xref: /openbmc/qemu/qapi/misc.json (revision 65a6d8dd)
1# -*- Mode: Python -*-
2#
3
4##
5# = Miscellanea
6##
7
8{ 'include': 'common.json' }
9
10##
11# @qmp_capabilities:
12#
13# Enable QMP capabilities.
14#
15# Arguments:
16#
17# @enable:   An optional list of QMPCapability values to enable.  The
18#            client must not enable any capability that is not
19#            mentioned in the QMP greeting message.  If the field is not
20#            provided, it means no QMP capabilities will be enabled.
21#            (since 2.12)
22#
23# Example:
24#
25# -> { "execute": "qmp_capabilities",
26#      "arguments": { "enable": [ "oob" ] } }
27# <- { "return": {} }
28#
29# Notes: This command is valid exactly when first connecting: it must be
30# issued before any other command will be accepted, and will fail once the
31# monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
32#
33# The QMP client needs to explicitly enable QMP capabilities, otherwise
34# all the QMP capabilities will be turned off by default.
35#
36# Since: 0.13
37#
38##
39{ 'command': 'qmp_capabilities',
40  'data': { '*enable': [ 'QMPCapability' ] } }
41
42##
43# @QMPCapability:
44#
45# Enumeration of capabilities to be advertised during initial client
46# connection, used for agreeing on particular QMP extension behaviors.
47#
48# @oob:   QMP ability to support Out-Of-Band requests.
49#         (Please refer to qmp-spec.txt for more information on OOB)
50#
51# Since: 2.12
52#
53##
54{ 'enum': 'QMPCapability',
55  'data': [ 'oob' ] }
56
57##
58# @VersionTriple:
59#
60# A three-part version number.
61#
62# @major:  The major version number.
63#
64# @minor:  The minor version number.
65#
66# @micro:  The micro version number.
67#
68# Since: 2.4
69##
70{ 'struct': 'VersionTriple',
71  'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
72
73
74##
75# @VersionInfo:
76#
77# A description of QEMU's version.
78#
79# @qemu:        The version of QEMU.  By current convention, a micro
80#               version of 50 signifies a development branch.  A micro version
81#               greater than or equal to 90 signifies a release candidate for
82#               the next minor version.  A micro version of less than 50
83#               signifies a stable release.
84#
85# @package:     QEMU will always set this field to an empty string.  Downstream
86#               versions of QEMU should set this to a non-empty string.  The
87#               exact format depends on the downstream however it highly
88#               recommended that a unique name is used.
89#
90# Since: 0.14.0
91##
92{ 'struct': 'VersionInfo',
93  'data': {'qemu': 'VersionTriple', 'package': 'str'} }
94
95##
96# @query-version:
97#
98# Returns the current version of QEMU.
99#
100# Returns:  A @VersionInfo object describing the current version of QEMU.
101#
102# Since: 0.14.0
103#
104# Example:
105#
106# -> { "execute": "query-version" }
107# <- {
108#       "return":{
109#          "qemu":{
110#             "major":0,
111#             "minor":11,
112#             "micro":5
113#          },
114#          "package":""
115#       }
116#    }
117#
118##
119{ 'command': 'query-version', 'returns': 'VersionInfo' }
120
121##
122# @CommandInfo:
123#
124# Information about a QMP command
125#
126# @name: The command name
127#
128# Since: 0.14.0
129##
130{ 'struct': 'CommandInfo', 'data': {'name': 'str'} }
131
132##
133# @query-commands:
134#
135# Return a list of supported QMP commands by this server
136#
137# Returns: A list of @CommandInfo for all supported commands
138#
139# Since: 0.14.0
140#
141# Example:
142#
143# -> { "execute": "query-commands" }
144# <- {
145#      "return":[
146#         {
147#            "name":"query-balloon"
148#         },
149#         {
150#            "name":"system_powerdown"
151#         }
152#      ]
153#    }
154#
155# Note: This example has been shortened as the real response is too long.
156#
157##
158{ 'command': 'query-commands', 'returns': ['CommandInfo'] }
159
160##
161# @LostTickPolicy:
162#
163# Policy for handling lost ticks in timer devices.
164#
165# @discard: throw away the missed tick(s) and continue with future injection
166#           normally.  Guest time may be delayed, unless the OS has explicit
167#           handling of lost ticks
168#
169# @delay: continue to deliver ticks at the normal rate.  Guest time will be
170#         delayed due to the late tick
171#
172# @merge: merge the missed tick(s) into one tick and inject.  Guest time
173#         may be delayed, depending on how the OS reacts to the merging
174#         of ticks
175#
176# @slew: deliver ticks at a higher rate to catch up with the missed tick. The
177#        guest time should not be delayed once catchup is complete.
178#
179# Since: 2.0
180##
181{ 'enum': 'LostTickPolicy',
182  'data': ['discard', 'delay', 'merge', 'slew' ] }
183
184##
185# @add_client:
186#
187# Allow client connections for VNC, Spice and socket based
188# character devices to be passed in to QEMU via SCM_RIGHTS.
189#
190# @protocol: protocol name. Valid names are "vnc", "spice" or the
191#            name of a character device (eg. from -chardev id=XXXX)
192#
193# @fdname: file descriptor name previously passed via 'getfd' command
194#
195# @skipauth: whether to skip authentication. Only applies
196#            to "vnc" and "spice" protocols
197#
198# @tls: whether to perform TLS. Only applies to the "spice"
199#       protocol
200#
201# Returns: nothing on success.
202#
203# Since: 0.14.0
204#
205# Example:
206#
207# -> { "execute": "add_client", "arguments": { "protocol": "vnc",
208#                                              "fdname": "myclient" } }
209# <- { "return": {} }
210#
211##
212{ 'command': 'add_client',
213  'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
214            '*tls': 'bool' } }
215
216##
217# @NameInfo:
218#
219# Guest name information.
220#
221# @name: The name of the guest
222#
223# Since: 0.14.0
224##
225{ 'struct': 'NameInfo', 'data': {'*name': 'str'} }
226
227##
228# @query-name:
229#
230# Return the name information of a guest.
231#
232# Returns: @NameInfo of the guest
233#
234# Since: 0.14.0
235#
236# Example:
237#
238# -> { "execute": "query-name" }
239# <- { "return": { "name": "qemu-name" } }
240#
241##
242{ 'command': 'query-name', 'returns': 'NameInfo' }
243
244##
245# @KvmInfo:
246#
247# Information about support for KVM acceleration
248#
249# @enabled: true if KVM acceleration is active
250#
251# @present: true if KVM acceleration is built into this executable
252#
253# Since: 0.14.0
254##
255{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
256
257##
258# @query-kvm:
259#
260# Returns information about KVM acceleration
261#
262# Returns: @KvmInfo
263#
264# Since: 0.14.0
265#
266# Example:
267#
268# -> { "execute": "query-kvm" }
269# <- { "return": { "enabled": true, "present": true } }
270#
271##
272{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
273
274##
275# @UuidInfo:
276#
277# Guest UUID information (Universally Unique Identifier).
278#
279# @UUID: the UUID of the guest
280#
281# Since: 0.14.0
282#
283# Notes: If no UUID was specified for the guest, a null UUID is returned.
284##
285{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
286
287##
288# @query-uuid:
289#
290# Query the guest UUID information.
291#
292# Returns: The @UuidInfo for the guest
293#
294# Since: 0.14.0
295#
296# Example:
297#
298# -> { "execute": "query-uuid" }
299# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
300#
301##
302{ 'command': 'query-uuid', 'returns': 'UuidInfo' }
303
304##
305# @EventInfo:
306#
307# Information about a QMP event
308#
309# @name: The event name
310#
311# Since: 1.2.0
312##
313{ 'struct': 'EventInfo', 'data': {'name': 'str'} }
314
315##
316# @query-events:
317#
318# Return a list of supported QMP events by this server
319#
320# Returns: A list of @EventInfo for all supported events
321#
322# Since: 1.2.0
323#
324# Example:
325#
326# -> { "execute": "query-events" }
327# <- {
328#      "return": [
329#          {
330#             "name":"SHUTDOWN"
331#          },
332#          {
333#             "name":"RESET"
334#          }
335#       ]
336#    }
337#
338# Note: This example has been shortened as the real response is too long.
339#
340##
341{ 'command': 'query-events', 'returns': ['EventInfo'] }
342
343##
344# @CpuInfoArch:
345#
346# An enumeration of cpu types that enable additional information during
347# @query-cpus and @query-cpus-fast.
348#
349# @s390: since 2.12
350#
351# @riscv: since 2.12
352#
353# Since: 2.6
354##
355{ 'enum': 'CpuInfoArch',
356  'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] }
357
358##
359# @CpuInfo:
360#
361# Information about a virtual CPU
362#
363# @CPU: the index of the virtual CPU
364#
365# @current: this only exists for backwards compatibility and should be ignored
366#
367# @halted: true if the virtual CPU is in the halt state.  Halt usually refers
368#          to a processor specific low power mode.
369#
370# @qom_path: path to the CPU object in the QOM tree (since 2.4)
371#
372# @thread_id: ID of the underlying host thread
373#
374# @props: properties describing to which node/socket/core/thread
375#         virtual CPU belongs to, provided if supported by board (since 2.10)
376#
377# @arch: architecture of the cpu, which determines which additional fields
378#        will be listed (since 2.6)
379#
380# Since: 0.14.0
381#
382# Notes: @halted is a transient state that changes frequently.  By the time the
383#        data is sent to the client, the guest may no longer be halted.
384##
385{ 'union': 'CpuInfo',
386  'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
387           'qom_path': 'str', 'thread_id': 'int',
388           '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
389  'discriminator': 'arch',
390  'data': { 'x86': 'CpuInfoX86',
391            'sparc': 'CpuInfoSPARC',
392            'ppc': 'CpuInfoPPC',
393            'mips': 'CpuInfoMIPS',
394            'tricore': 'CpuInfoTricore',
395            's390': 'CpuInfoS390',
396            'riscv': 'CpuInfoRISCV',
397            'other': 'CpuInfoOther' } }
398
399##
400# @CpuInfoX86:
401#
402# Additional information about a virtual i386 or x86_64 CPU
403#
404# @pc: the 64-bit instruction pointer
405#
406# Since: 2.6
407##
408{ 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
409
410##
411# @CpuInfoSPARC:
412#
413# Additional information about a virtual SPARC CPU
414#
415# @pc: the PC component of the instruction pointer
416#
417# @npc: the NPC component of the instruction pointer
418#
419# Since: 2.6
420##
421{ 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
422
423##
424# @CpuInfoPPC:
425#
426# Additional information about a virtual PPC CPU
427#
428# @nip: the instruction pointer
429#
430# Since: 2.6
431##
432{ 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
433
434##
435# @CpuInfoMIPS:
436#
437# Additional information about a virtual MIPS CPU
438#
439# @PC: the instruction pointer
440#
441# Since: 2.6
442##
443{ 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
444
445##
446# @CpuInfoTricore:
447#
448# Additional information about a virtual Tricore CPU
449#
450# @PC: the instruction pointer
451#
452# Since: 2.6
453##
454{ 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
455
456##
457# @CpuInfoRISCV:
458#
459# Additional information about a virtual RISCV CPU
460#
461# @pc: the instruction pointer
462#
463# Since 2.12
464##
465{ 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } }
466
467##
468# @CpuInfoOther:
469#
470# No additional information is available about the virtual CPU
471#
472# Since: 2.6
473#
474##
475{ 'struct': 'CpuInfoOther', 'data': { } }
476
477##
478# @CpuS390State:
479#
480# An enumeration of cpu states that can be assumed by a virtual
481# S390 CPU
482#
483# Since: 2.12
484##
485{ 'enum': 'CpuS390State',
486  'prefix': 'S390_CPU_STATE',
487  'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
488
489##
490# @CpuInfoS390:
491#
492# Additional information about a virtual S390 CPU
493#
494# @cpu-state: the virtual CPU's state
495#
496# Since: 2.12
497##
498{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
499
500##
501# @query-cpus:
502#
503# Returns a list of information about each virtual CPU.
504#
505# This command causes vCPU threads to exit to userspace, which causes
506# a small interruption to guest CPU execution. This will have a negative
507# impact on realtime guests and other latency sensitive guest workloads.
508# It is recommended to use @query-cpus-fast instead of this command to
509# avoid the vCPU interruption.
510#
511# Returns: a list of @CpuInfo for each virtual CPU
512#
513# Since: 0.14.0
514#
515# Example:
516#
517# -> { "execute": "query-cpus" }
518# <- { "return": [
519#          {
520#             "CPU":0,
521#             "current":true,
522#             "halted":false,
523#             "qom_path":"/machine/unattached/device[0]",
524#             "arch":"x86",
525#             "pc":3227107138,
526#             "thread_id":3134
527#          },
528#          {
529#             "CPU":1,
530#             "current":false,
531#             "halted":true,
532#             "qom_path":"/machine/unattached/device[2]",
533#             "arch":"x86",
534#             "pc":7108165,
535#             "thread_id":3135
536#          }
537#       ]
538#    }
539#
540# Notes: This interface is deprecated (since 2.12.0), and it is strongly
541#        recommended that you avoid using it. Use @query-cpus-fast to
542#        obtain information about virtual CPUs.
543#
544##
545{ 'command': 'query-cpus', 'returns': ['CpuInfo'] }
546
547##
548# @CpuInfoFast:
549#
550# Information about a virtual CPU
551#
552# @cpu-index: index of the virtual CPU
553#
554# @qom-path: path to the CPU object in the QOM tree
555#
556# @thread-id: ID of the underlying host thread
557#
558# @props: properties describing to which node/socket/core/thread
559#         virtual CPU belongs to, provided if supported by board
560#
561# @arch: base architecture of the cpu; deprecated since 2.13.0 in favor
562#        of @target
563#
564# @target: the QEMU system emulation target, which determines which
565#          additional fields will be listed (since 2.13)
566#
567# Since: 2.12
568#
569##
570{ 'union'         : 'CpuInfoFast',
571  'base'          : { 'cpu-index'    : 'int',
572                      'qom-path'     : 'str',
573                      'thread-id'    : 'int',
574                      '*props'       : 'CpuInstanceProperties',
575                      'arch'         : 'CpuInfoArch',
576                      'target'       : 'SysEmuTarget' },
577  'discriminator' : 'target',
578  'data'          : { 'aarch64'      : 'CpuInfoOther',
579                      'alpha'        : 'CpuInfoOther',
580                      'arm'          : 'CpuInfoOther',
581                      'cris'         : 'CpuInfoOther',
582                      'hppa'         : 'CpuInfoOther',
583                      'i386'         : 'CpuInfoOther',
584                      'lm32'         : 'CpuInfoOther',
585                      'm68k'         : 'CpuInfoOther',
586                      'microblaze'   : 'CpuInfoOther',
587                      'microblazeel' : 'CpuInfoOther',
588                      'mips'         : 'CpuInfoOther',
589                      'mips64'       : 'CpuInfoOther',
590                      'mips64el'     : 'CpuInfoOther',
591                      'mipsel'       : 'CpuInfoOther',
592                      'moxie'        : 'CpuInfoOther',
593                      'nios2'        : 'CpuInfoOther',
594                      'or1k'         : 'CpuInfoOther',
595                      'ppc'          : 'CpuInfoOther',
596                      'ppc64'        : 'CpuInfoOther',
597                      'ppcemb'       : 'CpuInfoOther',
598                      'riscv32'      : 'CpuInfoOther',
599                      'riscv64'      : 'CpuInfoOther',
600                      's390x'        : 'CpuInfoS390',
601                      'sh4'          : 'CpuInfoOther',
602                      'sh4eb'        : 'CpuInfoOther',
603                      'sparc'        : 'CpuInfoOther',
604                      'sparc64'      : 'CpuInfoOther',
605                      'tricore'      : 'CpuInfoOther',
606                      'unicore32'    : 'CpuInfoOther',
607                      'x86_64'       : 'CpuInfoOther',
608                      'xtensa'       : 'CpuInfoOther',
609                      'xtensaeb'     : 'CpuInfoOther' } }
610
611##
612# @query-cpus-fast:
613#
614# Returns information about all virtual CPUs. This command does not
615# incur a performance penalty and should be used in production
616# instead of query-cpus.
617#
618# Returns: list of @CpuInfoFast
619#
620# Since: 2.12
621#
622# Example:
623#
624# -> { "execute": "query-cpus-fast" }
625# <- { "return": [
626#         {
627#             "thread-id": 25627,
628#             "props": {
629#                 "core-id": 0,
630#                 "thread-id": 0,
631#                 "socket-id": 0
632#             },
633#             "qom-path": "/machine/unattached/device[0]",
634#             "arch":"x86",
635#             "target":"x86_64",
636#             "cpu-index": 0
637#         },
638#         {
639#             "thread-id": 25628,
640#             "props": {
641#                 "core-id": 0,
642#                 "thread-id": 0,
643#                 "socket-id": 1
644#             },
645#             "qom-path": "/machine/unattached/device[2]",
646#             "arch":"x86",
647#             "target":"x86_64",
648#             "cpu-index": 1
649#         }
650#     ]
651# }
652##
653{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
654
655##
656# @IOThreadInfo:
657#
658# Information about an iothread
659#
660# @id: the identifier of the iothread
661#
662# @thread-id: ID of the underlying host thread
663#
664# @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
665#               (since 2.9)
666#
667# @poll-grow: how many ns will be added to polling time, 0 means that it's not
668#             configured (since 2.9)
669#
670# @poll-shrink: how many ns will be removed from polling time, 0 means that
671#               it's not configured (since 2.9)
672#
673# Since: 2.0
674##
675{ 'struct': 'IOThreadInfo',
676  'data': {'id': 'str',
677           'thread-id': 'int',
678           'poll-max-ns': 'int',
679           'poll-grow': 'int',
680           'poll-shrink': 'int' } }
681
682##
683# @query-iothreads:
684#
685# Returns a list of information about each iothread.
686#
687# Note: this list excludes the QEMU main loop thread, which is not declared
688# using the -object iothread command-line option.  It is always the main thread
689# of the process.
690#
691# Returns: a list of @IOThreadInfo for each iothread
692#
693# Since: 2.0
694#
695# Example:
696#
697# -> { "execute": "query-iothreads" }
698# <- { "return": [
699#          {
700#             "id":"iothread0",
701#             "thread-id":3134
702#          },
703#          {
704#             "id":"iothread1",
705#             "thread-id":3135
706#          }
707#       ]
708#    }
709#
710##
711{ 'command': 'query-iothreads', 'returns': ['IOThreadInfo'] }
712
713##
714# @BalloonInfo:
715#
716# Information about the guest balloon device.
717#
718# @actual: the number of bytes the balloon currently contains
719#
720# Since: 0.14.0
721#
722##
723{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
724
725##
726# @query-balloon:
727#
728# Return information about the balloon device.
729#
730# Returns: @BalloonInfo on success
731#
732#          If the balloon driver is enabled but not functional because the KVM
733#          kernel module cannot support it, KvmMissingCap
734#
735#          If no balloon device is present, DeviceNotActive
736#
737# Since: 0.14.0
738#
739# Example:
740#
741# -> { "execute": "query-balloon" }
742# <- { "return": {
743#          "actual": 1073741824,
744#       }
745#    }
746#
747##
748{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
749
750##
751# @BALLOON_CHANGE:
752#
753# Emitted when the guest changes the actual BALLOON level. This value is
754# equivalent to the @actual field return by the 'query-balloon' command
755#
756# @actual: actual level of the guest memory balloon in bytes
757#
758# Note: this event is rate-limited.
759#
760# Since: 1.2
761#
762# Example:
763#
764# <- { "event": "BALLOON_CHANGE",
765#      "data": { "actual": 944766976 },
766#      "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
767#
768##
769{ 'event': 'BALLOON_CHANGE',
770  'data': { 'actual': 'int' } }
771
772##
773# @PciMemoryRange:
774#
775# A PCI device memory region
776#
777# @base: the starting address (guest physical)
778#
779# @limit: the ending address (guest physical)
780#
781# Since: 0.14.0
782##
783{ 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
784
785##
786# @PciMemoryRegion:
787#
788# Information about a PCI device I/O region.
789#
790# @bar: the index of the Base Address Register for this region
791#
792# @type: 'io' if the region is a PIO region
793#        'memory' if the region is a MMIO region
794#
795# @size: memory size
796#
797# @prefetch: if @type is 'memory', true if the memory is prefetchable
798#
799# @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
800#
801# Since: 0.14.0
802##
803{ 'struct': 'PciMemoryRegion',
804  'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
805           '*prefetch': 'bool', '*mem_type_64': 'bool' } }
806
807##
808# @PciBusInfo:
809#
810# Information about a bus of a PCI Bridge device
811#
812# @number: primary bus interface number.  This should be the number of the
813#          bus the device resides on.
814#
815# @secondary: secondary bus interface number.  This is the number of the
816#             main bus for the bridge
817#
818# @subordinate: This is the highest number bus that resides below the
819#               bridge.
820#
821# @io_range: The PIO range for all devices on this bridge
822#
823# @memory_range: The MMIO range for all devices on this bridge
824#
825# @prefetchable_range: The range of prefetchable MMIO for all devices on
826#                      this bridge
827#
828# Since: 2.4
829##
830{ 'struct': 'PciBusInfo',
831  'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
832           'io_range': 'PciMemoryRange',
833           'memory_range': 'PciMemoryRange',
834           'prefetchable_range': 'PciMemoryRange' } }
835
836##
837# @PciBridgeInfo:
838#
839# Information about a PCI Bridge device
840#
841# @bus: information about the bus the device resides on
842#
843# @devices: a list of @PciDeviceInfo for each device on this bridge
844#
845# Since: 0.14.0
846##
847{ 'struct': 'PciBridgeInfo',
848  'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
849
850##
851# @PciDeviceClass:
852#
853# Information about the Class of a PCI device
854#
855# @desc: a string description of the device's class
856#
857# @class: the class code of the device
858#
859# Since: 2.4
860##
861{ 'struct': 'PciDeviceClass',
862  'data': {'*desc': 'str', 'class': 'int'} }
863
864##
865# @PciDeviceId:
866#
867# Information about the Id of a PCI device
868#
869# @device: the PCI device id
870#
871# @vendor: the PCI vendor id
872#
873# Since: 2.4
874##
875{ 'struct': 'PciDeviceId',
876  'data': {'device': 'int', 'vendor': 'int'} }
877
878##
879# @PciDeviceInfo:
880#
881# Information about a PCI device
882#
883# @bus: the bus number of the device
884#
885# @slot: the slot the device is located in
886#
887# @function: the function of the slot used by the device
888#
889# @class_info: the class of the device
890#
891# @id: the PCI device id
892#
893# @irq: if an IRQ is assigned to the device, the IRQ number
894#
895# @qdev_id: the device name of the PCI device
896#
897# @pci_bridge: if the device is a PCI bridge, the bridge information
898#
899# @regions: a list of the PCI I/O regions associated with the device
900#
901# Notes: the contents of @class_info.desc are not stable and should only be
902#        treated as informational.
903#
904# Since: 0.14.0
905##
906{ 'struct': 'PciDeviceInfo',
907  'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
908           'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
909           '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
910           'regions': ['PciMemoryRegion']} }
911
912##
913# @PciInfo:
914#
915# Information about a PCI bus
916#
917# @bus: the bus index
918#
919# @devices: a list of devices on this bus
920#
921# Since: 0.14.0
922##
923{ 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
924
925##
926# @query-pci:
927#
928# Return information about the PCI bus topology of the guest.
929#
930# Returns: a list of @PciInfo for each PCI bus. Each bus is
931# represented by a json-object, which has a key with a json-array of
932# all PCI devices attached to it. Each device is represented by a
933# json-object.
934#
935# Since: 0.14.0
936#
937# Example:
938#
939# -> { "execute": "query-pci" }
940# <- { "return": [
941#          {
942#             "bus": 0,
943#             "devices": [
944#                {
945#                   "bus": 0,
946#                   "qdev_id": "",
947#                   "slot": 0,
948#                   "class_info": {
949#                      "class": 1536,
950#                      "desc": "Host bridge"
951#                   },
952#                   "id": {
953#                      "device": 32902,
954#                      "vendor": 4663
955#                   },
956#                   "function": 0,
957#                   "regions": [
958#                   ]
959#                },
960#                {
961#                   "bus": 0,
962#                   "qdev_id": "",
963#                   "slot": 1,
964#                   "class_info": {
965#                      "class": 1537,
966#                      "desc": "ISA bridge"
967#                   },
968#                   "id": {
969#                      "device": 32902,
970#                      "vendor": 28672
971#                   },
972#                   "function": 0,
973#                   "regions": [
974#                   ]
975#                },
976#                {
977#                   "bus": 0,
978#                   "qdev_id": "",
979#                   "slot": 1,
980#                   "class_info": {
981#                      "class": 257,
982#                      "desc": "IDE controller"
983#                   },
984#                   "id": {
985#                      "device": 32902,
986#                      "vendor": 28688
987#                   },
988#                   "function": 1,
989#                   "regions": [
990#                      {
991#                         "bar": 4,
992#                         "size": 16,
993#                         "address": 49152,
994#                         "type": "io"
995#                      }
996#                   ]
997#                },
998#                {
999#                   "bus": 0,
1000#                   "qdev_id": "",
1001#                   "slot": 2,
1002#                   "class_info": {
1003#                      "class": 768,
1004#                      "desc": "VGA controller"
1005#                   },
1006#                   "id": {
1007#                      "device": 4115,
1008#                      "vendor": 184
1009#                   },
1010#                   "function": 0,
1011#                   "regions": [
1012#                      {
1013#                         "prefetch": true,
1014#                         "mem_type_64": false,
1015#                         "bar": 0,
1016#                         "size": 33554432,
1017#                         "address": 4026531840,
1018#                         "type": "memory"
1019#                      },
1020#                      {
1021#                         "prefetch": false,
1022#                         "mem_type_64": false,
1023#                         "bar": 1,
1024#                         "size": 4096,
1025#                         "address": 4060086272,
1026#                         "type": "memory"
1027#                      },
1028#                      {
1029#                         "prefetch": false,
1030#                         "mem_type_64": false,
1031#                         "bar": 6,
1032#                         "size": 65536,
1033#                         "address": -1,
1034#                         "type": "memory"
1035#                      }
1036#                   ]
1037#                },
1038#                {
1039#                   "bus": 0,
1040#                   "qdev_id": "",
1041#                   "irq": 11,
1042#                   "slot": 4,
1043#                   "class_info": {
1044#                      "class": 1280,
1045#                      "desc": "RAM controller"
1046#                   },
1047#                   "id": {
1048#                      "device": 6900,
1049#                      "vendor": 4098
1050#                   },
1051#                   "function": 0,
1052#                   "regions": [
1053#                      {
1054#                         "bar": 0,
1055#                         "size": 32,
1056#                         "address": 49280,
1057#                         "type": "io"
1058#                      }
1059#                   ]
1060#                }
1061#             ]
1062#          }
1063#       ]
1064#    }
1065#
1066# Note: This example has been shortened as the real response is too long.
1067#
1068##
1069{ 'command': 'query-pci', 'returns': ['PciInfo'] }
1070
1071##
1072# @quit:
1073#
1074# This command will cause the QEMU process to exit gracefully.  While every
1075# attempt is made to send the QMP response before terminating, this is not
1076# guaranteed.  When using this interface, a premature EOF would not be
1077# unexpected.
1078#
1079# Since: 0.14.0
1080#
1081# Example:
1082#
1083# -> { "execute": "quit" }
1084# <- { "return": {} }
1085##
1086{ 'command': 'quit' }
1087
1088##
1089# @stop:
1090#
1091# Stop all guest VCPU execution.
1092#
1093# Since:  0.14.0
1094#
1095# Notes:  This function will succeed even if the guest is already in the stopped
1096#         state.  In "inmigrate" state, it will ensure that the guest
1097#         remains paused once migration finishes, as if the -S option was
1098#         passed on the command line.
1099#
1100# Example:
1101#
1102# -> { "execute": "stop" }
1103# <- { "return": {} }
1104#
1105##
1106{ 'command': 'stop' }
1107
1108##
1109# @system_reset:
1110#
1111# Performs a hard reset of a guest.
1112#
1113# Since: 0.14.0
1114#
1115# Example:
1116#
1117# -> { "execute": "system_reset" }
1118# <- { "return": {} }
1119#
1120##
1121{ 'command': 'system_reset' }
1122
1123##
1124# @system_powerdown:
1125#
1126# Requests that a guest perform a powerdown operation.
1127#
1128# Since: 0.14.0
1129#
1130# Notes: A guest may or may not respond to this command.  This command
1131#        returning does not indicate that a guest has accepted the request or
1132#        that it has shut down.  Many guests will respond to this command by
1133#        prompting the user in some way.
1134# Example:
1135#
1136# -> { "execute": "system_powerdown" }
1137# <- { "return": {} }
1138#
1139##
1140{ 'command': 'system_powerdown' }
1141
1142##
1143# @cpu-add:
1144#
1145# Adds CPU with specified ID
1146#
1147# @id: ID of CPU to be created, valid values [0..max_cpus)
1148#
1149# Returns: Nothing on success
1150#
1151# Since: 1.5
1152#
1153# Example:
1154#
1155# -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1156# <- { "return": {} }
1157#
1158##
1159{ 'command': 'cpu-add', 'data': {'id': 'int'} }
1160
1161##
1162# @memsave:
1163#
1164# Save a portion of guest memory to a file.
1165#
1166# @val: the virtual address of the guest to start from
1167#
1168# @size: the size of memory region to save
1169#
1170# @filename: the file to save the memory to as binary data
1171#
1172# @cpu-index: the index of the virtual CPU to use for translating the
1173#                       virtual address (defaults to CPU 0)
1174#
1175# Returns: Nothing on success
1176#
1177# Since: 0.14.0
1178#
1179# Notes: Errors were not reliably returned until 1.1
1180#
1181# Example:
1182#
1183# -> { "execute": "memsave",
1184#      "arguments": { "val": 10,
1185#                     "size": 100,
1186#                     "filename": "/tmp/virtual-mem-dump" } }
1187# <- { "return": {} }
1188#
1189##
1190{ 'command': 'memsave',
1191  'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1192
1193##
1194# @pmemsave:
1195#
1196# Save a portion of guest physical memory to a file.
1197#
1198# @val: the physical address of the guest to start from
1199#
1200# @size: the size of memory region to save
1201#
1202# @filename: the file to save the memory to as binary data
1203#
1204# Returns: Nothing on success
1205#
1206# Since: 0.14.0
1207#
1208# Notes: Errors were not reliably returned until 1.1
1209#
1210# Example:
1211#
1212# -> { "execute": "pmemsave",
1213#      "arguments": { "val": 10,
1214#                     "size": 100,
1215#                     "filename": "/tmp/physical-mem-dump" } }
1216# <- { "return": {} }
1217#
1218##
1219{ 'command': 'pmemsave',
1220  'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1221
1222##
1223# @cont:
1224#
1225# Resume guest VCPU execution.
1226#
1227# Since:  0.14.0
1228#
1229# Returns:  If successful, nothing
1230#
1231# Notes:  This command will succeed if the guest is currently running.  It
1232#         will also succeed if the guest is in the "inmigrate" state; in
1233#         this case, the effect of the command is to make sure the guest
1234#         starts once migration finishes, removing the effect of the -S
1235#         command line option if it was passed.
1236#
1237# Example:
1238#
1239# -> { "execute": "cont" }
1240# <- { "return": {} }
1241#
1242##
1243{ 'command': 'cont' }
1244
1245##
1246# @system_wakeup:
1247#
1248# Wakeup guest from suspend.  Does nothing in case the guest isn't suspended.
1249#
1250# Since:  1.1
1251#
1252# Returns:  nothing.
1253#
1254# Example:
1255#
1256# -> { "execute": "system_wakeup" }
1257# <- { "return": {} }
1258#
1259##
1260{ 'command': 'system_wakeup' }
1261
1262##
1263# @inject-nmi:
1264#
1265# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1266# The command fails when the guest doesn't support injecting.
1267#
1268# Returns:  If successful, nothing
1269#
1270# Since:  0.14.0
1271#
1272# Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1273#
1274# Example:
1275#
1276# -> { "execute": "inject-nmi" }
1277# <- { "return": {} }
1278#
1279##
1280{ 'command': 'inject-nmi' }
1281
1282##
1283# @balloon:
1284#
1285# Request the balloon driver to change its balloon size.
1286#
1287# @value: the target size of the balloon in bytes
1288#
1289# Returns: Nothing on success
1290#          If the balloon driver is enabled but not functional because the KVM
1291#            kernel module cannot support it, KvmMissingCap
1292#          If no balloon device is present, DeviceNotActive
1293#
1294# Notes: This command just issues a request to the guest.  When it returns,
1295#        the balloon size may not have changed.  A guest can change the balloon
1296#        size independent of this command.
1297#
1298# Since: 0.14.0
1299#
1300# Example:
1301#
1302# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1303# <- { "return": {} }
1304#
1305##
1306{ 'command': 'balloon', 'data': {'value': 'int'} }
1307
1308##
1309# @human-monitor-command:
1310#
1311# Execute a command on the human monitor and return the output.
1312#
1313# @command-line: the command to execute in the human monitor
1314#
1315# @cpu-index: The CPU to use for commands that require an implicit CPU
1316#
1317# Returns: the output of the command as a string
1318#
1319# Since: 0.14.0
1320#
1321# Notes: This command only exists as a stop-gap.  Its use is highly
1322#        discouraged.  The semantics of this command are not
1323#        guaranteed: this means that command names, arguments and
1324#        responses can change or be removed at ANY time.  Applications
1325#        that rely on long term stability guarantees should NOT
1326#        use this command.
1327#
1328#        Known limitations:
1329#
1330#        * This command is stateless, this means that commands that depend
1331#          on state information (such as getfd) might not work
1332#
1333#        * Commands that prompt the user for data don't currently work
1334#
1335# Example:
1336#
1337# -> { "execute": "human-monitor-command",
1338#      "arguments": { "command-line": "info kvm" } }
1339# <- { "return": "kvm support: enabled\r\n" }
1340#
1341##
1342{ 'command': 'human-monitor-command',
1343  'data': {'command-line': 'str', '*cpu-index': 'int'},
1344  'returns': 'str' }
1345
1346##
1347# @ObjectPropertyInfo:
1348#
1349# @name: the name of the property
1350#
1351# @type: the type of the property.  This will typically come in one of four
1352#        forms:
1353#
1354#        1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1355#           These types are mapped to the appropriate JSON type.
1356#
1357#        2) A child type in the form 'child<subtype>' where subtype is a qdev
1358#           device type name.  Child properties create the composition tree.
1359#
1360#        3) A link type in the form 'link<subtype>' where subtype is a qdev
1361#           device type name.  Link properties form the device model graph.
1362#
1363# @description: if specified, the description of the property.
1364#
1365# Since: 1.2
1366##
1367{ 'struct': 'ObjectPropertyInfo',
1368  'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
1369
1370##
1371# @qom-list:
1372#
1373# This command will list any properties of a object given a path in the object
1374# model.
1375#
1376# @path: the path within the object model.  See @qom-get for a description of
1377#        this parameter.
1378#
1379# Returns: a list of @ObjectPropertyInfo that describe the properties of the
1380#          object.
1381#
1382# Since: 1.2
1383##
1384{ 'command': 'qom-list',
1385  'data': { 'path': 'str' },
1386  'returns': [ 'ObjectPropertyInfo' ] }
1387
1388##
1389# @qom-get:
1390#
1391# This command will get a property from a object model path and return the
1392# value.
1393#
1394# @path: The path within the object model.  There are two forms of supported
1395#        paths--absolute and partial paths.
1396#
1397#        Absolute paths are derived from the root object and can follow child<>
1398#        or link<> properties.  Since they can follow link<> properties, they
1399#        can be arbitrarily long.  Absolute paths look like absolute filenames
1400#        and are prefixed  with a leading slash.
1401#
1402#        Partial paths look like relative filenames.  They do not begin
1403#        with a prefix.  The matching rules for partial paths are subtle but
1404#        designed to make specifying objects easy.  At each level of the
1405#        composition tree, the partial path is matched as an absolute path.
1406#        The first match is not returned.  At least two matches are searched
1407#        for.  A successful result is only returned if only one match is
1408#        found.  If more than one match is found, a flag is return to
1409#        indicate that the match was ambiguous.
1410#
1411# @property: The property name to read
1412#
1413# Returns: The property value.  The type depends on the property
1414#          type. child<> and link<> properties are returned as #str
1415#          pathnames.  All integer property types (u8, u16, etc) are
1416#          returned as #int.
1417#
1418# Since: 1.2
1419##
1420{ 'command': 'qom-get',
1421  'data': { 'path': 'str', 'property': 'str' },
1422  'returns': 'any' }
1423
1424##
1425# @qom-set:
1426#
1427# This command will set a property from a object model path.
1428#
1429# @path: see @qom-get for a description of this parameter
1430#
1431# @property: the property name to set
1432#
1433# @value: a value who's type is appropriate for the property type.  See @qom-get
1434#         for a description of type mapping.
1435#
1436# Since: 1.2
1437##
1438{ 'command': 'qom-set',
1439  'data': { 'path': 'str', 'property': 'str', 'value': 'any' } }
1440
1441##
1442# @change:
1443#
1444# This command is multiple commands multiplexed together.
1445#
1446# @device: This is normally the name of a block device but it may also be 'vnc'.
1447#          when it's 'vnc', then sub command depends on @target
1448#
1449# @target: If @device is a block device, then this is the new filename.
1450#          If @device is 'vnc', then if the value 'password' selects the vnc
1451#          change password command.   Otherwise, this specifies a new server URI
1452#          address to listen to for VNC connections.
1453#
1454# @arg:    If @device is a block device, then this is an optional format to open
1455#          the device with.
1456#          If @device is 'vnc' and @target is 'password', this is the new VNC
1457#          password to set.  See change-vnc-password for additional notes.
1458#
1459# Returns: Nothing on success.
1460#          If @device is not a valid block device, DeviceNotFound
1461#
1462# Notes:  This interface is deprecated, and it is strongly recommended that you
1463#         avoid using it.  For changing block devices, use
1464#         blockdev-change-medium; for changing VNC parameters, use
1465#         change-vnc-password.
1466#
1467# Since: 0.14.0
1468#
1469# Example:
1470#
1471# 1. Change a removable medium
1472#
1473# -> { "execute": "change",
1474#      "arguments": { "device": "ide1-cd0",
1475#                     "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1476# <- { "return": {} }
1477#
1478# 2. Change VNC password
1479#
1480# -> { "execute": "change",
1481#      "arguments": { "device": "vnc", "target": "password",
1482#                     "arg": "foobar1" } }
1483# <- { "return": {} }
1484#
1485##
1486{ 'command': 'change',
1487  'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1488
1489##
1490# @ObjectTypeInfo:
1491#
1492# This structure describes a search result from @qom-list-types
1493#
1494# @name: the type name found in the search
1495#
1496# @abstract: the type is abstract and can't be directly instantiated.
1497#            Omitted if false. (since 2.10)
1498#
1499# @parent: Name of parent type, if any (since 2.10)
1500#
1501# Since: 1.1
1502##
1503{ 'struct': 'ObjectTypeInfo',
1504  'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1505
1506##
1507# @qom-list-types:
1508#
1509# This command will return a list of types given search parameters
1510#
1511# @implements: if specified, only return types that implement this type name
1512#
1513# @abstract: if true, include abstract types in the results
1514#
1515# Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1516#
1517# Since: 1.1
1518##
1519{ 'command': 'qom-list-types',
1520  'data': { '*implements': 'str', '*abstract': 'bool' },
1521  'returns': [ 'ObjectTypeInfo' ] }
1522
1523##
1524# @device-list-properties:
1525#
1526# List properties associated with a device.
1527#
1528# @typename: the type name of a device
1529#
1530# Returns: a list of ObjectPropertyInfo describing a devices properties
1531#
1532# Note: objects can create properties at runtime, for example to describe
1533# links between different devices and/or objects. These properties
1534# are not included in the output of this command.
1535#
1536# Since: 1.2
1537##
1538{ 'command': 'device-list-properties',
1539  'data': { 'typename': 'str'},
1540  'returns': [ 'ObjectPropertyInfo' ] }
1541
1542##
1543# @qom-list-properties:
1544#
1545# List properties associated with a QOM object.
1546#
1547# @typename: the type name of an object
1548#
1549# Note: objects can create properties at runtime, for example to describe
1550# links between different devices and/or objects. These properties
1551# are not included in the output of this command.
1552#
1553# Returns: a list of ObjectPropertyInfo describing object properties
1554#
1555# Since: 2.12
1556##
1557{ 'command': 'qom-list-properties',
1558  'data': { 'typename': 'str'},
1559  'returns': [ 'ObjectPropertyInfo' ] }
1560
1561##
1562# @xen-set-global-dirty-log:
1563#
1564# Enable or disable the global dirty log mode.
1565#
1566# @enable: true to enable, false to disable.
1567#
1568# Returns: nothing
1569#
1570# Since: 1.3
1571#
1572# Example:
1573#
1574# -> { "execute": "xen-set-global-dirty-log",
1575#      "arguments": { "enable": true } }
1576# <- { "return": {} }
1577#
1578##
1579{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1580
1581##
1582# @device_add:
1583#
1584# @driver: the name of the new device's driver
1585#
1586# @bus: the device's parent bus (device tree path)
1587#
1588# @id: the device's ID, must be unique
1589#
1590# Additional arguments depend on the type.
1591#
1592# Add a device.
1593#
1594# Notes:
1595# 1. For detailed information about this command, please refer to the
1596#    'docs/qdev-device-use.txt' file.
1597#
1598# 2. It's possible to list device properties by running QEMU with the
1599#    "-device DEVICE,help" command-line argument, where DEVICE is the
1600#    device's name
1601#
1602# Example:
1603#
1604# -> { "execute": "device_add",
1605#      "arguments": { "driver": "e1000", "id": "net1",
1606#                     "bus": "pci.0",
1607#                     "mac": "52:54:00:12:34:56" } }
1608# <- { "return": {} }
1609#
1610# TODO: This command effectively bypasses QAPI completely due to its
1611# "additional arguments" business.  It shouldn't have been added to
1612# the schema in this form.  It should be qapified properly, or
1613# replaced by a properly qapified command.
1614#
1615# Since: 0.13
1616##
1617{ 'command': 'device_add',
1618  'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1619  'gen': false } # so we can get the additional arguments
1620
1621##
1622# @device_del:
1623#
1624# Remove a device from a guest
1625#
1626# @id: the device's ID or QOM path
1627#
1628# Returns: Nothing on success
1629#          If @id is not a valid device, DeviceNotFound
1630#
1631# Notes: When this command completes, the device may not be removed from the
1632#        guest.  Hot removal is an operation that requires guest cooperation.
1633#        This command merely requests that the guest begin the hot removal
1634#        process.  Completion of the device removal process is signaled with a
1635#        DEVICE_DELETED event. Guest reset will automatically complete removal
1636#        for all devices.
1637#
1638# Since: 0.14.0
1639#
1640# Example:
1641#
1642# -> { "execute": "device_del",
1643#      "arguments": { "id": "net1" } }
1644# <- { "return": {} }
1645#
1646# -> { "execute": "device_del",
1647#      "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1648# <- { "return": {} }
1649#
1650##
1651{ 'command': 'device_del', 'data': {'id': 'str'} }
1652
1653##
1654# @DEVICE_DELETED:
1655#
1656# Emitted whenever the device removal completion is acknowledged by the guest.
1657# At this point, it's safe to reuse the specified device ID. Device removal can
1658# be initiated by the guest or by HMP/QMP commands.
1659#
1660# @device: device name
1661#
1662# @path: device path
1663#
1664# Since: 1.5
1665#
1666# Example:
1667#
1668# <- { "event": "DEVICE_DELETED",
1669#      "data": { "device": "virtio-net-pci-0",
1670#                "path": "/machine/peripheral/virtio-net-pci-0" },
1671#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1672#
1673##
1674{ 'event': 'DEVICE_DELETED',
1675  'data': { '*device': 'str', 'path': 'str' } }
1676
1677##
1678# @DumpGuestMemoryFormat:
1679#
1680# An enumeration of guest-memory-dump's format.
1681#
1682# @elf: elf format
1683#
1684# @kdump-zlib: kdump-compressed format with zlib-compressed
1685#
1686# @kdump-lzo: kdump-compressed format with lzo-compressed
1687#
1688# @kdump-snappy: kdump-compressed format with snappy-compressed
1689#
1690# Since: 2.0
1691##
1692{ 'enum': 'DumpGuestMemoryFormat',
1693  'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy' ] }
1694
1695##
1696# @dump-guest-memory:
1697#
1698# Dump guest's memory to vmcore. It is a synchronous operation that can take
1699# very long depending on the amount of guest memory.
1700#
1701# @paging: if true, do paging to get guest's memory mapping. This allows
1702#          using gdb to process the core file.
1703#
1704#          IMPORTANT: this option can make QEMU allocate several gigabytes
1705#                     of RAM. This can happen for a large guest, or a
1706#                     malicious guest pretending to be large.
1707#
1708#          Also, paging=true has the following limitations:
1709#
1710#             1. The guest may be in a catastrophic state or can have corrupted
1711#                memory, which cannot be trusted
1712#             2. The guest can be in real-mode even if paging is enabled. For
1713#                example, the guest uses ACPI to sleep, and ACPI sleep state
1714#                goes in real-mode
1715#             3. Currently only supported on i386 and x86_64.
1716#
1717# @protocol: the filename or file descriptor of the vmcore. The supported
1718#            protocols are:
1719#
1720#            1. file: the protocol starts with "file:", and the following
1721#               string is the file's path.
1722#            2. fd: the protocol starts with "fd:", and the following string
1723#               is the fd's name.
1724#
1725# @detach: if true, QMP will return immediately rather than
1726#          waiting for the dump to finish. The user can track progress
1727#          using "query-dump". (since 2.6).
1728#
1729# @begin: if specified, the starting physical address.
1730#
1731# @length: if specified, the memory size, in bytes. If you don't
1732#          want to dump all guest's memory, please specify the start @begin
1733#          and @length
1734#
1735# @format: if specified, the format of guest memory dump. But non-elf
1736#          format is conflict with paging and filter, ie. @paging, @begin and
1737#          @length is not allowed to be specified with non-elf @format at the
1738#          same time (since 2.0)
1739#
1740# Note: All boolean arguments default to false
1741#
1742# Returns: nothing on success
1743#
1744# Since: 1.2
1745#
1746# Example:
1747#
1748# -> { "execute": "dump-guest-memory",
1749#      "arguments": { "protocol": "fd:dump" } }
1750# <- { "return": {} }
1751#
1752##
1753{ 'command': 'dump-guest-memory',
1754  'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1755            '*begin': 'int', '*length': 'int',
1756            '*format': 'DumpGuestMemoryFormat'} }
1757
1758##
1759# @DumpStatus:
1760#
1761# Describe the status of a long-running background guest memory dump.
1762#
1763# @none: no dump-guest-memory has started yet.
1764#
1765# @active: there is one dump running in background.
1766#
1767# @completed: the last dump has finished successfully.
1768#
1769# @failed: the last dump has failed.
1770#
1771# Since: 2.6
1772##
1773{ 'enum': 'DumpStatus',
1774  'data': [ 'none', 'active', 'completed', 'failed' ] }
1775
1776##
1777# @DumpQueryResult:
1778#
1779# The result format for 'query-dump'.
1780#
1781# @status: enum of @DumpStatus, which shows current dump status
1782#
1783# @completed: bytes written in latest dump (uncompressed)
1784#
1785# @total: total bytes to be written in latest dump (uncompressed)
1786#
1787# Since: 2.6
1788##
1789{ 'struct': 'DumpQueryResult',
1790  'data': { 'status': 'DumpStatus',
1791            'completed': 'int',
1792            'total': 'int' } }
1793
1794##
1795# @query-dump:
1796#
1797# Query latest dump status.
1798#
1799# Returns: A @DumpStatus object showing the dump status.
1800#
1801# Since: 2.6
1802#
1803# Example:
1804#
1805# -> { "execute": "query-dump" }
1806# <- { "return": { "status": "active", "completed": 1024000,
1807#                  "total": 2048000 } }
1808#
1809##
1810{ 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1811
1812##
1813# @DUMP_COMPLETED:
1814#
1815# Emitted when background dump has completed
1816#
1817# @result: final dump status
1818#
1819# @error: human-readable error string that provides
1820#         hint on why dump failed. Only presents on failure. The
1821#         user should not try to interpret the error string.
1822#
1823# Since: 2.6
1824#
1825# Example:
1826#
1827# { "event": "DUMP_COMPLETED",
1828#   "data": {"result": {"total": 1090650112, "status": "completed",
1829#                       "completed": 1090650112} } }
1830#
1831##
1832{ 'event': 'DUMP_COMPLETED' ,
1833  'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1834
1835##
1836# @DumpGuestMemoryCapability:
1837#
1838# A list of the available formats for dump-guest-memory
1839#
1840# Since: 2.0
1841##
1842{ 'struct': 'DumpGuestMemoryCapability',
1843  'data': {
1844      'formats': ['DumpGuestMemoryFormat'] } }
1845
1846##
1847# @query-dump-guest-memory-capability:
1848#
1849# Returns the available formats for dump-guest-memory
1850#
1851# Returns:  A @DumpGuestMemoryCapability object listing available formats for
1852#           dump-guest-memory
1853#
1854# Since: 2.0
1855#
1856# Example:
1857#
1858# -> { "execute": "query-dump-guest-memory-capability" }
1859# <- { "return": { "formats":
1860#                  ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1861#
1862##
1863{ 'command': 'query-dump-guest-memory-capability',
1864  'returns': 'DumpGuestMemoryCapability' }
1865
1866##
1867# @dump-skeys:
1868#
1869# Dump guest's storage keys
1870#
1871# @filename: the path to the file to dump to
1872#
1873# This command is only supported on s390 architecture.
1874#
1875# Since: 2.5
1876#
1877# Example:
1878#
1879# -> { "execute": "dump-skeys",
1880#      "arguments": { "filename": "/tmp/skeys" } }
1881# <- { "return": {} }
1882#
1883##
1884{ 'command': 'dump-skeys',
1885  'data': { 'filename': 'str' } }
1886
1887##
1888# @object-add:
1889#
1890# Create a QOM object.
1891#
1892# @qom-type: the class name for the object to be created
1893#
1894# @id: the name of the new object
1895#
1896# @props: a dictionary of properties to be passed to the backend
1897#
1898# Returns: Nothing on success
1899#          Error if @qom-type is not a valid class name
1900#
1901# Since: 2.0
1902#
1903# Example:
1904#
1905# -> { "execute": "object-add",
1906#      "arguments": { "qom-type": "rng-random", "id": "rng1",
1907#                     "props": { "filename": "/dev/hwrng" } } }
1908# <- { "return": {} }
1909#
1910##
1911{ 'command': 'object-add',
1912  'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1913
1914##
1915# @object-del:
1916#
1917# Remove a QOM object.
1918#
1919# @id: the name of the QOM object to remove
1920#
1921# Returns: Nothing on success
1922#          Error if @id is not a valid id for a QOM object
1923#
1924# Since: 2.0
1925#
1926# Example:
1927#
1928# -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1929# <- { "return": {} }
1930#
1931##
1932{ 'command': 'object-del', 'data': {'id': 'str'} }
1933
1934##
1935# @getfd:
1936#
1937# Receive a file descriptor via SCM rights and assign it a name
1938#
1939# @fdname: file descriptor name
1940#
1941# Returns: Nothing on success
1942#
1943# Since: 0.14.0
1944#
1945# Notes: If @fdname already exists, the file descriptor assigned to
1946#        it will be closed and replaced by the received file
1947#        descriptor.
1948#
1949#        The 'closefd' command can be used to explicitly close the
1950#        file descriptor when it is no longer needed.
1951#
1952# Example:
1953#
1954# -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1955# <- { "return": {} }
1956#
1957##
1958{ 'command': 'getfd', 'data': {'fdname': 'str'} }
1959
1960##
1961# @closefd:
1962#
1963# Close a file descriptor previously passed via SCM rights
1964#
1965# @fdname: file descriptor name
1966#
1967# Returns: Nothing on success
1968#
1969# Since: 0.14.0
1970#
1971# Example:
1972#
1973# -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1974# <- { "return": {} }
1975#
1976##
1977{ 'command': 'closefd', 'data': {'fdname': 'str'} }
1978
1979##
1980# @MachineInfo:
1981#
1982# Information describing a machine.
1983#
1984# @name: the name of the machine
1985#
1986# @alias: an alias for the machine name
1987#
1988# @is-default: whether the machine is default
1989#
1990# @cpu-max: maximum number of CPUs supported by the machine type
1991#           (since 1.5.0)
1992#
1993# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
1994#
1995# Since: 1.2.0
1996##
1997{ 'struct': 'MachineInfo',
1998  'data': { 'name': 'str', '*alias': 'str',
1999            '*is-default': 'bool', 'cpu-max': 'int',
2000            'hotpluggable-cpus': 'bool'} }
2001
2002##
2003# @query-machines:
2004#
2005# Return a list of supported machines
2006#
2007# Returns: a list of MachineInfo
2008#
2009# Since: 1.2.0
2010##
2011{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
2012
2013##
2014# @CpuDefinitionInfo:
2015#
2016# Virtual CPU definition.
2017#
2018# @name: the name of the CPU definition
2019#
2020# @migration-safe: whether a CPU definition can be safely used for
2021#                  migration in combination with a QEMU compatibility machine
2022#                  when migrating between different QMU versions and between
2023#                  hosts with different sets of (hardware or software)
2024#                  capabilities. If not provided, information is not available
2025#                  and callers should not assume the CPU definition to be
2026#                  migration-safe. (since 2.8)
2027#
2028# @static: whether a CPU definition is static and will not change depending on
2029#          QEMU version, machine type, machine options and accelerator options.
2030#          A static model is always migration-safe. (since 2.8)
2031#
2032# @unavailable-features: List of properties that prevent
2033#                        the CPU model from running in the current
2034#                        host. (since 2.8)
2035# @typename: Type name that can be used as argument to @device-list-properties,
2036#            to introspect properties configurable using -cpu or -global.
2037#            (since 2.9)
2038#
2039# @unavailable-features is a list of QOM property names that
2040# represent CPU model attributes that prevent the CPU from running.
2041# If the QOM property is read-only, that means there's no known
2042# way to make the CPU model run in the current host. Implementations
2043# that choose not to provide specific information return the
2044# property name "type".
2045# If the property is read-write, it means that it MAY be possible
2046# to run the CPU model in the current host if that property is
2047# changed. Management software can use it as hints to suggest or
2048# choose an alternative for the user, or just to generate meaningful
2049# error messages explaining why the CPU model can't be used.
2050# If @unavailable-features is an empty list, the CPU model is
2051# runnable using the current host and machine-type.
2052# If @unavailable-features is not present, runnability
2053# information for the CPU is not available.
2054#
2055# Since: 1.2.0
2056##
2057{ 'struct': 'CpuDefinitionInfo',
2058  'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
2059            '*unavailable-features': [ 'str' ], 'typename': 'str' } }
2060
2061##
2062# @MemoryInfo:
2063#
2064# Actual memory information in bytes.
2065#
2066# @base-memory: size of "base" memory specified with command line
2067#               option -m.
2068#
2069# @plugged-memory: size of memory that can be hot-unplugged. This field
2070#                  is omitted if target doesn't support memory hotplug
2071#                  (i.e. CONFIG_MEM_HOTPLUG not defined on build time).
2072#
2073# Since: 2.11.0
2074##
2075{ 'struct': 'MemoryInfo',
2076  'data'  : { 'base-memory': 'size', '*plugged-memory': 'size' } }
2077
2078##
2079# @query-memory-size-summary:
2080#
2081# Return the amount of initially allocated and present hotpluggable (if
2082# enabled) memory in bytes.
2083#
2084# Example:
2085#
2086# -> { "execute": "query-memory-size-summary" }
2087# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
2088#
2089# Since: 2.11.0
2090##
2091{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
2092
2093##
2094# @query-cpu-definitions:
2095#
2096# Return a list of supported virtual CPU definitions
2097#
2098# Returns: a list of CpuDefInfo
2099#
2100# Since: 1.2.0
2101##
2102{ 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
2103
2104##
2105# @CpuModelInfo:
2106#
2107# Virtual CPU model.
2108#
2109# A CPU model consists of the name of a CPU definition, to which
2110# delta changes are applied (e.g. features added/removed). Most magic values
2111# that an architecture might require should be hidden behind the name.
2112# However, if required, architectures can expose relevant properties.
2113#
2114# @name: the name of the CPU definition the model is based on
2115# @props: a dictionary of QOM properties to be applied
2116#
2117# Since: 2.8.0
2118##
2119{ 'struct': 'CpuModelInfo',
2120  'data': { 'name': 'str',
2121            '*props': 'any' } }
2122
2123##
2124# @CpuModelExpansionType:
2125#
2126# An enumeration of CPU model expansion types.
2127#
2128# @static: Expand to a static CPU model, a combination of a static base
2129#          model name and property delta changes. As the static base model will
2130#          never change, the expanded CPU model will be the same, independent of
2131#          independent of QEMU version, machine type, machine options, and
2132#          accelerator options. Therefore, the resulting model can be used by
2133#          tooling without having to specify a compatibility machine - e.g. when
2134#          displaying the "host" model. static CPU models are migration-safe.
2135#
2136# @full: Expand all properties. The produced model is not guaranteed to be
2137#        migration-safe, but allows tooling to get an insight and work with
2138#        model details.
2139#
2140# Note: When a non-migration-safe CPU model is expanded in static mode, some
2141# features enabled by the CPU model may be omitted, because they can't be
2142# implemented by a static CPU model definition (e.g. cache info passthrough and
2143# PMU passthrough in x86). If you need an accurate representation of the
2144# features enabled by a non-migration-safe CPU model, use @full. If you need a
2145# static representation that will keep ABI compatibility even when changing QEMU
2146# version or machine-type, use @static (but keep in mind that some features may
2147# be omitted).
2148#
2149# Since: 2.8.0
2150##
2151{ 'enum': 'CpuModelExpansionType',
2152  'data': [ 'static', 'full' ] }
2153
2154
2155##
2156# @CpuModelExpansionInfo:
2157#
2158# The result of a cpu model expansion.
2159#
2160# @model: the expanded CpuModelInfo.
2161#
2162# Since: 2.8.0
2163##
2164{ 'struct': 'CpuModelExpansionInfo',
2165  'data': { 'model': 'CpuModelInfo' } }
2166
2167
2168##
2169# @query-cpu-model-expansion:
2170#
2171# Expands a given CPU model (or a combination of CPU model + additional options)
2172# to different granularities, allowing tooling to get an understanding what a
2173# specific CPU model looks like in QEMU under a certain configuration.
2174#
2175# This interface can be used to query the "host" CPU model.
2176#
2177# The data returned by this command may be affected by:
2178#
2179# * QEMU version: CPU models may look different depending on the QEMU version.
2180#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2181# * machine-type: CPU model  may look different depending on the machine-type.
2182#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2183# * machine options (including accelerator): in some architectures, CPU models
2184#   may look different depending on machine and accelerator options. (Except for
2185#   CPU models reported as "static" in query-cpu-definitions.)
2186# * "-cpu" arguments and global properties: arguments to the -cpu option and
2187#   global properties may affect expansion of CPU models. Using
2188#   query-cpu-model-expansion while using these is not advised.
2189#
2190# Some architectures may not support all expansion types. s390x supports
2191# "full" and "static".
2192#
2193# Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
2194#          not supported, if the model cannot be expanded, if the model contains
2195#          an unknown CPU definition name, unknown properties or properties
2196#          with a wrong type. Also returns an error if an expansion type is
2197#          not supported.
2198#
2199# Since: 2.8.0
2200##
2201{ 'command': 'query-cpu-model-expansion',
2202  'data': { 'type': 'CpuModelExpansionType',
2203            'model': 'CpuModelInfo' },
2204  'returns': 'CpuModelExpansionInfo' }
2205
2206##
2207# @CpuModelCompareResult:
2208#
2209# An enumeration of CPU model comparison results. The result is usually
2210# calculated using e.g. CPU features or CPU generations.
2211#
2212# @incompatible: If model A is incompatible to model B, model A is not
2213#                guaranteed to run where model B runs and the other way around.
2214#
2215# @identical: If model A is identical to model B, model A is guaranteed to run
2216#             where model B runs and the other way around.
2217#
2218# @superset: If model A is a superset of model B, model B is guaranteed to run
2219#            where model A runs. There are no guarantees about the other way.
2220#
2221# @subset: If model A is a subset of model B, model A is guaranteed to run
2222#          where model B runs. There are no guarantees about the other way.
2223#
2224# Since: 2.8.0
2225##
2226{ 'enum': 'CpuModelCompareResult',
2227  'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2228
2229##
2230# @CpuModelCompareInfo:
2231#
2232# The result of a CPU model comparison.
2233#
2234# @result: The result of the compare operation.
2235# @responsible-properties: List of properties that led to the comparison result
2236#                          not being identical.
2237#
2238# @responsible-properties is a list of QOM property names that led to
2239# both CPUs not being detected as identical. For identical models, this
2240# list is empty.
2241# If a QOM property is read-only, that means there's no known way to make the
2242# CPU models identical. If the special property name "type" is included, the
2243# models are by definition not identical and cannot be made identical.
2244#
2245# Since: 2.8.0
2246##
2247{ 'struct': 'CpuModelCompareInfo',
2248  'data': {'result': 'CpuModelCompareResult',
2249           'responsible-properties': ['str']
2250          }
2251}
2252
2253##
2254# @query-cpu-model-comparison:
2255#
2256# Compares two CPU models, returning how they compare in a specific
2257# configuration. The results indicates how both models compare regarding
2258# runnability. This result can be used by tooling to make decisions if a
2259# certain CPU model will run in a certain configuration or if a compatible
2260# CPU model has to be created by baselining.
2261#
2262# Usually, a CPU model is compared against the maximum possible CPU model
2263# of a certain configuration (e.g. the "host" model for KVM). If that CPU
2264# model is identical or a subset, it will run in that configuration.
2265#
2266# The result returned by this command may be affected by:
2267#
2268# * QEMU version: CPU models may look different depending on the QEMU version.
2269#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2270# * machine-type: CPU model may look different depending on the machine-type.
2271#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2272# * machine options (including accelerator): in some architectures, CPU models
2273#   may look different depending on machine and accelerator options. (Except for
2274#   CPU models reported as "static" in query-cpu-definitions.)
2275# * "-cpu" arguments and global properties: arguments to the -cpu option and
2276#   global properties may affect expansion of CPU models. Using
2277#   query-cpu-model-expansion while using these is not advised.
2278#
2279# Some architectures may not support comparing CPU models. s390x supports
2280# comparing CPU models.
2281#
2282# Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
2283#          not supported, if a model cannot be used, if a model contains
2284#          an unknown cpu definition name, unknown properties or properties
2285#          with wrong types.
2286#
2287# Since: 2.8.0
2288##
2289{ 'command': 'query-cpu-model-comparison',
2290  'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
2291  'returns': 'CpuModelCompareInfo' }
2292
2293##
2294# @CpuModelBaselineInfo:
2295#
2296# The result of a CPU model baseline.
2297#
2298# @model: the baselined CpuModelInfo.
2299#
2300# Since: 2.8.0
2301##
2302{ 'struct': 'CpuModelBaselineInfo',
2303  'data': { 'model': 'CpuModelInfo' } }
2304
2305##
2306# @query-cpu-model-baseline:
2307#
2308# Baseline two CPU models, creating a compatible third model. The created
2309# model will always be a static, migration-safe CPU model (see "static"
2310# CPU model expansion for details).
2311#
2312# This interface can be used by tooling to create a compatible CPU model out
2313# two CPU models. The created CPU model will be identical to or a subset of
2314# both CPU models when comparing them. Therefore, the created CPU model is
2315# guaranteed to run where the given CPU models run.
2316#
2317# The result returned by this command may be affected by:
2318#
2319# * QEMU version: CPU models may look different depending on the QEMU version.
2320#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2321# * machine-type: CPU model may look different depending on the machine-type.
2322#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2323# * machine options (including accelerator): in some architectures, CPU models
2324#   may look different depending on machine and accelerator options. (Except for
2325#   CPU models reported as "static" in query-cpu-definitions.)
2326# * "-cpu" arguments and global properties: arguments to the -cpu option and
2327#   global properties may affect expansion of CPU models. Using
2328#   query-cpu-model-expansion while using these is not advised.
2329#
2330# Some architectures may not support baselining CPU models. s390x supports
2331# baselining CPU models.
2332#
2333# Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
2334#          not supported, if a model cannot be used, if a model contains
2335#          an unknown cpu definition name, unknown properties or properties
2336#          with wrong types.
2337#
2338# Since: 2.8.0
2339##
2340{ 'command': 'query-cpu-model-baseline',
2341  'data': { 'modela': 'CpuModelInfo',
2342            'modelb': 'CpuModelInfo' },
2343  'returns': 'CpuModelBaselineInfo' }
2344
2345##
2346# @AddfdInfo:
2347#
2348# Information about a file descriptor that was added to an fd set.
2349#
2350# @fdset-id: The ID of the fd set that @fd was added to.
2351#
2352# @fd: The file descriptor that was received via SCM rights and
2353#      added to the fd set.
2354#
2355# Since: 1.2.0
2356##
2357{ 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2358
2359##
2360# @add-fd:
2361#
2362# Add a file descriptor, that was passed via SCM rights, to an fd set.
2363#
2364# @fdset-id: The ID of the fd set to add the file descriptor to.
2365#
2366# @opaque: A free-form string that can be used to describe the fd.
2367#
2368# Returns: @AddfdInfo on success
2369#
2370#          If file descriptor was not received, FdNotSupplied
2371#
2372#          If @fdset-id is a negative value, InvalidParameterValue
2373#
2374# Notes: The list of fd sets is shared by all monitor connections.
2375#
2376#        If @fdset-id is not specified, a new fd set will be created.
2377#
2378# Since: 1.2.0
2379#
2380# Example:
2381#
2382# -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2383# <- { "return": { "fdset-id": 1, "fd": 3 } }
2384#
2385##
2386{ 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
2387  'returns': 'AddfdInfo' }
2388
2389##
2390# @remove-fd:
2391#
2392# Remove a file descriptor from an fd set.
2393#
2394# @fdset-id: The ID of the fd set that the file descriptor belongs to.
2395#
2396# @fd: The file descriptor that is to be removed.
2397#
2398# Returns: Nothing on success
2399#          If @fdset-id or @fd is not found, FdNotFound
2400#
2401# Since: 1.2.0
2402#
2403# Notes: The list of fd sets is shared by all monitor connections.
2404#
2405#        If @fd is not specified, all file descriptors in @fdset-id
2406#        will be removed.
2407#
2408# Example:
2409#
2410# -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2411# <- { "return": {} }
2412#
2413##
2414{ 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2415
2416##
2417# @FdsetFdInfo:
2418#
2419# Information about a file descriptor that belongs to an fd set.
2420#
2421# @fd: The file descriptor value.
2422#
2423# @opaque: A free-form string that can be used to describe the fd.
2424#
2425# Since: 1.2.0
2426##
2427{ 'struct': 'FdsetFdInfo',
2428  'data': {'fd': 'int', '*opaque': 'str'} }
2429
2430##
2431# @FdsetInfo:
2432#
2433# Information about an fd set.
2434#
2435# @fdset-id: The ID of the fd set.
2436#
2437# @fds: A list of file descriptors that belong to this fd set.
2438#
2439# Since: 1.2.0
2440##
2441{ 'struct': 'FdsetInfo',
2442  'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2443
2444##
2445# @query-fdsets:
2446#
2447# Return information describing all fd sets.
2448#
2449# Returns: A list of @FdsetInfo
2450#
2451# Since: 1.2.0
2452#
2453# Note: The list of fd sets is shared by all monitor connections.
2454#
2455# Example:
2456#
2457# -> { "execute": "query-fdsets" }
2458# <- { "return": [
2459#        {
2460#          "fds": [
2461#            {
2462#              "fd": 30,
2463#              "opaque": "rdonly:/path/to/file"
2464#            },
2465#            {
2466#              "fd": 24,
2467#              "opaque": "rdwr:/path/to/file"
2468#            }
2469#          ],
2470#          "fdset-id": 1
2471#        },
2472#        {
2473#          "fds": [
2474#            {
2475#              "fd": 28
2476#            },
2477#            {
2478#              "fd": 29
2479#            }
2480#          ],
2481#          "fdset-id": 0
2482#        }
2483#      ]
2484#    }
2485#
2486##
2487{ 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2488
2489##
2490# @TargetInfo:
2491#
2492# Information describing the QEMU target.
2493#
2494# @arch: the target architecture
2495#
2496# Since: 1.2.0
2497##
2498{ 'struct': 'TargetInfo',
2499  'data': { 'arch': 'SysEmuTarget' } }
2500
2501##
2502# @query-target:
2503#
2504# Return information about the target for this QEMU
2505#
2506# Returns: TargetInfo
2507#
2508# Since: 1.2.0
2509##
2510{ 'command': 'query-target', 'returns': 'TargetInfo' }
2511
2512##
2513# @AcpiTableOptions:
2514#
2515# Specify an ACPI table on the command line to load.
2516#
2517# At most one of @file and @data can be specified. The list of files specified
2518# by any one of them is loaded and concatenated in order. If both are omitted,
2519# @data is implied.
2520#
2521# Other fields / optargs can be used to override fields of the generic ACPI
2522# table header; refer to the ACPI specification 5.0, section 5.2.6 System
2523# Description Table Header. If a header field is not overridden, then the
2524# corresponding value from the concatenated blob is used (in case of @file), or
2525# it is filled in with a hard-coded value (in case of @data).
2526#
2527# String fields are copied into the matching ACPI member from lowest address
2528# upwards, and silently truncated / NUL-padded to length.
2529#
2530# @sig: table signature / identifier (4 bytes)
2531#
2532# @rev: table revision number (dependent on signature, 1 byte)
2533#
2534# @oem_id: OEM identifier (6 bytes)
2535#
2536# @oem_table_id: OEM table identifier (8 bytes)
2537#
2538# @oem_rev: OEM-supplied revision number (4 bytes)
2539#
2540# @asl_compiler_id: identifier of the utility that created the table
2541#                   (4 bytes)
2542#
2543# @asl_compiler_rev: revision number of the utility that created the
2544#                    table (4 bytes)
2545#
2546# @file: colon (:) separated list of pathnames to load and
2547#        concatenate as table data. The resultant binary blob is expected to
2548#        have an ACPI table header. At least one file is required. This field
2549#        excludes @data.
2550#
2551# @data: colon (:) separated list of pathnames to load and
2552#        concatenate as table data. The resultant binary blob must not have an
2553#        ACPI table header. At least one file is required. This field excludes
2554#        @file.
2555#
2556# Since: 1.5
2557##
2558{ 'struct': 'AcpiTableOptions',
2559  'data': {
2560    '*sig':               'str',
2561    '*rev':               'uint8',
2562    '*oem_id':            'str',
2563    '*oem_table_id':      'str',
2564    '*oem_rev':           'uint32',
2565    '*asl_compiler_id':   'str',
2566    '*asl_compiler_rev':  'uint32',
2567    '*file':              'str',
2568    '*data':              'str' }}
2569
2570##
2571# @CommandLineParameterType:
2572#
2573# Possible types for an option parameter.
2574#
2575# @string: accepts a character string
2576#
2577# @boolean: accepts "on" or "off"
2578#
2579# @number: accepts a number
2580#
2581# @size: accepts a number followed by an optional suffix (K)ilo,
2582#        (M)ega, (G)iga, (T)era
2583#
2584# Since: 1.5
2585##
2586{ 'enum': 'CommandLineParameterType',
2587  'data': ['string', 'boolean', 'number', 'size'] }
2588
2589##
2590# @CommandLineParameterInfo:
2591#
2592# Details about a single parameter of a command line option.
2593#
2594# @name: parameter name
2595#
2596# @type: parameter @CommandLineParameterType
2597#
2598# @help: human readable text string, not suitable for parsing.
2599#
2600# @default: default value string (since 2.1)
2601#
2602# Since: 1.5
2603##
2604{ 'struct': 'CommandLineParameterInfo',
2605  'data': { 'name': 'str',
2606            'type': 'CommandLineParameterType',
2607            '*help': 'str',
2608            '*default': 'str' } }
2609
2610##
2611# @CommandLineOptionInfo:
2612#
2613# Details about a command line option, including its list of parameter details
2614#
2615# @option: option name
2616#
2617# @parameters: an array of @CommandLineParameterInfo
2618#
2619# Since: 1.5
2620##
2621{ 'struct': 'CommandLineOptionInfo',
2622  'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2623
2624##
2625# @query-command-line-options:
2626#
2627# Query command line option schema.
2628#
2629# @option: option name
2630#
2631# Returns: list of @CommandLineOptionInfo for all options (or for the given
2632#          @option).  Returns an error if the given @option doesn't exist.
2633#
2634# Since: 1.5
2635#
2636# Example:
2637#
2638# -> { "execute": "query-command-line-options",
2639#      "arguments": { "option": "option-rom" } }
2640# <- { "return": [
2641#         {
2642#             "parameters": [
2643#                 {
2644#                     "name": "romfile",
2645#                     "type": "string"
2646#                 },
2647#                 {
2648#                     "name": "bootindex",
2649#                     "type": "number"
2650#                 }
2651#             ],
2652#             "option": "option-rom"
2653#         }
2654#      ]
2655#    }
2656#
2657##
2658{'command': 'query-command-line-options', 'data': { '*option': 'str' },
2659 'returns': ['CommandLineOptionInfo'] }
2660
2661##
2662# @X86CPURegister32:
2663#
2664# A X86 32-bit register
2665#
2666# Since: 1.5
2667##
2668{ 'enum': 'X86CPURegister32',
2669  'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2670
2671##
2672# @X86CPUFeatureWordInfo:
2673#
2674# Information about a X86 CPU feature word
2675#
2676# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2677#
2678# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2679#                   feature word
2680#
2681# @cpuid-register: Output register containing the feature bits
2682#
2683# @features: value of output register, containing the feature bits
2684#
2685# Since: 1.5
2686##
2687{ 'struct': 'X86CPUFeatureWordInfo',
2688  'data': { 'cpuid-input-eax': 'int',
2689            '*cpuid-input-ecx': 'int',
2690            'cpuid-register': 'X86CPURegister32',
2691            'features': 'int' } }
2692
2693##
2694# @DummyForceArrays:
2695#
2696# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2697#
2698# Since: 2.5
2699##
2700{ 'struct': 'DummyForceArrays',
2701  'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2702
2703
2704##
2705# @NumaOptionsType:
2706#
2707# @node: NUMA nodes configuration
2708#
2709# @dist: NUMA distance configuration (since 2.10)
2710#
2711# @cpu: property based CPU(s) to node mapping (Since: 2.10)
2712#
2713# Since: 2.1
2714##
2715{ 'enum': 'NumaOptionsType',
2716  'data': [ 'node', 'dist', 'cpu' ] }
2717
2718##
2719# @NumaOptions:
2720#
2721# A discriminated record of NUMA options. (for OptsVisitor)
2722#
2723# Since: 2.1
2724##
2725{ 'union': 'NumaOptions',
2726  'base': { 'type': 'NumaOptionsType' },
2727  'discriminator': 'type',
2728  'data': {
2729    'node': 'NumaNodeOptions',
2730    'dist': 'NumaDistOptions',
2731    'cpu': 'NumaCpuOptions' }}
2732
2733##
2734# @NumaNodeOptions:
2735#
2736# Create a guest NUMA node. (for OptsVisitor)
2737#
2738# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2739#
2740# @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2741#         if omitted)
2742#
2743# @mem: memory size of this node; mutually exclusive with @memdev.
2744#       Equally divide total memory among nodes if both @mem and @memdev are
2745#       omitted.
2746#
2747# @memdev: memory backend object.  If specified for one node,
2748#          it must be specified for all nodes.
2749#
2750# Since: 2.1
2751##
2752{ 'struct': 'NumaNodeOptions',
2753  'data': {
2754   '*nodeid': 'uint16',
2755   '*cpus':   ['uint16'],
2756   '*mem':    'size',
2757   '*memdev': 'str' }}
2758
2759##
2760# @NumaDistOptions:
2761#
2762# Set the distance between 2 NUMA nodes.
2763#
2764# @src: source NUMA node.
2765#
2766# @dst: destination NUMA node.
2767#
2768# @val: NUMA distance from source node to destination node.
2769#       When a node is unreachable from another node, set the distance
2770#       between them to 255.
2771#
2772# Since: 2.10
2773##
2774{ 'struct': 'NumaDistOptions',
2775  'data': {
2776   'src': 'uint16',
2777   'dst': 'uint16',
2778   'val': 'uint8' }}
2779
2780##
2781# @NumaCpuOptions:
2782#
2783# Option "-numa cpu" overrides default cpu to node mapping.
2784# It accepts the same set of cpu properties as returned by
2785# query-hotpluggable-cpus[].props, where node-id could be used to
2786# override default node mapping.
2787#
2788# Since: 2.10
2789##
2790{ 'struct': 'NumaCpuOptions',
2791   'base': 'CpuInstanceProperties',
2792   'data' : {} }
2793
2794##
2795# @HostMemPolicy:
2796#
2797# Host memory policy types
2798#
2799# @default: restore default policy, remove any nondefault policy
2800#
2801# @preferred: set the preferred host nodes for allocation
2802#
2803# @bind: a strict policy that restricts memory allocation to the
2804#        host nodes specified
2805#
2806# @interleave: memory allocations are interleaved across the set
2807#              of host nodes specified
2808#
2809# Since: 2.1
2810##
2811{ 'enum': 'HostMemPolicy',
2812  'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2813
2814##
2815# @Memdev:
2816#
2817# Information about memory backend
2818#
2819# @id: backend's ID if backend has 'id' property (since 2.9)
2820#
2821# @size: memory backend size
2822#
2823# @merge: enables or disables memory merge support
2824#
2825# @dump: includes memory backend's memory in a core dump or not
2826#
2827# @prealloc: enables or disables memory preallocation
2828#
2829# @host-nodes: host nodes for its memory policy
2830#
2831# @policy: memory policy of memory backend
2832#
2833# Since: 2.1
2834##
2835{ 'struct': 'Memdev',
2836  'data': {
2837    '*id':        'str',
2838    'size':       'size',
2839    'merge':      'bool',
2840    'dump':       'bool',
2841    'prealloc':   'bool',
2842    'host-nodes': ['uint16'],
2843    'policy':     'HostMemPolicy' }}
2844
2845##
2846# @query-memdev:
2847#
2848# Returns information for all memory backends.
2849#
2850# Returns: a list of @Memdev.
2851#
2852# Since: 2.1
2853#
2854# Example:
2855#
2856# -> { "execute": "query-memdev" }
2857# <- { "return": [
2858#        {
2859#          "id": "mem1",
2860#          "size": 536870912,
2861#          "merge": false,
2862#          "dump": true,
2863#          "prealloc": false,
2864#          "host-nodes": [0, 1],
2865#          "policy": "bind"
2866#        },
2867#        {
2868#          "size": 536870912,
2869#          "merge": false,
2870#          "dump": true,
2871#          "prealloc": true,
2872#          "host-nodes": [2, 3],
2873#          "policy": "preferred"
2874#        }
2875#      ]
2876#    }
2877#
2878##
2879{ 'command': 'query-memdev', 'returns': ['Memdev'] }
2880
2881##
2882# @PCDIMMDeviceInfo:
2883#
2884# PCDIMMDevice state information
2885#
2886# @id: device's ID
2887#
2888# @addr: physical address, where device is mapped
2889#
2890# @size: size of memory that the device provides
2891#
2892# @slot: slot number at which device is plugged in
2893#
2894# @node: NUMA node number where device is plugged in
2895#
2896# @memdev: memory backend linked with device
2897#
2898# @hotplugged: true if device was hotplugged
2899#
2900# @hotpluggable: true if device if could be added/removed while machine is running
2901#
2902# Since: 2.1
2903##
2904{ 'struct': 'PCDIMMDeviceInfo',
2905  'data': { '*id': 'str',
2906            'addr': 'int',
2907            'size': 'int',
2908            'slot': 'int',
2909            'node': 'int',
2910            'memdev': 'str',
2911            'hotplugged': 'bool',
2912            'hotpluggable': 'bool'
2913          }
2914}
2915
2916##
2917# @MemoryDeviceInfo:
2918#
2919# Union containing information about a memory device
2920#
2921# Since: 2.1
2922##
2923{ 'union': 'MemoryDeviceInfo',
2924  'data': { 'dimm': 'PCDIMMDeviceInfo',
2925            'nvdimm': 'PCDIMMDeviceInfo'
2926          }
2927}
2928
2929##
2930# @query-memory-devices:
2931#
2932# Lists available memory devices and their state
2933#
2934# Since: 2.1
2935#
2936# Example:
2937#
2938# -> { "execute": "query-memory-devices" }
2939# <- { "return": [ { "data":
2940#                       { "addr": 5368709120,
2941#                         "hotpluggable": true,
2942#                         "hotplugged": true,
2943#                         "id": "d1",
2944#                         "memdev": "/objects/memX",
2945#                         "node": 0,
2946#                         "size": 1073741824,
2947#                         "slot": 0},
2948#                    "type": "dimm"
2949#                  } ] }
2950#
2951##
2952{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2953
2954##
2955# @MEM_UNPLUG_ERROR:
2956#
2957# Emitted when memory hot unplug error occurs.
2958#
2959# @device: device name
2960#
2961# @msg: Informative message
2962#
2963# Since: 2.4
2964#
2965# Example:
2966#
2967# <- { "event": "MEM_UNPLUG_ERROR"
2968#      "data": { "device": "dimm1",
2969#                "msg": "acpi: device unplug for unsupported device"
2970#      },
2971#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2972#
2973##
2974{ 'event': 'MEM_UNPLUG_ERROR',
2975  'data': { 'device': 'str', 'msg': 'str' } }
2976
2977##
2978# @ACPISlotType:
2979#
2980# @DIMM: memory slot
2981# @CPU: logical CPU slot (since 2.7)
2982##
2983{ 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
2984
2985##
2986# @ACPIOSTInfo:
2987#
2988# OSPM Status Indication for a device
2989# For description of possible values of @source and @status fields
2990# see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
2991#
2992# @device: device ID associated with slot
2993#
2994# @slot: slot ID, unique per slot of a given @slot-type
2995#
2996# @slot-type: type of the slot
2997#
2998# @source: an integer containing the source event
2999#
3000# @status: an integer containing the status code
3001#
3002# Since: 2.1
3003##
3004{ 'struct': 'ACPIOSTInfo',
3005  'data'  : { '*device': 'str',
3006              'slot': 'str',
3007              'slot-type': 'ACPISlotType',
3008              'source': 'int',
3009              'status': 'int' } }
3010
3011##
3012# @query-acpi-ospm-status:
3013#
3014# Return a list of ACPIOSTInfo for devices that support status
3015# reporting via ACPI _OST method.
3016#
3017# Since: 2.1
3018#
3019# Example:
3020#
3021# -> { "execute": "query-acpi-ospm-status" }
3022# <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
3023#                  { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
3024#                  { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
3025#                  { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
3026#    ]}
3027#
3028##
3029{ 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
3030
3031##
3032# @ACPI_DEVICE_OST:
3033#
3034# Emitted when guest executes ACPI _OST method.
3035#
3036# @info: OSPM Status Indication
3037#
3038# Since: 2.1
3039#
3040# Example:
3041#
3042# <- { "event": "ACPI_DEVICE_OST",
3043#      "data": { "device": "d1", "slot": "0",
3044#                "slot-type": "DIMM", "source": 1, "status": 0 } }
3045#
3046##
3047{ 'event': 'ACPI_DEVICE_OST',
3048     'data': { 'info': 'ACPIOSTInfo' } }
3049
3050##
3051# @rtc-reset-reinjection:
3052#
3053# This command will reset the RTC interrupt reinjection backlog.
3054# Can be used if another mechanism to synchronize guest time
3055# is in effect, for example QEMU guest agent's guest-set-time
3056# command.
3057#
3058# Since: 2.1
3059#
3060# Example:
3061#
3062# -> { "execute": "rtc-reset-reinjection" }
3063# <- { "return": {} }
3064#
3065##
3066{ 'command': 'rtc-reset-reinjection' }
3067
3068##
3069# @RTC_CHANGE:
3070#
3071# Emitted when the guest changes the RTC time.
3072#
3073# @offset: offset between base RTC clock (as specified by -rtc base), and
3074#          new RTC clock value
3075#
3076# Note: This event is rate-limited.
3077#
3078# Since: 0.13.0
3079#
3080# Example:
3081#
3082# <-   { "event": "RTC_CHANGE",
3083#        "data": { "offset": 78 },
3084#        "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
3085#
3086##
3087{ 'event': 'RTC_CHANGE',
3088  'data': { 'offset': 'int' } }
3089
3090##
3091# @ReplayMode:
3092#
3093# Mode of the replay subsystem.
3094#
3095# @none: normal execution mode. Replay or record are not enabled.
3096#
3097# @record: record mode. All non-deterministic data is written into the
3098#          replay log.
3099#
3100# @play: replay mode. Non-deterministic data required for system execution
3101#        is read from the log.
3102#
3103# Since: 2.5
3104##
3105{ 'enum': 'ReplayMode',
3106  'data': [ 'none', 'record', 'play' ] }
3107
3108##
3109# @xen-load-devices-state:
3110#
3111# Load the state of all devices from file. The RAM and the block devices
3112# of the VM are not loaded by this command.
3113#
3114# @filename: the file to load the state of the devices from as binary
3115# data. See xen-save-devices-state.txt for a description of the binary
3116# format.
3117#
3118# Since: 2.7
3119#
3120# Example:
3121#
3122# -> { "execute": "xen-load-devices-state",
3123#      "arguments": { "filename": "/tmp/resume" } }
3124# <- { "return": {} }
3125#
3126##
3127{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
3128
3129##
3130# @GICCapability:
3131#
3132# The struct describes capability for a specific GIC (Generic
3133# Interrupt Controller) version. These bits are not only decided by
3134# QEMU/KVM software version, but also decided by the hardware that
3135# the program is running upon.
3136#
3137# @version:  version of GIC to be described. Currently, only 2 and 3
3138#            are supported.
3139#
3140# @emulated: whether current QEMU/hardware supports emulated GIC
3141#            device in user space.
3142#
3143# @kernel:   whether current QEMU/hardware supports hardware
3144#            accelerated GIC device in kernel.
3145#
3146# Since: 2.6
3147##
3148{ 'struct': 'GICCapability',
3149  'data': { 'version': 'int',
3150            'emulated': 'bool',
3151            'kernel': 'bool' } }
3152
3153##
3154# @query-gic-capabilities:
3155#
3156# This command is ARM-only. It will return a list of GICCapability
3157# objects that describe its capability bits.
3158#
3159# Returns: a list of GICCapability objects.
3160#
3161# Since: 2.6
3162#
3163# Example:
3164#
3165# -> { "execute": "query-gic-capabilities" }
3166# <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
3167#                 { "version": 3, "emulated": false, "kernel": true } ] }
3168#
3169##
3170{ 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
3171
3172##
3173# @CpuInstanceProperties:
3174#
3175# List of properties to be used for hotplugging a CPU instance,
3176# it should be passed by management with device_add command when
3177# a CPU is being hotplugged.
3178#
3179# @node-id: NUMA node ID the CPU belongs to
3180# @socket-id: socket number within node/board the CPU belongs to
3181# @core-id: core number within socket the CPU belongs to
3182# @thread-id: thread number within core the CPU belongs to
3183#
3184# Note: currently there are 4 properties that could be present
3185# but management should be prepared to pass through other
3186# properties with device_add command to allow for future
3187# interface extension. This also requires the filed names to be kept in
3188# sync with the properties passed to -device/device_add.
3189#
3190# Since: 2.7
3191##
3192{ 'struct': 'CpuInstanceProperties',
3193  'data': { '*node-id': 'int',
3194            '*socket-id': 'int',
3195            '*core-id': 'int',
3196            '*thread-id': 'int'
3197  }
3198}
3199
3200##
3201# @HotpluggableCPU:
3202#
3203# @type: CPU object type for usage with device_add command
3204# @props: list of properties to be used for hotplugging CPU
3205# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
3206# @qom-path: link to existing CPU object if CPU is present or
3207#            omitted if CPU is not present.
3208#
3209# Since: 2.7
3210##
3211{ 'struct': 'HotpluggableCPU',
3212  'data': { 'type': 'str',
3213            'vcpus-count': 'int',
3214            'props': 'CpuInstanceProperties',
3215            '*qom-path': 'str'
3216          }
3217}
3218
3219##
3220# @query-hotpluggable-cpus:
3221#
3222# Returns: a list of HotpluggableCPU objects.
3223#
3224# Since: 2.7
3225#
3226# Example:
3227#
3228# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
3229#
3230# -> { "execute": "query-hotpluggable-cpus" }
3231# <- {"return": [
3232#      { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
3233#        "vcpus-count": 1 },
3234#      { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
3235#        "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
3236#    ]}'
3237#
3238# For pc machine type started with -smp 1,maxcpus=2:
3239#
3240# -> { "execute": "query-hotpluggable-cpus" }
3241# <- {"return": [
3242#      {
3243#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3244#         "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
3245#      },
3246#      {
3247#         "qom-path": "/machine/unattached/device[0]",
3248#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3249#         "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
3250#      }
3251#    ]}
3252#
3253# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
3254# (Since: 2.11):
3255#
3256# -> { "execute": "query-hotpluggable-cpus" }
3257# <- {"return": [
3258#      {
3259#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
3260#         "props": { "core-id": 1 }
3261#      },
3262#      {
3263#         "qom-path": "/machine/unattached/device[0]",
3264#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
3265#         "props": { "core-id": 0 }
3266#      }
3267#    ]}
3268#
3269##
3270{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'] }
3271
3272##
3273# @GuidInfo:
3274#
3275# GUID information.
3276#
3277# @guid: the globally unique identifier
3278#
3279# Since: 2.9
3280##
3281{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3282
3283##
3284# @query-vm-generation-id:
3285#
3286# Show Virtual Machine Generation ID
3287#
3288# Since: 2.9
3289##
3290{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
3291
3292
3293##
3294# @SevState:
3295#
3296# An enumeration of SEV state information used during @query-sev.
3297#
3298# @uninit: The guest is uninitialized.
3299#
3300# @launch-update: The guest is currently being launched; plaintext data and
3301#                 register state is being imported.
3302#
3303# @launch-secret: The guest is currently being launched; ciphertext data
3304#                 is being imported.
3305#
3306# @running: The guest is fully launched or migrated in.
3307#
3308# @send-update: The guest is currently being migrated out to another machine.
3309#
3310# @receive-update: The guest is currently being migrated from another machine.
3311#
3312# Since: 2.12
3313##
3314{ 'enum': 'SevState',
3315  'data': ['uninit', 'launch-update', 'launch-secret', 'running',
3316           'send-update', 'receive-update' ] }
3317
3318##
3319# @SevInfo:
3320#
3321# Information about Secure Encrypted Virtualization (SEV) support
3322#
3323# @enabled: true if SEV is active
3324#
3325# @api-major: SEV API major version
3326#
3327# @api-minor: SEV API minor version
3328#
3329# @build-id: SEV FW build id
3330#
3331# @policy: SEV policy value
3332#
3333# @state: SEV guest state
3334#
3335# @handle: SEV firmware handle
3336#
3337# Since: 2.12
3338##
3339{ 'struct': 'SevInfo',
3340    'data': { 'enabled': 'bool',
3341              'api-major': 'uint8',
3342              'api-minor' : 'uint8',
3343              'build-id' : 'uint8',
3344              'policy' : 'uint32',
3345              'state' : 'SevState',
3346              'handle' : 'uint32'
3347            }
3348}
3349
3350##
3351# @query-sev:
3352#
3353# Returns information about SEV
3354#
3355# Returns: @SevInfo
3356#
3357# Since: 2.12
3358#
3359# Example:
3360#
3361# -> { "execute": "query-sev" }
3362# <- { "return": { "enabled": true, "api-major" : 0, "api-minor" : 0,
3363#                  "build-id" : 0, "policy" : 0, "state" : "running",
3364#                  "handle" : 1 } }
3365#
3366##
3367{ 'command': 'query-sev', 'returns': 'SevInfo' }
3368
3369##
3370# @SevLaunchMeasureInfo:
3371#
3372# SEV Guest Launch measurement information
3373#
3374# @data: the measurement value encoded in base64
3375#
3376# Since: 2.12
3377#
3378##
3379{ 'struct': 'SevLaunchMeasureInfo', 'data': {'data': 'str'} }
3380
3381##
3382# @query-sev-launch-measure:
3383#
3384# Query the SEV guest launch information.
3385#
3386# Returns: The @SevLaunchMeasureInfo for the guest
3387#
3388# Since: 2.12
3389#
3390# Example:
3391#
3392# -> { "execute": "query-sev-launch-measure" }
3393# <- { "return": { "data": "4l8LXeNlSPUDlXPJG5966/8%YZ" } }
3394#
3395##
3396{ 'command': 'query-sev-launch-measure', 'returns': 'SevLaunchMeasureInfo' }
3397
3398##
3399# @SevCapability:
3400#
3401# The struct describes capability for a Secure Encrypted Virtualization
3402# feature.
3403#
3404# @pdh:  Platform Diffie-Hellman key (base64 encoded)
3405#
3406# @cert-chain:  PDH certificate chain (base64 encoded)
3407#
3408# @cbitpos: C-bit location in page table entry
3409#
3410# @reduced-phys-bits: Number of physical Address bit reduction when SEV is
3411#                     enabled
3412#
3413# Since: 2.12
3414##
3415{ 'struct': 'SevCapability',
3416  'data': { 'pdh': 'str',
3417            'cert-chain': 'str',
3418            'cbitpos': 'int',
3419            'reduced-phys-bits': 'int'} }
3420
3421##
3422# @query-sev-capabilities:
3423#
3424# This command is used to get the SEV capabilities, and is supported on AMD
3425# X86 platforms only.
3426#
3427# Returns: SevCapability objects.
3428#
3429# Since: 2.12
3430#
3431# Example:
3432#
3433# -> { "execute": "query-sev-capabilities" }
3434# <- { "return": { "pdh": "8CCDD8DDD", "cert-chain": "888CCCDDDEE",
3435#                  "cbitpos": 47, "reduced-phys-bits": 5}}
3436#
3437##
3438{ 'command': 'query-sev-capabilities', 'returns': 'SevCapability' }
3439
3440##
3441# @CommandDropReason:
3442#
3443# Reasons that caused one command to be dropped.
3444#
3445# @queue-full: the command queue is full. This can only occur when
3446#              the client sends a new non-oob command before the
3447#              response to the previous non-oob command has been
3448#              received.
3449#
3450# Since: 2.12
3451##
3452{ 'enum': 'CommandDropReason',
3453  'data': [ 'queue-full' ] }
3454
3455##
3456# @COMMAND_DROPPED:
3457#
3458# Emitted when a command is dropped due to some reason.  Commands can
3459# only be dropped when the oob capability is enabled.
3460#
3461# @id: The dropped command's "id" field.
3462#
3463# @reason: The reason why the command is dropped.
3464#
3465# Since: 2.12
3466#
3467# Example:
3468#
3469# { "event": "COMMAND_DROPPED",
3470#   "data": {"result": {"id": "libvirt-102",
3471#                       "reason": "queue-full" } } }
3472#
3473##
3474{ 'event': 'COMMAND_DROPPED' ,
3475  'data': { 'id': 'any', 'reason': 'CommandDropReason' } }
3476
3477##
3478# @x-oob-test:
3479#
3480# Test OOB functionality.  When sending this command with lock=true,
3481# it'll try to hang the dispatcher.  When sending it with lock=false,
3482# it'll try to notify the locked thread to continue.  Note: it should
3483# only be used by QMP test program rather than anything else.
3484#
3485# Since: 2.12
3486#
3487# Example:
3488#
3489# { "execute": "x-oob-test",
3490#   "arguments": { "lock": true } }
3491##
3492{ 'command': 'x-oob-test', 'data' : { 'lock': 'bool' },
3493  'allow-oob': true }
3494