",
1831#                       "completed": 1090650112} } }
1832#
1833##
1834{ 'event': 'DUMP_COMPLETED' ,
1835  'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1836
1837##
1838# @DumpGuestMemoryCapability:
1839#
1840# A list of the available formats for dump-guest-memory
1841#
1842# Since: 2.0
1843##
1844{ 'struct': 'DumpGuestMemoryCapability',
1845  'data': {
1846      'formats': ['DumpGuestMemoryFormat'] } }
1847
1848##
1849# @query-dump-guest-memory-capability:
1850#
1851# Returns the available formats for dump-guest-memory
1852#
1853# Returns:  A @DumpGuestMemoryCapability object listing available formats for
1854#           dump-guest-memory
1855#
1856# Since: 2.0
1857#
1858# Example:
1859#
1860# -> { "execute": "query-dump-guest-memory-capability" }
1861# <- { "return": { "formats":
1862#                  ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1863#
1864##
1865{ 'command': 'query-dump-guest-memory-capability',
1866  'returns': 'DumpGuestMemoryCapability' }
1867
1868##
1869# @dump-skeys:
1870#
1871# Dump guest's storage keys
1872#
1873# @filename: the path to the file to dump to
1874#
1875# This command is only supported on s390 architecture.
1876#
1877# Since: 2.5
1878#
1879# Example:
1880#
1881# -> { "execute": "dump-skeys",
1882#      "arguments": { "filename": "/tmp/skeys" } }
1883# <- { "return": {} }
1884#
1885##
1886{ 'command': 'dump-skeys',
1887  'data': { 'filename': 'str' } }
1888
1889##
1890# @object-add:
1891#
1892# Create a QOM object.
1893#
1894# @qom-type: the class name for the object to be created
1895#
1896# @id: the name of the new object
1897#
1898# @props: a dictionary of properties to be passed to the backend
1899#
1900# Returns: Nothing on success
1901#          Error if @qom-type is not a valid class name
1902#
1903# Since: 2.0
1904#
1905# Example:
1906#
1907# -> { "execute": "object-add",
1908#      "arguments": { "qom-type": "rng-random", "id": "rng1",
1909#                     "props": { "filename": "/dev/hwrng" } } }
1910# <- { "return": {} }
1911#
1912##
1913{ 'command': 'object-add',
1914  'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1915
1916##
1917# @object-del:
1918#
1919# Remove a QOM object.
1920#
1921# @id: the name of the QOM object to remove
1922#
1923# Returns: Nothing on success
1924#          Error if @id is not a valid id for a QOM object
1925#
1926# Since: 2.0
1927#
1928# Example:
1929#
1930# -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1931# <- { "return": {} }
1932#
1933##
1934{ 'command': 'object-del', 'data': {'id': 'str'} }
1935
1936##
1937# @getfd:
1938#
1939# Receive a file descriptor via SCM rights and assign it a name
1940#
1941# @fdname: file descriptor name
1942#
1943# Returns: Nothing on success
1944#
1945# Since: 0.14.0
1946#
1947# Notes: If @fdname already exists, the file descriptor assigned to
1948#        it will be closed and replaced by the received file
1949#        descriptor.
1950#
1951#        The 'closefd' command can be used to explicitly close the
1952#        file descriptor when it is no longer needed.
1953#
1954# Example:
1955#
1956# -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1957# <- { "return": {} }
1958#
1959##
1960{ 'command': 'getfd', 'data': {'fdname': 'str'} }
1961
1962##
1963# @closefd:
1964#
1965# Close a file descriptor previously passed via SCM rights
1966#
1967# @fdname: file descriptor name
1968#
1969# Returns: Nothing on success
1970#
1971# Since: 0.14.0
1972#
1973# Example:
1974#
1975# -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1976# <- { "return": {} }
1977#
1978##
1979{ 'command': 'closefd', 'data': {'fdname': 'str'} }
1980
1981##
1982# @MachineInfo:
1983#
1984# Information describing a machine.
1985#
1986# @name: the name of the machine
1987#
1988# @alias: an alias for the machine name
1989#
1990# @is-default: whether the machine is default
1991#
1992# @cpu-max: maximum number of CPUs supported by the machine type
1993#           (since 1.5.0)
1994#
1995# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
1996#
1997# Since: 1.2.0
1998##
1999{ 'struct': 'MachineInfo',
2000  'data': { 'name': 'str', '*alias': 'str',
2001            '*is-default': 'bool', 'cpu-max': 'int',
2002            'hotpluggable-cpus': 'bool'} }
2003
2004##
2005# @query-machines:
2006#
2007# Return a list of supported machines
2008#
2009# Returns: a list of MachineInfo
2010#
2011# Since: 1.2.0
2012##
2013{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
2014
2015##
2016# @CpuDefinitionInfo:
2017#
2018# Virtual CPU definition.
2019#
2020# @name: the name of the CPU definition
2021#
2022# @migration-safe: whether a CPU definition can be safely used for
2023#                  migration in combination with a QEMU compatibility machine
2024#                  when migrating between different QEMU versions and between
2025#                  hosts with different sets of (hardware or software)
2026#                  capabilities. If not provided, information is not available
2027#                  and callers should not assume the CPU definition to be
2028#                  migration-safe. (since 2.8)
2029#
2030# @static: whether a CPU definition is static and will not change depending on
2031#          QEMU version, machine type, machine options and accelerator options.
2032#          A static model is always migration-safe. (since 2.8)
2033#
2034# @unavailable-features: List of properties that prevent
2035#                        the CPU model from running in the current
2036#                        host. (since 2.8)
2037# @typename: Type name that can be used as argument to @device-list-properties,
2038#            to introspect properties configurable using -cpu or -global.
2039#            (since 2.9)
2040#
2041# @unavailable-features is a list of QOM property names that
2042# represent CPU model attributes that prevent the CPU from running.
2043# If the QOM property is read-only, that means there's no known
2044# way to make the CPU model run in the current host. Implementations
2045# that choose not to provide specific information return the
2046# property name "type".
2047# If the property is read-write, it means that it MAY be possible
2048# to run the CPU model in the current host if that property is
2049# changed. Management software can use it as hints to suggest or
2050# choose an alternative for the user, or just to generate meaningful
2051# error messages explaining why the CPU model can't be used.
2052# If @unavailable-features is an empty list, the CPU model is
2053# runnable using the current host and machine-type.
2054# If @unavailable-features is not present, runnability
2055# information for the CPU is not available.
2056#
2057# Since: 1.2.0
2058##
2059{ 'struct': 'CpuDefinitionInfo',
2060  'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
2061            '*unavailable-features': [ 'str' ], 'typename': 'str' } }
2062
2063##
2064# @MemoryInfo:
2065#
2066# Actual memory information in bytes.
2067#
2068# @base-memory: size of "base" memory specified with command line
2069#               option -m.
2070#
2071# @plugged-memory: size of memory that can be hot-unplugged. This field
2072#                  is omitted if target doesn't support memory hotplug
2073#                  (i.e. CONFIG_MEM_DEVICE not defined at build time).
2074#
2075# Since: 2.11.0
2076##
2077{ 'struct': 'MemoryInfo',
2078  'data'  : { 'base-memory': 'size', '*plugged-memory': 'size' } }
2079
2080##
2081# @query-memory-size-summary:
2082#
2083# Return the amount of initially allocated and present hotpluggable (if
2084# enabled) memory in bytes.
2085#
2086# Example:
2087#
2088# -> { "execute": "query-memory-size-summary" }
2089# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
2090#
2091# Since: 2.11.0
2092##
2093{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
2094
2095##
2096# @query-cpu-definitions:
2097#
2098# Return a list of supported virtual CPU definitions
2099#
2100# Returns: a list of CpuDefInfo
2101#
2102# Since: 1.2.0
2103##
2104{ 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
2105
2106##
2107# @CpuModelInfo:
2108#
2109# Virtual CPU model.
2110#
2111# A CPU model consists of the name of a CPU definition, to which
2112# delta changes are applied (e.g. features added/removed). Most magic values
2113# that an architecture might require should be hidden behind the name.
2114# However, if required, architectures can expose relevant properties.
2115#
2116# @name: the name of the CPU definition the model is based on
2117# @props: a dictionary of QOM properties to be applied
2118#
2119# Since: 2.8.0
2120##
2121{ 'struct': 'CpuModelInfo',
2122  'data': { 'name': 'str',
2123            '*props': 'any' } }
2124
2125##
2126# @CpuModelExpansionType:
2127#
2128# An enumeration of CPU model expansion types.
2129#
2130# @static: Expand to a static CPU model, a combination of a static base
2131#          model name and property delta changes. As the static base model will
2132#          never change, the expanded CPU model will be the same, independent of
2133#          QEMU version, machine type, machine options, and accelerator options.
2134#          Therefore, the resulting model can be used by tooling without having
2135#          to specify a compatibility machine - e.g. when displaying the "host"
2136#          model. The @static CPU models are migration-safe.
2137
2138# @full: Expand all properties. The produced model is not guaranteed to be
2139#        migration-safe, but allows tooling to get an insight and work with
2140#        model details.
2141#
2142# Note: When a non-migration-safe CPU model is expanded in static mode, some
2143# features enabled by the CPU model may be omitted, because they can't be
2144# implemented by a static CPU model definition (e.g. cache info passthrough and
2145# PMU passthrough in x86). If you need an accurate representation of the
2146# features enabled by a non-migration-safe CPU model, use @full. If you need a
2147# static representation that will keep ABI compatibility even when changing QEMU
2148# version or machine-type, use @static (but keep in mind that some features may
2149# be omitted).
2150#
2151# Since: 2.8.0
2152##
2153{ 'enum': 'CpuModelExpansionType',
2154  'data': [ 'static', 'full' ] }
2155
2156
2157##
2158# @CpuModelExpansionInfo:
2159#
2160# The result of a cpu model expansion.
2161#
2162# @model: the expanded CpuModelInfo.
2163#
2164# Since: 2.8.0
2165##
2166{ 'struct': 'CpuModelExpansionInfo',
2167  'data': { 'model': 'CpuModelInfo' } }
2168
2169
2170##
2171# @query-cpu-model-expansion:
2172#
2173# Expands a given CPU model (or a combination of CPU model + additional options)
2174# to different granularities, allowing tooling to get an understanding what a
2175# specific CPU model looks like in QEMU under a certain configuration.
2176#
2177# This interface can be used to query the "host" CPU model.
2178#
2179# The data returned by this command may be affected by:
2180#
2181# * QEMU version: CPU models may look different depending on the QEMU version.
2182#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2183# * machine-type: CPU model  may look different depending on the machine-type.
2184#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2185# * machine options (including accelerator): in some architectures, CPU models
2186#   may look different depending on machine and accelerator options. (Except for
2187#   CPU models reported as "static" in query-cpu-definitions.)
2188# * "-cpu" arguments and global properties: arguments to the -cpu option and
2189#   global properties may affect expansion of CPU models. Using
2190#   query-cpu-model-expansion while using these is not advised.
2191#
2192# Some architectures may not support all expansion types. s390x supports
2193# "full" and "static".
2194#
2195# Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
2196#          not supported, if the model cannot be expanded, if the model contains
2197#          an unknown CPU definition name, unknown properties or properties
2198#          with a wrong type. Also returns an error if an expansion type is
2199#          not supported.
2200#
2201# Since: 2.8.0
2202##
2203{ 'command': 'query-cpu-model-expansion',
2204  'data': { 'type': 'CpuModelExpansionType',
2205            'model': 'CpuModelInfo' },
2206  'returns': 'CpuModelExpansionInfo' }
2207
2208##
2209# @CpuModelCompareResult:
2210#
2211# An enumeration of CPU model comparison results. The result is usually
2212# calculated using e.g. CPU features or CPU generations.
2213#
2214# @incompatible: If model A is incompatible to model B, model A is not
2215#                guaranteed to run where model B runs and the other way around.
2216#
2217# @identical: If model A is identical to model B, model A is guaranteed to run
2218#             where model B runs and the other way around.
2219#
2220# @superset: If model A is a superset of model B, model B is guaranteed to run
2221#            where model A runs. There are no guarantees about the other way.
2222#
2223# @subset: If model A is a subset of model B, model A is guaranteed to run
2224#          where model B runs. There are no guarantees about the other way.
2225#
2226# Since: 2.8.0
2227##
2228{ 'enum': 'CpuModelCompareResult',
2229  'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2230
2231##
2232# @CpuModelCompareInfo:
2233#
2234# The result of a CPU model comparison.
2235#
2236# @result: The result of the compare operation.
2237# @responsible-properties: List of properties that led to the comparison result
2238#                          not being identical.
2239#
2240# @responsible-properties is a list of QOM property names that led to
2241# both CPUs not being detected as identical. For identical models, this
2242# list is empty.
2243# If a QOM property is read-only, that means there's no known way to make the
2244# CPU models identical. If the special property name "type" is included, the
2245# models are by definition not identical and cannot be made identical.
2246#
2247# Since: 2.8.0
2248##
2249{ 'struct': 'CpuModelCompareInfo',
2250  'data': {'result': 'CpuModelCompareResult',
2251           'responsible-properties': ['str']
2252          }
2253}
2254
2255##
2256# @query-cpu-model-comparison:
2257#
2258# Compares two CPU models, returning how they compare in a specific
2259# configuration. The results indicates how both models compare regarding
2260# runnability. This result can be used by tooling to make decisions if a
2261# certain CPU model will run in a certain configuration or if a compatible
2262# CPU model has to be created by baselining.
2263#
2264# Usually, a CPU model is compared against the maximum possible CPU model
2265# of a certain configuration (e.g. the "host" model for KVM). If that CPU
2266# model is identical or a subset, it will run in that configuration.
2267#
2268# The result returned by this command may be affected by:
2269#
2270# * QEMU version: CPU models may look different depending on the QEMU version.
2271#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2272# * machine-type: CPU model may look different depending on the machine-type.
2273#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2274# * machine options (including accelerator): in some architectures, CPU models
2275#   may look different depending on machine and accelerator options. (Except for
2276#   CPU models reported as "static" in query-cpu-definitions.)
2277# * "-cpu" arguments and global properties: arguments to the -cpu option and
2278#   global properties may affect expansion of CPU models. Using
2279#   query-cpu-model-expansion while using these is not advised.
2280#
2281# Some architectures may not support comparing CPU models. s390x supports
2282# comparing CPU models.
2283#
2284# Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
2285#          not supported, if a model cannot be used, if a model contains
2286#          an unknown cpu definition name, unknown properties or properties
2287#          with wrong types.
2288#
2289# Since: 2.8.0
2290##
2291{ 'command': 'query-cpu-model-comparison',
2292  'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
2293  'returns': 'CpuModelCompareInfo' }
2294
2295##
2296# @CpuModelBaselineInfo:
2297#
2298# The result of a CPU model baseline.
2299#
2300# @model: the baselined CpuModelInfo.
2301#
2302# Since: 2.8.0
2303##
2304{ 'struct': 'CpuModelBaselineInfo',
2305  'data': { 'model': 'CpuModelInfo' } }
2306
2307##
2308# @query-cpu-model-baseline:
2309#
2310# Baseline two CPU models, creating a compatible third model. The created
2311# model will always be a static, migration-safe CPU model (see "static"
2312# CPU model expansion for details).
2313#
2314# This interface can be used by tooling to create a compatible CPU model out
2315# two CPU models. The created CPU model will be identical to or a subset of
2316# both CPU models when comparing them. Therefore, the created CPU model is
2317# guaranteed to run where the given CPU models run.
2318#
2319# The result returned by this command may be affected by:
2320#
2321# * QEMU version: CPU models may look different depending on the QEMU version.
2322#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2323# * machine-type: CPU model may look different depending on the machine-type.
2324#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2325# * machine options (including accelerator): in some architectures, CPU models
2326#   may look different depending on machine and accelerator options. (Except for
2327#   CPU models reported as "static" in query-cpu-definitions.)
2328# * "-cpu" arguments and global properties: arguments to the -cpu option and
2329#   global properties may affect expansion of CPU models. Using
2330#   query-cpu-model-expansion while using these is not advised.
2331#
2332# Some architectures may not support baselining CPU models. s390x supports
2333# baselining CPU models.
2334#
2335# Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
2336#          not supported, if a model cannot be used, if a model contains
2337#          an unknown cpu definition name, unknown properties or properties
2338#          with wrong types.
2339#
2340# Since: 2.8.0
2341##
2342{ 'command': 'query-cpu-model-baseline',
2343  'data': { 'modela': 'CpuModelInfo',
2344            'modelb': 'CpuModelInfo' },
2345  'returns': 'CpuModelBaselineInfo' }
2346
2347##
2348# @AddfdInfo:
2349#
2350# Information about a file descriptor that was added to an fd set.
2351#
2352# @fdset-id: The ID of the fd set that @fd was added to.
2353#
2354# @fd: The file descriptor that was received via SCM rights and
2355#      added to the fd set.
2356#
2357# Since: 1.2.0
2358##
2359{ 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2360
2361##
2362# @add-fd:
2363#
2364# Add a file descriptor, that was passed via SCM rights, to an fd set.
2365#
2366# @fdset-id: The ID of the fd set to add the file descriptor to.
2367#
2368# @opaque: A free-form string that can be used to describe the fd.
2369#
2370# Returns: @AddfdInfo on success
2371#
2372#          If file descriptor was not received, FdNotSupplied
2373#
2374#          If @fdset-id is a negative value, InvalidParameterValue
2375#
2376# Notes: The list of fd sets is shared by all monitor connections.
2377#
2378#        If @fdset-id is not specified, a new fd set will be created.
2379#
2380# Since: 1.2.0
2381#
2382# Example:
2383#
2384# -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2385# <- { "return": { "fdset-id": 1, "fd": 3 } }
2386#
2387##
2388{ 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
2389  'returns': 'AddfdInfo' }
2390
2391##
2392# @remove-fd:
2393#
2394# Remove a file descriptor from an fd set.
2395#
2396# @fdset-id: The ID of the fd set that the file descriptor belongs to.
2397#
2398# @fd: The file descriptor that is to be removed.
2399#
2400# Returns: Nothing on success
2401#          If @fdset-id or @fd is not found, FdNotFound
2402#
2403# Since: 1.2.0
2404#
2405# Notes: The list of fd sets is shared by all monitor connections.
2406#
2407#        If @fd is not specified, all file descriptors in @fdset-id
2408#        will be removed.
2409#
2410# Example:
2411#
2412# -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2413# <- { "return": {} }
2414#
2415##
2416{ 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2417
2418##
2419# @FdsetFdInfo:
2420#
2421# Information about a file descriptor that belongs to an fd set.
2422#
2423# @fd: The file descriptor value.
2424#
2425# @opaque: A free-form string that can be used to describe the fd.
2426#
2427# Since: 1.2.0
2428##
2429{ 'struct': 'FdsetFdInfo',
2430  'data': {'fd': 'int', '*opaque': 'str'} }
2431
2432##
2433# @FdsetInfo:
2434#
2435# Information about an fd set.
2436#
2437# @fdset-id: The ID of the fd set.
2438#
2439# @fds: A list of file descriptors that belong to this fd set.
2440#
2441# Since: 1.2.0
2442##
2443{ 'struct': 'FdsetInfo',
2444  'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2445
2446##
2447# @query-fdsets:
2448#
2449# Return information describing all fd sets.
2450#
2451# Returns: A list of @FdsetInfo
2452#
2453# Since: 1.2.0
2454#
2455# Note: The list of fd sets is shared by all monitor connections.
2456#
2457# Example:
2458#
2459# -> { "execute": "query-fdsets" }
2460# <- { "return": [
2461#        {
2462#          "fds": [
2463#            {
2464#              "fd": 30,
2465#              "opaque": "rdonly:/path/to/file"
2466#            },
2467#            {
2468#              "fd": 24,
2469#              "opaque": "rdwr:/path/to/file"
2470#            }
2471#          ],
2472#          "fdset-id": 1
2473#        },
2474#        {
2475#          "fds": [
2476#            {
2477#              "fd": 28
2478#            },
2479#            {
2480#              "fd": 29
2481#            }
2482#          ],
2483#          "fdset-id": 0
2484#        }
2485#      ]
2486#    }
2487#
2488##
2489{ 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2490
2491##
2492# @TargetInfo:
2493#
2494# Information describing the QEMU target.
2495#
2496# @arch: the target architecture
2497#
2498# Since: 1.2.0
2499##
2500{ 'struct': 'TargetInfo',
2501  'data': { 'arch': 'SysEmuTarget' } }
2502
2503##
2504# @query-target:
2505#
2506# Return information about the target for this QEMU
2507#
2508# Returns: TargetInfo
2509#
2510# Since: 1.2.0
2511##
2512{ 'command': 'query-target', 'returns': 'TargetInfo' }
2513
2514##
2515# @AcpiTableOptions:
2516#
2517# Specify an ACPI table on the command line to load.
2518#
2519# At most one of @file and @data can be specified. The list of files specified
2520# by any one of them is loaded and concatenated in order. If both are omitted,
2521# @data is implied.
2522#
2523# Other fields / optargs can be used to override fields of the generic ACPI
2524# table header; refer to the ACPI specification 5.0, section 5.2.6 System
2525# Description Table Header. If a header field is not overridden, then the
2526# corresponding value from the concatenated blob is used (in case of @file), or
2527# it is filled in with a hard-coded value (in case of @data).
2528#
2529# String fields are copied into the matching ACPI member from lowest address
2530# upwards, and silently truncated / NUL-padded to length.
2531#
2532# @sig: table signature / identifier (4 bytes)
2533#
2534# @rev: table revision number (dependent on signature, 1 byte)
2535#
2536# @oem_id: OEM identifier (6 bytes)
2537#
2538# @oem_table_id: OEM table identifier (8 bytes)
2539#
2540# @oem_rev: OEM-supplied revision number (4 bytes)
2541#
2542# @asl_compiler_id: identifier of the utility that created the table
2543#                   (4 bytes)
2544#
2545# @asl_compiler_rev: revision number of the utility that created the
2546#                    table (4 bytes)
2547#
2548# @file: colon (:) separated list of pathnames to load and
2549#        concatenate as table data. The resultant binary blob is expected to
2550#        have an ACPI table header. At least one file is required. This field
2551#        excludes @data.
2552#
2553# @data: colon (:) separated list of pathnames to load and
2554#        concatenate as table data. The resultant binary blob must not have an
2555#        ACPI table header. At least one file is required. This field excludes
2556#        @file.
2557#
2558# Since: 1.5
2559##
2560{ 'struct': 'AcpiTableOptions',
2561  'data': {
2562    '*sig':               'str',
2563    '*rev':               'uint8',
2564    '*oem_id':            'str',
2565    '*oem_table_id':      'str',
2566    '*oem_rev':           'uint32',
2567    '*asl_compiler_id':   'str',
2568    '*asl_compiler_rev':  'uint32',
2569    '*file':              'str',
2570    '*data':              'str' }}
2571
2572##
2573# @CommandLineParameterType:
2574#
2575# Possible types for an option parameter.
2576#
2577# @string: accepts a character string
2578#
2579# @boolean: accepts "on" or "off"
2580#
2581# @number: accepts a number
2582#
2583# @size: accepts a number followed by an optional suffix (K)ilo,
2584#        (M)ega, (G)iga, (T)era
2585#
2586# Since: 1.5
2587##
2588{ 'enum': 'CommandLineParameterType',
2589  'data': ['string', 'boolean', 'number', 'size'] }
2590
2591##
2592# @CommandLineParameterInfo:
2593#
2594# Details about a single parameter of a command line option.
2595#
2596# @name: parameter name
2597#
2598# @type: parameter @CommandLineParameterType
2599#
2600# @help: human readable text string, not suitable for parsing.
2601#
2602# @default: default value string (since 2.1)
2603#
2604# Since: 1.5
2605##
2606{ 'struct': 'CommandLineParameterInfo',
2607  'data': { 'name': 'str',
2608            'type': 'CommandLineParameterType',
2609            '*help': 'str',
2610            '*default': 'str' } }
2611
2612##
2613# @CommandLineOptionInfo:
2614#
2615# Details about a command line option, including its list of parameter details
2616#
2617# @option: option name
2618#
2619# @parameters: an array of @CommandLineParameterInfo
2620#
2621# Since: 1.5
2622##
2623{ 'struct': 'CommandLineOptionInfo',
2624  'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2625
2626##
2627# @query-command-line-options:
2628#
2629# Query command line option schema.
2630#
2631# @option: option name
2632#
2633# Returns: list of @CommandLineOptionInfo for all options (or for the given
2634#          @option).  Returns an error if the given @option doesn't exist.
2635#
2636# Since: 1.5
2637#
2638# Example:
2639#
2640# -> { "execute": "query-command-line-options",
2641#      "arguments": { "option": "option-rom" } }
2642# <- { "return": [
2643#         {
2644#             "parameters": [
2645#                 {
2646#                     "name": "romfile",
2647#                     "type": "string"
2648#                 },
2649#                 {
2650#                     "name": "bootindex",
2651#                     "type": "number"
2652#                 }
2653#             ],
2654#             "option": "option-rom"
2655#         }
2656#      ]
2657#    }
2658#
2659##
2660{'command': 'query-command-line-options', 'data': { '*option': 'str' },
2661 'returns': ['CommandLineOptionInfo'],
2662 'allow-preconfig': true }
2663
2664##
2665# @X86CPURegister32:
2666#
2667# A X86 32-bit register
2668#
2669# Since: 1.5
2670##
2671{ 'enum': 'X86CPURegister32',
2672  'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2673
2674##
2675# @X86CPUFeatureWordInfo:
2676#
2677# Information about a X86 CPU feature word
2678#
2679# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2680#
2681# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2682#                   feature word
2683#
2684# @cpuid-register: Output register containing the feature bits
2685#
2686# @features: value of output register, containing the feature bits
2687#
2688# Since: 1.5
2689##
2690{ 'struct': 'X86CPUFeatureWordInfo',
2691  'data': { 'cpuid-input-eax': 'int',
2692            '*cpuid-input-ecx': 'int',
2693            'cpuid-register': 'X86CPURegister32',
2694            'features': 'int' } }
2695
2696##
2697# @DummyForceArrays:
2698#
2699# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2700#
2701# Since: 2.5
2702##
2703{ 'struct': 'DummyForceArrays',
2704  'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2705
2706
2707##
2708# @NumaOptionsType:
2709#
2710# @node: NUMA nodes configuration
2711#
2712# @dist: NUMA distance configuration (since 2.10)
2713#
2714# @cpu: property based CPU(s) to node mapping (Since: 2.10)
2715#
2716# Since: 2.1
2717##
2718{ 'enum': 'NumaOptionsType',
2719  'data': [ 'node', 'dist', 'cpu' ] }
2720
2721##
2722# @NumaOptions:
2723#
2724# A discriminated record of NUMA options. (for OptsVisitor)
2725#
2726# Since: 2.1
2727##
2728{ 'union': 'NumaOptions',
2729  'base': { 'type': 'NumaOptionsType' },
2730  'discriminator': 'type',
2731  'data': {
2732    'node': 'NumaNodeOptions',
2733    'dist': 'NumaDistOptions',
2734    'cpu': 'NumaCpuOptions' }}
2735
2736##
2737# @NumaNodeOptions:
2738#
2739# Create a guest NUMA node. (for OptsVisitor)
2740#
2741# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2742#
2743# @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2744#         if omitted)
2745#
2746# @mem: memory size of this node; mutually exclusive with @memdev.
2747#       Equally divide total memory among nodes if both @mem and @memdev are
2748#       omitted.
2749#
2750# @memdev: memory backend object.  If specified for one node,
2751#          it must be specified for all nodes.
2752#
2753# Since: 2.1
2754##
2755{ 'struct': 'NumaNodeOptions',
2756  'data': {
2757   '*nodeid': 'uint16',
2758   '*cpus':   ['uint16'],
2759   '*mem':    'size',
2760   '*memdev': 'str' }}
2761
2762##
2763# @NumaDistOptions:
2764#
2765# Set the distance between 2 NUMA nodes.
2766#
2767# @src: source NUMA node.
2768#
2769# @dst: destination NUMA node.
2770#
2771# @val: NUMA distance from source node to destination node.
2772#       When a node is unreachable from another node, set the distance
2773#       between them to 255.
2774#
2775# Since: 2.10
2776##
2777{ 'struct': 'NumaDistOptions',
2778  'data': {
2779   'src': 'uint16',
2780   'dst': 'uint16',
2781   'val': 'uint8' }}
2782
2783##
2784# @NumaCpuOptions:
2785#
2786# Option "-numa cpu" overrides default cpu to node mapping.
2787# It accepts the same set of cpu properties as returned by
2788# query-hotpluggable-cpus[].props, where node-id could be used to
2789# override default node mapping.
2790#
2791# Since: 2.10
2792##
2793{ 'struct': 'NumaCpuOptions',
2794   'base': 'CpuInstanceProperties',
2795   'data' : {} }
2796
2797##
2798# @HostMemPolicy:
2799#
2800# Host memory policy types
2801#
2802# @default: restore default policy, remove any nondefault policy
2803#
2804# @preferred: set the preferred host nodes for allocation
2805#
2806# @bind: a strict policy that restricts memory allocation to the
2807#        host nodes specified
2808#
2809# @interleave: memory allocations are interleaved across the set
2810#              of host nodes specified
2811#
2812# Since: 2.1
2813##
2814{ 'enum': 'HostMemPolicy',
2815  'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2816
2817##
2818# @Memdev:
2819#
2820# Information about memory backend
2821#
2822# @id: backend's ID if backend has 'id' property (since 2.9)
2823#
2824# @size: memory backend size
2825#
2826# @merge: enables or disables memory merge support
2827#
2828# @dump: includes memory backend's memory in a core dump or not
2829#
2830# @prealloc: enables or disables memory preallocation
2831#
2832# @host-nodes: host nodes for its memory policy
2833#
2834# @policy: memory policy of memory backend
2835#
2836# Since: 2.1
2837##
2838{ 'struct': 'Memdev',
2839  'data': {
2840    '*id':        'str',
2841    'size':       'size',
2842    'merge':      'bool',
2843    'dump':       'bool',
2844    'prealloc':   'bool',
2845    'host-nodes': ['uint16'],
2846    'policy':     'HostMemPolicy' }}
2847
2848##
2849# @query-memdev:
2850#
2851# Returns information for all memory backends.
2852#
2853# Returns: a list of @Memdev.
2854#
2855# Since: 2.1
2856#
2857# Example:
2858#
2859# -> { "execute": "query-memdev" }
2860# <- { "return": [
2861#        {
2862#          "id": "mem1",
2863#          "size": 536870912,
2864#          "merge": false,
2865#          "dump": true,
2866#          "prealloc": false,
2867#          "host-nodes": [0, 1],
2868#          "policy": "bind"
2869#        },
2870#        {
2871#          "size": 536870912,
2872#          "merge": false,
2873#          "dump": true,
2874#          "prealloc": true,
2875#          "host-nodes": [2, 3],
2876#          "policy": "preferred"
2877#        }
2878#      ]
2879#    }
2880#
2881##
2882{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
2883
2884##
2885# @PCDIMMDeviceInfo:
2886#
2887# PCDIMMDevice state information
2888#
2889# @id: device's ID
2890#
2891# @addr: physical address, where device is mapped
2892#
2893# @size: size of memory that the device provides
2894#
2895# @slot: slot number at which device is plugged in
2896#
2897# @node: NUMA node number where device is plugged in
2898#
2899# @memdev: memory backend linked with device
2900#
2901# @hotplugged: true if device was hotplugged
2902#
2903# @hotpluggable: true if device if could be added/removed while machine is running
2904#
2905# Since: 2.1
2906##
2907{ 'struct': 'PCDIMMDeviceInfo',
2908  'data': { '*id': 'str',
2909            'addr': 'int',
2910            'size': 'int',
2911            'slot': 'int',
2912            'node': 'int',
2913            'memdev': 'str',
2914            'hotplugged': 'bool',
2915            'hotpluggable': 'bool'
2916          }
2917}
2918
2919##
2920# @MemoryDeviceInfo:
2921#
2922# Union containing information about a memory device
2923#
2924# Since: 2.1
2925##
2926{ 'union': 'MemoryDeviceInfo',
2927  'data': { 'dimm': 'PCDIMMDeviceInfo',
2928            'nvdimm': 'PCDIMMDeviceInfo'
2929          }
2930}
2931
2932##
2933# @query-memory-devices:
2934#
2935# Lists available memory devices and their state
2936#
2937# Since: 2.1
2938#
2939# Example:
2940#
2941# -> { "execute": "query-memory-devices" }
2942# <- { "return": [ { "data":
2943#                       { "addr": 5368709120,
2944#                         "hotpluggable": true,
2945#                         "hotplugged": true,
2946#                         "id": "d1",
2947#                         "memdev": "/objects/memX",
2948#                         "node": 0,
2949#                         "size": 1073741824,
2950#                         "slot": 0},
2951#                    "type": "dimm"
2952#                  } ] }
2953#
2954##
2955{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2956
2957##
2958# @MEM_UNPLUG_ERROR:
2959#
2960# Emitted when memory hot unplug error occurs.
2961#
2962# @device: device name
2963#
2964# @msg: Informative message
2965#
2966# Since: 2.4
2967#
2968# Example:
2969#
2970# <- { "event": "MEM_UNPLUG_ERROR"
2971#      "data": { "device": "dimm1",
2972#                "msg": "acpi: device unplug for unsupported device"
2973#      },
2974#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2975#
2976##
2977{ 'event': 'MEM_UNPLUG_ERROR',
2978  'data': { 'device': 'str', 'msg': 'str' } }
2979
2980##
2981# @ACPISlotType:
2982#
2983# @DIMM: memory slot
2984# @CPU: logical CPU slot (since 2.7)
2985##
2986{ 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
2987
2988##
2989# @ACPIOSTInfo:
2990#
2991# OSPM Status Indication for a device
2992# For description of possible values of @source and @status fields
2993# see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
2994#
2995# @device: device ID associated with slot
2996#
2997# @slot: slot ID, unique per slot of a given @slot-type
2998#
2999# @slot-type: type of the slot
3000#
3001# @source: an integer containing the source event
3002#
3003# @status: an integer containing the status code
3004#
3005# Since: 2.1
3006##
3007{ 'struct': 'ACPIOSTInfo',
3008  'data'  : { '*device': 'str',
3009              'slot': 'str',
3010              'slot-type': 'ACPISlotType',
3011              'source': 'int',
3012              'status': 'int' } }
3013
3014##
3015# @query-acpi-ospm-status:
3016#
3017# Return a list of ACPIOSTInfo for devices that support status
3018# reporting via ACPI _OST method.
3019#
3020# Since: 2.1
3021#
3022# Example:
3023#
3024# -> { "execute": "query-acpi-ospm-status" }
3025# <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
3026#                  { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
3027#                  { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
3028#                  { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
3029#    ]}
3030#
3031##
3032{ 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
3033
3034##
3035# @ACPI_DEVICE_OST:
3036#
3037# Emitted when guest executes ACPI _OST method.
3038#
3039# @info: OSPM Status Indication
3040#
3041# Since: 2.1
3042#
3043# Example:
3044#
3045# <- { "event": "ACPI_DEVICE_OST",
3046#      "data": { "device": "d1", "slot": "0",
3047#                "slot-type": "DIMM", "source": 1, "status": 0 } }
3048#
3049##
3050{ 'event': 'ACPI_DEVICE_OST',
3051     'data': { 'info': 'ACPIOSTInfo' } }
3052
3053##
3054# @rtc-reset-reinjection:
3055#
3056# This command will reset the RTC interrupt reinjection backlog.
3057# Can be used if another mechanism to synchronize guest time
3058# is in effect, for example QEMU guest agent's guest-set-time
3059# command.
3060#
3061# Since: 2.1
3062#
3063# Example:
3064#
3065# -> { "execute": "rtc-reset-reinjection" }
3066# <- { "return": {} }
3067#
3068##
3069{ 'command': 'rtc-reset-reinjection' }
3070
3071##
3072# @RTC_CHANGE:
3073#
3074# Emitted when the guest changes the RTC time.
3075#
3076# @offset: offset between base RTC clock (as specified by -rtc base), and
3077#          new RTC clock value. Note that value will be different depending
3078#          on clock chosen to drive RTC (specified by -rtc clock).
3079#
3080# Note: This event is rate-limited.
3081#
3082# Since: 0.13.0
3083#
3084# Example:
3085#
3086# <-   { "event": "RTC_CHANGE",
3087#        "data": { "offset": 78 },
3088#        "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
3089#
3090##
3091{ 'event': 'RTC_CHANGE',
3092  'data': { 'offset': 'int' } }
3093
3094##
3095# @ReplayMode:
3096#
3097# Mode of the replay subsystem.
3098#
3099# @none: normal execution mode. Replay or record are not enabled.
3100#
3101# @record: record mode. All non-deterministic data is written into the
3102#          replay log.
3103#
3104# @play: replay mode. Non-deterministic data required for system execution
3105#        is read from the log.
3106#
3107# Since: 2.5
3108##
3109{ 'enum': 'ReplayMode',
3110  'data': [ 'none', 'record', 'play' ] }
3111
3112##
3113# @xen-load-devices-state:
3114#
3115# Load the state of all devices from file. The RAM and the block devices
3116# of the VM are not loaded by this command.
3117#
3118# @filename: the file to load the state of the devices from as binary
3119# data. See xen-save-devices-state.txt for a description of the binary
3120# format.
3121#
3122# Since: 2.7
3123#
3124# Example:
3125#
3126# -> { "execute": "xen-load-devices-state",
3127#      "arguments": { "filename": "/tmp/resume" } }
3128# <- { "return": {} }
3129#
3130##
3131{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
3132
3133##
3134# @GICCapability:
3135#
3136# The struct describes capability for a specific GIC (Generic
3137# Interrupt Controller) version. These bits are not only decided by
3138# QEMU/KVM software version, but also decided by the hardware that
3139# the program is running upon.
3140#
3141# @version:  version of GIC to be described. Currently, only 2 and 3
3142#            are supported.
3143#
3144# @emulated: whether current QEMU/hardware supports emulated GIC
3145#            device in user space.
3146#
3147# @kernel:   whether current QEMU/hardware supports hardware
3148#            accelerated GIC device in kernel.
3149#
3150# Since: 2.6
3151##
3152{ 'struct': 'GICCapability',
3153  'data': { 'version': 'int',
3154            'emulated': 'bool',
3155            'kernel': 'bool' } }
3156
3157##
3158# @query-gic-capabilities:
3159#
3160# This command is ARM-only. It will return a list of GICCapability
3161# objects that describe its capability bits.
3162#
3163# Returns: a list of GICCapability objects.
3164#
3165# Since: 2.6
3166#
3167# Example:
3168#
3169# -> { "execute": "query-gic-capabilities" }
3170# <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
3171#                 { "version": 3, "emulated": false, "kernel": true } ] }
3172#
3173##
3174{ 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
3175
3176##
3177# @CpuInstanceProperties:
3178#
3179# List of properties to be used for hotplugging a CPU instance,
3180# it should be passed by management with device_add command when
3181# a CPU is being hotplugged.
3182#
3183# @node-id: NUMA node ID the CPU belongs to
3184# @socket-id: socket number within node/board the CPU belongs to
3185# @core-id: core number within socket the CPU belongs to
3186# @thread-id: thread number within core the CPU belongs to
3187#
3188# Note: currently there are 4 properties that could be present
3189# but management should be prepared to pass through other
3190# properties with device_add command to allow for future
3191# interface extension. This also requires the filed names to be kept in
3192# sync with the properties passed to -device/device_add.
3193#
3194# Since: 2.7
3195##
3196{ 'struct': 'CpuInstanceProperties',
3197  'data': { '*node-id': 'int',
3198            '*socket-id': 'int',
3199            '*core-id': 'int',
3200            '*thread-id': 'int'
3201  }
3202}
3203
3204##
3205# @HotpluggableCPU:
3206#
3207# @type: CPU object type for usage with device_add command
3208# @props: list of properties to be used for hotplugging CPU
3209# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
3210# @qom-path: link to existing CPU object if CPU is present or
3211#            omitted if CPU is not present.
3212#
3213# Since: 2.7
3214##
3215{ 'struct': 'HotpluggableCPU',
3216  'data': { 'type': 'str',
3217            'vcpus-count': 'int',
3218            'props': 'CpuInstanceProperties',
3219            '*qom-path': 'str'
3220          }
3221}
3222
3223##
3224# @query-hotpluggable-cpus:
3225#
3226# TODO: Better documentation; currently there is none.
3227#
3228# Returns: a list of HotpluggableCPU objects.
3229#
3230# Since: 2.7
3231#
3232# Example:
3233#
3234# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
3235#
3236# -> { "execute": "query-hotpluggable-cpus" }
3237# <- {"return": [
3238#      { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
3239#        "vcpus-count": 1 },
3240#      { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
3241#        "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
3242#    ]}'
3243#
3244# For pc machine type started with -smp 1,maxcpus=2:
3245#
3246# -> { "execute": "query-hotpluggable-cpus" }
3247# <- {"return": [
3248#      {
3249#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3250#         "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
3251#      },
3252#      {
3253#         "qom-path": "/machine/unattached/device[0]",
3254#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3255#         "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
3256#      }
3257#    ]}
3258#
3259# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
3260# (Since: 2.11):
3261#
3262# -> { "execute": "query-hotpluggable-cpus" }
3263# <- {"return": [
3264#      {
3265#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
3266#         "props": { "core-id": 1 }
3267#      },
3268#      {
3269#         "qom-path": "/machine/unattached/device[0]",
3270#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
3271#         "props": { "core-id": 0 }
3272#      }
3273#    ]}
3274#
3275##
3276{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
3277             'allow-preconfig': true }
3278
3279##
3280# @GuidInfo:
3281#
3282# GUID information.
3283#
3284# @guid: the globally unique identifier
3285#
3286# Since: 2.9
3287##
3288{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3289
3290##
3291# @query-vm-generation-id:
3292#
3293# Show Virtual Machine Generation ID
3294#
3295# Since: 2.9
3296##
3297{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
3298
3299
3300##
3301# @SevState:
3302#
3303# An enumeration of SEV state information used during @query-sev.
3304#
3305# @uninit: The guest is uninitialized.
3306#
3307# @launch-update: The guest is currently being launched; plaintext data and
3308#                 register state is being imported.
3309#
3310# @launch-secret: The guest is currently being launched; ciphertext data
3311#                 is being imported.
3312#
3313# @running: The guest is fully launched or migrated in.
3314#
3315# @send-update: The guest is currently being migrated out to another machine.
3316#
3317# @receive-update: The guest is currently being migrated from another machine.
3318#
3319# Since: 2.12
3320##
3321{ 'enum': 'SevState',
3322  'data': ['uninit', 'launch-update', 'launch-secret', 'running',
3323           'send-update', 'receive-update' ] }
3324
3325##
3326# @SevInfo:
3327#
3328# Information about Secure Encrypted Virtualization (SEV) support
3329#
3330# @enabled: true if SEV is active
3331#
3332# @api-major: SEV API major version
3333#
3334# @api-minor: SEV API minor version
3335#
3336# @build-id: SEV FW build id
3337#
3338# @policy: SEV policy value
3339#
3340# @state: SEV guest state
3341#
3342# @handle: SEV firmware handle
3343#
3344# Since: 2.12
3345##
3346{ 'struct': 'SevInfo',
3347    'data': { 'enabled': 'bool',
3348              'api-major': 'uint8',
3349              'api-minor' : 'uint8',
3350              'build-id' : 'uint8',
3351              'policy' : 'uint32',
3352              'state' : 'SevState',
3353              'handle' : 'uint32'
3354            }
3355}
3356
3357##
3358# @query-sev:
3359#
3360# Returns information about SEV
3361#
3362# Returns: @SevInfo
3363#
3364# Since: 2.12
3365#
3366# Example:
3367#
3368# -> { "execute": "query-sev" }
3369# <- { "return": { "enabled": true, "api-major" : 0, "api-minor" : 0,
3370#                  "build-id" : 0, "policy" : 0, "state" : "running",
3371#                  "handle" : 1 } }
3372#
3373##
3374{ 'command': 'query-sev', 'returns': 'SevInfo' }
3375
3376##
3377# @SevLaunchMeasureInfo:
3378#
3379# SEV Guest Launch measurement information
3380#
3381# @data: the measurement value encoded in base64
3382#
3383# Since: 2.12
3384#
3385##
3386{ 'struct': 'SevLaunchMeasureInfo', 'data': {'data': 'str'} }
3387
3388##
3389# @query-sev-launch-measure:
3390#
3391# Query the SEV guest launch information.
3392#
3393# Returns: The @SevLaunchMeasureInfo for the guest
3394#
3395# Since: 2.12
3396#
3397# Example:
3398#
3399# -> { "execute": "query-sev-launch-measure" }
3400# <- { "return": { "data": "4l8LXeNlSPUDlXPJG5966/8%YZ" } }
3401#
3402##
3403{ 'command': 'query-sev-launch-measure', 'returns': 'SevLaunchMeasureInfo' }
3404
3405##
3406# @SevCapability:
3407#
3408# The struct describes capability for a Secure Encrypted Virtualization
3409# feature.
3410#
3411# @pdh:  Platform Diffie-Hellman key (base64 encoded)
3412#
3413# @cert-chain:  PDH certificate chain (base64 encoded)
3414#
3415# @cbitpos: C-bit location in page table entry
3416#
3417# @reduced-phys-bits: Number of physical Address bit reduction when SEV is
3418#                     enabled
3419#
3420# Since: 2.12
3421##
3422{ 'struct': 'SevCapability',
3423  'data': { 'pdh': 'str',
3424            'cert-chain': 'str',
3425            'cbitpos': 'int',
3426            'reduced-phys-bits': 'int'} }
3427
3428##
3429# @query-sev-capabilities:
3430#
3431# This command is used to get the SEV capabilities, and is supported on AMD
3432# X86 platforms only.
3433#
3434# Returns: SevCapability objects.
3435#
3436# Since: 2.12
3437#
3438# Example:
3439#
3440# -> { "execute": "query-sev-capabilities" }
3441# <- { "return": { "pdh": "8CCDD8DDD", "cert-chain": "888CCCDDDEE",
3442#                  "cbitpos": 47, "reduced-phys-bits": 5}}
3443#
3444##
3445{ 'command': 'query-sev-capabilities', 'returns': 'SevCapability' }
3446
3447##
3448# @CommandDropReason:
3449#
3450# Reasons that caused one command to be dropped.
3451#
3452# @queue-full: the command queue is full. This can only occur when
3453#              the client sends a new non-oob command before the
3454#              response to the previous non-oob command has been
3455#              received.
3456#
3457# Since: 2.12
3458##
3459{ 'enum': 'CommandDropReason',
3460  'data': [ 'queue-full' ] }
3461
3462##
3463# @COMMAND_DROPPED:
3464#
3465# Emitted when a command is dropped due to some reason.  Commands can
3466# only be dropped when the oob capability is enabled.
3467#
3468# @id: The dropped command's "id" field.
3469# FIXME Broken by design.  Events are broadcast to all monitors.  If
3470# another monitor's client has a command with the same ID in flight,
3471# the event will incorrectly claim that command was dropped.
3472#
3473# @reason: The reason why the command is dropped.
3474#
3475# Since: 2.12
3476#
3477# Example:
3478#
3479# { "event": "COMMAND_DROPPED",
3480#   "data": {"result": {"id": "libvirt-102",
3481#                       "reason": "queue-full" } } }
3482#
3483##
3484{ 'event': 'COMMAND_DROPPED' ,
3485  'data': { 'id': 'any', 'reason': 'CommandDropReason' } }
3486
3487##
3488# @set-numa-node:
3489#
3490# Runtime equivalent of '-numa' CLI option, available at
3491# preconfigure stage to configure numa mapping before initializing
3492# machine.
3493#
3494# Since 3.0
3495##
3496{ 'command': 'set-numa-node', 'boxed': true,
3497  'data': 'NumaOptions',
3498  'allow-preconfig': true
3499}
3500