xref: /openbmc/qemu/qapi/misc.json (revision 500eb6db)
1# -*- Mode: Python -*-
2#
3
4##
5# = Miscellanea
6##
7
8{ 'include': 'common.json' }
9
10##
11# @qmp_capabilities:
12#
13# Enable QMP capabilities.
14#
15# Arguments:
16#
17# @enable:   An optional list of QMPCapability values to enable.  The
18#            client must not enable any capability that is not
19#            mentioned in the QMP greeting message.  If the field is not
20#            provided, it means no QMP capabilities will be enabled.
21#            (since 2.12)
22#
23# Example:
24#
25# -> { "execute": "qmp_capabilities",
26#      "arguments": { "enable": [ "oob" ] } }
27# <- { "return": {} }
28#
29# Notes: This command is valid exactly when first connecting: it must be
30# issued before any other command will be accepted, and will fail once the
31# monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
32#
33# The QMP client needs to explicitly enable QMP capabilities, otherwise
34# all the QMP capabilities will be turned off by default.
35#
36# Since: 0.13
37#
38##
39{ 'command': 'qmp_capabilities',
40  'data': { '*enable': [ 'QMPCapability' ] },
41  'allow-preconfig': true }
42
43##
44# @QMPCapability:
45#
46# Enumeration of capabilities to be advertised during initial client
47# connection, used for agreeing on particular QMP extension behaviors.
48#
49# @oob:   QMP ability to support out-of-band requests.
50#         (Please refer to qmp-spec.txt for more information on OOB)
51#
52# Since: 2.12
53#
54##
55{ 'enum': 'QMPCapability',
56  'data': [ 'oob' ] }
57
58##
59# @VersionTriple:
60#
61# A three-part version number.
62#
63# @major:  The major version number.
64#
65# @minor:  The minor version number.
66#
67# @micro:  The micro version number.
68#
69# Since: 2.4
70##
71{ 'struct': 'VersionTriple',
72  'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
73
74
75##
76# @VersionInfo:
77#
78# A description of QEMU's version.
79#
80# @qemu:        The version of QEMU.  By current convention, a micro
81#               version of 50 signifies a development branch.  A micro version
82#               greater than or equal to 90 signifies a release candidate for
83#               the next minor version.  A micro version of less than 50
84#               signifies a stable release.
85#
86# @package:     QEMU will always set this field to an empty string.  Downstream
87#               versions of QEMU should set this to a non-empty string.  The
88#               exact format depends on the downstream however it highly
89#               recommended that a unique name is used.
90#
91# Since: 0.14.0
92##
93{ 'struct': 'VersionInfo',
94  'data': {'qemu': 'VersionTriple', 'package': 'str'} }
95
96##
97# @query-version:
98#
99# Returns the current version of QEMU.
100#
101# Returns:  A @VersionInfo object describing the current version of QEMU.
102#
103# Since: 0.14.0
104#
105# Example:
106#
107# -> { "execute": "query-version" }
108# <- {
109#       "return":{
110#          "qemu":{
111#             "major":0,
112#             "minor":11,
113#             "micro":5
114#          },
115#          "package":""
116#       }
117#    }
118#
119##
120{ 'command': 'query-version', 'returns': 'VersionInfo',
121  'allow-preconfig': true }
122
123##
124# @CommandInfo:
125#
126# Information about a QMP command
127#
128# @name: The command name
129#
130# Since: 0.14.0
131##
132{ 'struct': 'CommandInfo', 'data': {'name': 'str'} }
133
134##
135# @query-commands:
136#
137# Return a list of supported QMP commands by this server
138#
139# Returns: A list of @CommandInfo for all supported commands
140#
141# Since: 0.14.0
142#
143# Example:
144#
145# -> { "execute": "query-commands" }
146# <- {
147#      "return":[
148#         {
149#            "name":"query-balloon"
150#         },
151#         {
152#            "name":"system_powerdown"
153#         }
154#      ]
155#    }
156#
157# Note: This example has been shortened as the real response is too long.
158#
159##
160{ 'command': 'query-commands', 'returns': ['CommandInfo'],
161  'allow-preconfig': true }
162
163##
164# @LostTickPolicy:
165#
166# Policy for handling lost ticks in timer devices.
167#
168# @discard: throw away the missed tick(s) and continue with future injection
169#           normally.  Guest time may be delayed, unless the OS has explicit
170#           handling of lost ticks
171#
172# @delay: continue to deliver ticks at the normal rate.  Guest time will be
173#         delayed due to the late tick
174#
175# @slew: deliver ticks at a higher rate to catch up with the missed tick. The
176#        guest time should not be delayed once catchup is complete.
177#
178# Since: 2.0
179##
180{ 'enum': 'LostTickPolicy',
181  'data': ['discard', 'delay', 'slew' ] }
182
183##
184# @add_client:
185#
186# Allow client connections for VNC, Spice and socket based
187# character devices to be passed in to QEMU via SCM_RIGHTS.
188#
189# @protocol: protocol name. Valid names are "vnc", "spice" or the
190#            name of a character device (eg. from -chardev id=XXXX)
191#
192# @fdname: file descriptor name previously passed via 'getfd' command
193#
194# @skipauth: whether to skip authentication. Only applies
195#            to "vnc" and "spice" protocols
196#
197# @tls: whether to perform TLS. Only applies to the "spice"
198#       protocol
199#
200# Returns: nothing on success.
201#
202# Since: 0.14.0
203#
204# Example:
205#
206# -> { "execute": "add_client", "arguments": { "protocol": "vnc",
207#                                              "fdname": "myclient" } }
208# <- { "return": {} }
209#
210##
211{ 'command': 'add_client',
212  'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
213            '*tls': 'bool' } }
214
215##
216# @NameInfo:
217#
218# Guest name information.
219#
220# @name: The name of the guest
221#
222# Since: 0.14.0
223##
224{ 'struct': 'NameInfo', 'data': {'*name': 'str'} }
225
226##
227# @query-name:
228#
229# Return the name information of a guest.
230#
231# Returns: @NameInfo of the guest
232#
233# Since: 0.14.0
234#
235# Example:
236#
237# -> { "execute": "query-name" }
238# <- { "return": { "name": "qemu-name" } }
239#
240##
241{ 'command': 'query-name', 'returns': 'NameInfo', 'allow-preconfig': true }
242
243##
244# @KvmInfo:
245#
246# Information about support for KVM acceleration
247#
248# @enabled: true if KVM acceleration is active
249#
250# @present: true if KVM acceleration is built into this executable
251#
252# Since: 0.14.0
253##
254{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
255
256##
257# @query-kvm:
258#
259# Returns information about KVM acceleration
260#
261# Returns: @KvmInfo
262#
263# Since: 0.14.0
264#
265# Example:
266#
267# -> { "execute": "query-kvm" }
268# <- { "return": { "enabled": true, "present": true } }
269#
270##
271{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
272
273##
274# @UuidInfo:
275#
276# Guest UUID information (Universally Unique Identifier).
277#
278# @UUID: the UUID of the guest
279#
280# Since: 0.14.0
281#
282# Notes: If no UUID was specified for the guest, a null UUID is returned.
283##
284{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
285
286##
287# @query-uuid:
288#
289# Query the guest UUID information.
290#
291# Returns: The @UuidInfo for the guest
292#
293# Since: 0.14.0
294#
295# Example:
296#
297# -> { "execute": "query-uuid" }
298# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
299#
300##
301{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
302
303##
304# @EventInfo:
305#
306# Information about a QMP event
307#
308# @name: The event name
309#
310# Since: 1.2.0
311##
312{ 'struct': 'EventInfo', 'data': {'name': 'str'} }
313
314##
315# @query-events:
316#
317# Return information on QMP events.
318#
319# Returns: A list of @EventInfo.
320#
321# Since: 1.2.0
322#
323# Note: This command is deprecated, because its output doesn't reflect
324# compile-time configuration.  Use query-qmp-schema instead.
325#
326# Example:
327#
328# -> { "execute": "query-events" }
329# <- {
330#      "return": [
331#          {
332#             "name":"SHUTDOWN"
333#          },
334#          {
335#             "name":"RESET"
336#          }
337#       ]
338#    }
339#
340# Note: This example has been shortened as the real response is too long.
341#
342##
343{ 'command': 'query-events', 'returns': ['EventInfo'] }
344
345##
346# @CpuInfoArch:
347#
348# An enumeration of cpu types that enable additional information during
349# @query-cpus and @query-cpus-fast.
350#
351# @s390: since 2.12
352#
353# @riscv: since 2.12
354#
355# Since: 2.6
356##
357{ 'enum': 'CpuInfoArch',
358  'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] }
359
360##
361# @CpuInfo:
362#
363# Information about a virtual CPU
364#
365# @CPU: the index of the virtual CPU
366#
367# @current: this only exists for backwards compatibility and should be ignored
368#
369# @halted: true if the virtual CPU is in the halt state.  Halt usually refers
370#          to a processor specific low power mode.
371#
372# @qom_path: path to the CPU object in the QOM tree (since 2.4)
373#
374# @thread_id: ID of the underlying host thread
375#
376# @props: properties describing to which node/socket/core/thread
377#         virtual CPU belongs to, provided if supported by board (since 2.10)
378#
379# @arch: architecture of the cpu, which determines which additional fields
380#        will be listed (since 2.6)
381#
382# Since: 0.14.0
383#
384# Notes: @halted is a transient state that changes frequently.  By the time the
385#        data is sent to the client, the guest may no longer be halted.
386##
387{ 'union': 'CpuInfo',
388  'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
389           'qom_path': 'str', 'thread_id': 'int',
390           '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
391  'discriminator': 'arch',
392  'data': { 'x86': 'CpuInfoX86',
393            'sparc': 'CpuInfoSPARC',
394            'ppc': 'CpuInfoPPC',
395            'mips': 'CpuInfoMIPS',
396            'tricore': 'CpuInfoTricore',
397            's390': 'CpuInfoS390',
398            'riscv': 'CpuInfoRISCV' } }
399
400##
401# @CpuInfoX86:
402#
403# Additional information about a virtual i386 or x86_64 CPU
404#
405# @pc: the 64-bit instruction pointer
406#
407# Since: 2.6
408##
409{ 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
410
411##
412# @CpuInfoSPARC:
413#
414# Additional information about a virtual SPARC CPU
415#
416# @pc: the PC component of the instruction pointer
417#
418# @npc: the NPC component of the instruction pointer
419#
420# Since: 2.6
421##
422{ 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
423
424##
425# @CpuInfoPPC:
426#
427# Additional information about a virtual PPC CPU
428#
429# @nip: the instruction pointer
430#
431# Since: 2.6
432##
433{ 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
434
435##
436# @CpuInfoMIPS:
437#
438# Additional information about a virtual MIPS CPU
439#
440# @PC: the instruction pointer
441#
442# Since: 2.6
443##
444{ 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
445
446##
447# @CpuInfoTricore:
448#
449# Additional information about a virtual Tricore CPU
450#
451# @PC: the instruction pointer
452#
453# Since: 2.6
454##
455{ 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
456
457##
458# @CpuInfoRISCV:
459#
460# Additional information about a virtual RISCV CPU
461#
462# @pc: the instruction pointer
463#
464# Since 2.12
465##
466{ 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } }
467
468##
469# @CpuS390State:
470#
471# An enumeration of cpu states that can be assumed by a virtual
472# S390 CPU
473#
474# Since: 2.12
475##
476{ 'enum': 'CpuS390State',
477  'prefix': 'S390_CPU_STATE',
478  'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
479
480##
481# @CpuInfoS390:
482#
483# Additional information about a virtual S390 CPU
484#
485# @cpu-state: the virtual CPU's state
486#
487# Since: 2.12
488##
489{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
490
491##
492# @query-cpus:
493#
494# Returns a list of information about each virtual CPU.
495#
496# This command causes vCPU threads to exit to userspace, which causes
497# a small interruption to guest CPU execution. This will have a negative
498# impact on realtime guests and other latency sensitive guest workloads.
499# It is recommended to use @query-cpus-fast instead of this command to
500# avoid the vCPU interruption.
501#
502# Returns: a list of @CpuInfo for each virtual CPU
503#
504# Since: 0.14.0
505#
506# Example:
507#
508# -> { "execute": "query-cpus" }
509# <- { "return": [
510#          {
511#             "CPU":0,
512#             "current":true,
513#             "halted":false,
514#             "qom_path":"/machine/unattached/device[0]",
515#             "arch":"x86",
516#             "pc":3227107138,
517#             "thread_id":3134
518#          },
519#          {
520#             "CPU":1,
521#             "current":false,
522#             "halted":true,
523#             "qom_path":"/machine/unattached/device[2]",
524#             "arch":"x86",
525#             "pc":7108165,
526#             "thread_id":3135
527#          }
528#       ]
529#    }
530#
531# Notes: This interface is deprecated (since 2.12.0), and it is strongly
532#        recommended that you avoid using it. Use @query-cpus-fast to
533#        obtain information about virtual CPUs.
534#
535##
536{ 'command': 'query-cpus', 'returns': ['CpuInfo'] }
537
538##
539# @CpuInfoFast:
540#
541# Information about a virtual CPU
542#
543# @cpu-index: index of the virtual CPU
544#
545# @qom-path: path to the CPU object in the QOM tree
546#
547# @thread-id: ID of the underlying host thread
548#
549# @props: properties describing to which node/socket/core/thread
550#         virtual CPU belongs to, provided if supported by board
551#
552# @arch: base architecture of the cpu; deprecated since 3.0.0 in favor
553#        of @target
554#
555# @target: the QEMU system emulation target, which determines which
556#          additional fields will be listed (since 3.0)
557#
558# Since: 2.12
559#
560##
561{ 'union'         : 'CpuInfoFast',
562  'base'          : { 'cpu-index'    : 'int',
563                      'qom-path'     : 'str',
564                      'thread-id'    : 'int',
565                      '*props'       : 'CpuInstanceProperties',
566                      'arch'         : 'CpuInfoArch',
567                      'target'       : 'SysEmuTarget' },
568  'discriminator' : 'target',
569  'data'          : { 's390x'        : 'CpuInfoS390' } }
570
571##
572# @query-cpus-fast:
573#
574# Returns information about all virtual CPUs. This command does not
575# incur a performance penalty and should be used in production
576# instead of query-cpus.
577#
578# Returns: list of @CpuInfoFast
579#
580# Since: 2.12
581#
582# Example:
583#
584# -> { "execute": "query-cpus-fast" }
585# <- { "return": [
586#         {
587#             "thread-id": 25627,
588#             "props": {
589#                 "core-id": 0,
590#                 "thread-id": 0,
591#                 "socket-id": 0
592#             },
593#             "qom-path": "/machine/unattached/device[0]",
594#             "arch":"x86",
595#             "target":"x86_64",
596#             "cpu-index": 0
597#         },
598#         {
599#             "thread-id": 25628,
600#             "props": {
601#                 "core-id": 0,
602#                 "thread-id": 0,
603#                 "socket-id": 1
604#             },
605#             "qom-path": "/machine/unattached/device[2]",
606#             "arch":"x86",
607#             "target":"x86_64",
608#             "cpu-index": 1
609#         }
610#     ]
611# }
612##
613{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
614
615##
616# @IOThreadInfo:
617#
618# Information about an iothread
619#
620# @id: the identifier of the iothread
621#
622# @thread-id: ID of the underlying host thread
623#
624# @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
625#               (since 2.9)
626#
627# @poll-grow: how many ns will be added to polling time, 0 means that it's not
628#             configured (since 2.9)
629#
630# @poll-shrink: how many ns will be removed from polling time, 0 means that
631#               it's not configured (since 2.9)
632#
633# Since: 2.0
634##
635{ 'struct': 'IOThreadInfo',
636  'data': {'id': 'str',
637           'thread-id': 'int',
638           'poll-max-ns': 'int',
639           'poll-grow': 'int',
640           'poll-shrink': 'int' } }
641
642##
643# @query-iothreads:
644#
645# Returns a list of information about each iothread.
646#
647# Note: this list excludes the QEMU main loop thread, which is not declared
648# using the -object iothread command-line option.  It is always the main thread
649# of the process.
650#
651# Returns: a list of @IOThreadInfo for each iothread
652#
653# Since: 2.0
654#
655# Example:
656#
657# -> { "execute": "query-iothreads" }
658# <- { "return": [
659#          {
660#             "id":"iothread0",
661#             "thread-id":3134
662#          },
663#          {
664#             "id":"iothread1",
665#             "thread-id":3135
666#          }
667#       ]
668#    }
669#
670##
671{ 'command': 'query-iothreads', 'returns': ['IOThreadInfo'],
672  'allow-preconfig': true }
673
674##
675# @BalloonInfo:
676#
677# Information about the guest balloon device.
678#
679# @actual: the number of bytes the balloon currently contains
680#
681# Since: 0.14.0
682#
683##
684{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
685
686##
687# @query-balloon:
688#
689# Return information about the balloon device.
690#
691# Returns: @BalloonInfo on success
692#
693#          If the balloon driver is enabled but not functional because the KVM
694#          kernel module cannot support it, KvmMissingCap
695#
696#          If no balloon device is present, DeviceNotActive
697#
698# Since: 0.14.0
699#
700# Example:
701#
702# -> { "execute": "query-balloon" }
703# <- { "return": {
704#          "actual": 1073741824,
705#       }
706#    }
707#
708##
709{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
710
711##
712# @BALLOON_CHANGE:
713#
714# Emitted when the guest changes the actual BALLOON level. This value is
715# equivalent to the @actual field return by the 'query-balloon' command
716#
717# @actual: actual level of the guest memory balloon in bytes
718#
719# Note: this event is rate-limited.
720#
721# Since: 1.2
722#
723# Example:
724#
725# <- { "event": "BALLOON_CHANGE",
726#      "data": { "actual": 944766976 },
727#      "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
728#
729##
730{ 'event': 'BALLOON_CHANGE',
731  'data': { 'actual': 'int' } }
732
733##
734# @PciMemoryRange:
735#
736# A PCI device memory region
737#
738# @base: the starting address (guest physical)
739#
740# @limit: the ending address (guest physical)
741#
742# Since: 0.14.0
743##
744{ 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
745
746##
747# @PciMemoryRegion:
748#
749# Information about a PCI device I/O region.
750#
751# @bar: the index of the Base Address Register for this region
752#
753# @type: 'io' if the region is a PIO region
754#        'memory' if the region is a MMIO region
755#
756# @size: memory size
757#
758# @prefetch: if @type is 'memory', true if the memory is prefetchable
759#
760# @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
761#
762# Since: 0.14.0
763##
764{ 'struct': 'PciMemoryRegion',
765  'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
766           '*prefetch': 'bool', '*mem_type_64': 'bool' } }
767
768##
769# @PciBusInfo:
770#
771# Information about a bus of a PCI Bridge device
772#
773# @number: primary bus interface number.  This should be the number of the
774#          bus the device resides on.
775#
776# @secondary: secondary bus interface number.  This is the number of the
777#             main bus for the bridge
778#
779# @subordinate: This is the highest number bus that resides below the
780#               bridge.
781#
782# @io_range: The PIO range for all devices on this bridge
783#
784# @memory_range: The MMIO range for all devices on this bridge
785#
786# @prefetchable_range: The range of prefetchable MMIO for all devices on
787#                      this bridge
788#
789# Since: 2.4
790##
791{ 'struct': 'PciBusInfo',
792  'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
793           'io_range': 'PciMemoryRange',
794           'memory_range': 'PciMemoryRange',
795           'prefetchable_range': 'PciMemoryRange' } }
796
797##
798# @PciBridgeInfo:
799#
800# Information about a PCI Bridge device
801#
802# @bus: information about the bus the device resides on
803#
804# @devices: a list of @PciDeviceInfo for each device on this bridge
805#
806# Since: 0.14.0
807##
808{ 'struct': 'PciBridgeInfo',
809  'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
810
811##
812# @PciDeviceClass:
813#
814# Information about the Class of a PCI device
815#
816# @desc: a string description of the device's class
817#
818# @class: the class code of the device
819#
820# Since: 2.4
821##
822{ 'struct': 'PciDeviceClass',
823  'data': {'*desc': 'str', 'class': 'int'} }
824
825##
826# @PciDeviceId:
827#
828# Information about the Id of a PCI device
829#
830# @device: the PCI device id
831#
832# @vendor: the PCI vendor id
833#
834# @subsystem: the PCI subsystem id (since 3.1)
835#
836# @subsystem-vendor: the PCI subsystem vendor id (since 3.1)
837#
838# Since: 2.4
839##
840{ 'struct': 'PciDeviceId',
841  'data': {'device': 'int', 'vendor': 'int', '*subsystem': 'int',
842            '*subsystem-vendor': 'int'} }
843
844##
845# @PciDeviceInfo:
846#
847# Information about a PCI device
848#
849# @bus: the bus number of the device
850#
851# @slot: the slot the device is located in
852#
853# @function: the function of the slot used by the device
854#
855# @class_info: the class of the device
856#
857# @id: the PCI device id
858#
859# @irq: if an IRQ is assigned to the device, the IRQ number
860#
861# @qdev_id: the device name of the PCI device
862#
863# @pci_bridge: if the device is a PCI bridge, the bridge information
864#
865# @regions: a list of the PCI I/O regions associated with the device
866#
867# Notes: the contents of @class_info.desc are not stable and should only be
868#        treated as informational.
869#
870# Since: 0.14.0
871##
872{ 'struct': 'PciDeviceInfo',
873  'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
874           'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
875           '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
876           'regions': ['PciMemoryRegion']} }
877
878##
879# @PciInfo:
880#
881# Information about a PCI bus
882#
883# @bus: the bus index
884#
885# @devices: a list of devices on this bus
886#
887# Since: 0.14.0
888##
889{ 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
890
891##
892# @query-pci:
893#
894# Return information about the PCI bus topology of the guest.
895#
896# Returns: a list of @PciInfo for each PCI bus. Each bus is
897# represented by a json-object, which has a key with a json-array of
898# all PCI devices attached to it. Each device is represented by a
899# json-object.
900#
901# Since: 0.14.0
902#
903# Example:
904#
905# -> { "execute": "query-pci" }
906# <- { "return": [
907#          {
908#             "bus": 0,
909#             "devices": [
910#                {
911#                   "bus": 0,
912#                   "qdev_id": "",
913#                   "slot": 0,
914#                   "class_info": {
915#                      "class": 1536,
916#                      "desc": "Host bridge"
917#                   },
918#                   "id": {
919#                      "device": 32902,
920#                      "vendor": 4663
921#                   },
922#                   "function": 0,
923#                   "regions": [
924#                   ]
925#                },
926#                {
927#                   "bus": 0,
928#                   "qdev_id": "",
929#                   "slot": 1,
930#                   "class_info": {
931#                      "class": 1537,
932#                      "desc": "ISA bridge"
933#                   },
934#                   "id": {
935#                      "device": 32902,
936#                      "vendor": 28672
937#                   },
938#                   "function": 0,
939#                   "regions": [
940#                   ]
941#                },
942#                {
943#                   "bus": 0,
944#                   "qdev_id": "",
945#                   "slot": 1,
946#                   "class_info": {
947#                      "class": 257,
948#                      "desc": "IDE controller"
949#                   },
950#                   "id": {
951#                      "device": 32902,
952#                      "vendor": 28688
953#                   },
954#                   "function": 1,
955#                   "regions": [
956#                      {
957#                         "bar": 4,
958#                         "size": 16,
959#                         "address": 49152,
960#                         "type": "io"
961#                      }
962#                   ]
963#                },
964#                {
965#                   "bus": 0,
966#                   "qdev_id": "",
967#                   "slot": 2,
968#                   "class_info": {
969#                      "class": 768,
970#                      "desc": "VGA controller"
971#                   },
972#                   "id": {
973#                      "device": 4115,
974#                      "vendor": 184
975#                   },
976#                   "function": 0,
977#                   "regions": [
978#                      {
979#                         "prefetch": true,
980#                         "mem_type_64": false,
981#                         "bar": 0,
982#                         "size": 33554432,
983#                         "address": 4026531840,
984#                         "type": "memory"
985#                      },
986#                      {
987#                         "prefetch": false,
988#                         "mem_type_64": false,
989#                         "bar": 1,
990#                         "size": 4096,
991#                         "address": 4060086272,
992#                         "type": "memory"
993#                      },
994#                      {
995#                         "prefetch": false,
996#                         "mem_type_64": false,
997#                         "bar": 6,
998#                         "size": 65536,
999#                         "address": -1,
1000#                         "type": "memory"
1001#                      }
1002#                   ]
1003#                },
1004#                {
1005#                   "bus": 0,
1006#                   "qdev_id": "",
1007#                   "irq": 11,
1008#                   "slot": 4,
1009#                   "class_info": {
1010#                      "class": 1280,
1011#                      "desc": "RAM controller"
1012#                   },
1013#                   "id": {
1014#                      "device": 6900,
1015#                      "vendor": 4098
1016#                   },
1017#                   "function": 0,
1018#                   "regions": [
1019#                      {
1020#                         "bar": 0,
1021#                         "size": 32,
1022#                         "address": 49280,
1023#                         "type": "io"
1024#                      }
1025#                   ]
1026#                }
1027#             ]
1028#          }
1029#       ]
1030#    }
1031#
1032# Note: This example has been shortened as the real response is too long.
1033#
1034##
1035{ 'command': 'query-pci', 'returns': ['PciInfo'] }
1036
1037##
1038# @quit:
1039#
1040# This command will cause the QEMU process to exit gracefully.  While every
1041# attempt is made to send the QMP response before terminating, this is not
1042# guaranteed.  When using this interface, a premature EOF would not be
1043# unexpected.
1044#
1045# Since: 0.14.0
1046#
1047# Example:
1048#
1049# -> { "execute": "quit" }
1050# <- { "return": {} }
1051##
1052{ 'command': 'quit' }
1053
1054##
1055# @stop:
1056#
1057# Stop all guest VCPU execution.
1058#
1059# Since:  0.14.0
1060#
1061# Notes:  This function will succeed even if the guest is already in the stopped
1062#         state.  In "inmigrate" state, it will ensure that the guest
1063#         remains paused once migration finishes, as if the -S option was
1064#         passed on the command line.
1065#
1066# Example:
1067#
1068# -> { "execute": "stop" }
1069# <- { "return": {} }
1070#
1071##
1072{ 'command': 'stop' }
1073
1074##
1075# @system_reset:
1076#
1077# Performs a hard reset of a guest.
1078#
1079# Since: 0.14.0
1080#
1081# Example:
1082#
1083# -> { "execute": "system_reset" }
1084# <- { "return": {} }
1085#
1086##
1087{ 'command': 'system_reset' }
1088
1089##
1090# @system_powerdown:
1091#
1092# Requests that a guest perform a powerdown operation.
1093#
1094# Since: 0.14.0
1095#
1096# Notes: A guest may or may not respond to this command.  This command
1097#        returning does not indicate that a guest has accepted the request or
1098#        that it has shut down.  Many guests will respond to this command by
1099#        prompting the user in some way.
1100# Example:
1101#
1102# -> { "execute": "system_powerdown" }
1103# <- { "return": {} }
1104#
1105##
1106{ 'command': 'system_powerdown' }
1107
1108##
1109# @cpu-add:
1110#
1111# Adds CPU with specified ID.
1112#
1113# @id: ID of CPU to be created, valid values [0..max_cpus)
1114#
1115# Returns: Nothing on success
1116#
1117# Since: 1.5
1118#
1119# Note: This command is deprecated.  The `device_add` command should be
1120#       used instead.  See the `query-hotpluggable-cpus` command for
1121#       details.
1122#
1123# Example:
1124#
1125# -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1126# <- { "return": {} }
1127#
1128##
1129{ 'command': 'cpu-add', 'data': {'id': 'int'} }
1130
1131##
1132# @memsave:
1133#
1134# Save a portion of guest memory to a file.
1135#
1136# @val: the virtual address of the guest to start from
1137#
1138# @size: the size of memory region to save
1139#
1140# @filename: the file to save the memory to as binary data
1141#
1142# @cpu-index: the index of the virtual CPU to use for translating the
1143#                       virtual address (defaults to CPU 0)
1144#
1145# Returns: Nothing on success
1146#
1147# Since: 0.14.0
1148#
1149# Notes: Errors were not reliably returned until 1.1
1150#
1151# Example:
1152#
1153# -> { "execute": "memsave",
1154#      "arguments": { "val": 10,
1155#                     "size": 100,
1156#                     "filename": "/tmp/virtual-mem-dump" } }
1157# <- { "return": {} }
1158#
1159##
1160{ 'command': 'memsave',
1161  'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1162
1163##
1164# @pmemsave:
1165#
1166# Save a portion of guest physical memory to a file.
1167#
1168# @val: the physical address of the guest to start from
1169#
1170# @size: the size of memory region to save
1171#
1172# @filename: the file to save the memory to as binary data
1173#
1174# Returns: Nothing on success
1175#
1176# Since: 0.14.0
1177#
1178# Notes: Errors were not reliably returned until 1.1
1179#
1180# Example:
1181#
1182# -> { "execute": "pmemsave",
1183#      "arguments": { "val": 10,
1184#                     "size": 100,
1185#                     "filename": "/tmp/physical-mem-dump" } }
1186# <- { "return": {} }
1187#
1188##
1189{ 'command': 'pmemsave',
1190  'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1191
1192##
1193# @cont:
1194#
1195# Resume guest VCPU execution.
1196#
1197# Since:  0.14.0
1198#
1199# Returns:  If successful, nothing
1200#
1201# Notes:  This command will succeed if the guest is currently running.  It
1202#         will also succeed if the guest is in the "inmigrate" state; in
1203#         this case, the effect of the command is to make sure the guest
1204#         starts once migration finishes, removing the effect of the -S
1205#         command line option if it was passed.
1206#
1207# Example:
1208#
1209# -> { "execute": "cont" }
1210# <- { "return": {} }
1211#
1212##
1213{ 'command': 'cont' }
1214
1215##
1216# @x-exit-preconfig:
1217#
1218# Exit from "preconfig" state
1219#
1220# This command makes QEMU exit the preconfig state and proceed with
1221# VM initialization using configuration data provided on the command line
1222# and via the QMP monitor during the preconfig state. The command is only
1223# available during the preconfig state (i.e. when the --preconfig command
1224# line option was in use).
1225#
1226# Since 3.0
1227#
1228# Returns: nothing
1229#
1230# Example:
1231#
1232# -> { "execute": "x-exit-preconfig" }
1233# <- { "return": {} }
1234#
1235##
1236{ 'command': 'x-exit-preconfig', 'allow-preconfig': true }
1237
1238##
1239# @system_wakeup:
1240#
1241# Wake up guest from suspend. If the guest has wake-up from suspend
1242# support enabled (wakeup-suspend-support flag from
1243# query-current-machine), wake-up guest from suspend if the guest is
1244# in SUSPENDED state. Return an error otherwise.
1245#
1246# Since:  1.1
1247#
1248# Returns:  nothing.
1249#
1250# Note: prior to 4.0, this command does nothing in case the guest
1251# isn't suspended.
1252#
1253# Example:
1254#
1255# -> { "execute": "system_wakeup" }
1256# <- { "return": {} }
1257#
1258##
1259{ 'command': 'system_wakeup' }
1260
1261##
1262# @inject-nmi:
1263#
1264# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1265# The command fails when the guest doesn't support injecting.
1266#
1267# Returns:  If successful, nothing
1268#
1269# Since:  0.14.0
1270#
1271# Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1272#
1273# Example:
1274#
1275# -> { "execute": "inject-nmi" }
1276# <- { "return": {} }
1277#
1278##
1279{ 'command': 'inject-nmi' }
1280
1281##
1282# @balloon:
1283#
1284# Request the balloon driver to change its balloon size.
1285#
1286# @value: the target size of the balloon in bytes
1287#
1288# Returns: Nothing on success
1289#          If the balloon driver is enabled but not functional because the KVM
1290#            kernel module cannot support it, KvmMissingCap
1291#          If no balloon device is present, DeviceNotActive
1292#
1293# Notes: This command just issues a request to the guest.  When it returns,
1294#        the balloon size may not have changed.  A guest can change the balloon
1295#        size independent of this command.
1296#
1297# Since: 0.14.0
1298#
1299# Example:
1300#
1301# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1302# <- { "return": {} }
1303#
1304##
1305{ 'command': 'balloon', 'data': {'value': 'int'} }
1306
1307##
1308# @human-monitor-command:
1309#
1310# Execute a command on the human monitor and return the output.
1311#
1312# @command-line: the command to execute in the human monitor
1313#
1314# @cpu-index: The CPU to use for commands that require an implicit CPU
1315#
1316# Returns: the output of the command as a string
1317#
1318# Since: 0.14.0
1319#
1320# Notes: This command only exists as a stop-gap.  Its use is highly
1321#        discouraged.  The semantics of this command are not
1322#        guaranteed: this means that command names, arguments and
1323#        responses can change or be removed at ANY time.  Applications
1324#        that rely on long term stability guarantees should NOT
1325#        use this command.
1326#
1327#        Known limitations:
1328#
1329#        * This command is stateless, this means that commands that depend
1330#          on state information (such as getfd) might not work
1331#
1332#        * Commands that prompt the user for data don't currently work
1333#
1334# Example:
1335#
1336# -> { "execute": "human-monitor-command",
1337#      "arguments": { "command-line": "info kvm" } }
1338# <- { "return": "kvm support: enabled\r\n" }
1339#
1340##
1341{ 'command': 'human-monitor-command',
1342  'data': {'command-line': 'str', '*cpu-index': 'int'},
1343  'returns': 'str' }
1344
1345##
1346# @ObjectPropertyInfo:
1347#
1348# @name: the name of the property
1349#
1350# @type: the type of the property.  This will typically come in one of four
1351#        forms:
1352#
1353#        1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1354#           These types are mapped to the appropriate JSON type.
1355#
1356#        2) A child type in the form 'child<subtype>' where subtype is a qdev
1357#           device type name.  Child properties create the composition tree.
1358#
1359#        3) A link type in the form 'link<subtype>' where subtype is a qdev
1360#           device type name.  Link properties form the device model graph.
1361#
1362# @description: if specified, the description of the property.
1363#
1364# Since: 1.2
1365##
1366{ 'struct': 'ObjectPropertyInfo',
1367  'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
1368
1369##
1370# @qom-list:
1371#
1372# This command will list any properties of a object given a path in the object
1373# model.
1374#
1375# @path: the path within the object model.  See @qom-get for a description of
1376#        this parameter.
1377#
1378# Returns: a list of @ObjectPropertyInfo that describe the properties of the
1379#          object.
1380#
1381# Since: 1.2
1382#
1383# Example:
1384#
1385# -> { "execute": "qom-list",
1386#      "arguments": { "path": "/chardevs" } }
1387# <- { "return": [ { "name": "type", "type": "string" },
1388#                  { "name": "parallel0", "type": "child<chardev-vc>" },
1389#                  { "name": "serial0", "type": "child<chardev-vc>" },
1390#                  { "name": "mon0", "type": "child<chardev-stdio>" } ] }
1391#
1392##
1393{ 'command': 'qom-list',
1394  'data': { 'path': 'str' },
1395  'returns': [ 'ObjectPropertyInfo' ],
1396  'allow-preconfig': true }
1397
1398##
1399# @qom-get:
1400#
1401# This command will get a property from a object model path and return the
1402# value.
1403#
1404# @path: The path within the object model.  There are two forms of supported
1405#        paths--absolute and partial paths.
1406#
1407#        Absolute paths are derived from the root object and can follow child<>
1408#        or link<> properties.  Since they can follow link<> properties, they
1409#        can be arbitrarily long.  Absolute paths look like absolute filenames
1410#        and are prefixed  with a leading slash.
1411#
1412#        Partial paths look like relative filenames.  They do not begin
1413#        with a prefix.  The matching rules for partial paths are subtle but
1414#        designed to make specifying objects easy.  At each level of the
1415#        composition tree, the partial path is matched as an absolute path.
1416#        The first match is not returned.  At least two matches are searched
1417#        for.  A successful result is only returned if only one match is
1418#        found.  If more than one match is found, a flag is return to
1419#        indicate that the match was ambiguous.
1420#
1421# @property: The property name to read
1422#
1423# Returns: The property value.  The type depends on the property
1424#          type. child<> and link<> properties are returned as #str
1425#          pathnames.  All integer property types (u8, u16, etc) are
1426#          returned as #int.
1427#
1428# Since: 1.2
1429#
1430# Example:
1431#
1432# 1. Use absolute path
1433#
1434# -> { "execute": "qom-get",
1435#      "arguments": { "path": "/machine/unattached/device[0]",
1436#                     "property": "hotplugged" } }
1437# <- { "return": false }
1438#
1439# 2. Use partial path
1440#
1441# -> { "execute": "qom-get",
1442#      "arguments": { "path": "unattached/sysbus",
1443#                     "property": "type" } }
1444# <- { "return": "System" }
1445#
1446##
1447{ 'command': 'qom-get',
1448  'data': { 'path': 'str', 'property': 'str' },
1449  'returns': 'any',
1450  'allow-preconfig': true }
1451
1452##
1453# @qom-set:
1454#
1455# This command will set a property from a object model path.
1456#
1457# @path: see @qom-get for a description of this parameter
1458#
1459# @property: the property name to set
1460#
1461# @value: a value who's type is appropriate for the property type.  See @qom-get
1462#         for a description of type mapping.
1463#
1464# Since: 1.2
1465#
1466# Example:
1467#
1468# -> { "execute": "qom-set",
1469#      "arguments": { "path": "/machine",
1470#                     "property": "graphics",
1471#                     "value": false } }
1472# <- { "return": {} }
1473#
1474##
1475{ 'command': 'qom-set',
1476  'data': { 'path': 'str', 'property': 'str', 'value': 'any' },
1477  'allow-preconfig': true }
1478
1479##
1480# @change:
1481#
1482# This command is multiple commands multiplexed together.
1483#
1484# @device: This is normally the name of a block device but it may also be 'vnc'.
1485#          when it's 'vnc', then sub command depends on @target
1486#
1487# @target: If @device is a block device, then this is the new filename.
1488#          If @device is 'vnc', then if the value 'password' selects the vnc
1489#          change password command.   Otherwise, this specifies a new server URI
1490#          address to listen to for VNC connections.
1491#
1492# @arg:    If @device is a block device, then this is an optional format to open
1493#          the device with.
1494#          If @device is 'vnc' and @target is 'password', this is the new VNC
1495#          password to set.  See change-vnc-password for additional notes.
1496#
1497# Returns: Nothing on success.
1498#          If @device is not a valid block device, DeviceNotFound
1499#
1500# Notes:  This interface is deprecated, and it is strongly recommended that you
1501#         avoid using it.  For changing block devices, use
1502#         blockdev-change-medium; for changing VNC parameters, use
1503#         change-vnc-password.
1504#
1505# Since: 0.14.0
1506#
1507# Example:
1508#
1509# 1. Change a removable medium
1510#
1511# -> { "execute": "change",
1512#      "arguments": { "device": "ide1-cd0",
1513#                     "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1514# <- { "return": {} }
1515#
1516# 2. Change VNC password
1517#
1518# -> { "execute": "change",
1519#      "arguments": { "device": "vnc", "target": "password",
1520#                     "arg": "foobar1" } }
1521# <- { "return": {} }
1522#
1523##
1524{ 'command': 'change',
1525  'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1526
1527##
1528# @ObjectTypeInfo:
1529#
1530# This structure describes a search result from @qom-list-types
1531#
1532# @name: the type name found in the search
1533#
1534# @abstract: the type is abstract and can't be directly instantiated.
1535#            Omitted if false. (since 2.10)
1536#
1537# @parent: Name of parent type, if any (since 2.10)
1538#
1539# Since: 1.1
1540##
1541{ 'struct': 'ObjectTypeInfo',
1542  'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1543
1544##
1545# @qom-list-types:
1546#
1547# This command will return a list of types given search parameters
1548#
1549# @implements: if specified, only return types that implement this type name
1550#
1551# @abstract: if true, include abstract types in the results
1552#
1553# Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1554#
1555# Since: 1.1
1556##
1557{ 'command': 'qom-list-types',
1558  'data': { '*implements': 'str', '*abstract': 'bool' },
1559  'returns': [ 'ObjectTypeInfo' ],
1560  'allow-preconfig': true }
1561
1562##
1563# @device-list-properties:
1564#
1565# List properties associated with a device.
1566#
1567# @typename: the type name of a device
1568#
1569# Returns: a list of ObjectPropertyInfo describing a devices properties
1570#
1571# Note: objects can create properties at runtime, for example to describe
1572# links between different devices and/or objects. These properties
1573# are not included in the output of this command.
1574#
1575# Since: 1.2
1576##
1577{ 'command': 'device-list-properties',
1578  'data': { 'typename': 'str'},
1579  'returns': [ 'ObjectPropertyInfo' ] }
1580
1581##
1582# @qom-list-properties:
1583#
1584# List properties associated with a QOM object.
1585#
1586# @typename: the type name of an object
1587#
1588# Note: objects can create properties at runtime, for example to describe
1589# links between different devices and/or objects. These properties
1590# are not included in the output of this command.
1591#
1592# Returns: a list of ObjectPropertyInfo describing object properties
1593#
1594# Since: 2.12
1595##
1596{ 'command': 'qom-list-properties',
1597  'data': { 'typename': 'str'},
1598  'returns': [ 'ObjectPropertyInfo' ],
1599  'allow-preconfig': true }
1600
1601##
1602# @xen-set-global-dirty-log:
1603#
1604# Enable or disable the global dirty log mode.
1605#
1606# @enable: true to enable, false to disable.
1607#
1608# Returns: nothing
1609#
1610# Since: 1.3
1611#
1612# Example:
1613#
1614# -> { "execute": "xen-set-global-dirty-log",
1615#      "arguments": { "enable": true } }
1616# <- { "return": {} }
1617#
1618##
1619{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1620
1621##
1622# @device_add:
1623#
1624# @driver: the name of the new device's driver
1625#
1626# @bus: the device's parent bus (device tree path)
1627#
1628# @id: the device's ID, must be unique
1629#
1630# Additional arguments depend on the type.
1631#
1632# Add a device.
1633#
1634# Notes:
1635# 1. For detailed information about this command, please refer to the
1636#    'docs/qdev-device-use.txt' file.
1637#
1638# 2. It's possible to list device properties by running QEMU with the
1639#    "-device DEVICE,help" command-line argument, where DEVICE is the
1640#    device's name
1641#
1642# Example:
1643#
1644# -> { "execute": "device_add",
1645#      "arguments": { "driver": "e1000", "id": "net1",
1646#                     "bus": "pci.0",
1647#                     "mac": "52:54:00:12:34:56" } }
1648# <- { "return": {} }
1649#
1650# TODO: This command effectively bypasses QAPI completely due to its
1651# "additional arguments" business.  It shouldn't have been added to
1652# the schema in this form.  It should be qapified properly, or
1653# replaced by a properly qapified command.
1654#
1655# Since: 0.13
1656##
1657{ 'command': 'device_add',
1658  'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1659  'gen': false } # so we can get the additional arguments
1660
1661##
1662# @device_del:
1663#
1664# Remove a device from a guest
1665#
1666# @id: the device's ID or QOM path
1667#
1668# Returns: Nothing on success
1669#          If @id is not a valid device, DeviceNotFound
1670#
1671# Notes: When this command completes, the device may not be removed from the
1672#        guest.  Hot removal is an operation that requires guest cooperation.
1673#        This command merely requests that the guest begin the hot removal
1674#        process.  Completion of the device removal process is signaled with a
1675#        DEVICE_DELETED event. Guest reset will automatically complete removal
1676#        for all devices.
1677#
1678# Since: 0.14.0
1679#
1680# Example:
1681#
1682# -> { "execute": "device_del",
1683#      "arguments": { "id": "net1" } }
1684# <- { "return": {} }
1685#
1686# -> { "execute": "device_del",
1687#      "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1688# <- { "return": {} }
1689#
1690##
1691{ 'command': 'device_del', 'data': {'id': 'str'} }
1692
1693##
1694# @DEVICE_DELETED:
1695#
1696# Emitted whenever the device removal completion is acknowledged by the guest.
1697# At this point, it's safe to reuse the specified device ID. Device removal can
1698# be initiated by the guest or by HMP/QMP commands.
1699#
1700# @device: device name
1701#
1702# @path: device path
1703#
1704# Since: 1.5
1705#
1706# Example:
1707#
1708# <- { "event": "DEVICE_DELETED",
1709#      "data": { "device": "virtio-net-pci-0",
1710#                "path": "/machine/peripheral/virtio-net-pci-0" },
1711#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1712#
1713##
1714{ 'event': 'DEVICE_DELETED',
1715  'data': { '*device': 'str', 'path': 'str' } }
1716
1717##
1718# @DumpGuestMemoryFormat:
1719#
1720# An enumeration of guest-memory-dump's format.
1721#
1722# @elf: elf format
1723#
1724# @kdump-zlib: kdump-compressed format with zlib-compressed
1725#
1726# @kdump-lzo: kdump-compressed format with lzo-compressed
1727#
1728# @kdump-snappy: kdump-compressed format with snappy-compressed
1729#
1730# @win-dmp: Windows full crashdump format,
1731#           can be used instead of ELF converting (since 2.13)
1732#
1733# Since: 2.0
1734##
1735{ 'enum': 'DumpGuestMemoryFormat',
1736  'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy', 'win-dmp' ] }
1737
1738##
1739# @dump-guest-memory:
1740#
1741# Dump guest's memory to vmcore. It is a synchronous operation that can take
1742# very long depending on the amount of guest memory.
1743#
1744# @paging: if true, do paging to get guest's memory mapping. This allows
1745#          using gdb to process the core file.
1746#
1747#          IMPORTANT: this option can make QEMU allocate several gigabytes
1748#                     of RAM. This can happen for a large guest, or a
1749#                     malicious guest pretending to be large.
1750#
1751#          Also, paging=true has the following limitations:
1752#
1753#             1. The guest may be in a catastrophic state or can have corrupted
1754#                memory, which cannot be trusted
1755#             2. The guest can be in real-mode even if paging is enabled. For
1756#                example, the guest uses ACPI to sleep, and ACPI sleep state
1757#                goes in real-mode
1758#             3. Currently only supported on i386 and x86_64.
1759#
1760# @protocol: the filename or file descriptor of the vmcore. The supported
1761#            protocols are:
1762#
1763#            1. file: the protocol starts with "file:", and the following
1764#               string is the file's path.
1765#            2. fd: the protocol starts with "fd:", and the following string
1766#               is the fd's name.
1767#
1768# @detach: if true, QMP will return immediately rather than
1769#          waiting for the dump to finish. The user can track progress
1770#          using "query-dump". (since 2.6).
1771#
1772# @begin: if specified, the starting physical address.
1773#
1774# @length: if specified, the memory size, in bytes. If you don't
1775#          want to dump all guest's memory, please specify the start @begin
1776#          and @length
1777#
1778# @format: if specified, the format of guest memory dump. But non-elf
1779#          format is conflict with paging and filter, ie. @paging, @begin and
1780#          @length is not allowed to be specified with non-elf @format at the
1781#          same time (since 2.0)
1782#
1783# Note: All boolean arguments default to false
1784#
1785# Returns: nothing on success
1786#
1787# Since: 1.2
1788#
1789# Example:
1790#
1791# -> { "execute": "dump-guest-memory",
1792#      "arguments": { "protocol": "fd:dump" } }
1793# <- { "return": {} }
1794#
1795##
1796{ 'command': 'dump-guest-memory',
1797  'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1798            '*begin': 'int', '*length': 'int',
1799            '*format': 'DumpGuestMemoryFormat'} }
1800
1801##
1802# @DumpStatus:
1803#
1804# Describe the status of a long-running background guest memory dump.
1805#
1806# @none: no dump-guest-memory has started yet.
1807#
1808# @active: there is one dump running in background.
1809#
1810# @completed: the last dump has finished successfully.
1811#
1812# @failed: the last dump has failed.
1813#
1814# Since: 2.6
1815##
1816{ 'enum': 'DumpStatus',
1817  'data': [ 'none', 'active', 'completed', 'failed' ] }
1818
1819##
1820# @DumpQueryResult:
1821#
1822# The result format for 'query-dump'.
1823#
1824# @status: enum of @DumpStatus, which shows current dump status
1825#
1826# @completed: bytes written in latest dump (uncompressed)
1827#
1828# @total: total bytes to be written in latest dump (uncompressed)
1829#
1830# Since: 2.6
1831##
1832{ 'struct': 'DumpQueryResult',
1833  'data': { 'status': 'DumpStatus',
1834            'completed': 'int',
1835            'total': 'int' } }
1836
1837##
1838# @query-dump:
1839#
1840# Query latest dump status.
1841#
1842# Returns: A @DumpStatus object showing the dump status.
1843#
1844# Since: 2.6
1845#
1846# Example:
1847#
1848# -> { "execute": "query-dump" }
1849# <- { "return": { "status": "active", "completed": 1024000,
1850#                  "total": 2048000 } }
1851#
1852##
1853{ 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1854
1855##
1856# @DUMP_COMPLETED:
1857#
1858# Emitted when background dump has completed
1859#
1860# @result: final dump status
1861#
1862# @error: human-readable error string that provides
1863#         hint on why dump failed. Only presents on failure. The
1864#         user should not try to interpret the error string.
1865#
1866# Since: 2.6
1867#
1868# Example:
1869#
1870# { "event": "DUMP_COMPLETED",
1871#   "data": {"result": {"total": 1090650112, "status": "completed",
1872#                       "completed": 1090650112} } }
1873#
1874##
1875{ 'event': 'DUMP_COMPLETED' ,
1876  'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1877
1878##
1879# @DumpGuestMemoryCapability:
1880#
1881# A list of the available formats for dump-guest-memory
1882#
1883# Since: 2.0
1884##
1885{ 'struct': 'DumpGuestMemoryCapability',
1886  'data': {
1887      'formats': ['DumpGuestMemoryFormat'] } }
1888
1889##
1890# @query-dump-guest-memory-capability:
1891#
1892# Returns the available formats for dump-guest-memory
1893#
1894# Returns:  A @DumpGuestMemoryCapability object listing available formats for
1895#           dump-guest-memory
1896#
1897# Since: 2.0
1898#
1899# Example:
1900#
1901# -> { "execute": "query-dump-guest-memory-capability" }
1902# <- { "return": { "formats":
1903#                  ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1904#
1905##
1906{ 'command': 'query-dump-guest-memory-capability',
1907  'returns': 'DumpGuestMemoryCapability' }
1908
1909##
1910# @object-add:
1911#
1912# Create a QOM object.
1913#
1914# @qom-type: the class name for the object to be created
1915#
1916# @id: the name of the new object
1917#
1918# @props: a dictionary of properties to be passed to the backend
1919#
1920# Returns: Nothing on success
1921#          Error if @qom-type is not a valid class name
1922#
1923# Since: 2.0
1924#
1925# Example:
1926#
1927# -> { "execute": "object-add",
1928#      "arguments": { "qom-type": "rng-random", "id": "rng1",
1929#                     "props": { "filename": "/dev/hwrng" } } }
1930# <- { "return": {} }
1931#
1932##
1933{ 'command': 'object-add',
1934  'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1935
1936##
1937# @object-del:
1938#
1939# Remove a QOM object.
1940#
1941# @id: the name of the QOM object to remove
1942#
1943# Returns: Nothing on success
1944#          Error if @id is not a valid id for a QOM object
1945#
1946# Since: 2.0
1947#
1948# Example:
1949#
1950# -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1951# <- { "return": {} }
1952#
1953##
1954{ 'command': 'object-del', 'data': {'id': 'str'} }
1955
1956##
1957# @getfd:
1958#
1959# Receive a file descriptor via SCM rights and assign it a name
1960#
1961# @fdname: file descriptor name
1962#
1963# Returns: Nothing on success
1964#
1965# Since: 0.14.0
1966#
1967# Notes: If @fdname already exists, the file descriptor assigned to
1968#        it will be closed and replaced by the received file
1969#        descriptor.
1970#
1971#        The 'closefd' command can be used to explicitly close the
1972#        file descriptor when it is no longer needed.
1973#
1974# Example:
1975#
1976# -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1977# <- { "return": {} }
1978#
1979##
1980{ 'command': 'getfd', 'data': {'fdname': 'str'} }
1981
1982##
1983# @closefd:
1984#
1985# Close a file descriptor previously passed via SCM rights
1986#
1987# @fdname: file descriptor name
1988#
1989# Returns: Nothing on success
1990#
1991# Since: 0.14.0
1992#
1993# Example:
1994#
1995# -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1996# <- { "return": {} }
1997#
1998##
1999{ 'command': 'closefd', 'data': {'fdname': 'str'} }
2000
2001##
2002# @MachineInfo:
2003#
2004# Information describing a machine.
2005#
2006# @name: the name of the machine
2007#
2008# @alias: an alias for the machine name
2009#
2010# @is-default: whether the machine is default
2011#
2012# @cpu-max: maximum number of CPUs supported by the machine type
2013#           (since 1.5.0)
2014#
2015# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
2016#
2017# Since: 1.2.0
2018##
2019{ 'struct': 'MachineInfo',
2020  'data': { 'name': 'str', '*alias': 'str',
2021            '*is-default': 'bool', 'cpu-max': 'int',
2022            'hotpluggable-cpus': 'bool'} }
2023
2024##
2025# @query-machines:
2026#
2027# Return a list of supported machines
2028#
2029# Returns: a list of MachineInfo
2030#
2031# Since: 1.2.0
2032##
2033{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
2034
2035##
2036# @CurrentMachineParams:
2037#
2038# Information describing the running machine parameters.
2039#
2040# @wakeup-suspend-support: true if the machine supports wake up from
2041#                          suspend
2042#
2043# Since: 4.0
2044##
2045{ 'struct': 'CurrentMachineParams',
2046  'data': { 'wakeup-suspend-support': 'bool'} }
2047
2048##
2049# @query-current-machine:
2050#
2051# Return information on the current virtual machine.
2052#
2053# Returns: CurrentMachineParams
2054#
2055# Since: 4.0
2056##
2057{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
2058
2059##
2060# @MemoryInfo:
2061#
2062# Actual memory information in bytes.
2063#
2064# @base-memory: size of "base" memory specified with command line
2065#               option -m.
2066#
2067# @plugged-memory: size of memory that can be hot-unplugged. This field
2068#                  is omitted if target doesn't support memory hotplug
2069#                  (i.e. CONFIG_MEM_DEVICE not defined at build time).
2070#
2071# Since: 2.11.0
2072##
2073{ 'struct': 'MemoryInfo',
2074  'data'  : { 'base-memory': 'size', '*plugged-memory': 'size' } }
2075
2076##
2077# @query-memory-size-summary:
2078#
2079# Return the amount of initially allocated and present hotpluggable (if
2080# enabled) memory in bytes.
2081#
2082# Example:
2083#
2084# -> { "execute": "query-memory-size-summary" }
2085# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
2086#
2087# Since: 2.11.0
2088##
2089{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
2090
2091
2092##
2093# @CpuModelInfo:
2094#
2095# Virtual CPU model.
2096#
2097# A CPU model consists of the name of a CPU definition, to which
2098# delta changes are applied (e.g. features added/removed). Most magic values
2099# that an architecture might require should be hidden behind the name.
2100# However, if required, architectures can expose relevant properties.
2101#
2102# @name: the name of the CPU definition the model is based on
2103# @props: a dictionary of QOM properties to be applied
2104#
2105# Since: 2.8.0
2106##
2107{ 'struct': 'CpuModelInfo',
2108  'data': { 'name': 'str',
2109            '*props': 'any' } }
2110
2111##
2112# @CpuModelExpansionType:
2113#
2114# An enumeration of CPU model expansion types.
2115#
2116# @static: Expand to a static CPU model, a combination of a static base
2117#          model name and property delta changes. As the static base model will
2118#          never change, the expanded CPU model will be the same, independent of
2119#          QEMU version, machine type, machine options, and accelerator options.
2120#          Therefore, the resulting model can be used by tooling without having
2121#          to specify a compatibility machine - e.g. when displaying the "host"
2122#          model. The @static CPU models are migration-safe.
2123
2124# @full: Expand all properties. The produced model is not guaranteed to be
2125#        migration-safe, but allows tooling to get an insight and work with
2126#        model details.
2127#
2128# Note: When a non-migration-safe CPU model is expanded in static mode, some
2129# features enabled by the CPU model may be omitted, because they can't be
2130# implemented by a static CPU model definition (e.g. cache info passthrough and
2131# PMU passthrough in x86). If you need an accurate representation of the
2132# features enabled by a non-migration-safe CPU model, use @full. If you need a
2133# static representation that will keep ABI compatibility even when changing QEMU
2134# version or machine-type, use @static (but keep in mind that some features may
2135# be omitted).
2136#
2137# Since: 2.8.0
2138##
2139{ 'enum': 'CpuModelExpansionType',
2140  'data': [ 'static', 'full' ] }
2141
2142
2143##
2144# @CpuModelCompareResult:
2145#
2146# An enumeration of CPU model comparison results. The result is usually
2147# calculated using e.g. CPU features or CPU generations.
2148#
2149# @incompatible: If model A is incompatible to model B, model A is not
2150#                guaranteed to run where model B runs and the other way around.
2151#
2152# @identical: If model A is identical to model B, model A is guaranteed to run
2153#             where model B runs and the other way around.
2154#
2155# @superset: If model A is a superset of model B, model B is guaranteed to run
2156#            where model A runs. There are no guarantees about the other way.
2157#
2158# @subset: If model A is a subset of model B, model A is guaranteed to run
2159#          where model B runs. There are no guarantees about the other way.
2160#
2161# Since: 2.8.0
2162##
2163{ 'enum': 'CpuModelCompareResult',
2164  'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2165
2166##
2167# @AddfdInfo:
2168#
2169# Information about a file descriptor that was added to an fd set.
2170#
2171# @fdset-id: The ID of the fd set that @fd was added to.
2172#
2173# @fd: The file descriptor that was received via SCM rights and
2174#      added to the fd set.
2175#
2176# Since: 1.2.0
2177##
2178{ 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2179
2180##
2181# @add-fd:
2182#
2183# Add a file descriptor, that was passed via SCM rights, to an fd set.
2184#
2185# @fdset-id: The ID of the fd set to add the file descriptor to.
2186#
2187# @opaque: A free-form string that can be used to describe the fd.
2188#
2189# Returns: @AddfdInfo on success
2190#
2191#          If file descriptor was not received, FdNotSupplied
2192#
2193#          If @fdset-id is a negative value, InvalidParameterValue
2194#
2195# Notes: The list of fd sets is shared by all monitor connections.
2196#
2197#        If @fdset-id is not specified, a new fd set will be created.
2198#
2199# Since: 1.2.0
2200#
2201# Example:
2202#
2203# -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2204# <- { "return": { "fdset-id": 1, "fd": 3 } }
2205#
2206##
2207{ 'command': 'add-fd',
2208  'data': { '*fdset-id': 'int',
2209            '*opaque': 'str' },
2210  'returns': 'AddfdInfo' }
2211
2212##
2213# @remove-fd:
2214#
2215# Remove a file descriptor from an fd set.
2216#
2217# @fdset-id: The ID of the fd set that the file descriptor belongs to.
2218#
2219# @fd: The file descriptor that is to be removed.
2220#
2221# Returns: Nothing on success
2222#          If @fdset-id or @fd is not found, FdNotFound
2223#
2224# Since: 1.2.0
2225#
2226# Notes: The list of fd sets is shared by all monitor connections.
2227#
2228#        If @fd is not specified, all file descriptors in @fdset-id
2229#        will be removed.
2230#
2231# Example:
2232#
2233# -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2234# <- { "return": {} }
2235#
2236##
2237{ 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2238
2239##
2240# @FdsetFdInfo:
2241#
2242# Information about a file descriptor that belongs to an fd set.
2243#
2244# @fd: The file descriptor value.
2245#
2246# @opaque: A free-form string that can be used to describe the fd.
2247#
2248# Since: 1.2.0
2249##
2250{ 'struct': 'FdsetFdInfo',
2251  'data': {'fd': 'int', '*opaque': 'str'} }
2252
2253##
2254# @FdsetInfo:
2255#
2256# Information about an fd set.
2257#
2258# @fdset-id: The ID of the fd set.
2259#
2260# @fds: A list of file descriptors that belong to this fd set.
2261#
2262# Since: 1.2.0
2263##
2264{ 'struct': 'FdsetInfo',
2265  'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2266
2267##
2268# @query-fdsets:
2269#
2270# Return information describing all fd sets.
2271#
2272# Returns: A list of @FdsetInfo
2273#
2274# Since: 1.2.0
2275#
2276# Note: The list of fd sets is shared by all monitor connections.
2277#
2278# Example:
2279#
2280# -> { "execute": "query-fdsets" }
2281# <- { "return": [
2282#        {
2283#          "fds": [
2284#            {
2285#              "fd": 30,
2286#              "opaque": "rdonly:/path/to/file"
2287#            },
2288#            {
2289#              "fd": 24,
2290#              "opaque": "rdwr:/path/to/file"
2291#            }
2292#          ],
2293#          "fdset-id": 1
2294#        },
2295#        {
2296#          "fds": [
2297#            {
2298#              "fd": 28
2299#            },
2300#            {
2301#              "fd": 29
2302#            }
2303#          ],
2304#          "fdset-id": 0
2305#        }
2306#      ]
2307#    }
2308#
2309##
2310{ 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2311
2312##
2313# @TargetInfo:
2314#
2315# Information describing the QEMU target.
2316#
2317# @arch: the target architecture
2318#
2319# Since: 1.2.0
2320##
2321{ 'struct': 'TargetInfo',
2322  'data': { 'arch': 'SysEmuTarget' } }
2323
2324##
2325# @query-target:
2326#
2327# Return information about the target for this QEMU
2328#
2329# Returns: TargetInfo
2330#
2331# Since: 1.2.0
2332##
2333{ 'command': 'query-target', 'returns': 'TargetInfo' }
2334
2335##
2336# @AcpiTableOptions:
2337#
2338# Specify an ACPI table on the command line to load.
2339#
2340# At most one of @file and @data can be specified. The list of files specified
2341# by any one of them is loaded and concatenated in order. If both are omitted,
2342# @data is implied.
2343#
2344# Other fields / optargs can be used to override fields of the generic ACPI
2345# table header; refer to the ACPI specification 5.0, section 5.2.6 System
2346# Description Table Header. If a header field is not overridden, then the
2347# corresponding value from the concatenated blob is used (in case of @file), or
2348# it is filled in with a hard-coded value (in case of @data).
2349#
2350# String fields are copied into the matching ACPI member from lowest address
2351# upwards, and silently truncated / NUL-padded to length.
2352#
2353# @sig: table signature / identifier (4 bytes)
2354#
2355# @rev: table revision number (dependent on signature, 1 byte)
2356#
2357# @oem_id: OEM identifier (6 bytes)
2358#
2359# @oem_table_id: OEM table identifier (8 bytes)
2360#
2361# @oem_rev: OEM-supplied revision number (4 bytes)
2362#
2363# @asl_compiler_id: identifier of the utility that created the table
2364#                   (4 bytes)
2365#
2366# @asl_compiler_rev: revision number of the utility that created the
2367#                    table (4 bytes)
2368#
2369# @file: colon (:) separated list of pathnames to load and
2370#        concatenate as table data. The resultant binary blob is expected to
2371#        have an ACPI table header. At least one file is required. This field
2372#        excludes @data.
2373#
2374# @data: colon (:) separated list of pathnames to load and
2375#        concatenate as table data. The resultant binary blob must not have an
2376#        ACPI table header. At least one file is required. This field excludes
2377#        @file.
2378#
2379# Since: 1.5
2380##
2381{ 'struct': 'AcpiTableOptions',
2382  'data': {
2383    '*sig':               'str',
2384    '*rev':               'uint8',
2385    '*oem_id':            'str',
2386    '*oem_table_id':      'str',
2387    '*oem_rev':           'uint32',
2388    '*asl_compiler_id':   'str',
2389    '*asl_compiler_rev':  'uint32',
2390    '*file':              'str',
2391    '*data':              'str' }}
2392
2393##
2394# @CommandLineParameterType:
2395#
2396# Possible types for an option parameter.
2397#
2398# @string: accepts a character string
2399#
2400# @boolean: accepts "on" or "off"
2401#
2402# @number: accepts a number
2403#
2404# @size: accepts a number followed by an optional suffix (K)ilo,
2405#        (M)ega, (G)iga, (T)era
2406#
2407# Since: 1.5
2408##
2409{ 'enum': 'CommandLineParameterType',
2410  'data': ['string', 'boolean', 'number', 'size'] }
2411
2412##
2413# @CommandLineParameterInfo:
2414#
2415# Details about a single parameter of a command line option.
2416#
2417# @name: parameter name
2418#
2419# @type: parameter @CommandLineParameterType
2420#
2421# @help: human readable text string, not suitable for parsing.
2422#
2423# @default: default value string (since 2.1)
2424#
2425# Since: 1.5
2426##
2427{ 'struct': 'CommandLineParameterInfo',
2428  'data': { 'name': 'str',
2429            'type': 'CommandLineParameterType',
2430            '*help': 'str',
2431            '*default': 'str' } }
2432
2433##
2434# @CommandLineOptionInfo:
2435#
2436# Details about a command line option, including its list of parameter details
2437#
2438# @option: option name
2439#
2440# @parameters: an array of @CommandLineParameterInfo
2441#
2442# Since: 1.5
2443##
2444{ 'struct': 'CommandLineOptionInfo',
2445  'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2446
2447##
2448# @query-command-line-options:
2449#
2450# Query command line option schema.
2451#
2452# @option: option name
2453#
2454# Returns: list of @CommandLineOptionInfo for all options (or for the given
2455#          @option).  Returns an error if the given @option doesn't exist.
2456#
2457# Since: 1.5
2458#
2459# Example:
2460#
2461# -> { "execute": "query-command-line-options",
2462#      "arguments": { "option": "option-rom" } }
2463# <- { "return": [
2464#         {
2465#             "parameters": [
2466#                 {
2467#                     "name": "romfile",
2468#                     "type": "string"
2469#                 },
2470#                 {
2471#                     "name": "bootindex",
2472#                     "type": "number"
2473#                 }
2474#             ],
2475#             "option": "option-rom"
2476#         }
2477#      ]
2478#    }
2479#
2480##
2481{'command': 'query-command-line-options',
2482 'data': { '*option': 'str' },
2483 'returns': ['CommandLineOptionInfo'],
2484 'allow-preconfig': true }
2485
2486##
2487# @X86CPURegister32:
2488#
2489# A X86 32-bit register
2490#
2491# Since: 1.5
2492##
2493{ 'enum': 'X86CPURegister32',
2494  'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2495
2496##
2497# @X86CPUFeatureWordInfo:
2498#
2499# Information about a X86 CPU feature word
2500#
2501# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2502#
2503# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2504#                   feature word
2505#
2506# @cpuid-register: Output register containing the feature bits
2507#
2508# @features: value of output register, containing the feature bits
2509#
2510# Since: 1.5
2511##
2512{ 'struct': 'X86CPUFeatureWordInfo',
2513  'data': { 'cpuid-input-eax': 'int',
2514            '*cpuid-input-ecx': 'int',
2515            'cpuid-register': 'X86CPURegister32',
2516            'features': 'int' } }
2517
2518##
2519# @DummyForceArrays:
2520#
2521# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2522#
2523# Since: 2.5
2524##
2525{ 'struct': 'DummyForceArrays',
2526  'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2527
2528
2529##
2530# @NumaOptionsType:
2531#
2532# @node: NUMA nodes configuration
2533#
2534# @dist: NUMA distance configuration (since 2.10)
2535#
2536# @cpu: property based CPU(s) to node mapping (Since: 2.10)
2537#
2538# Since: 2.1
2539##
2540{ 'enum': 'NumaOptionsType',
2541  'data': [ 'node', 'dist', 'cpu' ] }
2542
2543##
2544# @NumaOptions:
2545#
2546# A discriminated record of NUMA options. (for OptsVisitor)
2547#
2548# Since: 2.1
2549##
2550{ 'union': 'NumaOptions',
2551  'base': { 'type': 'NumaOptionsType' },
2552  'discriminator': 'type',
2553  'data': {
2554    'node': 'NumaNodeOptions',
2555    'dist': 'NumaDistOptions',
2556    'cpu': 'NumaCpuOptions' }}
2557
2558##
2559# @NumaNodeOptions:
2560#
2561# Create a guest NUMA node. (for OptsVisitor)
2562#
2563# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2564#
2565# @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2566#         if omitted)
2567#
2568# @mem: memory size of this node; mutually exclusive with @memdev.
2569#       Equally divide total memory among nodes if both @mem and @memdev are
2570#       omitted.
2571#
2572# @memdev: memory backend object.  If specified for one node,
2573#          it must be specified for all nodes.
2574#
2575# Since: 2.1
2576##
2577{ 'struct': 'NumaNodeOptions',
2578  'data': {
2579   '*nodeid': 'uint16',
2580   '*cpus':   ['uint16'],
2581   '*mem':    'size',
2582   '*memdev': 'str' }}
2583
2584##
2585# @NumaDistOptions:
2586#
2587# Set the distance between 2 NUMA nodes.
2588#
2589# @src: source NUMA node.
2590#
2591# @dst: destination NUMA node.
2592#
2593# @val: NUMA distance from source node to destination node.
2594#       When a node is unreachable from another node, set the distance
2595#       between them to 255.
2596#
2597# Since: 2.10
2598##
2599{ 'struct': 'NumaDistOptions',
2600  'data': {
2601   'src': 'uint16',
2602   'dst': 'uint16',
2603   'val': 'uint8' }}
2604
2605##
2606# @NumaCpuOptions:
2607#
2608# Option "-numa cpu" overrides default cpu to node mapping.
2609# It accepts the same set of cpu properties as returned by
2610# query-hotpluggable-cpus[].props, where node-id could be used to
2611# override default node mapping.
2612#
2613# Since: 2.10
2614##
2615{ 'struct': 'NumaCpuOptions',
2616   'base': 'CpuInstanceProperties',
2617   'data' : {} }
2618
2619##
2620# @HostMemPolicy:
2621#
2622# Host memory policy types
2623#
2624# @default: restore default policy, remove any nondefault policy
2625#
2626# @preferred: set the preferred host nodes for allocation
2627#
2628# @bind: a strict policy that restricts memory allocation to the
2629#        host nodes specified
2630#
2631# @interleave: memory allocations are interleaved across the set
2632#              of host nodes specified
2633#
2634# Since: 2.1
2635##
2636{ 'enum': 'HostMemPolicy',
2637  'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2638
2639##
2640# @Memdev:
2641#
2642# Information about memory backend
2643#
2644# @id: backend's ID if backend has 'id' property (since 2.9)
2645#
2646# @size: memory backend size
2647#
2648# @merge: enables or disables memory merge support
2649#
2650# @dump: includes memory backend's memory in a core dump or not
2651#
2652# @prealloc: enables or disables memory preallocation
2653#
2654# @host-nodes: host nodes for its memory policy
2655#
2656# @policy: memory policy of memory backend
2657#
2658# Since: 2.1
2659##
2660{ 'struct': 'Memdev',
2661  'data': {
2662    '*id':        'str',
2663    'size':       'size',
2664    'merge':      'bool',
2665    'dump':       'bool',
2666    'prealloc':   'bool',
2667    'host-nodes': ['uint16'],
2668    'policy':     'HostMemPolicy' }}
2669
2670##
2671# @query-memdev:
2672#
2673# Returns information for all memory backends.
2674#
2675# Returns: a list of @Memdev.
2676#
2677# Since: 2.1
2678#
2679# Example:
2680#
2681# -> { "execute": "query-memdev" }
2682# <- { "return": [
2683#        {
2684#          "id": "mem1",
2685#          "size": 536870912,
2686#          "merge": false,
2687#          "dump": true,
2688#          "prealloc": false,
2689#          "host-nodes": [0, 1],
2690#          "policy": "bind"
2691#        },
2692#        {
2693#          "size": 536870912,
2694#          "merge": false,
2695#          "dump": true,
2696#          "prealloc": true,
2697#          "host-nodes": [2, 3],
2698#          "policy": "preferred"
2699#        }
2700#      ]
2701#    }
2702#
2703##
2704{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
2705
2706##
2707# @PCDIMMDeviceInfo:
2708#
2709# PCDIMMDevice state information
2710#
2711# @id: device's ID
2712#
2713# @addr: physical address, where device is mapped
2714#
2715# @size: size of memory that the device provides
2716#
2717# @slot: slot number at which device is plugged in
2718#
2719# @node: NUMA node number where device is plugged in
2720#
2721# @memdev: memory backend linked with device
2722#
2723# @hotplugged: true if device was hotplugged
2724#
2725# @hotpluggable: true if device if could be added/removed while machine is running
2726#
2727# Since: 2.1
2728##
2729{ 'struct': 'PCDIMMDeviceInfo',
2730  'data': { '*id': 'str',
2731            'addr': 'int',
2732            'size': 'int',
2733            'slot': 'int',
2734            'node': 'int',
2735            'memdev': 'str',
2736            'hotplugged': 'bool',
2737            'hotpluggable': 'bool'
2738          }
2739}
2740
2741##
2742# @MemoryDeviceInfo:
2743#
2744# Union containing information about a memory device
2745#
2746# Since: 2.1
2747##
2748{ 'union': 'MemoryDeviceInfo',
2749  'data': { 'dimm': 'PCDIMMDeviceInfo',
2750            'nvdimm': 'PCDIMMDeviceInfo'
2751          }
2752}
2753
2754##
2755# @query-memory-devices:
2756#
2757# Lists available memory devices and their state
2758#
2759# Since: 2.1
2760#
2761# Example:
2762#
2763# -> { "execute": "query-memory-devices" }
2764# <- { "return": [ { "data":
2765#                       { "addr": 5368709120,
2766#                         "hotpluggable": true,
2767#                         "hotplugged": true,
2768#                         "id": "d1",
2769#                         "memdev": "/objects/memX",
2770#                         "node": 0,
2771#                         "size": 1073741824,
2772#                         "slot": 0},
2773#                    "type": "dimm"
2774#                  } ] }
2775#
2776##
2777{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2778
2779##
2780# @MEM_UNPLUG_ERROR:
2781#
2782# Emitted when memory hot unplug error occurs.
2783#
2784# @device: device name
2785#
2786# @msg: Informative message
2787#
2788# Since: 2.4
2789#
2790# Example:
2791#
2792# <- { "event": "MEM_UNPLUG_ERROR"
2793#      "data": { "device": "dimm1",
2794#                "msg": "acpi: device unplug for unsupported device"
2795#      },
2796#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2797#
2798##
2799{ 'event': 'MEM_UNPLUG_ERROR',
2800  'data': { 'device': 'str', 'msg': 'str' } }
2801
2802##
2803# @ACPISlotType:
2804#
2805# @DIMM: memory slot
2806# @CPU: logical CPU slot (since 2.7)
2807##
2808{ 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
2809
2810##
2811# @ACPIOSTInfo:
2812#
2813# OSPM Status Indication for a device
2814# For description of possible values of @source and @status fields
2815# see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
2816#
2817# @device: device ID associated with slot
2818#
2819# @slot: slot ID, unique per slot of a given @slot-type
2820#
2821# @slot-type: type of the slot
2822#
2823# @source: an integer containing the source event
2824#
2825# @status: an integer containing the status code
2826#
2827# Since: 2.1
2828##
2829{ 'struct': 'ACPIOSTInfo',
2830  'data'  : { '*device': 'str',
2831              'slot': 'str',
2832              'slot-type': 'ACPISlotType',
2833              'source': 'int',
2834              'status': 'int' } }
2835
2836##
2837# @query-acpi-ospm-status:
2838#
2839# Return a list of ACPIOSTInfo for devices that support status
2840# reporting via ACPI _OST method.
2841#
2842# Since: 2.1
2843#
2844# Example:
2845#
2846# -> { "execute": "query-acpi-ospm-status" }
2847# <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
2848#                  { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
2849#                  { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
2850#                  { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
2851#    ]}
2852#
2853##
2854{ 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
2855
2856##
2857# @ACPI_DEVICE_OST:
2858#
2859# Emitted when guest executes ACPI _OST method.
2860#
2861# @info: OSPM Status Indication
2862#
2863# Since: 2.1
2864#
2865# Example:
2866#
2867# <- { "event": "ACPI_DEVICE_OST",
2868#      "data": { "device": "d1", "slot": "0",
2869#                "slot-type": "DIMM", "source": 1, "status": 0 } }
2870#
2871##
2872{ 'event': 'ACPI_DEVICE_OST',
2873     'data': { 'info': 'ACPIOSTInfo' } }
2874
2875##
2876# @ReplayMode:
2877#
2878# Mode of the replay subsystem.
2879#
2880# @none: normal execution mode. Replay or record are not enabled.
2881#
2882# @record: record mode. All non-deterministic data is written into the
2883#          replay log.
2884#
2885# @play: replay mode. Non-deterministic data required for system execution
2886#        is read from the log.
2887#
2888# Since: 2.5
2889##
2890{ 'enum': 'ReplayMode',
2891  'data': [ 'none', 'record', 'play' ] }
2892
2893##
2894# @xen-load-devices-state:
2895#
2896# Load the state of all devices from file. The RAM and the block devices
2897# of the VM are not loaded by this command.
2898#
2899# @filename: the file to load the state of the devices from as binary
2900# data. See xen-save-devices-state.txt for a description of the binary
2901# format.
2902#
2903# Since: 2.7
2904#
2905# Example:
2906#
2907# -> { "execute": "xen-load-devices-state",
2908#      "arguments": { "filename": "/tmp/resume" } }
2909# <- { "return": {} }
2910#
2911##
2912{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
2913
2914##
2915# @CpuInstanceProperties:
2916#
2917# List of properties to be used for hotplugging a CPU instance,
2918# it should be passed by management with device_add command when
2919# a CPU is being hotplugged.
2920#
2921# @node-id: NUMA node ID the CPU belongs to
2922# @socket-id: socket number within node/board the CPU belongs to
2923# @core-id: core number within socket the CPU belongs to
2924# @thread-id: thread number within core the CPU belongs to
2925#
2926# Note: currently there are 4 properties that could be present
2927# but management should be prepared to pass through other
2928# properties with device_add command to allow for future
2929# interface extension. This also requires the filed names to be kept in
2930# sync with the properties passed to -device/device_add.
2931#
2932# Since: 2.7
2933##
2934{ 'struct': 'CpuInstanceProperties',
2935  'data': { '*node-id': 'int',
2936            '*socket-id': 'int',
2937            '*core-id': 'int',
2938            '*thread-id': 'int'
2939  }
2940}
2941
2942##
2943# @HotpluggableCPU:
2944#
2945# @type: CPU object type for usage with device_add command
2946# @props: list of properties to be used for hotplugging CPU
2947# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
2948# @qom-path: link to existing CPU object if CPU is present or
2949#            omitted if CPU is not present.
2950#
2951# Since: 2.7
2952##
2953{ 'struct': 'HotpluggableCPU',
2954  'data': { 'type': 'str',
2955            'vcpus-count': 'int',
2956            'props': 'CpuInstanceProperties',
2957            '*qom-path': 'str'
2958          }
2959}
2960
2961##
2962# @query-hotpluggable-cpus:
2963#
2964# TODO: Better documentation; currently there is none.
2965#
2966# Returns: a list of HotpluggableCPU objects.
2967#
2968# Since: 2.7
2969#
2970# Example:
2971#
2972# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
2973#
2974# -> { "execute": "query-hotpluggable-cpus" }
2975# <- {"return": [
2976#      { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
2977#        "vcpus-count": 1 },
2978#      { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
2979#        "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
2980#    ]}'
2981#
2982# For pc machine type started with -smp 1,maxcpus=2:
2983#
2984# -> { "execute": "query-hotpluggable-cpus" }
2985# <- {"return": [
2986#      {
2987#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
2988#         "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
2989#      },
2990#      {
2991#         "qom-path": "/machine/unattached/device[0]",
2992#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
2993#         "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
2994#      }
2995#    ]}
2996#
2997# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
2998# (Since: 2.11):
2999#
3000# -> { "execute": "query-hotpluggable-cpus" }
3001# <- {"return": [
3002#      {
3003#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
3004#         "props": { "core-id": 1 }
3005#      },
3006#      {
3007#         "qom-path": "/machine/unattached/device[0]",
3008#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
3009#         "props": { "core-id": 0 }
3010#      }
3011#    ]}
3012#
3013##
3014{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
3015             'allow-preconfig': true }
3016
3017##
3018# @GuidInfo:
3019#
3020# GUID information.
3021#
3022# @guid: the globally unique identifier
3023#
3024# Since: 2.9
3025##
3026{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3027
3028##
3029# @query-vm-generation-id:
3030#
3031# Show Virtual Machine Generation ID
3032#
3033# Since: 2.9
3034##
3035{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
3036
3037##
3038# @set-numa-node:
3039#
3040# Runtime equivalent of '-numa' CLI option, available at
3041# preconfigure stage to configure numa mapping before initializing
3042# machine.
3043#
3044# Since 3.0
3045##
3046{ 'command': 'set-numa-node', 'boxed': true,
3047  'data': 'NumaOptions',
3048  'allow-preconfig': true
3049}
3050