xref: /openbmc/qemu/qapi/misc.json (revision 604dfaaa3270081da689991afe83d94d3e8231df)
1# -*- Mode: Python -*-
2#
3
4##
5# = Miscellanea
6##
7
8{ 'include': 'common.json' }
9
10##
11# @qmp_capabilities:
12#
13# Enable QMP capabilities.
14#
15# Arguments:
16#
17# @enable:   An optional list of QMPCapability values to enable.  The
18#            client must not enable any capability that is not
19#            mentioned in the QMP greeting message.  If the field is not
20#            provided, it means no QMP capabilities will be enabled.
21#            (since 2.12)
22#
23# Example:
24#
25# -> { "execute": "qmp_capabilities",
26#      "arguments": { "enable": [ "oob" ] } }
27# <- { "return": {} }
28#
29# Notes: This command is valid exactly when first connecting: it must be
30# issued before any other command will be accepted, and will fail once the
31# monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
32#
33# The QMP client needs to explicitly enable QMP capabilities, otherwise
34# all the QMP capabilities will be turned off by default.
35#
36# Since: 0.13
37#
38##
39{ 'command': 'qmp_capabilities',
40  'data': { '*enable': [ 'QMPCapability' ] },
41  'allow-preconfig': true }
42
43##
44# @QMPCapability:
45#
46# Enumeration of capabilities to be advertised during initial client
47# connection, used for agreeing on particular QMP extension behaviors.
48#
49# @oob:   QMP ability to support Out-Of-Band requests.
50#         (Please refer to qmp-spec.txt for more information on OOB)
51#
52# Since: 2.12
53#
54##
55{ 'enum': 'QMPCapability',
56  'data': [ 'oob' ] }
57
58##
59# @VersionTriple:
60#
61# A three-part version number.
62#
63# @major:  The major version number.
64#
65# @minor:  The minor version number.
66#
67# @micro:  The micro version number.
68#
69# Since: 2.4
70##
71{ 'struct': 'VersionTriple',
72  'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
73
74
75##
76# @VersionInfo:
77#
78# A description of QEMU's version.
79#
80# @qemu:        The version of QEMU.  By current convention, a micro
81#               version of 50 signifies a development branch.  A micro version
82#               greater than or equal to 90 signifies a release candidate for
83#               the next minor version.  A micro version of less than 50
84#               signifies a stable release.
85#
86# @package:     QEMU will always set this field to an empty string.  Downstream
87#               versions of QEMU should set this to a non-empty string.  The
88#               exact format depends on the downstream however it highly
89#               recommended that a unique name is used.
90#
91# Since: 0.14.0
92##
93{ 'struct': 'VersionInfo',
94  'data': {'qemu': 'VersionTriple', 'package': 'str'} }
95
96##
97# @query-version:
98#
99# Returns the current version of QEMU.
100#
101# Returns:  A @VersionInfo object describing the current version of QEMU.
102#
103# Since: 0.14.0
104#
105# Example:
106#
107# -> { "execute": "query-version" }
108# <- {
109#       "return":{
110#          "qemu":{
111#             "major":0,
112#             "minor":11,
113#             "micro":5
114#          },
115#          "package":""
116#       }
117#    }
118#
119##
120{ 'command': 'query-version', 'returns': 'VersionInfo' }
121
122##
123# @CommandInfo:
124#
125# Information about a QMP command
126#
127# @name: The command name
128#
129# Since: 0.14.0
130##
131{ 'struct': 'CommandInfo', 'data': {'name': 'str'} }
132
133##
134# @query-commands:
135#
136# Return a list of supported QMP commands by this server
137#
138# Returns: A list of @CommandInfo for all supported commands
139#
140# Since: 0.14.0
141#
142# Example:
143#
144# -> { "execute": "query-commands" }
145# <- {
146#      "return":[
147#         {
148#            "name":"query-balloon"
149#         },
150#         {
151#            "name":"system_powerdown"
152#         }
153#      ]
154#    }
155#
156# Note: This example has been shortened as the real response is too long.
157#
158##
159{ 'command': 'query-commands', 'returns': ['CommandInfo'],
160  'allow-preconfig': true }
161
162##
163# @LostTickPolicy:
164#
165# Policy for handling lost ticks in timer devices.
166#
167# @discard: throw away the missed tick(s) and continue with future injection
168#           normally.  Guest time may be delayed, unless the OS has explicit
169#           handling of lost ticks
170#
171# @delay: continue to deliver ticks at the normal rate.  Guest time will be
172#         delayed due to the late tick
173#
174# @merge: merge the missed tick(s) into one tick and inject.  Guest time
175#         may be delayed, depending on how the OS reacts to the merging
176#         of ticks
177#
178# @slew: deliver ticks at a higher rate to catch up with the missed tick. The
179#        guest time should not be delayed once catchup is complete.
180#
181# Since: 2.0
182##
183{ 'enum': 'LostTickPolicy',
184  'data': ['discard', 'delay', 'merge', 'slew' ] }
185
186##
187# @add_client:
188#
189# Allow client connections for VNC, Spice and socket based
190# character devices to be passed in to QEMU via SCM_RIGHTS.
191#
192# @protocol: protocol name. Valid names are "vnc", "spice" or the
193#            name of a character device (eg. from -chardev id=XXXX)
194#
195# @fdname: file descriptor name previously passed via 'getfd' command
196#
197# @skipauth: whether to skip authentication. Only applies
198#            to "vnc" and "spice" protocols
199#
200# @tls: whether to perform TLS. Only applies to the "spice"
201#       protocol
202#
203# Returns: nothing on success.
204#
205# Since: 0.14.0
206#
207# Example:
208#
209# -> { "execute": "add_client", "arguments": { "protocol": "vnc",
210#                                              "fdname": "myclient" } }
211# <- { "return": {} }
212#
213##
214{ 'command': 'add_client',
215  'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
216            '*tls': 'bool' } }
217
218##
219# @NameInfo:
220#
221# Guest name information.
222#
223# @name: The name of the guest
224#
225# Since: 0.14.0
226##
227{ 'struct': 'NameInfo', 'data': {'*name': 'str'} }
228
229##
230# @query-name:
231#
232# Return the name information of a guest.
233#
234# Returns: @NameInfo of the guest
235#
236# Since: 0.14.0
237#
238# Example:
239#
240# -> { "execute": "query-name" }
241# <- { "return": { "name": "qemu-name" } }
242#
243##
244{ 'command': 'query-name', 'returns': 'NameInfo' }
245
246##
247# @KvmInfo:
248#
249# Information about support for KVM acceleration
250#
251# @enabled: true if KVM acceleration is active
252#
253# @present: true if KVM acceleration is built into this executable
254#
255# Since: 0.14.0
256##
257{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
258
259##
260# @query-kvm:
261#
262# Returns information about KVM acceleration
263#
264# Returns: @KvmInfo
265#
266# Since: 0.14.0
267#
268# Example:
269#
270# -> { "execute": "query-kvm" }
271# <- { "return": { "enabled": true, "present": true } }
272#
273##
274{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
275
276##
277# @UuidInfo:
278#
279# Guest UUID information (Universally Unique Identifier).
280#
281# @UUID: the UUID of the guest
282#
283# Since: 0.14.0
284#
285# Notes: If no UUID was specified for the guest, a null UUID is returned.
286##
287{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
288
289##
290# @query-uuid:
291#
292# Query the guest UUID information.
293#
294# Returns: The @UuidInfo for the guest
295#
296# Since: 0.14.0
297#
298# Example:
299#
300# -> { "execute": "query-uuid" }
301# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
302#
303##
304{ 'command': 'query-uuid', 'returns': 'UuidInfo' }
305
306##
307# @EventInfo:
308#
309# Information about a QMP event
310#
311# @name: The event name
312#
313# Since: 1.2.0
314##
315{ 'struct': 'EventInfo', 'data': {'name': 'str'} }
316
317##
318# @query-events:
319#
320# Return a list of supported QMP events by this server
321#
322# Returns: A list of @EventInfo for all supported events
323#
324# Since: 1.2.0
325#
326# Example:
327#
328# -> { "execute": "query-events" }
329# <- {
330#      "return": [
331#          {
332#             "name":"SHUTDOWN"
333#          },
334#          {
335#             "name":"RESET"
336#          }
337#       ]
338#    }
339#
340# Note: This example has been shortened as the real response is too long.
341#
342##
343{ 'command': 'query-events', 'returns': ['EventInfo'] }
344
345##
346# @CpuInfoArch:
347#
348# An enumeration of cpu types that enable additional information during
349# @query-cpus and @query-cpus-fast.
350#
351# @s390: since 2.12
352#
353# @riscv: since 2.12
354#
355# Since: 2.6
356##
357{ 'enum': 'CpuInfoArch',
358  'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] }
359
360##
361# @CpuInfo:
362#
363# Information about a virtual CPU
364#
365# @CPU: the index of the virtual CPU
366#
367# @current: this only exists for backwards compatibility and should be ignored
368#
369# @halted: true if the virtual CPU is in the halt state.  Halt usually refers
370#          to a processor specific low power mode.
371#
372# @qom_path: path to the CPU object in the QOM tree (since 2.4)
373#
374# @thread_id: ID of the underlying host thread
375#
376# @props: properties describing to which node/socket/core/thread
377#         virtual CPU belongs to, provided if supported by board (since 2.10)
378#
379# @arch: architecture of the cpu, which determines which additional fields
380#        will be listed (since 2.6)
381#
382# Since: 0.14.0
383#
384# Notes: @halted is a transient state that changes frequently.  By the time the
385#        data is sent to the client, the guest may no longer be halted.
386##
387{ 'union': 'CpuInfo',
388  'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
389           'qom_path': 'str', 'thread_id': 'int',
390           '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
391  'discriminator': 'arch',
392  'data': { 'x86': 'CpuInfoX86',
393            'sparc': 'CpuInfoSPARC',
394            'ppc': 'CpuInfoPPC',
395            'mips': 'CpuInfoMIPS',
396            'tricore': 'CpuInfoTricore',
397            's390': 'CpuInfoS390',
398            'riscv': 'CpuInfoRISCV',
399            'other': 'CpuInfoOther' } }
400
401##
402# @CpuInfoX86:
403#
404# Additional information about a virtual i386 or x86_64 CPU
405#
406# @pc: the 64-bit instruction pointer
407#
408# Since: 2.6
409##
410{ 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
411
412##
413# @CpuInfoSPARC:
414#
415# Additional information about a virtual SPARC CPU
416#
417# @pc: the PC component of the instruction pointer
418#
419# @npc: the NPC component of the instruction pointer
420#
421# Since: 2.6
422##
423{ 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
424
425##
426# @CpuInfoPPC:
427#
428# Additional information about a virtual PPC CPU
429#
430# @nip: the instruction pointer
431#
432# Since: 2.6
433##
434{ 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
435
436##
437# @CpuInfoMIPS:
438#
439# Additional information about a virtual MIPS CPU
440#
441# @PC: the instruction pointer
442#
443# Since: 2.6
444##
445{ 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
446
447##
448# @CpuInfoTricore:
449#
450# Additional information about a virtual Tricore CPU
451#
452# @PC: the instruction pointer
453#
454# Since: 2.6
455##
456{ 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
457
458##
459# @CpuInfoRISCV:
460#
461# Additional information about a virtual RISCV CPU
462#
463# @pc: the instruction pointer
464#
465# Since 2.12
466##
467{ 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } }
468
469##
470# @CpuInfoOther:
471#
472# No additional information is available about the virtual CPU
473#
474# Since: 2.6
475#
476##
477{ 'struct': 'CpuInfoOther', 'data': { } }
478
479##
480# @CpuS390State:
481#
482# An enumeration of cpu states that can be assumed by a virtual
483# S390 CPU
484#
485# Since: 2.12
486##
487{ 'enum': 'CpuS390State',
488  'prefix': 'S390_CPU_STATE',
489  'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
490
491##
492# @CpuInfoS390:
493#
494# Additional information about a virtual S390 CPU
495#
496# @cpu-state: the virtual CPU's state
497#
498# Since: 2.12
499##
500{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
501
502##
503# @query-cpus:
504#
505# Returns a list of information about each virtual CPU.
506#
507# This command causes vCPU threads to exit to userspace, which causes
508# a small interruption to guest CPU execution. This will have a negative
509# impact on realtime guests and other latency sensitive guest workloads.
510# It is recommended to use @query-cpus-fast instead of this command to
511# avoid the vCPU interruption.
512#
513# Returns: a list of @CpuInfo for each virtual CPU
514#
515# Since: 0.14.0
516#
517# Example:
518#
519# -> { "execute": "query-cpus" }
520# <- { "return": [
521#          {
522#             "CPU":0,
523#             "current":true,
524#             "halted":false,
525#             "qom_path":"/machine/unattached/device[0]",
526#             "arch":"x86",
527#             "pc":3227107138,
528#             "thread_id":3134
529#          },
530#          {
531#             "CPU":1,
532#             "current":false,
533#             "halted":true,
534#             "qom_path":"/machine/unattached/device[2]",
535#             "arch":"x86",
536#             "pc":7108165,
537#             "thread_id":3135
538#          }
539#       ]
540#    }
541#
542# Notes: This interface is deprecated (since 2.12.0), and it is strongly
543#        recommended that you avoid using it. Use @query-cpus-fast to
544#        obtain information about virtual CPUs.
545#
546##
547{ 'command': 'query-cpus', 'returns': ['CpuInfo'] }
548
549##
550# @CpuInfoFast:
551#
552# Information about a virtual CPU
553#
554# @cpu-index: index of the virtual CPU
555#
556# @qom-path: path to the CPU object in the QOM tree
557#
558# @thread-id: ID of the underlying host thread
559#
560# @props: properties describing to which node/socket/core/thread
561#         virtual CPU belongs to, provided if supported by board
562#
563# @arch: base architecture of the cpu; deprecated since 3.0.0 in favor
564#        of @target
565#
566# @target: the QEMU system emulation target, which determines which
567#          additional fields will be listed (since 3.0)
568#
569# Since: 2.12
570#
571##
572{ 'union'         : 'CpuInfoFast',
573  'base'          : { 'cpu-index'    : 'int',
574                      'qom-path'     : 'str',
575                      'thread-id'    : 'int',
576                      '*props'       : 'CpuInstanceProperties',
577                      'arch'         : 'CpuInfoArch',
578                      'target'       : 'SysEmuTarget' },
579  'discriminator' : 'target',
580  'data'          : { 'aarch64'      : 'CpuInfoOther',
581                      'alpha'        : 'CpuInfoOther',
582                      'arm'          : 'CpuInfoOther',
583                      'cris'         : 'CpuInfoOther',
584                      'hppa'         : 'CpuInfoOther',
585                      'i386'         : 'CpuInfoOther',
586                      'lm32'         : 'CpuInfoOther',
587                      'm68k'         : 'CpuInfoOther',
588                      'microblaze'   : 'CpuInfoOther',
589                      'microblazeel' : 'CpuInfoOther',
590                      'mips'         : 'CpuInfoOther',
591                      'mips64'       : 'CpuInfoOther',
592                      'mips64el'     : 'CpuInfoOther',
593                      'mipsel'       : 'CpuInfoOther',
594                      'moxie'        : 'CpuInfoOther',
595                      'nios2'        : 'CpuInfoOther',
596                      'or1k'         : 'CpuInfoOther',
597                      'ppc'          : 'CpuInfoOther',
598                      'ppc64'        : 'CpuInfoOther',
599                      'ppcemb'       : 'CpuInfoOther',
600                      'riscv32'      : 'CpuInfoOther',
601                      'riscv64'      : 'CpuInfoOther',
602                      's390x'        : 'CpuInfoS390',
603                      'sh4'          : 'CpuInfoOther',
604                      'sh4eb'        : 'CpuInfoOther',
605                      'sparc'        : 'CpuInfoOther',
606                      'sparc64'      : 'CpuInfoOther',
607                      'tricore'      : 'CpuInfoOther',
608                      'unicore32'    : 'CpuInfoOther',
609                      'x86_64'       : 'CpuInfoOther',
610                      'xtensa'       : 'CpuInfoOther',
611                      'xtensaeb'     : 'CpuInfoOther' } }
612
613##
614# @query-cpus-fast:
615#
616# Returns information about all virtual CPUs. This command does not
617# incur a performance penalty and should be used in production
618# instead of query-cpus.
619#
620# Returns: list of @CpuInfoFast
621#
622# Since: 2.12
623#
624# Example:
625#
626# -> { "execute": "query-cpus-fast" }
627# <- { "return": [
628#         {
629#             "thread-id": 25627,
630#             "props": {
631#                 "core-id": 0,
632#                 "thread-id": 0,
633#                 "socket-id": 0
634#             },
635#             "qom-path": "/machine/unattached/device[0]",
636#             "arch":"x86",
637#             "target":"x86_64",
638#             "cpu-index": 0
639#         },
640#         {
641#             "thread-id": 25628,
642#             "props": {
643#                 "core-id": 0,
644#                 "thread-id": 0,
645#                 "socket-id": 1
646#             },
647#             "qom-path": "/machine/unattached/device[2]",
648#             "arch":"x86",
649#             "target":"x86_64",
650#             "cpu-index": 1
651#         }
652#     ]
653# }
654##
655{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
656
657##
658# @IOThreadInfo:
659#
660# Information about an iothread
661#
662# @id: the identifier of the iothread
663#
664# @thread-id: ID of the underlying host thread
665#
666# @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
667#               (since 2.9)
668#
669# @poll-grow: how many ns will be added to polling time, 0 means that it's not
670#             configured (since 2.9)
671#
672# @poll-shrink: how many ns will be removed from polling time, 0 means that
673#               it's not configured (since 2.9)
674#
675# Since: 2.0
676##
677{ 'struct': 'IOThreadInfo',
678  'data': {'id': 'str',
679           'thread-id': 'int',
680           'poll-max-ns': 'int',
681           'poll-grow': 'int',
682           'poll-shrink': 'int' } }
683
684##
685# @query-iothreads:
686#
687# Returns a list of information about each iothread.
688#
689# Note: this list excludes the QEMU main loop thread, which is not declared
690# using the -object iothread command-line option.  It is always the main thread
691# of the process.
692#
693# Returns: a list of @IOThreadInfo for each iothread
694#
695# Since: 2.0
696#
697# Example:
698#
699# -> { "execute": "query-iothreads" }
700# <- { "return": [
701#          {
702#             "id":"iothread0",
703#             "thread-id":3134
704#          },
705#          {
706#             "id":"iothread1",
707#             "thread-id":3135
708#          }
709#       ]
710#    }
711#
712##
713{ 'command': 'query-iothreads', 'returns': ['IOThreadInfo'] }
714
715##
716# @BalloonInfo:
717#
718# Information about the guest balloon device.
719#
720# @actual: the number of bytes the balloon currently contains
721#
722# Since: 0.14.0
723#
724##
725{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
726
727##
728# @query-balloon:
729#
730# Return information about the balloon device.
731#
732# Returns: @BalloonInfo on success
733#
734#          If the balloon driver is enabled but not functional because the KVM
735#          kernel module cannot support it, KvmMissingCap
736#
737#          If no balloon device is present, DeviceNotActive
738#
739# Since: 0.14.0
740#
741# Example:
742#
743# -> { "execute": "query-balloon" }
744# <- { "return": {
745#          "actual": 1073741824,
746#       }
747#    }
748#
749##
750{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
751
752##
753# @BALLOON_CHANGE:
754#
755# Emitted when the guest changes the actual BALLOON level. This value is
756# equivalent to the @actual field return by the 'query-balloon' command
757#
758# @actual: actual level of the guest memory balloon in bytes
759#
760# Note: this event is rate-limited.
761#
762# Since: 1.2
763#
764# Example:
765#
766# <- { "event": "BALLOON_CHANGE",
767#      "data": { "actual": 944766976 },
768#      "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
769#
770##
771{ 'event': 'BALLOON_CHANGE',
772  'data': { 'actual': 'int' } }
773
774##
775# @PciMemoryRange:
776#
777# A PCI device memory region
778#
779# @base: the starting address (guest physical)
780#
781# @limit: the ending address (guest physical)
782#
783# Since: 0.14.0
784##
785{ 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
786
787##
788# @PciMemoryRegion:
789#
790# Information about a PCI device I/O region.
791#
792# @bar: the index of the Base Address Register for this region
793#
794# @type: 'io' if the region is a PIO region
795#        'memory' if the region is a MMIO region
796#
797# @size: memory size
798#
799# @prefetch: if @type is 'memory', true if the memory is prefetchable
800#
801# @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
802#
803# Since: 0.14.0
804##
805{ 'struct': 'PciMemoryRegion',
806  'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
807           '*prefetch': 'bool', '*mem_type_64': 'bool' } }
808
809##
810# @PciBusInfo:
811#
812# Information about a bus of a PCI Bridge device
813#
814# @number: primary bus interface number.  This should be the number of the
815#          bus the device resides on.
816#
817# @secondary: secondary bus interface number.  This is the number of the
818#             main bus for the bridge
819#
820# @subordinate: This is the highest number bus that resides below the
821#               bridge.
822#
823# @io_range: The PIO range for all devices on this bridge
824#
825# @memory_range: The MMIO range for all devices on this bridge
826#
827# @prefetchable_range: The range of prefetchable MMIO for all devices on
828#                      this bridge
829#
830# Since: 2.4
831##
832{ 'struct': 'PciBusInfo',
833  'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
834           'io_range': 'PciMemoryRange',
835           'memory_range': 'PciMemoryRange',
836           'prefetchable_range': 'PciMemoryRange' } }
837
838##
839# @PciBridgeInfo:
840#
841# Information about a PCI Bridge device
842#
843# @bus: information about the bus the device resides on
844#
845# @devices: a list of @PciDeviceInfo for each device on this bridge
846#
847# Since: 0.14.0
848##
849{ 'struct': 'PciBridgeInfo',
850  'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
851
852##
853# @PciDeviceClass:
854#
855# Information about the Class of a PCI device
856#
857# @desc: a string description of the device's class
858#
859# @class: the class code of the device
860#
861# Since: 2.4
862##
863{ 'struct': 'PciDeviceClass',
864  'data': {'*desc': 'str', 'class': 'int'} }
865
866##
867# @PciDeviceId:
868#
869# Information about the Id of a PCI device
870#
871# @device: the PCI device id
872#
873# @vendor: the PCI vendor id
874#
875# Since: 2.4
876##
877{ 'struct': 'PciDeviceId',
878  'data': {'device': 'int', 'vendor': 'int'} }
879
880##
881# @PciDeviceInfo:
882#
883# Information about a PCI device
884#
885# @bus: the bus number of the device
886#
887# @slot: the slot the device is located in
888#
889# @function: the function of the slot used by the device
890#
891# @class_info: the class of the device
892#
893# @id: the PCI device id
894#
895# @irq: if an IRQ is assigned to the device, the IRQ number
896#
897# @qdev_id: the device name of the PCI device
898#
899# @pci_bridge: if the device is a PCI bridge, the bridge information
900#
901# @regions: a list of the PCI I/O regions associated with the device
902#
903# Notes: the contents of @class_info.desc are not stable and should only be
904#        treated as informational.
905#
906# Since: 0.14.0
907##
908{ 'struct': 'PciDeviceInfo',
909  'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
910           'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
911           '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
912           'regions': ['PciMemoryRegion']} }
913
914##
915# @PciInfo:
916#
917# Information about a PCI bus
918#
919# @bus: the bus index
920#
921# @devices: a list of devices on this bus
922#
923# Since: 0.14.0
924##
925{ 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
926
927##
928# @query-pci:
929#
930# Return information about the PCI bus topology of the guest.
931#
932# Returns: a list of @PciInfo for each PCI bus. Each bus is
933# represented by a json-object, which has a key with a json-array of
934# all PCI devices attached to it. Each device is represented by a
935# json-object.
936#
937# Since: 0.14.0
938#
939# Example:
940#
941# -> { "execute": "query-pci" }
942# <- { "return": [
943#          {
944#             "bus": 0,
945#             "devices": [
946#                {
947#                   "bus": 0,
948#                   "qdev_id": "",
949#                   "slot": 0,
950#                   "class_info": {
951#                      "class": 1536,
952#                      "desc": "Host bridge"
953#                   },
954#                   "id": {
955#                      "device": 32902,
956#                      "vendor": 4663
957#                   },
958#                   "function": 0,
959#                   "regions": [
960#                   ]
961#                },
962#                {
963#                   "bus": 0,
964#                   "qdev_id": "",
965#                   "slot": 1,
966#                   "class_info": {
967#                      "class": 1537,
968#                      "desc": "ISA bridge"
969#                   },
970#                   "id": {
971#                      "device": 32902,
972#                      "vendor": 28672
973#                   },
974#                   "function": 0,
975#                   "regions": [
976#                   ]
977#                },
978#                {
979#                   "bus": 0,
980#                   "qdev_id": "",
981#                   "slot": 1,
982#                   "class_info": {
983#                      "class": 257,
984#                      "desc": "IDE controller"
985#                   },
986#                   "id": {
987#                      "device": 32902,
988#                      "vendor": 28688
989#                   },
990#                   "function": 1,
991#                   "regions": [
992#                      {
993#                         "bar": 4,
994#                         "size": 16,
995#                         "address": 49152,
996#                         "type": "io"
997#                      }
998#                   ]
999#                },
1000#                {
1001#                   "bus": 0,
1002#                   "qdev_id": "",
1003#                   "slot": 2,
1004#                   "class_info": {
1005#                      "class": 768,
1006#                      "desc": "VGA controller"
1007#                   },
1008#                   "id": {
1009#                      "device": 4115,
1010#                      "vendor": 184
1011#                   },
1012#                   "function": 0,
1013#                   "regions": [
1014#                      {
1015#                         "prefetch": true,
1016#                         "mem_type_64": false,
1017#                         "bar": 0,
1018#                         "size": 33554432,
1019#                         "address": 4026531840,
1020#                         "type": "memory"
1021#                      },
1022#                      {
1023#                         "prefetch": false,
1024#                         "mem_type_64": false,
1025#                         "bar": 1,
1026#                         "size": 4096,
1027#                         "address": 4060086272,
1028#                         "type": "memory"
1029#                      },
1030#                      {
1031#                         "prefetch": false,
1032#                         "mem_type_64": false,
1033#                         "bar": 6,
1034#                         "size": 65536,
1035#                         "address": -1,
1036#                         "type": "memory"
1037#                      }
1038#                   ]
1039#                },
1040#                {
1041#                   "bus": 0,
1042#                   "qdev_id": "",
1043#                   "irq": 11,
1044#                   "slot": 4,
1045#                   "class_info": {
1046#                      "class": 1280,
1047#                      "desc": "RAM controller"
1048#                   },
1049#                   "id": {
1050#                      "device": 6900,
1051#                      "vendor": 4098
1052#                   },
1053#                   "function": 0,
1054#                   "regions": [
1055#                      {
1056#                         "bar": 0,
1057#                         "size": 32,
1058#                         "address": 49280,
1059#                         "type": "io"
1060#                      }
1061#                   ]
1062#                }
1063#             ]
1064#          }
1065#       ]
1066#    }
1067#
1068# Note: This example has been shortened as the real response is too long.
1069#
1070##
1071{ 'command': 'query-pci', 'returns': ['PciInfo'] }
1072
1073##
1074# @quit:
1075#
1076# This command will cause the QEMU process to exit gracefully.  While every
1077# attempt is made to send the QMP response before terminating, this is not
1078# guaranteed.  When using this interface, a premature EOF would not be
1079# unexpected.
1080#
1081# Since: 0.14.0
1082#
1083# Example:
1084#
1085# -> { "execute": "quit" }
1086# <- { "return": {} }
1087##
1088{ 'command': 'quit' }
1089
1090##
1091# @stop:
1092#
1093# Stop all guest VCPU execution.
1094#
1095# Since:  0.14.0
1096#
1097# Notes:  This function will succeed even if the guest is already in the stopped
1098#         state.  In "inmigrate" state, it will ensure that the guest
1099#         remains paused once migration finishes, as if the -S option was
1100#         passed on the command line.
1101#
1102# Example:
1103#
1104# -> { "execute": "stop" }
1105# <- { "return": {} }
1106#
1107##
1108{ 'command': 'stop' }
1109
1110##
1111# @system_reset:
1112#
1113# Performs a hard reset of a guest.
1114#
1115# Since: 0.14.0
1116#
1117# Example:
1118#
1119# -> { "execute": "system_reset" }
1120# <- { "return": {} }
1121#
1122##
1123{ 'command': 'system_reset' }
1124
1125##
1126# @system_powerdown:
1127#
1128# Requests that a guest perform a powerdown operation.
1129#
1130# Since: 0.14.0
1131#
1132# Notes: A guest may or may not respond to this command.  This command
1133#        returning does not indicate that a guest has accepted the request or
1134#        that it has shut down.  Many guests will respond to this command by
1135#        prompting the user in some way.
1136# Example:
1137#
1138# -> { "execute": "system_powerdown" }
1139# <- { "return": {} }
1140#
1141##
1142{ 'command': 'system_powerdown' }
1143
1144##
1145# @cpu-add:
1146#
1147# Adds CPU with specified ID
1148#
1149# @id: ID of CPU to be created, valid values [0..max_cpus)
1150#
1151# Returns: Nothing on success
1152#
1153# Since: 1.5
1154#
1155# Example:
1156#
1157# -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1158# <- { "return": {} }
1159#
1160##
1161{ 'command': 'cpu-add', 'data': {'id': 'int'} }
1162
1163##
1164# @memsave:
1165#
1166# Save a portion of guest memory to a file.
1167#
1168# @val: the virtual address of the guest to start from
1169#
1170# @size: the size of memory region to save
1171#
1172# @filename: the file to save the memory to as binary data
1173#
1174# @cpu-index: the index of the virtual CPU to use for translating the
1175#                       virtual address (defaults to CPU 0)
1176#
1177# Returns: Nothing on success
1178#
1179# Since: 0.14.0
1180#
1181# Notes: Errors were not reliably returned until 1.1
1182#
1183# Example:
1184#
1185# -> { "execute": "memsave",
1186#      "arguments": { "val": 10,
1187#                     "size": 100,
1188#                     "filename": "/tmp/virtual-mem-dump" } }
1189# <- { "return": {} }
1190#
1191##
1192{ 'command': 'memsave',
1193  'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1194
1195##
1196# @pmemsave:
1197#
1198# Save a portion of guest physical memory to a file.
1199#
1200# @val: the physical address of the guest to start from
1201#
1202# @size: the size of memory region to save
1203#
1204# @filename: the file to save the memory to as binary data
1205#
1206# Returns: Nothing on success
1207#
1208# Since: 0.14.0
1209#
1210# Notes: Errors were not reliably returned until 1.1
1211#
1212# Example:
1213#
1214# -> { "execute": "pmemsave",
1215#      "arguments": { "val": 10,
1216#                     "size": 100,
1217#                     "filename": "/tmp/physical-mem-dump" } }
1218# <- { "return": {} }
1219#
1220##
1221{ 'command': 'pmemsave',
1222  'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1223
1224##
1225# @cont:
1226#
1227# Resume guest VCPU execution.
1228#
1229# Since:  0.14.0
1230#
1231# Returns:  If successful, nothing
1232#
1233# Notes:  This command will succeed if the guest is currently running.  It
1234#         will also succeed if the guest is in the "inmigrate" state; in
1235#         this case, the effect of the command is to make sure the guest
1236#         starts once migration finishes, removing the effect of the -S
1237#         command line option if it was passed.
1238#
1239# Example:
1240#
1241# -> { "execute": "cont" }
1242# <- { "return": {} }
1243#
1244##
1245{ 'command': 'cont' }
1246
1247##
1248# @exit-preconfig:
1249#
1250# Exit from "preconfig" state
1251#
1252# This command makes QEMU exit the preconfig state and proceed with
1253# VM initialization using configuration data provided on the command line
1254# and via the QMP monitor during the preconfig state. The command is only
1255# available during the preconfig state (i.e. when the --preconfig command
1256# line option was in use).
1257#
1258# Since 3.0
1259#
1260# Returns: nothing
1261#
1262# Example:
1263#
1264# -> { "execute": "exit-preconfig" }
1265# <- { "return": {} }
1266#
1267##
1268{ 'command': 'exit-preconfig', 'allow-preconfig': true }
1269
1270##
1271# @system_wakeup:
1272#
1273# Wakeup guest from suspend.  Does nothing in case the guest isn't suspended.
1274#
1275# Since:  1.1
1276#
1277# Returns:  nothing.
1278#
1279# Example:
1280#
1281# -> { "execute": "system_wakeup" }
1282# <- { "return": {} }
1283#
1284##
1285{ 'command': 'system_wakeup' }
1286
1287##
1288# @inject-nmi:
1289#
1290# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1291# The command fails when the guest doesn't support injecting.
1292#
1293# Returns:  If successful, nothing
1294#
1295# Since:  0.14.0
1296#
1297# Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1298#
1299# Example:
1300#
1301# -> { "execute": "inject-nmi" }
1302# <- { "return": {} }
1303#
1304##
1305{ 'command': 'inject-nmi' }
1306
1307##
1308# @balloon:
1309#
1310# Request the balloon driver to change its balloon size.
1311#
1312# @value: the target size of the balloon in bytes
1313#
1314# Returns: Nothing on success
1315#          If the balloon driver is enabled but not functional because the KVM
1316#            kernel module cannot support it, KvmMissingCap
1317#          If no balloon device is present, DeviceNotActive
1318#
1319# Notes: This command just issues a request to the guest.  When it returns,
1320#        the balloon size may not have changed.  A guest can change the balloon
1321#        size independent of this command.
1322#
1323# Since: 0.14.0
1324#
1325# Example:
1326#
1327# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1328# <- { "return": {} }
1329#
1330##
1331{ 'command': 'balloon', 'data': {'value': 'int'} }
1332
1333##
1334# @human-monitor-command:
1335#
1336# Execute a command on the human monitor and return the output.
1337#
1338# @command-line: the command to execute in the human monitor
1339#
1340# @cpu-index: The CPU to use for commands that require an implicit CPU
1341#
1342# Returns: the output of the command as a string
1343#
1344# Since: 0.14.0
1345#
1346# Notes: This command only exists as a stop-gap.  Its use is highly
1347#        discouraged.  The semantics of this command are not
1348#        guaranteed: this means that command names, arguments and
1349#        responses can change or be removed at ANY time.  Applications
1350#        that rely on long term stability guarantees should NOT
1351#        use this command.
1352#
1353#        Known limitations:
1354#
1355#        * This command is stateless, this means that commands that depend
1356#          on state information (such as getfd) might not work
1357#
1358#        * Commands that prompt the user for data don't currently work
1359#
1360# Example:
1361#
1362# -> { "execute": "human-monitor-command",
1363#      "arguments": { "command-line": "info kvm" } }
1364# <- { "return": "kvm support: enabled\r\n" }
1365#
1366##
1367{ 'command': 'human-monitor-command',
1368  'data': {'command-line': 'str', '*cpu-index': 'int'},
1369  'returns': 'str' }
1370
1371##
1372# @ObjectPropertyInfo:
1373#
1374# @name: the name of the property
1375#
1376# @type: the type of the property.  This will typically come in one of four
1377#        forms:
1378#
1379#        1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1380#           These types are mapped to the appropriate JSON type.
1381#
1382#        2) A child type in the form 'child<subtype>' where subtype is a qdev
1383#           device type name.  Child properties create the composition tree.
1384#
1385#        3) A link type in the form 'link<subtype>' where subtype is a qdev
1386#           device type name.  Link properties form the device model graph.
1387#
1388# @description: if specified, the description of the property.
1389#
1390# Since: 1.2
1391##
1392{ 'struct': 'ObjectPropertyInfo',
1393  'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
1394
1395##
1396# @qom-list:
1397#
1398# This command will list any properties of a object given a path in the object
1399# model.
1400#
1401# @path: the path within the object model.  See @qom-get for a description of
1402#        this parameter.
1403#
1404# Returns: a list of @ObjectPropertyInfo that describe the properties of the
1405#          object.
1406#
1407# Since: 1.2
1408##
1409{ 'command': 'qom-list',
1410  'data': { 'path': 'str' },
1411  'returns': [ 'ObjectPropertyInfo' ] }
1412
1413##
1414# @qom-get:
1415#
1416# This command will get a property from a object model path and return the
1417# value.
1418#
1419# @path: The path within the object model.  There are two forms of supported
1420#        paths--absolute and partial paths.
1421#
1422#        Absolute paths are derived from the root object and can follow child<>
1423#        or link<> properties.  Since they can follow link<> properties, they
1424#        can be arbitrarily long.  Absolute paths look like absolute filenames
1425#        and are prefixed  with a leading slash.
1426#
1427#        Partial paths look like relative filenames.  They do not begin
1428#        with a prefix.  The matching rules for partial paths are subtle but
1429#        designed to make specifying objects easy.  At each level of the
1430#        composition tree, the partial path is matched as an absolute path.
1431#        The first match is not returned.  At least two matches are searched
1432#        for.  A successful result is only returned if only one match is
1433#        found.  If more than one match is found, a flag is return to
1434#        indicate that the match was ambiguous.
1435#
1436# @property: The property name to read
1437#
1438# Returns: The property value.  The type depends on the property
1439#          type. child<> and link<> properties are returned as #str
1440#          pathnames.  All integer property types (u8, u16, etc) are
1441#          returned as #int.
1442#
1443# Since: 1.2
1444##
1445{ 'command': 'qom-get',
1446  'data': { 'path': 'str', 'property': 'str' },
1447  'returns': 'any' }
1448
1449##
1450# @qom-set:
1451#
1452# This command will set a property from a object model path.
1453#
1454# @path: see @qom-get for a description of this parameter
1455#
1456# @property: the property name to set
1457#
1458# @value: a value who's type is appropriate for the property type.  See @qom-get
1459#         for a description of type mapping.
1460#
1461# Since: 1.2
1462##
1463{ 'command': 'qom-set',
1464  'data': { 'path': 'str', 'property': 'str', 'value': 'any' } }
1465
1466##
1467# @change:
1468#
1469# This command is multiple commands multiplexed together.
1470#
1471# @device: This is normally the name of a block device but it may also be 'vnc'.
1472#          when it's 'vnc', then sub command depends on @target
1473#
1474# @target: If @device is a block device, then this is the new filename.
1475#          If @device is 'vnc', then if the value 'password' selects the vnc
1476#          change password command.   Otherwise, this specifies a new server URI
1477#          address to listen to for VNC connections.
1478#
1479# @arg:    If @device is a block device, then this is an optional format to open
1480#          the device with.
1481#          If @device is 'vnc' and @target is 'password', this is the new VNC
1482#          password to set.  See change-vnc-password for additional notes.
1483#
1484# Returns: Nothing on success.
1485#          If @device is not a valid block device, DeviceNotFound
1486#
1487# Notes:  This interface is deprecated, and it is strongly recommended that you
1488#         avoid using it.  For changing block devices, use
1489#         blockdev-change-medium; for changing VNC parameters, use
1490#         change-vnc-password.
1491#
1492# Since: 0.14.0
1493#
1494# Example:
1495#
1496# 1. Change a removable medium
1497#
1498# -> { "execute": "change",
1499#      "arguments": { "device": "ide1-cd0",
1500#                     "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1501# <- { "return": {} }
1502#
1503# 2. Change VNC password
1504#
1505# -> { "execute": "change",
1506#      "arguments": { "device": "vnc", "target": "password",
1507#                     "arg": "foobar1" } }
1508# <- { "return": {} }
1509#
1510##
1511{ 'command': 'change',
1512  'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1513
1514##
1515# @ObjectTypeInfo:
1516#
1517# This structure describes a search result from @qom-list-types
1518#
1519# @name: the type name found in the search
1520#
1521# @abstract: the type is abstract and can't be directly instantiated.
1522#            Omitted if false. (since 2.10)
1523#
1524# @parent: Name of parent type, if any (since 2.10)
1525#
1526# Since: 1.1
1527##
1528{ 'struct': 'ObjectTypeInfo',
1529  'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1530
1531##
1532# @qom-list-types:
1533#
1534# This command will return a list of types given search parameters
1535#
1536# @implements: if specified, only return types that implement this type name
1537#
1538# @abstract: if true, include abstract types in the results
1539#
1540# Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1541#
1542# Since: 1.1
1543##
1544{ 'command': 'qom-list-types',
1545  'data': { '*implements': 'str', '*abstract': 'bool' },
1546  'returns': [ 'ObjectTypeInfo' ] }
1547
1548##
1549# @device-list-properties:
1550#
1551# List properties associated with a device.
1552#
1553# @typename: the type name of a device
1554#
1555# Returns: a list of ObjectPropertyInfo describing a devices properties
1556#
1557# Since: 1.2
1558##
1559{ 'command': 'device-list-properties',
1560  'data': { 'typename': 'str'},
1561  'returns': [ 'ObjectPropertyInfo' ] }
1562
1563##
1564# @qom-list-properties:
1565#
1566# List properties associated with a QOM object.
1567#
1568# @typename: the type name of an object
1569#
1570# Returns: a list of ObjectPropertyInfo describing object properties
1571#
1572# Since: 2.12
1573##
1574{ 'command': 'qom-list-properties',
1575  'data': { 'typename': 'str'},
1576  'returns': [ 'ObjectPropertyInfo' ] }
1577
1578##
1579# @xen-set-global-dirty-log:
1580#
1581# Enable or disable the global dirty log mode.
1582#
1583# @enable: true to enable, false to disable.
1584#
1585# Returns: nothing
1586#
1587# Since: 1.3
1588#
1589# Example:
1590#
1591# -> { "execute": "xen-set-global-dirty-log",
1592#      "arguments": { "enable": true } }
1593# <- { "return": {} }
1594#
1595##
1596{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1597
1598##
1599# @device_add:
1600#
1601# @driver: the name of the new device's driver
1602#
1603# @bus: the device's parent bus (device tree path)
1604#
1605# @id: the device's ID, must be unique
1606#
1607# Additional arguments depend on the type.
1608#
1609# Add a device.
1610#
1611# Notes:
1612# 1. For detailed information about this command, please refer to the
1613#    'docs/qdev-device-use.txt' file.
1614#
1615# 2. It's possible to list device properties by running QEMU with the
1616#    "-device DEVICE,help" command-line argument, where DEVICE is the
1617#    device's name
1618#
1619# Example:
1620#
1621# -> { "execute": "device_add",
1622#      "arguments": { "driver": "e1000", "id": "net1",
1623#                     "bus": "pci.0",
1624#                     "mac": "52:54:00:12:34:56" } }
1625# <- { "return": {} }
1626#
1627# TODO: This command effectively bypasses QAPI completely due to its
1628# "additional arguments" business.  It shouldn't have been added to
1629# the schema in this form.  It should be qapified properly, or
1630# replaced by a properly qapified command.
1631#
1632# Since: 0.13
1633##
1634{ 'command': 'device_add',
1635  'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1636  'gen': false } # so we can get the additional arguments
1637
1638##
1639# @device_del:
1640#
1641# Remove a device from a guest
1642#
1643# @id: the device's ID or QOM path
1644#
1645# Returns: Nothing on success
1646#          If @id is not a valid device, DeviceNotFound
1647#
1648# Notes: When this command completes, the device may not be removed from the
1649#        guest.  Hot removal is an operation that requires guest cooperation.
1650#        This command merely requests that the guest begin the hot removal
1651#        process.  Completion of the device removal process is signaled with a
1652#        DEVICE_DELETED event. Guest reset will automatically complete removal
1653#        for all devices.
1654#
1655# Since: 0.14.0
1656#
1657# Example:
1658#
1659# -> { "execute": "device_del",
1660#      "arguments": { "id": "net1" } }
1661# <- { "return": {} }
1662#
1663# -> { "execute": "device_del",
1664#      "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1665# <- { "return": {} }
1666#
1667##
1668{ 'command': 'device_del', 'data': {'id': 'str'} }
1669
1670##
1671# @DEVICE_DELETED:
1672#
1673# Emitted whenever the device removal completion is acknowledged by the guest.
1674# At this point, it's safe to reuse the specified device ID. Device removal can
1675# be initiated by the guest or by HMP/QMP commands.
1676#
1677# @device: device name
1678#
1679# @path: device path
1680#
1681# Since: 1.5
1682#
1683# Example:
1684#
1685# <- { "event": "DEVICE_DELETED",
1686#      "data": { "device": "virtio-net-pci-0",
1687#                "path": "/machine/peripheral/virtio-net-pci-0" },
1688#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1689#
1690##
1691{ 'event': 'DEVICE_DELETED',
1692  'data': { '*device': 'str', 'path': 'str' } }
1693
1694##
1695# @DumpGuestMemoryFormat:
1696#
1697# An enumeration of guest-memory-dump's format.
1698#
1699# @elf: elf format
1700#
1701# @kdump-zlib: kdump-compressed format with zlib-compressed
1702#
1703# @kdump-lzo: kdump-compressed format with lzo-compressed
1704#
1705# @kdump-snappy: kdump-compressed format with snappy-compressed
1706#
1707# Since: 2.0
1708##
1709{ 'enum': 'DumpGuestMemoryFormat',
1710  'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy' ] }
1711
1712##
1713# @dump-guest-memory:
1714#
1715# Dump guest's memory to vmcore. It is a synchronous operation that can take
1716# very long depending on the amount of guest memory.
1717#
1718# @paging: if true, do paging to get guest's memory mapping. This allows
1719#          using gdb to process the core file.
1720#
1721#          IMPORTANT: this option can make QEMU allocate several gigabytes
1722#                     of RAM. This can happen for a large guest, or a
1723#                     malicious guest pretending to be large.
1724#
1725#          Also, paging=true has the following limitations:
1726#
1727#             1. The guest may be in a catastrophic state or can have corrupted
1728#                memory, which cannot be trusted
1729#             2. The guest can be in real-mode even if paging is enabled. For
1730#                example, the guest uses ACPI to sleep, and ACPI sleep state
1731#                goes in real-mode
1732#             3. Currently only supported on i386 and x86_64.
1733#
1734# @protocol: the filename or file descriptor of the vmcore. The supported
1735#            protocols are:
1736#
1737#            1. file: the protocol starts with "file:", and the following
1738#               string is the file's path.
1739#            2. fd: the protocol starts with "fd:", and the following string
1740#               is the fd's name.
1741#
1742# @detach: if true, QMP will return immediately rather than
1743#          waiting for the dump to finish. The user can track progress
1744#          using "query-dump". (since 2.6).
1745#
1746# @begin: if specified, the starting physical address.
1747#
1748# @length: if specified, the memory size, in bytes. If you don't
1749#          want to dump all guest's memory, please specify the start @begin
1750#          and @length
1751#
1752# @format: if specified, the format of guest memory dump. But non-elf
1753#          format is conflict with paging and filter, ie. @paging, @begin and
1754#          @length is not allowed to be specified with non-elf @format at the
1755#          same time (since 2.0)
1756#
1757# Note: All boolean arguments default to false
1758#
1759# Returns: nothing on success
1760#
1761# Since: 1.2
1762#
1763# Example:
1764#
1765# -> { "execute": "dump-guest-memory",
1766#      "arguments": { "protocol": "fd:dump" } }
1767# <- { "return": {} }
1768#
1769##
1770{ 'command': 'dump-guest-memory',
1771  'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1772            '*begin': 'int', '*length': 'int',
1773            '*format': 'DumpGuestMemoryFormat'} }
1774
1775##
1776# @DumpStatus:
1777#
1778# Describe the status of a long-running background guest memory dump.
1779#
1780# @none: no dump-guest-memory has started yet.
1781#
1782# @active: there is one dump running in background.
1783#
1784# @completed: the last dump has finished successfully.
1785#
1786# @failed: the last dump has failed.
1787#
1788# Since: 2.6
1789##
1790{ 'enum': 'DumpStatus',
1791  'data': [ 'none', 'active', 'completed', 'failed' ] }
1792
1793##
1794# @DumpQueryResult:
1795#
1796# The result format for 'query-dump'.
1797#
1798# @status: enum of @DumpStatus, which shows current dump status
1799#
1800# @completed: bytes written in latest dump (uncompressed)
1801#
1802# @total: total bytes to be written in latest dump (uncompressed)
1803#
1804# Since: 2.6
1805##
1806{ 'struct': 'DumpQueryResult',
1807  'data': { 'status': 'DumpStatus',
1808            'completed': 'int',
1809            'total': 'int' } }
1810
1811##
1812# @query-dump:
1813#
1814# Query latest dump status.
1815#
1816# Returns: A @DumpStatus object showing the dump status.
1817#
1818# Since: 2.6
1819#
1820# Example:
1821#
1822# -> { "execute": "query-dump" }
1823# <- { "return": { "status": "active", "completed": 1024000,
1824#                  "total": 2048000 } }
1825#
1826##
1827{ 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1828
1829##
1830# @DUMP_COMPLETED:
1831#
1832# Emitted when background dump has completed
1833#
1834# @result: final dump status
1835#
1836# @error: human-readable error string that provides
1837#         hint on why dump failed. Only presents on failure. The
1838#         user should not try to interpret the error string.
1839#
1840# Since: 2.6
1841#
1842# Example:
1843#
1844# { "event": "DUMP_COMPLETED",
1845#   "data": {"result": {"total": 1090650112, "status": "completed",
1846#                       "completed": 1090650112} } }
1847#
1848##
1849{ 'event': 'DUMP_COMPLETED' ,
1850  'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1851
1852##
1853# @DumpGuestMemoryCapability:
1854#
1855# A list of the available formats for dump-guest-memory
1856#
1857# Since: 2.0
1858##
1859{ 'struct': 'DumpGuestMemoryCapability',
1860  'data': {
1861      'formats': ['DumpGuestMemoryFormat'] } }
1862
1863##
1864# @query-dump-guest-memory-capability:
1865#
1866# Returns the available formats for dump-guest-memory
1867#
1868# Returns:  A @DumpGuestMemoryCapability object listing available formats for
1869#           dump-guest-memory
1870#
1871# Since: 2.0
1872#
1873# Example:
1874#
1875# -> { "execute": "query-dump-guest-memory-capability" }
1876# <- { "return": { "formats":
1877#                  ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1878#
1879##
1880{ 'command': 'query-dump-guest-memory-capability',
1881  'returns': 'DumpGuestMemoryCapability' }
1882
1883##
1884# @dump-skeys:
1885#
1886# Dump guest's storage keys
1887#
1888# @filename: the path to the file to dump to
1889#
1890# This command is only supported on s390 architecture.
1891#
1892# Since: 2.5
1893#
1894# Example:
1895#
1896# -> { "execute": "dump-skeys",
1897#      "arguments": { "filename": "/tmp/skeys" } }
1898# <- { "return": {} }
1899#
1900##
1901{ 'command': 'dump-skeys',
1902  'data': { 'filename': 'str' } }
1903
1904##
1905# @object-add:
1906#
1907# Create a QOM object.
1908#
1909# @qom-type: the class name for the object to be created
1910#
1911# @id: the name of the new object
1912#
1913# @props: a dictionary of properties to be passed to the backend
1914#
1915# Returns: Nothing on success
1916#          Error if @qom-type is not a valid class name
1917#
1918# Since: 2.0
1919#
1920# Example:
1921#
1922# -> { "execute": "object-add",
1923#      "arguments": { "qom-type": "rng-random", "id": "rng1",
1924#                     "props": { "filename": "/dev/hwrng" } } }
1925# <- { "return": {} }
1926#
1927##
1928{ 'command': 'object-add',
1929  'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1930
1931##
1932# @object-del:
1933#
1934# Remove a QOM object.
1935#
1936# @id: the name of the QOM object to remove
1937#
1938# Returns: Nothing on success
1939#          Error if @id is not a valid id for a QOM object
1940#
1941# Since: 2.0
1942#
1943# Example:
1944#
1945# -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1946# <- { "return": {} }
1947#
1948##
1949{ 'command': 'object-del', 'data': {'id': 'str'} }
1950
1951##
1952# @getfd:
1953#
1954# Receive a file descriptor via SCM rights and assign it a name
1955#
1956# @fdname: file descriptor name
1957#
1958# Returns: Nothing on success
1959#
1960# Since: 0.14.0
1961#
1962# Notes: If @fdname already exists, the file descriptor assigned to
1963#        it will be closed and replaced by the received file
1964#        descriptor.
1965#
1966#        The 'closefd' command can be used to explicitly close the
1967#        file descriptor when it is no longer needed.
1968#
1969# Example:
1970#
1971# -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1972# <- { "return": {} }
1973#
1974##
1975{ 'command': 'getfd', 'data': {'fdname': 'str'} }
1976
1977##
1978# @closefd:
1979#
1980# Close a file descriptor previously passed via SCM rights
1981#
1982# @fdname: file descriptor name
1983#
1984# Returns: Nothing on success
1985#
1986# Since: 0.14.0
1987#
1988# Example:
1989#
1990# -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1991# <- { "return": {} }
1992#
1993##
1994{ 'command': 'closefd', 'data': {'fdname': 'str'} }
1995
1996##
1997# @MachineInfo:
1998#
1999# Information describing a machine.
2000#
2001# @name: the name of the machine
2002#
2003# @alias: an alias for the machine name
2004#
2005# @is-default: whether the machine is default
2006#
2007# @cpu-max: maximum number of CPUs supported by the machine type
2008#           (since 1.5.0)
2009#
2010# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
2011#
2012# Since: 1.2.0
2013##
2014{ 'struct': 'MachineInfo',
2015  'data': { 'name': 'str', '*alias': 'str',
2016            '*is-default': 'bool', 'cpu-max': 'int',
2017            'hotpluggable-cpus': 'bool'} }
2018
2019##
2020# @query-machines:
2021#
2022# Return a list of supported machines
2023#
2024# Returns: a list of MachineInfo
2025#
2026# Since: 1.2.0
2027##
2028{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
2029
2030##
2031# @CpuDefinitionInfo:
2032#
2033# Virtual CPU definition.
2034#
2035# @name: the name of the CPU definition
2036#
2037# @migration-safe: whether a CPU definition can be safely used for
2038#                  migration in combination with a QEMU compatibility machine
2039#                  when migrating between different QMU versions and between
2040#                  hosts with different sets of (hardware or software)
2041#                  capabilities. If not provided, information is not available
2042#                  and callers should not assume the CPU definition to be
2043#                  migration-safe. (since 2.8)
2044#
2045# @static: whether a CPU definition is static and will not change depending on
2046#          QEMU version, machine type, machine options and accelerator options.
2047#          A static model is always migration-safe. (since 2.8)
2048#
2049# @unavailable-features: List of properties that prevent
2050#                        the CPU model from running in the current
2051#                        host. (since 2.8)
2052# @typename: Type name that can be used as argument to @device-list-properties,
2053#            to introspect properties configurable using -cpu or -global.
2054#            (since 2.9)
2055#
2056# @unavailable-features is a list of QOM property names that
2057# represent CPU model attributes that prevent the CPU from running.
2058# If the QOM property is read-only, that means there's no known
2059# way to make the CPU model run in the current host. Implementations
2060# that choose not to provide specific information return the
2061# property name "type".
2062# If the property is read-write, it means that it MAY be possible
2063# to run the CPU model in the current host if that property is
2064# changed. Management software can use it as hints to suggest or
2065# choose an alternative for the user, or just to generate meaningful
2066# error messages explaining why the CPU model can't be used.
2067# If @unavailable-features is an empty list, the CPU model is
2068# runnable using the current host and machine-type.
2069# If @unavailable-features is not present, runnability
2070# information for the CPU is not available.
2071#
2072# Since: 1.2.0
2073##
2074{ 'struct': 'CpuDefinitionInfo',
2075  'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
2076            '*unavailable-features': [ 'str' ], 'typename': 'str' } }
2077
2078##
2079# @MemoryInfo:
2080#
2081# Actual memory information in bytes.
2082#
2083# @base-memory: size of "base" memory specified with command line
2084#               option -m.
2085#
2086# @plugged-memory: size of memory that can be hot-unplugged. This field
2087#                  is omitted if target doesn't support memory hotplug
2088#                  (i.e. CONFIG_MEM_HOTPLUG not defined on build time).
2089#
2090# Since: 2.11.0
2091##
2092{ 'struct': 'MemoryInfo',
2093  'data'  : { 'base-memory': 'size', '*plugged-memory': 'size' } }
2094
2095##
2096# @query-memory-size-summary:
2097#
2098# Return the amount of initially allocated and present hotpluggable (if
2099# enabled) memory in bytes.
2100#
2101# Example:
2102#
2103# -> { "execute": "query-memory-size-summary" }
2104# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
2105#
2106# Since: 2.11.0
2107##
2108{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
2109
2110##
2111# @query-cpu-definitions:
2112#
2113# Return a list of supported virtual CPU definitions
2114#
2115# Returns: a list of CpuDefInfo
2116#
2117# Since: 1.2.0
2118##
2119{ 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
2120
2121##
2122# @CpuModelInfo:
2123#
2124# Virtual CPU model.
2125#
2126# A CPU model consists of the name of a CPU definition, to which
2127# delta changes are applied (e.g. features added/removed). Most magic values
2128# that an architecture might require should be hidden behind the name.
2129# However, if required, architectures can expose relevant properties.
2130#
2131# @name: the name of the CPU definition the model is based on
2132# @props: a dictionary of QOM properties to be applied
2133#
2134# Since: 2.8.0
2135##
2136{ 'struct': 'CpuModelInfo',
2137  'data': { 'name': 'str',
2138            '*props': 'any' } }
2139
2140##
2141# @CpuModelExpansionType:
2142#
2143# An enumeration of CPU model expansion types.
2144#
2145# @static: Expand to a static CPU model, a combination of a static base
2146#          model name and property delta changes. As the static base model will
2147#          never change, the expanded CPU model will be the same, independent of
2148#          independent of QEMU version, machine type, machine options, and
2149#          accelerator options. Therefore, the resulting model can be used by
2150#          tooling without having to specify a compatibility machine - e.g. when
2151#          displaying the "host" model. static CPU models are migration-safe.
2152#
2153# @full: Expand all properties. The produced model is not guaranteed to be
2154#        migration-safe, but allows tooling to get an insight and work with
2155#        model details.
2156#
2157# Note: When a non-migration-safe CPU model is expanded in static mode, some
2158# features enabled by the CPU model may be omitted, because they can't be
2159# implemented by a static CPU model definition (e.g. cache info passthrough and
2160# PMU passthrough in x86). If you need an accurate representation of the
2161# features enabled by a non-migration-safe CPU model, use @full. If you need a
2162# static representation that will keep ABI compatibility even when changing QEMU
2163# version or machine-type, use @static (but keep in mind that some features may
2164# be omitted).
2165#
2166# Since: 2.8.0
2167##
2168{ 'enum': 'CpuModelExpansionType',
2169  'data': [ 'static', 'full' ] }
2170
2171
2172##
2173# @CpuModelExpansionInfo:
2174#
2175# The result of a cpu model expansion.
2176#
2177# @model: the expanded CpuModelInfo.
2178#
2179# Since: 2.8.0
2180##
2181{ 'struct': 'CpuModelExpansionInfo',
2182  'data': { 'model': 'CpuModelInfo' } }
2183
2184
2185##
2186# @query-cpu-model-expansion:
2187#
2188# Expands a given CPU model (or a combination of CPU model + additional options)
2189# to different granularities, allowing tooling to get an understanding what a
2190# specific CPU model looks like in QEMU under a certain configuration.
2191#
2192# This interface can be used to query the "host" CPU model.
2193#
2194# The data returned by this command may be affected by:
2195#
2196# * QEMU version: CPU models may look different depending on the QEMU version.
2197#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2198# * machine-type: CPU model  may look different depending on the machine-type.
2199#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2200# * machine options (including accelerator): in some architectures, CPU models
2201#   may look different depending on machine and accelerator options. (Except for
2202#   CPU models reported as "static" in query-cpu-definitions.)
2203# * "-cpu" arguments and global properties: arguments to the -cpu option and
2204#   global properties may affect expansion of CPU models. Using
2205#   query-cpu-model-expansion while using these is not advised.
2206#
2207# Some architectures may not support all expansion types. s390x supports
2208# "full" and "static".
2209#
2210# Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
2211#          not supported, if the model cannot be expanded, if the model contains
2212#          an unknown CPU definition name, unknown properties or properties
2213#          with a wrong type. Also returns an error if an expansion type is
2214#          not supported.
2215#
2216# Since: 2.8.0
2217##
2218{ 'command': 'query-cpu-model-expansion',
2219  'data': { 'type': 'CpuModelExpansionType',
2220            'model': 'CpuModelInfo' },
2221  'returns': 'CpuModelExpansionInfo' }
2222
2223##
2224# @CpuModelCompareResult:
2225#
2226# An enumeration of CPU model comparison results. The result is usually
2227# calculated using e.g. CPU features or CPU generations.
2228#
2229# @incompatible: If model A is incompatible to model B, model A is not
2230#                guaranteed to run where model B runs and the other way around.
2231#
2232# @identical: If model A is identical to model B, model A is guaranteed to run
2233#             where model B runs and the other way around.
2234#
2235# @superset: If model A is a superset of model B, model B is guaranteed to run
2236#            where model A runs. There are no guarantees about the other way.
2237#
2238# @subset: If model A is a subset of model B, model A is guaranteed to run
2239#          where model B runs. There are no guarantees about the other way.
2240#
2241# Since: 2.8.0
2242##
2243{ 'enum': 'CpuModelCompareResult',
2244  'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2245
2246##
2247# @CpuModelCompareInfo:
2248#
2249# The result of a CPU model comparison.
2250#
2251# @result: The result of the compare operation.
2252# @responsible-properties: List of properties that led to the comparison result
2253#                          not being identical.
2254#
2255# @responsible-properties is a list of QOM property names that led to
2256# both CPUs not being detected as identical. For identical models, this
2257# list is empty.
2258# If a QOM property is read-only, that means there's no known way to make the
2259# CPU models identical. If the special property name "type" is included, the
2260# models are by definition not identical and cannot be made identical.
2261#
2262# Since: 2.8.0
2263##
2264{ 'struct': 'CpuModelCompareInfo',
2265  'data': {'result': 'CpuModelCompareResult',
2266           'responsible-properties': ['str']
2267          }
2268}
2269
2270##
2271# @query-cpu-model-comparison:
2272#
2273# Compares two CPU models, returning how they compare in a specific
2274# configuration. The results indicates how both models compare regarding
2275# runnability. This result can be used by tooling to make decisions if a
2276# certain CPU model will run in a certain configuration or if a compatible
2277# CPU model has to be created by baselining.
2278#
2279# Usually, a CPU model is compared against the maximum possible CPU model
2280# of a certain configuration (e.g. the "host" model for KVM). If that CPU
2281# model is identical or a subset, it will run in that configuration.
2282#
2283# The result returned by this command may be affected by:
2284#
2285# * QEMU version: CPU models may look different depending on the QEMU version.
2286#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2287# * machine-type: CPU model may look different depending on the machine-type.
2288#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2289# * machine options (including accelerator): in some architectures, CPU models
2290#   may look different depending on machine and accelerator options. (Except for
2291#   CPU models reported as "static" in query-cpu-definitions.)
2292# * "-cpu" arguments and global properties: arguments to the -cpu option and
2293#   global properties may affect expansion of CPU models. Using
2294#   query-cpu-model-expansion while using these is not advised.
2295#
2296# Some architectures may not support comparing CPU models. s390x supports
2297# comparing CPU models.
2298#
2299# Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
2300#          not supported, if a model cannot be used, if a model contains
2301#          an unknown cpu definition name, unknown properties or properties
2302#          with wrong types.
2303#
2304# Since: 2.8.0
2305##
2306{ 'command': 'query-cpu-model-comparison',
2307  'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
2308  'returns': 'CpuModelCompareInfo' }
2309
2310##
2311# @CpuModelBaselineInfo:
2312#
2313# The result of a CPU model baseline.
2314#
2315# @model: the baselined CpuModelInfo.
2316#
2317# Since: 2.8.0
2318##
2319{ 'struct': 'CpuModelBaselineInfo',
2320  'data': { 'model': 'CpuModelInfo' } }
2321
2322##
2323# @query-cpu-model-baseline:
2324#
2325# Baseline two CPU models, creating a compatible third model. The created
2326# model will always be a static, migration-safe CPU model (see "static"
2327# CPU model expansion for details).
2328#
2329# This interface can be used by tooling to create a compatible CPU model out
2330# two CPU models. The created CPU model will be identical to or a subset of
2331# both CPU models when comparing them. Therefore, the created CPU model is
2332# guaranteed to run where the given CPU models run.
2333#
2334# The result returned by this command may be affected by:
2335#
2336# * QEMU version: CPU models may look different depending on the QEMU version.
2337#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2338# * machine-type: CPU model may look different depending on the machine-type.
2339#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2340# * machine options (including accelerator): in some architectures, CPU models
2341#   may look different depending on machine and accelerator options. (Except for
2342#   CPU models reported as "static" in query-cpu-definitions.)
2343# * "-cpu" arguments and global properties: arguments to the -cpu option and
2344#   global properties may affect expansion of CPU models. Using
2345#   query-cpu-model-expansion while using these is not advised.
2346#
2347# Some architectures may not support baselining CPU models. s390x supports
2348# baselining CPU models.
2349#
2350# Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
2351#          not supported, if a model cannot be used, if a model contains
2352#          an unknown cpu definition name, unknown properties or properties
2353#          with wrong types.
2354#
2355# Since: 2.8.0
2356##
2357{ 'command': 'query-cpu-model-baseline',
2358  'data': { 'modela': 'CpuModelInfo',
2359            'modelb': 'CpuModelInfo' },
2360  'returns': 'CpuModelBaselineInfo' }
2361
2362##
2363# @AddfdInfo:
2364#
2365# Information about a file descriptor that was added to an fd set.
2366#
2367# @fdset-id: The ID of the fd set that @fd was added to.
2368#
2369# @fd: The file descriptor that was received via SCM rights and
2370#      added to the fd set.
2371#
2372# Since: 1.2.0
2373##
2374{ 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2375
2376##
2377# @add-fd:
2378#
2379# Add a file descriptor, that was passed via SCM rights, to an fd set.
2380#
2381# @fdset-id: The ID of the fd set to add the file descriptor to.
2382#
2383# @opaque: A free-form string that can be used to describe the fd.
2384#
2385# Returns: @AddfdInfo on success
2386#
2387#          If file descriptor was not received, FdNotSupplied
2388#
2389#          If @fdset-id is a negative value, InvalidParameterValue
2390#
2391# Notes: The list of fd sets is shared by all monitor connections.
2392#
2393#        If @fdset-id is not specified, a new fd set will be created.
2394#
2395# Since: 1.2.0
2396#
2397# Example:
2398#
2399# -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2400# <- { "return": { "fdset-id": 1, "fd": 3 } }
2401#
2402##
2403{ 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
2404  'returns': 'AddfdInfo' }
2405
2406##
2407# @remove-fd:
2408#
2409# Remove a file descriptor from an fd set.
2410#
2411# @fdset-id: The ID of the fd set that the file descriptor belongs to.
2412#
2413# @fd: The file descriptor that is to be removed.
2414#
2415# Returns: Nothing on success
2416#          If @fdset-id or @fd is not found, FdNotFound
2417#
2418# Since: 1.2.0
2419#
2420# Notes: The list of fd sets is shared by all monitor connections.
2421#
2422#        If @fd is not specified, all file descriptors in @fdset-id
2423#        will be removed.
2424#
2425# Example:
2426#
2427# -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2428# <- { "return": {} }
2429#
2430##
2431{ 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2432
2433##
2434# @FdsetFdInfo:
2435#
2436# Information about a file descriptor that belongs to an fd set.
2437#
2438# @fd: The file descriptor value.
2439#
2440# @opaque: A free-form string that can be used to describe the fd.
2441#
2442# Since: 1.2.0
2443##
2444{ 'struct': 'FdsetFdInfo',
2445  'data': {'fd': 'int', '*opaque': 'str'} }
2446
2447##
2448# @FdsetInfo:
2449#
2450# Information about an fd set.
2451#
2452# @fdset-id: The ID of the fd set.
2453#
2454# @fds: A list of file descriptors that belong to this fd set.
2455#
2456# Since: 1.2.0
2457##
2458{ 'struct': 'FdsetInfo',
2459  'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2460
2461##
2462# @query-fdsets:
2463#
2464# Return information describing all fd sets.
2465#
2466# Returns: A list of @FdsetInfo
2467#
2468# Since: 1.2.0
2469#
2470# Note: The list of fd sets is shared by all monitor connections.
2471#
2472# Example:
2473#
2474# -> { "execute": "query-fdsets" }
2475# <- { "return": [
2476#        {
2477#          "fds": [
2478#            {
2479#              "fd": 30,
2480#              "opaque": "rdonly:/path/to/file"
2481#            },
2482#            {
2483#              "fd": 24,
2484#              "opaque": "rdwr:/path/to/file"
2485#            }
2486#          ],
2487#          "fdset-id": 1
2488#        },
2489#        {
2490#          "fds": [
2491#            {
2492#              "fd": 28
2493#            },
2494#            {
2495#              "fd": 29
2496#            }
2497#          ],
2498#          "fdset-id": 0
2499#        }
2500#      ]
2501#    }
2502#
2503##
2504{ 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2505
2506##
2507# @TargetInfo:
2508#
2509# Information describing the QEMU target.
2510#
2511# @arch: the target architecture
2512#
2513# Since: 1.2.0
2514##
2515{ 'struct': 'TargetInfo',
2516  'data': { 'arch': 'SysEmuTarget' } }
2517
2518##
2519# @query-target:
2520#
2521# Return information about the target for this QEMU
2522#
2523# Returns: TargetInfo
2524#
2525# Since: 1.2.0
2526##
2527{ 'command': 'query-target', 'returns': 'TargetInfo' }
2528
2529##
2530# @AcpiTableOptions:
2531#
2532# Specify an ACPI table on the command line to load.
2533#
2534# At most one of @file and @data can be specified. The list of files specified
2535# by any one of them is loaded and concatenated in order. If both are omitted,
2536# @data is implied.
2537#
2538# Other fields / optargs can be used to override fields of the generic ACPI
2539# table header; refer to the ACPI specification 5.0, section 5.2.6 System
2540# Description Table Header. If a header field is not overridden, then the
2541# corresponding value from the concatenated blob is used (in case of @file), or
2542# it is filled in with a hard-coded value (in case of @data).
2543#
2544# String fields are copied into the matching ACPI member from lowest address
2545# upwards, and silently truncated / NUL-padded to length.
2546#
2547# @sig: table signature / identifier (4 bytes)
2548#
2549# @rev: table revision number (dependent on signature, 1 byte)
2550#
2551# @oem_id: OEM identifier (6 bytes)
2552#
2553# @oem_table_id: OEM table identifier (8 bytes)
2554#
2555# @oem_rev: OEM-supplied revision number (4 bytes)
2556#
2557# @asl_compiler_id: identifier of the utility that created the table
2558#                   (4 bytes)
2559#
2560# @asl_compiler_rev: revision number of the utility that created the
2561#                    table (4 bytes)
2562#
2563# @file: colon (:) separated list of pathnames to load and
2564#        concatenate as table data. The resultant binary blob is expected to
2565#        have an ACPI table header. At least one file is required. This field
2566#        excludes @data.
2567#
2568# @data: colon (:) separated list of pathnames to load and
2569#        concatenate as table data. The resultant binary blob must not have an
2570#        ACPI table header. At least one file is required. This field excludes
2571#        @file.
2572#
2573# Since: 1.5
2574##
2575{ 'struct': 'AcpiTableOptions',
2576  'data': {
2577    '*sig':               'str',
2578    '*rev':               'uint8',
2579    '*oem_id':            'str',
2580    '*oem_table_id':      'str',
2581    '*oem_rev':           'uint32',
2582    '*asl_compiler_id':   'str',
2583    '*asl_compiler_rev':  'uint32',
2584    '*file':              'str',
2585    '*data':              'str' }}
2586
2587##
2588# @CommandLineParameterType:
2589#
2590# Possible types for an option parameter.
2591#
2592# @string: accepts a character string
2593#
2594# @boolean: accepts "on" or "off"
2595#
2596# @number: accepts a number
2597#
2598# @size: accepts a number followed by an optional suffix (K)ilo,
2599#        (M)ega, (G)iga, (T)era
2600#
2601# Since: 1.5
2602##
2603{ 'enum': 'CommandLineParameterType',
2604  'data': ['string', 'boolean', 'number', 'size'] }
2605
2606##
2607# @CommandLineParameterInfo:
2608#
2609# Details about a single parameter of a command line option.
2610#
2611# @name: parameter name
2612#
2613# @type: parameter @CommandLineParameterType
2614#
2615# @help: human readable text string, not suitable for parsing.
2616#
2617# @default: default value string (since 2.1)
2618#
2619# Since: 1.5
2620##
2621{ 'struct': 'CommandLineParameterInfo',
2622  'data': { 'name': 'str',
2623            'type': 'CommandLineParameterType',
2624            '*help': 'str',
2625            '*default': 'str' } }
2626
2627##
2628# @CommandLineOptionInfo:
2629#
2630# Details about a command line option, including its list of parameter details
2631#
2632# @option: option name
2633#
2634# @parameters: an array of @CommandLineParameterInfo
2635#
2636# Since: 1.5
2637##
2638{ 'struct': 'CommandLineOptionInfo',
2639  'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2640
2641##
2642# @query-command-line-options:
2643#
2644# Query command line option schema.
2645#
2646# @option: option name
2647#
2648# Returns: list of @CommandLineOptionInfo for all options (or for the given
2649#          @option).  Returns an error if the given @option doesn't exist.
2650#
2651# Since: 1.5
2652#
2653# Example:
2654#
2655# -> { "execute": "query-command-line-options",
2656#      "arguments": { "option": "option-rom" } }
2657# <- { "return": [
2658#         {
2659#             "parameters": [
2660#                 {
2661#                     "name": "romfile",
2662#                     "type": "string"
2663#                 },
2664#                 {
2665#                     "name": "bootindex",
2666#                     "type": "number"
2667#                 }
2668#             ],
2669#             "option": "option-rom"
2670#         }
2671#      ]
2672#    }
2673#
2674##
2675{'command': 'query-command-line-options', 'data': { '*option': 'str' },
2676 'returns': ['CommandLineOptionInfo'],
2677 'allow-preconfig': true }
2678
2679##
2680# @X86CPURegister32:
2681#
2682# A X86 32-bit register
2683#
2684# Since: 1.5
2685##
2686{ 'enum': 'X86CPURegister32',
2687  'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2688
2689##
2690# @X86CPUFeatureWordInfo:
2691#
2692# Information about a X86 CPU feature word
2693#
2694# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2695#
2696# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2697#                   feature word
2698#
2699# @cpuid-register: Output register containing the feature bits
2700#
2701# @features: value of output register, containing the feature bits
2702#
2703# Since: 1.5
2704##
2705{ 'struct': 'X86CPUFeatureWordInfo',
2706  'data': { 'cpuid-input-eax': 'int',
2707            '*cpuid-input-ecx': 'int',
2708            'cpuid-register': 'X86CPURegister32',
2709            'features': 'int' } }
2710
2711##
2712# @DummyForceArrays:
2713#
2714# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2715#
2716# Since: 2.5
2717##
2718{ 'struct': 'DummyForceArrays',
2719  'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2720
2721
2722##
2723# @NumaOptionsType:
2724#
2725# @node: NUMA nodes configuration
2726#
2727# @dist: NUMA distance configuration (since 2.10)
2728#
2729# @cpu: property based CPU(s) to node mapping (Since: 2.10)
2730#
2731# Since: 2.1
2732##
2733{ 'enum': 'NumaOptionsType',
2734  'data': [ 'node', 'dist', 'cpu' ] }
2735
2736##
2737# @NumaOptions:
2738#
2739# A discriminated record of NUMA options. (for OptsVisitor)
2740#
2741# Since: 2.1
2742##
2743{ 'union': 'NumaOptions',
2744  'base': { 'type': 'NumaOptionsType' },
2745  'discriminator': 'type',
2746  'data': {
2747    'node': 'NumaNodeOptions',
2748    'dist': 'NumaDistOptions',
2749    'cpu': 'NumaCpuOptions' }}
2750
2751##
2752# @NumaNodeOptions:
2753#
2754# Create a guest NUMA node. (for OptsVisitor)
2755#
2756# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2757#
2758# @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2759#         if omitted)
2760#
2761# @mem: memory size of this node; mutually exclusive with @memdev.
2762#       Equally divide total memory among nodes if both @mem and @memdev are
2763#       omitted.
2764#
2765# @memdev: memory backend object.  If specified for one node,
2766#          it must be specified for all nodes.
2767#
2768# Since: 2.1
2769##
2770{ 'struct': 'NumaNodeOptions',
2771  'data': {
2772   '*nodeid': 'uint16',
2773   '*cpus':   ['uint16'],
2774   '*mem':    'size',
2775   '*memdev': 'str' }}
2776
2777##
2778# @NumaDistOptions:
2779#
2780# Set the distance between 2 NUMA nodes.
2781#
2782# @src: source NUMA node.
2783#
2784# @dst: destination NUMA node.
2785#
2786# @val: NUMA distance from source node to destination node.
2787#       When a node is unreachable from another node, set the distance
2788#       between them to 255.
2789#
2790# Since: 2.10
2791##
2792{ 'struct': 'NumaDistOptions',
2793  'data': {
2794   'src': 'uint16',
2795   'dst': 'uint16',
2796   'val': 'uint8' }}
2797
2798##
2799# @NumaCpuOptions:
2800#
2801# Option "-numa cpu" overrides default cpu to node mapping.
2802# It accepts the same set of cpu properties as returned by
2803# query-hotpluggable-cpus[].props, where node-id could be used to
2804# override default node mapping.
2805#
2806# Since: 2.10
2807##
2808{ 'struct': 'NumaCpuOptions',
2809   'base': 'CpuInstanceProperties',
2810   'data' : {} }
2811
2812##
2813# @HostMemPolicy:
2814#
2815# Host memory policy types
2816#
2817# @default: restore default policy, remove any nondefault policy
2818#
2819# @preferred: set the preferred host nodes for allocation
2820#
2821# @bind: a strict policy that restricts memory allocation to the
2822#        host nodes specified
2823#
2824# @interleave: memory allocations are interleaved across the set
2825#              of host nodes specified
2826#
2827# Since: 2.1
2828##
2829{ 'enum': 'HostMemPolicy',
2830  'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2831
2832##
2833# @Memdev:
2834#
2835# Information about memory backend
2836#
2837# @id: backend's ID if backend has 'id' property (since 2.9)
2838#
2839# @size: memory backend size
2840#
2841# @merge: enables or disables memory merge support
2842#
2843# @dump: includes memory backend's memory in a core dump or not
2844#
2845# @prealloc: enables or disables memory preallocation
2846#
2847# @host-nodes: host nodes for its memory policy
2848#
2849# @policy: memory policy of memory backend
2850#
2851# Since: 2.1
2852##
2853{ 'struct': 'Memdev',
2854  'data': {
2855    '*id':        'str',
2856    'size':       'size',
2857    'merge':      'bool',
2858    'dump':       'bool',
2859    'prealloc':   'bool',
2860    'host-nodes': ['uint16'],
2861    'policy':     'HostMemPolicy' }}
2862
2863##
2864# @query-memdev:
2865#
2866# Returns information for all memory backends.
2867#
2868# Returns: a list of @Memdev.
2869#
2870# Since: 2.1
2871#
2872# Example:
2873#
2874# -> { "execute": "query-memdev" }
2875# <- { "return": [
2876#        {
2877#          "id": "mem1",
2878#          "size": 536870912,
2879#          "merge": false,
2880#          "dump": true,
2881#          "prealloc": false,
2882#          "host-nodes": [0, 1],
2883#          "policy": "bind"
2884#        },
2885#        {
2886#          "size": 536870912,
2887#          "merge": false,
2888#          "dump": true,
2889#          "prealloc": true,
2890#          "host-nodes": [2, 3],
2891#          "policy": "preferred"
2892#        }
2893#      ]
2894#    }
2895#
2896##
2897{ 'command': 'query-memdev', 'returns': ['Memdev'] }
2898
2899##
2900# @PCDIMMDeviceInfo:
2901#
2902# PCDIMMDevice state information
2903#
2904# @id: device's ID
2905#
2906# @addr: physical address, where device is mapped
2907#
2908# @size: size of memory that the device provides
2909#
2910# @slot: slot number at which device is plugged in
2911#
2912# @node: NUMA node number where device is plugged in
2913#
2914# @memdev: memory backend linked with device
2915#
2916# @hotplugged: true if device was hotplugged
2917#
2918# @hotpluggable: true if device if could be added/removed while machine is running
2919#
2920# Since: 2.1
2921##
2922{ 'struct': 'PCDIMMDeviceInfo',
2923  'data': { '*id': 'str',
2924            'addr': 'int',
2925            'size': 'int',
2926            'slot': 'int',
2927            'node': 'int',
2928            'memdev': 'str',
2929            'hotplugged': 'bool',
2930            'hotpluggable': 'bool'
2931          }
2932}
2933
2934##
2935# @MemoryDeviceInfo:
2936#
2937# Union containing information about a memory device
2938#
2939# Since: 2.1
2940##
2941{ 'union': 'MemoryDeviceInfo',
2942  'data': { 'dimm': 'PCDIMMDeviceInfo',
2943            'nvdimm': 'PCDIMMDeviceInfo'
2944          }
2945}
2946
2947##
2948# @query-memory-devices:
2949#
2950# Lists available memory devices and their state
2951#
2952# Since: 2.1
2953#
2954# Example:
2955#
2956# -> { "execute": "query-memory-devices" }
2957# <- { "return": [ { "data":
2958#                       { "addr": 5368709120,
2959#                         "hotpluggable": true,
2960#                         "hotplugged": true,
2961#                         "id": "d1",
2962#                         "memdev": "/objects/memX",
2963#                         "node": 0,
2964#                         "size": 1073741824,
2965#                         "slot": 0},
2966#                    "type": "dimm"
2967#                  } ] }
2968#
2969##
2970{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2971
2972##
2973# @MEM_UNPLUG_ERROR:
2974#
2975# Emitted when memory hot unplug error occurs.
2976#
2977# @device: device name
2978#
2979# @msg: Informative message
2980#
2981# Since: 2.4
2982#
2983# Example:
2984#
2985# <- { "event": "MEM_UNPLUG_ERROR"
2986#      "data": { "device": "dimm1",
2987#                "msg": "acpi: device unplug for unsupported device"
2988#      },
2989#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2990#
2991##
2992{ 'event': 'MEM_UNPLUG_ERROR',
2993  'data': { 'device': 'str', 'msg': 'str' } }
2994
2995##
2996# @ACPISlotType:
2997#
2998# @DIMM: memory slot
2999# @CPU: logical CPU slot (since 2.7)
3000##
3001{ 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
3002
3003##
3004# @ACPIOSTInfo:
3005#
3006# OSPM Status Indication for a device
3007# For description of possible values of @source and @status fields
3008# see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
3009#
3010# @device: device ID associated with slot
3011#
3012# @slot: slot ID, unique per slot of a given @slot-type
3013#
3014# @slot-type: type of the slot
3015#
3016# @source: an integer containing the source event
3017#
3018# @status: an integer containing the status code
3019#
3020# Since: 2.1
3021##
3022{ 'struct': 'ACPIOSTInfo',
3023  'data'  : { '*device': 'str',
3024              'slot': 'str',
3025              'slot-type': 'ACPISlotType',
3026              'source': 'int',
3027              'status': 'int' } }
3028
3029##
3030# @query-acpi-ospm-status:
3031#
3032# Return a list of ACPIOSTInfo for devices that support status
3033# reporting via ACPI _OST method.
3034#
3035# Since: 2.1
3036#
3037# Example:
3038#
3039# -> { "execute": "query-acpi-ospm-status" }
3040# <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
3041#                  { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
3042#                  { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
3043#                  { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
3044#    ]}
3045#
3046##
3047{ 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
3048
3049##
3050# @ACPI_DEVICE_OST:
3051#
3052# Emitted when guest executes ACPI _OST method.
3053#
3054# @info: OSPM Status Indication
3055#
3056# Since: 2.1
3057#
3058# Example:
3059#
3060# <- { "event": "ACPI_DEVICE_OST",
3061#      "data": { "device": "d1", "slot": "0",
3062#                "slot-type": "DIMM", "source": 1, "status": 0 } }
3063#
3064##
3065{ 'event': 'ACPI_DEVICE_OST',
3066     'data': { 'info': 'ACPIOSTInfo' } }
3067
3068##
3069# @rtc-reset-reinjection:
3070#
3071# This command will reset the RTC interrupt reinjection backlog.
3072# Can be used if another mechanism to synchronize guest time
3073# is in effect, for example QEMU guest agent's guest-set-time
3074# command.
3075#
3076# Since: 2.1
3077#
3078# Example:
3079#
3080# -> { "execute": "rtc-reset-reinjection" }
3081# <- { "return": {} }
3082#
3083##
3084{ 'command': 'rtc-reset-reinjection' }
3085
3086##
3087# @RTC_CHANGE:
3088#
3089# Emitted when the guest changes the RTC time.
3090#
3091# @offset: offset between base RTC clock (as specified by -rtc base), and
3092#          new RTC clock value
3093#
3094# Note: This event is rate-limited.
3095#
3096# Since: 0.13.0
3097#
3098# Example:
3099#
3100# <-   { "event": "RTC_CHANGE",
3101#        "data": { "offset": 78 },
3102#        "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
3103#
3104##
3105{ 'event': 'RTC_CHANGE',
3106  'data': { 'offset': 'int' } }
3107
3108##
3109# @ReplayMode:
3110#
3111# Mode of the replay subsystem.
3112#
3113# @none: normal execution mode. Replay or record are not enabled.
3114#
3115# @record: record mode. All non-deterministic data is written into the
3116#          replay log.
3117#
3118# @play: replay mode. Non-deterministic data required for system execution
3119#        is read from the log.
3120#
3121# Since: 2.5
3122##
3123{ 'enum': 'ReplayMode',
3124  'data': [ 'none', 'record', 'play' ] }
3125
3126##
3127# @xen-load-devices-state:
3128#
3129# Load the state of all devices from file. The RAM and the block devices
3130# of the VM are not loaded by this command.
3131#
3132# @filename: the file to load the state of the devices from as binary
3133# data. See xen-save-devices-state.txt for a description of the binary
3134# format.
3135#
3136# Since: 2.7
3137#
3138# Example:
3139#
3140# -> { "execute": "xen-load-devices-state",
3141#      "arguments": { "filename": "/tmp/resume" } }
3142# <- { "return": {} }
3143#
3144##
3145{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
3146
3147##
3148# @GICCapability:
3149#
3150# The struct describes capability for a specific GIC (Generic
3151# Interrupt Controller) version. These bits are not only decided by
3152# QEMU/KVM software version, but also decided by the hardware that
3153# the program is running upon.
3154#
3155# @version:  version of GIC to be described. Currently, only 2 and 3
3156#            are supported.
3157#
3158# @emulated: whether current QEMU/hardware supports emulated GIC
3159#            device in user space.
3160#
3161# @kernel:   whether current QEMU/hardware supports hardware
3162#            accelerated GIC device in kernel.
3163#
3164# Since: 2.6
3165##
3166{ 'struct': 'GICCapability',
3167  'data': { 'version': 'int',
3168            'emulated': 'bool',
3169            'kernel': 'bool' } }
3170
3171##
3172# @query-gic-capabilities:
3173#
3174# This command is ARM-only. It will return a list of GICCapability
3175# objects that describe its capability bits.
3176#
3177# Returns: a list of GICCapability objects.
3178#
3179# Since: 2.6
3180#
3181# Example:
3182#
3183# -> { "execute": "query-gic-capabilities" }
3184# <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
3185#                 { "version": 3, "emulated": false, "kernel": true } ] }
3186#
3187##
3188{ 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
3189
3190##
3191# @CpuInstanceProperties:
3192#
3193# List of properties to be used for hotplugging a CPU instance,
3194# it should be passed by management with device_add command when
3195# a CPU is being hotplugged.
3196#
3197# @node-id: NUMA node ID the CPU belongs to
3198# @socket-id: socket number within node/board the CPU belongs to
3199# @core-id: core number within socket the CPU belongs to
3200# @thread-id: thread number within core the CPU belongs to
3201#
3202# Note: currently there are 4 properties that could be present
3203# but management should be prepared to pass through other
3204# properties with device_add command to allow for future
3205# interface extension. This also requires the filed names to be kept in
3206# sync with the properties passed to -device/device_add.
3207#
3208# Since: 2.7
3209##
3210{ 'struct': 'CpuInstanceProperties',
3211  'data': { '*node-id': 'int',
3212            '*socket-id': 'int',
3213            '*core-id': 'int',
3214            '*thread-id': 'int'
3215  }
3216}
3217
3218##
3219# @HotpluggableCPU:
3220#
3221# @type: CPU object type for usage with device_add command
3222# @props: list of properties to be used for hotplugging CPU
3223# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
3224# @qom-path: link to existing CPU object if CPU is present or
3225#            omitted if CPU is not present.
3226#
3227# Since: 2.7
3228##
3229{ 'struct': 'HotpluggableCPU',
3230  'data': { 'type': 'str',
3231            'vcpus-count': 'int',
3232            'props': 'CpuInstanceProperties',
3233            '*qom-path': 'str'
3234          }
3235}
3236
3237##
3238# @query-hotpluggable-cpus:
3239#
3240# Returns: a list of HotpluggableCPU objects.
3241#
3242# Since: 2.7
3243#
3244# Example:
3245#
3246# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
3247#
3248# -> { "execute": "query-hotpluggable-cpus" }
3249# <- {"return": [
3250#      { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
3251#        "vcpus-count": 1 },
3252#      { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
3253#        "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
3254#    ]}'
3255#
3256# For pc machine type started with -smp 1,maxcpus=2:
3257#
3258# -> { "execute": "query-hotpluggable-cpus" }
3259# <- {"return": [
3260#      {
3261#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3262#         "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
3263#      },
3264#      {
3265#         "qom-path": "/machine/unattached/device[0]",
3266#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3267#         "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
3268#      }
3269#    ]}
3270#
3271# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
3272# (Since: 2.11):
3273#
3274# -> { "execute": "query-hotpluggable-cpus" }
3275# <- {"return": [
3276#      {
3277#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
3278#         "props": { "core-id": 1 }
3279#      },
3280#      {
3281#         "qom-path": "/machine/unattached/device[0]",
3282#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
3283#         "props": { "core-id": 0 }
3284#      }
3285#    ]}
3286#
3287##
3288{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
3289             'allow-preconfig': true }
3290
3291##
3292# @GuidInfo:
3293#
3294# GUID information.
3295#
3296# @guid: the globally unique identifier
3297#
3298# Since: 2.9
3299##
3300{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3301
3302##
3303# @query-vm-generation-id:
3304#
3305# Show Virtual Machine Generation ID
3306#
3307# Since: 2.9
3308##
3309{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
3310
3311
3312##
3313# @SevState:
3314#
3315# An enumeration of SEV state information used during @query-sev.
3316#
3317# @uninit: The guest is uninitialized.
3318#
3319# @launch-update: The guest is currently being launched; plaintext data and
3320#                 register state is being imported.
3321#
3322# @launch-secret: The guest is currently being launched; ciphertext data
3323#                 is being imported.
3324#
3325# @running: The guest is fully launched or migrated in.
3326#
3327# @send-update: The guest is currently being migrated out to another machine.
3328#
3329# @receive-update: The guest is currently being migrated from another machine.
3330#
3331# Since: 2.12
3332##
3333{ 'enum': 'SevState',
3334  'data': ['uninit', 'launch-update', 'launch-secret', 'running',
3335           'send-update', 'receive-update' ] }
3336
3337##
3338# @SevInfo:
3339#
3340# Information about Secure Encrypted Virtualization (SEV) support
3341#
3342# @enabled: true if SEV is active
3343#
3344# @api-major: SEV API major version
3345#
3346# @api-minor: SEV API minor version
3347#
3348# @build-id: SEV FW build id
3349#
3350# @policy: SEV policy value
3351#
3352# @state: SEV guest state
3353#
3354# @handle: SEV firmware handle
3355#
3356# Since: 2.12
3357##
3358{ 'struct': 'SevInfo',
3359    'data': { 'enabled': 'bool',
3360              'api-major': 'uint8',
3361              'api-minor' : 'uint8',
3362              'build-id' : 'uint8',
3363              'policy' : 'uint32',
3364              'state' : 'SevState',
3365              'handle' : 'uint32'
3366            }
3367}
3368
3369##
3370# @query-sev:
3371#
3372# Returns information about SEV
3373#
3374# Returns: @SevInfo
3375#
3376# Since: 2.12
3377#
3378# Example:
3379#
3380# -> { "execute": "query-sev" }
3381# <- { "return": { "enabled": true, "api-major" : 0, "api-minor" : 0,
3382#                  "build-id" : 0, "policy" : 0, "state" : "running",
3383#                  "handle" : 1 } }
3384#
3385##
3386{ 'command': 'query-sev', 'returns': 'SevInfo' }
3387
3388##
3389# @SevLaunchMeasureInfo:
3390#
3391# SEV Guest Launch measurement information
3392#
3393# @data: the measurement value encoded in base64
3394#
3395# Since: 2.12
3396#
3397##
3398{ 'struct': 'SevLaunchMeasureInfo', 'data': {'data': 'str'} }
3399
3400##
3401# @query-sev-launch-measure:
3402#
3403# Query the SEV guest launch information.
3404#
3405# Returns: The @SevLaunchMeasureInfo for the guest
3406#
3407# Since: 2.12
3408#
3409# Example:
3410#
3411# -> { "execute": "query-sev-launch-measure" }
3412# <- { "return": { "data": "4l8LXeNlSPUDlXPJG5966/8%YZ" } }
3413#
3414##
3415{ 'command': 'query-sev-launch-measure', 'returns': 'SevLaunchMeasureInfo' }
3416
3417##
3418# @SevCapability:
3419#
3420# The struct describes capability for a Secure Encrypted Virtualization
3421# feature.
3422#
3423# @pdh:  Platform Diffie-Hellman key (base64 encoded)
3424#
3425# @cert-chain:  PDH certificate chain (base64 encoded)
3426#
3427# @cbitpos: C-bit location in page table entry
3428#
3429# @reduced-phys-bits: Number of physical Address bit reduction when SEV is
3430#                     enabled
3431#
3432# Since: 2.12
3433##
3434{ 'struct': 'SevCapability',
3435  'data': { 'pdh': 'str',
3436            'cert-chain': 'str',
3437            'cbitpos': 'int',
3438            'reduced-phys-bits': 'int'} }
3439
3440##
3441# @query-sev-capabilities:
3442#
3443# This command is used to get the SEV capabilities, and is supported on AMD
3444# X86 platforms only.
3445#
3446# Returns: SevCapability objects.
3447#
3448# Since: 2.12
3449#
3450# Example:
3451#
3452# -> { "execute": "query-sev-capabilities" }
3453# <- { "return": { "pdh": "8CCDD8DDD", "cert-chain": "888CCCDDDEE",
3454#                  "cbitpos": 47, "reduced-phys-bits": 5}}
3455#
3456##
3457{ 'command': 'query-sev-capabilities', 'returns': 'SevCapability' }
3458
3459##
3460# @CommandDropReason:
3461#
3462# Reasons that caused one command to be dropped.
3463#
3464# @queue-full: the command queue is full. This can only occur when
3465#              the client sends a new non-oob command before the
3466#              response to the previous non-oob command has been
3467#              received.
3468#
3469# Since: 2.12
3470##
3471{ 'enum': 'CommandDropReason',
3472  'data': [ 'queue-full' ] }
3473
3474##
3475# @COMMAND_DROPPED:
3476#
3477# Emitted when a command is dropped due to some reason.  Commands can
3478# only be dropped when the oob capability is enabled.
3479#
3480# @id: The dropped command's "id" field.
3481#
3482# @reason: The reason why the command is dropped.
3483#
3484# Since: 2.12
3485#
3486# Example:
3487#
3488# { "event": "COMMAND_DROPPED",
3489#   "data": {"result": {"id": "libvirt-102",
3490#                       "reason": "queue-full" } } }
3491#
3492##
3493{ 'event': 'COMMAND_DROPPED' ,
3494  'data': { 'id': 'any', 'reason': 'CommandDropReason' } }
3495
3496##
3497# @x-oob-test:
3498#
3499# Test OOB functionality.  When sending this command with lock=true,
3500# it'll try to hang the dispatcher.  When sending it with lock=false,
3501# it'll try to notify the locked thread to continue.  Note: it should
3502# only be used by QMP test program rather than anything else.
3503#
3504# Since: 2.12
3505#
3506# Example:
3507#
3508# { "execute": "x-oob-test",
3509#   "arguments": { "lock": true } }
3510##
3511{ 'command': 'x-oob-test', 'data' : { 'lock': 'bool' },
3512  'allow-oob': true }
3513
3514##
3515# @set-numa-node:
3516#
3517# Runtime equivalent of '-numa' CLI option, available at
3518# preconfigure stage to configure numa mapping before initializing
3519# machine.
3520#
3521# Since 3.0
3522##
3523{ 'command': 'set-numa-node', 'boxed': true,
3524  'data': 'NumaOptions',
3525  'allow-preconfig': true
3526}
3527