1# -*- Mode: Python -*- 2# 3 4## 5# = Miscellanea 6## 7 8{ 'include': 'common.json' } 9 10## 11# @qmp_capabilities: 12# 13# Enable QMP capabilities. 14# 15# Arguments: 16# 17# @enable: An optional list of QMPCapability values to enable. The 18# client must not enable any capability that is not 19# mentioned in the QMP greeting message. If the field is not 20# provided, it means no QMP capabilities will be enabled. 21# (since 2.12) 22# 23# Example: 24# 25# -> { "execute": "qmp_capabilities", 26# "arguments": { "enable": [ "oob" ] } } 27# <- { "return": {} } 28# 29# Notes: This command is valid exactly when first connecting: it must be 30# issued before any other command will be accepted, and will fail once the 31# monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt) 32# 33# The QMP client needs to explicitly enable QMP capabilities, otherwise 34# all the QMP capabilities will be turned off by default. 35# 36# Since: 0.13 37# 38## 39{ 'command': 'qmp_capabilities', 40 'data': { '*enable': [ 'QMPCapability' ] }, 41 'allow-preconfig': true } 42 43## 44# @QMPCapability: 45# 46# Enumeration of capabilities to be advertised during initial client 47# connection, used for agreeing on particular QMP extension behaviors. 48# 49# @oob: QMP ability to support out-of-band requests. 50# (Please refer to qmp-spec.txt for more information on OOB) 51# 52# Since: 2.12 53# 54## 55{ 'enum': 'QMPCapability', 56 'data': [ 'oob' ] } 57 58## 59# @VersionTriple: 60# 61# A three-part version number. 62# 63# @major: The major version number. 64# 65# @minor: The minor version number. 66# 67# @micro: The micro version number. 68# 69# Since: 2.4 70## 71{ 'struct': 'VersionTriple', 72 'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} } 73 74 75## 76# @VersionInfo: 77# 78# A description of QEMU's version. 79# 80# @qemu: The version of QEMU. By current convention, a micro 81# version of 50 signifies a development branch. A micro version 82# greater than or equal to 90 signifies a release candidate for 83# the next minor version. A micro version of less than 50 84# signifies a stable release. 85# 86# @package: QEMU will always set this field to an empty string. Downstream 87# versions of QEMU should set this to a non-empty string. The 88# exact format depends on the downstream however it highly 89# recommended that a unique name is used. 90# 91# Since: 0.14.0 92## 93{ 'struct': 'VersionInfo', 94 'data': {'qemu': 'VersionTriple', 'package': 'str'} } 95 96## 97# @query-version: 98# 99# Returns the current version of QEMU. 100# 101# Returns: A @VersionInfo object describing the current version of QEMU. 102# 103# Since: 0.14.0 104# 105# Example: 106# 107# -> { "execute": "query-version" } 108# <- { 109# "return":{ 110# "qemu":{ 111# "major":0, 112# "minor":11, 113# "micro":5 114# }, 115# "package":"" 116# } 117# } 118# 119## 120{ 'command': 'query-version', 'returns': 'VersionInfo', 121 'allow-preconfig': true } 122 123## 124# @CommandInfo: 125# 126# Information about a QMP command 127# 128# @name: The command name 129# 130# Since: 0.14.0 131## 132{ 'struct': 'CommandInfo', 'data': {'name': 'str'} } 133 134## 135# @query-commands: 136# 137# Return a list of supported QMP commands by this server 138# 139# Returns: A list of @CommandInfo for all supported commands 140# 141# Since: 0.14.0 142# 143# Example: 144# 145# -> { "execute": "query-commands" } 146# <- { 147# "return":[ 148# { 149# "name":"query-balloon" 150# }, 151# { 152# "name":"system_powerdown" 153# } 154# ] 155# } 156# 157# Note: This example has been shortened as the real response is too long. 158# 159## 160{ 'command': 'query-commands', 'returns': ['CommandInfo'], 161 'allow-preconfig': true } 162 163## 164# @LostTickPolicy: 165# 166# Policy for handling lost ticks in timer devices. 167# 168# @discard: throw away the missed tick(s) and continue with future injection 169# normally. Guest time may be delayed, unless the OS has explicit 170# handling of lost ticks 171# 172# @delay: continue to deliver ticks at the normal rate. Guest time will be 173# delayed due to the late tick 174# 175# @merge: merge the missed tick(s) into one tick and inject. Guest time 176# may be delayed, depending on how the OS reacts to the merging 177# of ticks 178# 179# @slew: deliver ticks at a higher rate to catch up with the missed tick. The 180# guest time should not be delayed once catchup is complete. 181# 182# Since: 2.0 183## 184{ 'enum': 'LostTickPolicy', 185 'data': ['discard', 'delay', 'merge', 'slew' ] } 186 187## 188# @add_client: 189# 190# Allow client connections for VNC, Spice and socket based 191# character devices to be passed in to QEMU via SCM_RIGHTS. 192# 193# @protocol: protocol name. Valid names are "vnc", "spice" or the 194# name of a character device (eg. from -chardev id=XXXX) 195# 196# @fdname: file descriptor name previously passed via 'getfd' command 197# 198# @skipauth: whether to skip authentication. Only applies 199# to "vnc" and "spice" protocols 200# 201# @tls: whether to perform TLS. Only applies to the "spice" 202# protocol 203# 204# Returns: nothing on success. 205# 206# Since: 0.14.0 207# 208# Example: 209# 210# -> { "execute": "add_client", "arguments": { "protocol": "vnc", 211# "fdname": "myclient" } } 212# <- { "return": {} } 213# 214## 215{ 'command': 'add_client', 216 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool', 217 '*tls': 'bool' } } 218 219## 220# @NameInfo: 221# 222# Guest name information. 223# 224# @name: The name of the guest 225# 226# Since: 0.14.0 227## 228{ 'struct': 'NameInfo', 'data': {'*name': 'str'} } 229 230## 231# @query-name: 232# 233# Return the name information of a guest. 234# 235# Returns: @NameInfo of the guest 236# 237# Since: 0.14.0 238# 239# Example: 240# 241# -> { "execute": "query-name" } 242# <- { "return": { "name": "qemu-name" } } 243# 244## 245{ 'command': 'query-name', 'returns': 'NameInfo', 'allow-preconfig': true } 246 247## 248# @KvmInfo: 249# 250# Information about support for KVM acceleration 251# 252# @enabled: true if KVM acceleration is active 253# 254# @present: true if KVM acceleration is built into this executable 255# 256# Since: 0.14.0 257## 258{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} } 259 260## 261# @query-kvm: 262# 263# Returns information about KVM acceleration 264# 265# Returns: @KvmInfo 266# 267# Since: 0.14.0 268# 269# Example: 270# 271# -> { "execute": "query-kvm" } 272# <- { "return": { "enabled": true, "present": true } } 273# 274## 275{ 'command': 'query-kvm', 'returns': 'KvmInfo' } 276 277## 278# @UuidInfo: 279# 280# Guest UUID information (Universally Unique Identifier). 281# 282# @UUID: the UUID of the guest 283# 284# Since: 0.14.0 285# 286# Notes: If no UUID was specified for the guest, a null UUID is returned. 287## 288{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} } 289 290## 291# @query-uuid: 292# 293# Query the guest UUID information. 294# 295# Returns: The @UuidInfo for the guest 296# 297# Since: 0.14.0 298# 299# Example: 300# 301# -> { "execute": "query-uuid" } 302# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } } 303# 304## 305{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true } 306 307## 308# @EventInfo: 309# 310# Information about a QMP event 311# 312# @name: The event name 313# 314# Since: 1.2.0 315## 316{ 'struct': 'EventInfo', 'data': {'name': 'str'} } 317 318## 319# @query-events: 320# 321# Return a list of supported QMP events by this server 322# 323# Returns: A list of @EventInfo for all supported events 324# 325# Since: 1.2.0 326# 327# Example: 328# 329# -> { "execute": "query-events" } 330# <- { 331# "return": [ 332# { 333# "name":"SHUTDOWN" 334# }, 335# { 336# "name":"RESET" 337# } 338# ] 339# } 340# 341# Note: This example has been shortened as the real response is too long. 342# 343## 344{ 'command': 'query-events', 'returns': ['EventInfo'] } 345 346## 347# @CpuInfoArch: 348# 349# An enumeration of cpu types that enable additional information during 350# @query-cpus and @query-cpus-fast. 351# 352# @s390: since 2.12 353# 354# @riscv: since 2.12 355# 356# Since: 2.6 357## 358{ 'enum': 'CpuInfoArch', 359 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] } 360 361## 362# @CpuInfo: 363# 364# Information about a virtual CPU 365# 366# @CPU: the index of the virtual CPU 367# 368# @current: this only exists for backwards compatibility and should be ignored 369# 370# @halted: true if the virtual CPU is in the halt state. Halt usually refers 371# to a processor specific low power mode. 372# 373# @qom_path: path to the CPU object in the QOM tree (since 2.4) 374# 375# @thread_id: ID of the underlying host thread 376# 377# @props: properties describing to which node/socket/core/thread 378# virtual CPU belongs to, provided if supported by board (since 2.10) 379# 380# @arch: architecture of the cpu, which determines which additional fields 381# will be listed (since 2.6) 382# 383# Since: 0.14.0 384# 385# Notes: @halted is a transient state that changes frequently. By the time the 386# data is sent to the client, the guest may no longer be halted. 387## 388{ 'union': 'CpuInfo', 389 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool', 390 'qom_path': 'str', 'thread_id': 'int', 391 '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' }, 392 'discriminator': 'arch', 393 'data': { 'x86': 'CpuInfoX86', 394 'sparc': 'CpuInfoSPARC', 395 'ppc': 'CpuInfoPPC', 396 'mips': 'CpuInfoMIPS', 397 'tricore': 'CpuInfoTricore', 398 's390': 'CpuInfoS390', 399 'riscv': 'CpuInfoRISCV' } } 400 401## 402# @CpuInfoX86: 403# 404# Additional information about a virtual i386 or x86_64 CPU 405# 406# @pc: the 64-bit instruction pointer 407# 408# Since: 2.6 409## 410{ 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } } 411 412## 413# @CpuInfoSPARC: 414# 415# Additional information about a virtual SPARC CPU 416# 417# @pc: the PC component of the instruction pointer 418# 419# @npc: the NPC component of the instruction pointer 420# 421# Since: 2.6 422## 423{ 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } } 424 425## 426# @CpuInfoPPC: 427# 428# Additional information about a virtual PPC CPU 429# 430# @nip: the instruction pointer 431# 432# Since: 2.6 433## 434{ 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } } 435 436## 437# @CpuInfoMIPS: 438# 439# Additional information about a virtual MIPS CPU 440# 441# @PC: the instruction pointer 442# 443# Since: 2.6 444## 445{ 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } } 446 447## 448# @CpuInfoTricore: 449# 450# Additional information about a virtual Tricore CPU 451# 452# @PC: the instruction pointer 453# 454# Since: 2.6 455## 456{ 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } } 457 458## 459# @CpuInfoRISCV: 460# 461# Additional information about a virtual RISCV CPU 462# 463# @pc: the instruction pointer 464# 465# Since 2.12 466## 467{ 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } } 468 469## 470# @CpuS390State: 471# 472# An enumeration of cpu states that can be assumed by a virtual 473# S390 CPU 474# 475# Since: 2.12 476## 477{ 'enum': 'CpuS390State', 478 'prefix': 'S390_CPU_STATE', 479 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] } 480 481## 482# @CpuInfoS390: 483# 484# Additional information about a virtual S390 CPU 485# 486# @cpu-state: the virtual CPU's state 487# 488# Since: 2.12 489## 490{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } } 491 492## 493# @query-cpus: 494# 495# Returns a list of information about each virtual CPU. 496# 497# This command causes vCPU threads to exit to userspace, which causes 498# a small interruption to guest CPU execution. This will have a negative 499# impact on realtime guests and other latency sensitive guest workloads. 500# It is recommended to use @query-cpus-fast instead of this command to 501# avoid the vCPU interruption. 502# 503# Returns: a list of @CpuInfo for each virtual CPU 504# 505# Since: 0.14.0 506# 507# Example: 508# 509# -> { "execute": "query-cpus" } 510# <- { "return": [ 511# { 512# "CPU":0, 513# "current":true, 514# "halted":false, 515# "qom_path":"/machine/unattached/device[0]", 516# "arch":"x86", 517# "pc":3227107138, 518# "thread_id":3134 519# }, 520# { 521# "CPU":1, 522# "current":false, 523# "halted":true, 524# "qom_path":"/machine/unattached/device[2]", 525# "arch":"x86", 526# "pc":7108165, 527# "thread_id":3135 528# } 529# ] 530# } 531# 532# Notes: This interface is deprecated (since 2.12.0), and it is strongly 533# recommended that you avoid using it. Use @query-cpus-fast to 534# obtain information about virtual CPUs. 535# 536## 537{ 'command': 'query-cpus', 'returns': ['CpuInfo'] } 538 539## 540# @CpuInfoFast: 541# 542# Information about a virtual CPU 543# 544# @cpu-index: index of the virtual CPU 545# 546# @qom-path: path to the CPU object in the QOM tree 547# 548# @thread-id: ID of the underlying host thread 549# 550# @props: properties describing to which node/socket/core/thread 551# virtual CPU belongs to, provided if supported by board 552# 553# @arch: base architecture of the cpu; deprecated since 3.0.0 in favor 554# of @target 555# 556# @target: the QEMU system emulation target, which determines which 557# additional fields will be listed (since 3.0) 558# 559# Since: 2.12 560# 561## 562{ 'union' : 'CpuInfoFast', 563 'base' : { 'cpu-index' : 'int', 564 'qom-path' : 'str', 565 'thread-id' : 'int', 566 '*props' : 'CpuInstanceProperties', 567 'arch' : 'CpuInfoArch', 568 'target' : 'SysEmuTarget' }, 569 'discriminator' : 'target', 570 'data' : { 's390x' : 'CpuInfoS390' } } 571 572## 573# @query-cpus-fast: 574# 575# Returns information about all virtual CPUs. This command does not 576# incur a performance penalty and should be used in production 577# instead of query-cpus. 578# 579# Returns: list of @CpuInfoFast 580# 581# Since: 2.12 582# 583# Example: 584# 585# -> { "execute": "query-cpus-fast" } 586# <- { "return": [ 587# { 588# "thread-id": 25627, 589# "props": { 590# "core-id": 0, 591# "thread-id": 0, 592# "socket-id": 0 593# }, 594# "qom-path": "/machine/unattached/device[0]", 595# "arch":"x86", 596# "target":"x86_64", 597# "cpu-index": 0 598# }, 599# { 600# "thread-id": 25628, 601# "props": { 602# "core-id": 0, 603# "thread-id": 0, 604# "socket-id": 1 605# }, 606# "qom-path": "/machine/unattached/device[2]", 607# "arch":"x86", 608# "target":"x86_64", 609# "cpu-index": 1 610# } 611# ] 612# } 613## 614{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] } 615 616## 617# @IOThreadInfo: 618# 619# Information about an iothread 620# 621# @id: the identifier of the iothread 622# 623# @thread-id: ID of the underlying host thread 624# 625# @poll-max-ns: maximum polling time in ns, 0 means polling is disabled 626# (since 2.9) 627# 628# @poll-grow: how many ns will be added to polling time, 0 means that it's not 629# configured (since 2.9) 630# 631# @poll-shrink: how many ns will be removed from polling time, 0 means that 632# it's not configured (since 2.9) 633# 634# Since: 2.0 635## 636{ 'struct': 'IOThreadInfo', 637 'data': {'id': 'str', 638 'thread-id': 'int', 639 'poll-max-ns': 'int', 640 'poll-grow': 'int', 641 'poll-shrink': 'int' } } 642 643## 644# @query-iothreads: 645# 646# Returns a list of information about each iothread. 647# 648# Note: this list excludes the QEMU main loop thread, which is not declared 649# using the -object iothread command-line option. It is always the main thread 650# of the process. 651# 652# Returns: a list of @IOThreadInfo for each iothread 653# 654# Since: 2.0 655# 656# Example: 657# 658# -> { "execute": "query-iothreads" } 659# <- { "return": [ 660# { 661# "id":"iothread0", 662# "thread-id":3134 663# }, 664# { 665# "id":"iothread1", 666# "thread-id":3135 667# } 668# ] 669# } 670# 671## 672{ 'command': 'query-iothreads', 'returns': ['IOThreadInfo'], 673 'allow-preconfig': true } 674 675## 676# @BalloonInfo: 677# 678# Information about the guest balloon device. 679# 680# @actual: the number of bytes the balloon currently contains 681# 682# Since: 0.14.0 683# 684## 685{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } } 686 687## 688# @query-balloon: 689# 690# Return information about the balloon device. 691# 692# Returns: @BalloonInfo on success 693# 694# If the balloon driver is enabled but not functional because the KVM 695# kernel module cannot support it, KvmMissingCap 696# 697# If no balloon device is present, DeviceNotActive 698# 699# Since: 0.14.0 700# 701# Example: 702# 703# -> { "execute": "query-balloon" } 704# <- { "return": { 705# "actual": 1073741824, 706# } 707# } 708# 709## 710{ 'command': 'query-balloon', 'returns': 'BalloonInfo' } 711 712## 713# @BALLOON_CHANGE: 714# 715# Emitted when the guest changes the actual BALLOON level. This value is 716# equivalent to the @actual field return by the 'query-balloon' command 717# 718# @actual: actual level of the guest memory balloon in bytes 719# 720# Note: this event is rate-limited. 721# 722# Since: 1.2 723# 724# Example: 725# 726# <- { "event": "BALLOON_CHANGE", 727# "data": { "actual": 944766976 }, 728# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } } 729# 730## 731{ 'event': 'BALLOON_CHANGE', 732 'data': { 'actual': 'int' } } 733 734## 735# @PciMemoryRange: 736# 737# A PCI device memory region 738# 739# @base: the starting address (guest physical) 740# 741# @limit: the ending address (guest physical) 742# 743# Since: 0.14.0 744## 745{ 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} } 746 747## 748# @PciMemoryRegion: 749# 750# Information about a PCI device I/O region. 751# 752# @bar: the index of the Base Address Register for this region 753# 754# @type: 'io' if the region is a PIO region 755# 'memory' if the region is a MMIO region 756# 757# @size: memory size 758# 759# @prefetch: if @type is 'memory', true if the memory is prefetchable 760# 761# @mem_type_64: if @type is 'memory', true if the BAR is 64-bit 762# 763# Since: 0.14.0 764## 765{ 'struct': 'PciMemoryRegion', 766 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int', 767 '*prefetch': 'bool', '*mem_type_64': 'bool' } } 768 769## 770# @PciBusInfo: 771# 772# Information about a bus of a PCI Bridge device 773# 774# @number: primary bus interface number. This should be the number of the 775# bus the device resides on. 776# 777# @secondary: secondary bus interface number. This is the number of the 778# main bus for the bridge 779# 780# @subordinate: This is the highest number bus that resides below the 781# bridge. 782# 783# @io_range: The PIO range for all devices on this bridge 784# 785# @memory_range: The MMIO range for all devices on this bridge 786# 787# @prefetchable_range: The range of prefetchable MMIO for all devices on 788# this bridge 789# 790# Since: 2.4 791## 792{ 'struct': 'PciBusInfo', 793 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int', 794 'io_range': 'PciMemoryRange', 795 'memory_range': 'PciMemoryRange', 796 'prefetchable_range': 'PciMemoryRange' } } 797 798## 799# @PciBridgeInfo: 800# 801# Information about a PCI Bridge device 802# 803# @bus: information about the bus the device resides on 804# 805# @devices: a list of @PciDeviceInfo for each device on this bridge 806# 807# Since: 0.14.0 808## 809{ 'struct': 'PciBridgeInfo', 810 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} } 811 812## 813# @PciDeviceClass: 814# 815# Information about the Class of a PCI device 816# 817# @desc: a string description of the device's class 818# 819# @class: the class code of the device 820# 821# Since: 2.4 822## 823{ 'struct': 'PciDeviceClass', 824 'data': {'*desc': 'str', 'class': 'int'} } 825 826## 827# @PciDeviceId: 828# 829# Information about the Id of a PCI device 830# 831# @device: the PCI device id 832# 833# @vendor: the PCI vendor id 834# 835# @subsystem: the PCI subsystem id (since 3.1) 836# 837# @subsystem-vendor: the PCI subsystem vendor id (since 3.1) 838# 839# Since: 2.4 840## 841{ 'struct': 'PciDeviceId', 842 'data': {'device': 'int', 'vendor': 'int', '*subsystem': 'int', 843 '*subsystem-vendor': 'int'} } 844 845## 846# @PciDeviceInfo: 847# 848# Information about a PCI device 849# 850# @bus: the bus number of the device 851# 852# @slot: the slot the device is located in 853# 854# @function: the function of the slot used by the device 855# 856# @class_info: the class of the device 857# 858# @id: the PCI device id 859# 860# @irq: if an IRQ is assigned to the device, the IRQ number 861# 862# @qdev_id: the device name of the PCI device 863# 864# @pci_bridge: if the device is a PCI bridge, the bridge information 865# 866# @regions: a list of the PCI I/O regions associated with the device 867# 868# Notes: the contents of @class_info.desc are not stable and should only be 869# treated as informational. 870# 871# Since: 0.14.0 872## 873{ 'struct': 'PciDeviceInfo', 874 'data': {'bus': 'int', 'slot': 'int', 'function': 'int', 875 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId', 876 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo', 877 'regions': ['PciMemoryRegion']} } 878 879## 880# @PciInfo: 881# 882# Information about a PCI bus 883# 884# @bus: the bus index 885# 886# @devices: a list of devices on this bus 887# 888# Since: 0.14.0 889## 890{ 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} } 891 892## 893# @query-pci: 894# 895# Return information about the PCI bus topology of the guest. 896# 897# Returns: a list of @PciInfo for each PCI bus. Each bus is 898# represented by a json-object, which has a key with a json-array of 899# all PCI devices attached to it. Each device is represented by a 900# json-object. 901# 902# Since: 0.14.0 903# 904# Example: 905# 906# -> { "execute": "query-pci" } 907# <- { "return": [ 908# { 909# "bus": 0, 910# "devices": [ 911# { 912# "bus": 0, 913# "qdev_id": "", 914# "slot": 0, 915# "class_info": { 916# "class": 1536, 917# "desc": "Host bridge" 918# }, 919# "id": { 920# "device": 32902, 921# "vendor": 4663 922# }, 923# "function": 0, 924# "regions": [ 925# ] 926# }, 927# { 928# "bus": 0, 929# "qdev_id": "", 930# "slot": 1, 931# "class_info": { 932# "class": 1537, 933# "desc": "ISA bridge" 934# }, 935# "id": { 936# "device": 32902, 937# "vendor": 28672 938# }, 939# "function": 0, 940# "regions": [ 941# ] 942# }, 943# { 944# "bus": 0, 945# "qdev_id": "", 946# "slot": 1, 947# "class_info": { 948# "class": 257, 949# "desc": "IDE controller" 950# }, 951# "id": { 952# "device": 32902, 953# "vendor": 28688 954# }, 955# "function": 1, 956# "regions": [ 957# { 958# "bar": 4, 959# "size": 16, 960# "address": 49152, 961# "type": "io" 962# } 963# ] 964# }, 965# { 966# "bus": 0, 967# "qdev_id": "", 968# "slot": 2, 969# "class_info": { 970# "class": 768, 971# "desc": "VGA controller" 972# }, 973# "id": { 974# "device": 4115, 975# "vendor": 184 976# }, 977# "function": 0, 978# "regions": [ 979# { 980# "prefetch": true, 981# "mem_type_64": false, 982# "bar": 0, 983# "size": 33554432, 984# "address": 4026531840, 985# "type": "memory" 986# }, 987# { 988# "prefetch": false, 989# "mem_type_64": false, 990# "bar": 1, 991# "size": 4096, 992# "address": 4060086272, 993# "type": "memory" 994# }, 995# { 996# "prefetch": false, 997# "mem_type_64": false, 998# "bar": 6, 999# "size": 65536, 1000# "address": -1, 1001# "type": "memory" 1002# } 1003# ] 1004# }, 1005# { 1006# "bus": 0, 1007# "qdev_id": "", 1008# "irq": 11, 1009# "slot": 4, 1010# "class_info": { 1011# "class": 1280, 1012# "desc": "RAM controller" 1013# }, 1014# "id": { 1015# "device": 6900, 1016# "vendor": 4098 1017# }, 1018# "function": 0, 1019# "regions": [ 1020# { 1021# "bar": 0, 1022# "size": 32, 1023# "address": 49280, 1024# "type": "io" 1025# } 1026# ] 1027# } 1028# ] 1029# } 1030# ] 1031# } 1032# 1033# Note: This example has been shortened as the real response is too long. 1034# 1035## 1036{ 'command': 'query-pci', 'returns': ['PciInfo'] } 1037 1038## 1039# @quit: 1040# 1041# This command will cause the QEMU process to exit gracefully. While every 1042# attempt is made to send the QMP response before terminating, this is not 1043# guaranteed. When using this interface, a premature EOF would not be 1044# unexpected. 1045# 1046# Since: 0.14.0 1047# 1048# Example: 1049# 1050# -> { "execute": "quit" } 1051# <- { "return": {} } 1052## 1053{ 'command': 'quit' } 1054 1055## 1056# @stop: 1057# 1058# Stop all guest VCPU execution. 1059# 1060# Since: 0.14.0 1061# 1062# Notes: This function will succeed even if the guest is already in the stopped 1063# state. In "inmigrate" state, it will ensure that the guest 1064# remains paused once migration finishes, as if the -S option was 1065# passed on the command line. 1066# 1067# Example: 1068# 1069# -> { "execute": "stop" } 1070# <- { "return": {} } 1071# 1072## 1073{ 'command': 'stop' } 1074 1075## 1076# @system_reset: 1077# 1078# Performs a hard reset of a guest. 1079# 1080# Since: 0.14.0 1081# 1082# Example: 1083# 1084# -> { "execute": "system_reset" } 1085# <- { "return": {} } 1086# 1087## 1088{ 'command': 'system_reset' } 1089 1090## 1091# @system_powerdown: 1092# 1093# Requests that a guest perform a powerdown operation. 1094# 1095# Since: 0.14.0 1096# 1097# Notes: A guest may or may not respond to this command. This command 1098# returning does not indicate that a guest has accepted the request or 1099# that it has shut down. Many guests will respond to this command by 1100# prompting the user in some way. 1101# Example: 1102# 1103# -> { "execute": "system_powerdown" } 1104# <- { "return": {} } 1105# 1106## 1107{ 'command': 'system_powerdown' } 1108 1109## 1110# @cpu-add: 1111# 1112# Adds CPU with specified ID 1113# 1114# @id: ID of CPU to be created, valid values [0..max_cpus) 1115# 1116# Returns: Nothing on success 1117# 1118# Since: 1.5 1119# 1120# Example: 1121# 1122# -> { "execute": "cpu-add", "arguments": { "id": 2 } } 1123# <- { "return": {} } 1124# 1125## 1126{ 'command': 'cpu-add', 'data': {'id': 'int'} } 1127 1128## 1129# @memsave: 1130# 1131# Save a portion of guest memory to a file. 1132# 1133# @val: the virtual address of the guest to start from 1134# 1135# @size: the size of memory region to save 1136# 1137# @filename: the file to save the memory to as binary data 1138# 1139# @cpu-index: the index of the virtual CPU to use for translating the 1140# virtual address (defaults to CPU 0) 1141# 1142# Returns: Nothing on success 1143# 1144# Since: 0.14.0 1145# 1146# Notes: Errors were not reliably returned until 1.1 1147# 1148# Example: 1149# 1150# -> { "execute": "memsave", 1151# "arguments": { "val": 10, 1152# "size": 100, 1153# "filename": "/tmp/virtual-mem-dump" } } 1154# <- { "return": {} } 1155# 1156## 1157{ 'command': 'memsave', 1158 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} } 1159 1160## 1161# @pmemsave: 1162# 1163# Save a portion of guest physical memory to a file. 1164# 1165# @val: the physical address of the guest to start from 1166# 1167# @size: the size of memory region to save 1168# 1169# @filename: the file to save the memory to as binary data 1170# 1171# Returns: Nothing on success 1172# 1173# Since: 0.14.0 1174# 1175# Notes: Errors were not reliably returned until 1.1 1176# 1177# Example: 1178# 1179# -> { "execute": "pmemsave", 1180# "arguments": { "val": 10, 1181# "size": 100, 1182# "filename": "/tmp/physical-mem-dump" } } 1183# <- { "return": {} } 1184# 1185## 1186{ 'command': 'pmemsave', 1187 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} } 1188 1189## 1190# @cont: 1191# 1192# Resume guest VCPU execution. 1193# 1194# Since: 0.14.0 1195# 1196# Returns: If successful, nothing 1197# 1198# Notes: This command will succeed if the guest is currently running. It 1199# will also succeed if the guest is in the "inmigrate" state; in 1200# this case, the effect of the command is to make sure the guest 1201# starts once migration finishes, removing the effect of the -S 1202# command line option if it was passed. 1203# 1204# Example: 1205# 1206# -> { "execute": "cont" } 1207# <- { "return": {} } 1208# 1209## 1210{ 'command': 'cont' } 1211 1212## 1213# @x-exit-preconfig: 1214# 1215# Exit from "preconfig" state 1216# 1217# This command makes QEMU exit the preconfig state and proceed with 1218# VM initialization using configuration data provided on the command line 1219# and via the QMP monitor during the preconfig state. The command is only 1220# available during the preconfig state (i.e. when the --preconfig command 1221# line option was in use). 1222# 1223# Since 3.0 1224# 1225# Returns: nothing 1226# 1227# Example: 1228# 1229# -> { "execute": "x-exit-preconfig" } 1230# <- { "return": {} } 1231# 1232## 1233{ 'command': 'x-exit-preconfig', 'allow-preconfig': true } 1234 1235## 1236# @system_wakeup: 1237# 1238# Wakeup guest from suspend. Does nothing in case the guest isn't suspended. 1239# 1240# Since: 1.1 1241# 1242# Returns: nothing. 1243# 1244# Example: 1245# 1246# -> { "execute": "system_wakeup" } 1247# <- { "return": {} } 1248# 1249## 1250{ 'command': 'system_wakeup' } 1251 1252## 1253# @inject-nmi: 1254# 1255# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64). 1256# The command fails when the guest doesn't support injecting. 1257# 1258# Returns: If successful, nothing 1259# 1260# Since: 0.14.0 1261# 1262# Note: prior to 2.1, this command was only supported for x86 and s390 VMs 1263# 1264# Example: 1265# 1266# -> { "execute": "inject-nmi" } 1267# <- { "return": {} } 1268# 1269## 1270{ 'command': 'inject-nmi' } 1271 1272## 1273# @balloon: 1274# 1275# Request the balloon driver to change its balloon size. 1276# 1277# @value: the target size of the balloon in bytes 1278# 1279# Returns: Nothing on success 1280# If the balloon driver is enabled but not functional because the KVM 1281# kernel module cannot support it, KvmMissingCap 1282# If no balloon device is present, DeviceNotActive 1283# 1284# Notes: This command just issues a request to the guest. When it returns, 1285# the balloon size may not have changed. A guest can change the balloon 1286# size independent of this command. 1287# 1288# Since: 0.14.0 1289# 1290# Example: 1291# 1292# -> { "execute": "balloon", "arguments": { "value": 536870912 } } 1293# <- { "return": {} } 1294# 1295## 1296{ 'command': 'balloon', 'data': {'value': 'int'} } 1297 1298## 1299# @human-monitor-command: 1300# 1301# Execute a command on the human monitor and return the output. 1302# 1303# @command-line: the command to execute in the human monitor 1304# 1305# @cpu-index: The CPU to use for commands that require an implicit CPU 1306# 1307# Returns: the output of the command as a string 1308# 1309# Since: 0.14.0 1310# 1311# Notes: This command only exists as a stop-gap. Its use is highly 1312# discouraged. The semantics of this command are not 1313# guaranteed: this means that command names, arguments and 1314# responses can change or be removed at ANY time. Applications 1315# that rely on long term stability guarantees should NOT 1316# use this command. 1317# 1318# Known limitations: 1319# 1320# * This command is stateless, this means that commands that depend 1321# on state information (such as getfd) might not work 1322# 1323# * Commands that prompt the user for data don't currently work 1324# 1325# Example: 1326# 1327# -> { "execute": "human-monitor-command", 1328# "arguments": { "command-line": "info kvm" } } 1329# <- { "return": "kvm support: enabled\r\n" } 1330# 1331## 1332{ 'command': 'human-monitor-command', 1333 'data': {'command-line': 'str', '*cpu-index': 'int'}, 1334 'returns': 'str' } 1335 1336## 1337# @ObjectPropertyInfo: 1338# 1339# @name: the name of the property 1340# 1341# @type: the type of the property. This will typically come in one of four 1342# forms: 1343# 1344# 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'. 1345# These types are mapped to the appropriate JSON type. 1346# 1347# 2) A child type in the form 'child<subtype>' where subtype is a qdev 1348# device type name. Child properties create the composition tree. 1349# 1350# 3) A link type in the form 'link<subtype>' where subtype is a qdev 1351# device type name. Link properties form the device model graph. 1352# 1353# @description: if specified, the description of the property. 1354# 1355# Since: 1.2 1356## 1357{ 'struct': 'ObjectPropertyInfo', 1358 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } } 1359 1360## 1361# @qom-list: 1362# 1363# This command will list any properties of a object given a path in the object 1364# model. 1365# 1366# @path: the path within the object model. See @qom-get for a description of 1367# this parameter. 1368# 1369# Returns: a list of @ObjectPropertyInfo that describe the properties of the 1370# object. 1371# 1372# Since: 1.2 1373## 1374{ 'command': 'qom-list', 1375 'data': { 'path': 'str' }, 1376 'returns': [ 'ObjectPropertyInfo' ], 1377 'allow-preconfig': true } 1378 1379## 1380# @qom-get: 1381# 1382# This command will get a property from a object model path and return the 1383# value. 1384# 1385# @path: The path within the object model. There are two forms of supported 1386# paths--absolute and partial paths. 1387# 1388# Absolute paths are derived from the root object and can follow child<> 1389# or link<> properties. Since they can follow link<> properties, they 1390# can be arbitrarily long. Absolute paths look like absolute filenames 1391# and are prefixed with a leading slash. 1392# 1393# Partial paths look like relative filenames. They do not begin 1394# with a prefix. The matching rules for partial paths are subtle but 1395# designed to make specifying objects easy. At each level of the 1396# composition tree, the partial path is matched as an absolute path. 1397# The first match is not returned. At least two matches are searched 1398# for. A successful result is only returned if only one match is 1399# found. If more than one match is found, a flag is return to 1400# indicate that the match was ambiguous. 1401# 1402# @property: The property name to read 1403# 1404# Returns: The property value. The type depends on the property 1405# type. child<> and link<> properties are returned as #str 1406# pathnames. All integer property types (u8, u16, etc) are 1407# returned as #int. 1408# 1409# Since: 1.2 1410## 1411{ 'command': 'qom-get', 1412 'data': { 'path': 'str', 'property': 'str' }, 1413 'returns': 'any', 1414 'allow-preconfig': true } 1415 1416## 1417# @qom-set: 1418# 1419# This command will set a property from a object model path. 1420# 1421# @path: see @qom-get for a description of this parameter 1422# 1423# @property: the property name to set 1424# 1425# @value: a value who's type is appropriate for the property type. See @qom-get 1426# for a description of type mapping. 1427# 1428# Since: 1.2 1429## 1430{ 'command': 'qom-set', 1431 'data': { 'path': 'str', 'property': 'str', 'value': 'any' }, 1432 'allow-preconfig': true } 1433 1434## 1435# @change: 1436# 1437# This command is multiple commands multiplexed together. 1438# 1439# @device: This is normally the name of a block device but it may also be 'vnc'. 1440# when it's 'vnc', then sub command depends on @target 1441# 1442# @target: If @device is a block device, then this is the new filename. 1443# If @device is 'vnc', then if the value 'password' selects the vnc 1444# change password command. Otherwise, this specifies a new server URI 1445# address to listen to for VNC connections. 1446# 1447# @arg: If @device is a block device, then this is an optional format to open 1448# the device with. 1449# If @device is 'vnc' and @target is 'password', this is the new VNC 1450# password to set. See change-vnc-password for additional notes. 1451# 1452# Returns: Nothing on success. 1453# If @device is not a valid block device, DeviceNotFound 1454# 1455# Notes: This interface is deprecated, and it is strongly recommended that you 1456# avoid using it. For changing block devices, use 1457# blockdev-change-medium; for changing VNC parameters, use 1458# change-vnc-password. 1459# 1460# Since: 0.14.0 1461# 1462# Example: 1463# 1464# 1. Change a removable medium 1465# 1466# -> { "execute": "change", 1467# "arguments": { "device": "ide1-cd0", 1468# "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } } 1469# <- { "return": {} } 1470# 1471# 2. Change VNC password 1472# 1473# -> { "execute": "change", 1474# "arguments": { "device": "vnc", "target": "password", 1475# "arg": "foobar1" } } 1476# <- { "return": {} } 1477# 1478## 1479{ 'command': 'change', 1480 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} } 1481 1482## 1483# @ObjectTypeInfo: 1484# 1485# This structure describes a search result from @qom-list-types 1486# 1487# @name: the type name found in the search 1488# 1489# @abstract: the type is abstract and can't be directly instantiated. 1490# Omitted if false. (since 2.10) 1491# 1492# @parent: Name of parent type, if any (since 2.10) 1493# 1494# Since: 1.1 1495## 1496{ 'struct': 'ObjectTypeInfo', 1497 'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } } 1498 1499## 1500# @qom-list-types: 1501# 1502# This command will return a list of types given search parameters 1503# 1504# @implements: if specified, only return types that implement this type name 1505# 1506# @abstract: if true, include abstract types in the results 1507# 1508# Returns: a list of @ObjectTypeInfo or an empty list if no results are found 1509# 1510# Since: 1.1 1511## 1512{ 'command': 'qom-list-types', 1513 'data': { '*implements': 'str', '*abstract': 'bool' }, 1514 'returns': [ 'ObjectTypeInfo' ], 1515 'allow-preconfig': true } 1516 1517## 1518# @device-list-properties: 1519# 1520# List properties associated with a device. 1521# 1522# @typename: the type name of a device 1523# 1524# Returns: a list of ObjectPropertyInfo describing a devices properties 1525# 1526# Note: objects can create properties at runtime, for example to describe 1527# links between different devices and/or objects. These properties 1528# are not included in the output of this command. 1529# 1530# Since: 1.2 1531## 1532{ 'command': 'device-list-properties', 1533 'data': { 'typename': 'str'}, 1534 'returns': [ 'ObjectPropertyInfo' ] } 1535 1536## 1537# @qom-list-properties: 1538# 1539# List properties associated with a QOM object. 1540# 1541# @typename: the type name of an object 1542# 1543# Note: objects can create properties at runtime, for example to describe 1544# links between different devices and/or objects. These properties 1545# are not included in the output of this command. 1546# 1547# Returns: a list of ObjectPropertyInfo describing object properties 1548# 1549# Since: 2.12 1550## 1551{ 'command': 'qom-list-properties', 1552 'data': { 'typename': 'str'}, 1553 'returns': [ 'ObjectPropertyInfo' ], 1554 'allow-preconfig': true } 1555 1556## 1557# @xen-set-global-dirty-log: 1558# 1559# Enable or disable the global dirty log mode. 1560# 1561# @enable: true to enable, false to disable. 1562# 1563# Returns: nothing 1564# 1565# Since: 1.3 1566# 1567# Example: 1568# 1569# -> { "execute": "xen-set-global-dirty-log", 1570# "arguments": { "enable": true } } 1571# <- { "return": {} } 1572# 1573## 1574{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1575 1576## 1577# @device_add: 1578# 1579# @driver: the name of the new device's driver 1580# 1581# @bus: the device's parent bus (device tree path) 1582# 1583# @id: the device's ID, must be unique 1584# 1585# Additional arguments depend on the type. 1586# 1587# Add a device. 1588# 1589# Notes: 1590# 1. For detailed information about this command, please refer to the 1591# 'docs/qdev-device-use.txt' file. 1592# 1593# 2. It's possible to list device properties by running QEMU with the 1594# "-device DEVICE,help" command-line argument, where DEVICE is the 1595# device's name 1596# 1597# Example: 1598# 1599# -> { "execute": "device_add", 1600# "arguments": { "driver": "e1000", "id": "net1", 1601# "bus": "pci.0", 1602# "mac": "52:54:00:12:34:56" } } 1603# <- { "return": {} } 1604# 1605# TODO: This command effectively bypasses QAPI completely due to its 1606# "additional arguments" business. It shouldn't have been added to 1607# the schema in this form. It should be qapified properly, or 1608# replaced by a properly qapified command. 1609# 1610# Since: 0.13 1611## 1612{ 'command': 'device_add', 1613 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'}, 1614 'gen': false } # so we can get the additional arguments 1615 1616## 1617# @device_del: 1618# 1619# Remove a device from a guest 1620# 1621# @id: the device's ID or QOM path 1622# 1623# Returns: Nothing on success 1624# If @id is not a valid device, DeviceNotFound 1625# 1626# Notes: When this command completes, the device may not be removed from the 1627# guest. Hot removal is an operation that requires guest cooperation. 1628# This command merely requests that the guest begin the hot removal 1629# process. Completion of the device removal process is signaled with a 1630# DEVICE_DELETED event. Guest reset will automatically complete removal 1631# for all devices. 1632# 1633# Since: 0.14.0 1634# 1635# Example: 1636# 1637# -> { "execute": "device_del", 1638# "arguments": { "id": "net1" } } 1639# <- { "return": {} } 1640# 1641# -> { "execute": "device_del", 1642# "arguments": { "id": "/machine/peripheral-anon/device[0]" } } 1643# <- { "return": {} } 1644# 1645## 1646{ 'command': 'device_del', 'data': {'id': 'str'} } 1647 1648## 1649# @DEVICE_DELETED: 1650# 1651# Emitted whenever the device removal completion is acknowledged by the guest. 1652# At this point, it's safe to reuse the specified device ID. Device removal can 1653# be initiated by the guest or by HMP/QMP commands. 1654# 1655# @device: device name 1656# 1657# @path: device path 1658# 1659# Since: 1.5 1660# 1661# Example: 1662# 1663# <- { "event": "DEVICE_DELETED", 1664# "data": { "device": "virtio-net-pci-0", 1665# "path": "/machine/peripheral/virtio-net-pci-0" }, 1666# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 1667# 1668## 1669{ 'event': 'DEVICE_DELETED', 1670 'data': { '*device': 'str', 'path': 'str' } } 1671 1672## 1673# @DumpGuestMemoryFormat: 1674# 1675# An enumeration of guest-memory-dump's format. 1676# 1677# @elf: elf format 1678# 1679# @kdump-zlib: kdump-compressed format with zlib-compressed 1680# 1681# @kdump-lzo: kdump-compressed format with lzo-compressed 1682# 1683# @kdump-snappy: kdump-compressed format with snappy-compressed 1684# 1685# @win-dmp: Windows full crashdump format, 1686# can be used instead of ELF converting (since 2.13) 1687# 1688# Since: 2.0 1689## 1690{ 'enum': 'DumpGuestMemoryFormat', 1691 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy', 'win-dmp' ] } 1692 1693## 1694# @dump-guest-memory: 1695# 1696# Dump guest's memory to vmcore. It is a synchronous operation that can take 1697# very long depending on the amount of guest memory. 1698# 1699# @paging: if true, do paging to get guest's memory mapping. This allows 1700# using gdb to process the core file. 1701# 1702# IMPORTANT: this option can make QEMU allocate several gigabytes 1703# of RAM. This can happen for a large guest, or a 1704# malicious guest pretending to be large. 1705# 1706# Also, paging=true has the following limitations: 1707# 1708# 1. The guest may be in a catastrophic state or can have corrupted 1709# memory, which cannot be trusted 1710# 2. The guest can be in real-mode even if paging is enabled. For 1711# example, the guest uses ACPI to sleep, and ACPI sleep state 1712# goes in real-mode 1713# 3. Currently only supported on i386 and x86_64. 1714# 1715# @protocol: the filename or file descriptor of the vmcore. The supported 1716# protocols are: 1717# 1718# 1. file: the protocol starts with "file:", and the following 1719# string is the file's path. 1720# 2. fd: the protocol starts with "fd:", and the following string 1721# is the fd's name. 1722# 1723# @detach: if true, QMP will return immediately rather than 1724# waiting for the dump to finish. The user can track progress 1725# using "query-dump". (since 2.6). 1726# 1727# @begin: if specified, the starting physical address. 1728# 1729# @length: if specified, the memory size, in bytes. If you don't 1730# want to dump all guest's memory, please specify the start @begin 1731# and @length 1732# 1733# @format: if specified, the format of guest memory dump. But non-elf 1734# format is conflict with paging and filter, ie. @paging, @begin and 1735# @length is not allowed to be specified with non-elf @format at the 1736# same time (since 2.0) 1737# 1738# Note: All boolean arguments default to false 1739# 1740# Returns: nothing on success 1741# 1742# Since: 1.2 1743# 1744# Example: 1745# 1746# -> { "execute": "dump-guest-memory", 1747# "arguments": { "protocol": "fd:dump" } } 1748# <- { "return": {} } 1749# 1750## 1751{ 'command': 'dump-guest-memory', 1752 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool', 1753 '*begin': 'int', '*length': 'int', 1754 '*format': 'DumpGuestMemoryFormat'} } 1755 1756## 1757# @DumpStatus: 1758# 1759# Describe the status of a long-running background guest memory dump. 1760# 1761# @none: no dump-guest-memory has started yet. 1762# 1763# @active: there is one dump running in background. 1764# 1765# @completed: the last dump has finished successfully. 1766# 1767# @failed: the last dump has failed. 1768# 1769# Since: 2.6 1770## 1771{ 'enum': 'DumpStatus', 1772 'data': [ 'none', 'active', 'completed', 'failed' ] } 1773 1774## 1775# @DumpQueryResult: 1776# 1777# The result format for 'query-dump'. 1778# 1779# @status: enum of @DumpStatus, which shows current dump status 1780# 1781# @completed: bytes written in latest dump (uncompressed) 1782# 1783# @total: total bytes to be written in latest dump (uncompressed) 1784# 1785# Since: 2.6 1786## 1787{ 'struct': 'DumpQueryResult', 1788 'data': { 'status': 'DumpStatus', 1789 'completed': 'int', 1790 'total': 'int' } } 1791 1792## 1793# @query-dump: 1794# 1795# Query latest dump status. 1796# 1797# Returns: A @DumpStatus object showing the dump status. 1798# 1799# Since: 2.6 1800# 1801# Example: 1802# 1803# -> { "execute": "query-dump" } 1804# <- { "return": { "status": "active", "completed": 1024000, 1805# "total": 2048000 } } 1806# 1807## 1808{ 'command': 'query-dump', 'returns': 'DumpQueryResult' } 1809 1810## 1811# @DUMP_COMPLETED: 1812# 1813# Emitted when background dump has completed 1814# 1815# @result: final dump status 1816# 1817# @error: human-readable error string that provides 1818# hint on why dump failed. Only presents on failure. The 1819# user should not try to interpret the error string. 1820# 1821# Since: 2.6 1822# 1823# Example: 1824# 1825# { "event": "DUMP_COMPLETED", 1826# "data": {"result": {"total": 1090650112, "status": "completed", 1827# "completed": 1090650112} } } 1828# 1829## 1830{ 'event': 'DUMP_COMPLETED' , 1831 'data': { 'result': 'DumpQueryResult', '*error': 'str' } } 1832 1833## 1834# @DumpGuestMemoryCapability: 1835# 1836# A list of the available formats for dump-guest-memory 1837# 1838# Since: 2.0 1839## 1840{ 'struct': 'DumpGuestMemoryCapability', 1841 'data': { 1842 'formats': ['DumpGuestMemoryFormat'] } } 1843 1844## 1845# @query-dump-guest-memory-capability: 1846# 1847# Returns the available formats for dump-guest-memory 1848# 1849# Returns: A @DumpGuestMemoryCapability object listing available formats for 1850# dump-guest-memory 1851# 1852# Since: 2.0 1853# 1854# Example: 1855# 1856# -> { "execute": "query-dump-guest-memory-capability" } 1857# <- { "return": { "formats": 1858# ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] } 1859# 1860## 1861{ 'command': 'query-dump-guest-memory-capability', 1862 'returns': 'DumpGuestMemoryCapability' } 1863 1864## 1865# @dump-skeys: 1866# 1867# Dump guest's storage keys 1868# 1869# @filename: the path to the file to dump to 1870# 1871# This command is only supported on s390 architecture. 1872# 1873# Since: 2.5 1874# 1875# Example: 1876# 1877# -> { "execute": "dump-skeys", 1878# "arguments": { "filename": "/tmp/skeys" } } 1879# <- { "return": {} } 1880# 1881## 1882{ 'command': 'dump-skeys', 1883 'data': { 'filename': 'str' } } 1884 1885## 1886# @object-add: 1887# 1888# Create a QOM object. 1889# 1890# @qom-type: the class name for the object to be created 1891# 1892# @id: the name of the new object 1893# 1894# @props: a dictionary of properties to be passed to the backend 1895# 1896# Returns: Nothing on success 1897# Error if @qom-type is not a valid class name 1898# 1899# Since: 2.0 1900# 1901# Example: 1902# 1903# -> { "execute": "object-add", 1904# "arguments": { "qom-type": "rng-random", "id": "rng1", 1905# "props": { "filename": "/dev/hwrng" } } } 1906# <- { "return": {} } 1907# 1908## 1909{ 'command': 'object-add', 1910 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} } 1911 1912## 1913# @object-del: 1914# 1915# Remove a QOM object. 1916# 1917# @id: the name of the QOM object to remove 1918# 1919# Returns: Nothing on success 1920# Error if @id is not a valid id for a QOM object 1921# 1922# Since: 2.0 1923# 1924# Example: 1925# 1926# -> { "execute": "object-del", "arguments": { "id": "rng1" } } 1927# <- { "return": {} } 1928# 1929## 1930{ 'command': 'object-del', 'data': {'id': 'str'} } 1931 1932## 1933# @getfd: 1934# 1935# Receive a file descriptor via SCM rights and assign it a name 1936# 1937# @fdname: file descriptor name 1938# 1939# Returns: Nothing on success 1940# 1941# Since: 0.14.0 1942# 1943# Notes: If @fdname already exists, the file descriptor assigned to 1944# it will be closed and replaced by the received file 1945# descriptor. 1946# 1947# The 'closefd' command can be used to explicitly close the 1948# file descriptor when it is no longer needed. 1949# 1950# Example: 1951# 1952# -> { "execute": "getfd", "arguments": { "fdname": "fd1" } } 1953# <- { "return": {} } 1954# 1955## 1956{ 'command': 'getfd', 'data': {'fdname': 'str'} } 1957 1958## 1959# @closefd: 1960# 1961# Close a file descriptor previously passed via SCM rights 1962# 1963# @fdname: file descriptor name 1964# 1965# Returns: Nothing on success 1966# 1967# Since: 0.14.0 1968# 1969# Example: 1970# 1971# -> { "execute": "closefd", "arguments": { "fdname": "fd1" } } 1972# <- { "return": {} } 1973# 1974## 1975{ 'command': 'closefd', 'data': {'fdname': 'str'} } 1976 1977## 1978# @MachineInfo: 1979# 1980# Information describing a machine. 1981# 1982# @name: the name of the machine 1983# 1984# @alias: an alias for the machine name 1985# 1986# @is-default: whether the machine is default 1987# 1988# @cpu-max: maximum number of CPUs supported by the machine type 1989# (since 1.5.0) 1990# 1991# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0) 1992# 1993# Since: 1.2.0 1994## 1995{ 'struct': 'MachineInfo', 1996 'data': { 'name': 'str', '*alias': 'str', 1997 '*is-default': 'bool', 'cpu-max': 'int', 1998 'hotpluggable-cpus': 'bool'} } 1999 2000## 2001# @query-machines: 2002# 2003# Return a list of supported machines 2004# 2005# Returns: a list of MachineInfo 2006# 2007# Since: 1.2.0 2008## 2009{ 'command': 'query-machines', 'returns': ['MachineInfo'] } 2010 2011## 2012# @CpuDefinitionInfo: 2013# 2014# Virtual CPU definition. 2015# 2016# @name: the name of the CPU definition 2017# 2018# @migration-safe: whether a CPU definition can be safely used for 2019# migration in combination with a QEMU compatibility machine 2020# when migrating between different QEMU versions and between 2021# hosts with different sets of (hardware or software) 2022# capabilities. If not provided, information is not available 2023# and callers should not assume the CPU definition to be 2024# migration-safe. (since 2.8) 2025# 2026# @static: whether a CPU definition is static and will not change depending on 2027# QEMU version, machine type, machine options and accelerator options. 2028# A static model is always migration-safe. (since 2.8) 2029# 2030# @unavailable-features: List of properties that prevent 2031# the CPU model from running in the current 2032# host. (since 2.8) 2033# @typename: Type name that can be used as argument to @device-list-properties, 2034# to introspect properties configurable using -cpu or -global. 2035# (since 2.9) 2036# 2037# @unavailable-features is a list of QOM property names that 2038# represent CPU model attributes that prevent the CPU from running. 2039# If the QOM property is read-only, that means there's no known 2040# way to make the CPU model run in the current host. Implementations 2041# that choose not to provide specific information return the 2042# property name "type". 2043# If the property is read-write, it means that it MAY be possible 2044# to run the CPU model in the current host if that property is 2045# changed. Management software can use it as hints to suggest or 2046# choose an alternative for the user, or just to generate meaningful 2047# error messages explaining why the CPU model can't be used. 2048# If @unavailable-features is an empty list, the CPU model is 2049# runnable using the current host and machine-type. 2050# If @unavailable-features is not present, runnability 2051# information for the CPU is not available. 2052# 2053# Since: 1.2.0 2054## 2055{ 'struct': 'CpuDefinitionInfo', 2056 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool', 2057 '*unavailable-features': [ 'str' ], 'typename': 'str' } } 2058 2059## 2060# @MemoryInfo: 2061# 2062# Actual memory information in bytes. 2063# 2064# @base-memory: size of "base" memory specified with command line 2065# option -m. 2066# 2067# @plugged-memory: size of memory that can be hot-unplugged. This field 2068# is omitted if target doesn't support memory hotplug 2069# (i.e. CONFIG_MEM_DEVICE not defined at build time). 2070# 2071# Since: 2.11.0 2072## 2073{ 'struct': 'MemoryInfo', 2074 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } } 2075 2076## 2077# @query-memory-size-summary: 2078# 2079# Return the amount of initially allocated and present hotpluggable (if 2080# enabled) memory in bytes. 2081# 2082# Example: 2083# 2084# -> { "execute": "query-memory-size-summary" } 2085# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } } 2086# 2087# Since: 2.11.0 2088## 2089{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' } 2090 2091## 2092# @query-cpu-definitions: 2093# 2094# Return a list of supported virtual CPU definitions 2095# 2096# Returns: a list of CpuDefInfo 2097# 2098# Since: 1.2.0 2099## 2100{ 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] } 2101 2102## 2103# @CpuModelInfo: 2104# 2105# Virtual CPU model. 2106# 2107# A CPU model consists of the name of a CPU definition, to which 2108# delta changes are applied (e.g. features added/removed). Most magic values 2109# that an architecture might require should be hidden behind the name. 2110# However, if required, architectures can expose relevant properties. 2111# 2112# @name: the name of the CPU definition the model is based on 2113# @props: a dictionary of QOM properties to be applied 2114# 2115# Since: 2.8.0 2116## 2117{ 'struct': 'CpuModelInfo', 2118 'data': { 'name': 'str', 2119 '*props': 'any' } } 2120 2121## 2122# @CpuModelExpansionType: 2123# 2124# An enumeration of CPU model expansion types. 2125# 2126# @static: Expand to a static CPU model, a combination of a static base 2127# model name and property delta changes. As the static base model will 2128# never change, the expanded CPU model will be the same, independent of 2129# QEMU version, machine type, machine options, and accelerator options. 2130# Therefore, the resulting model can be used by tooling without having 2131# to specify a compatibility machine - e.g. when displaying the "host" 2132# model. The @static CPU models are migration-safe. 2133 2134# @full: Expand all properties. The produced model is not guaranteed to be 2135# migration-safe, but allows tooling to get an insight and work with 2136# model details. 2137# 2138# Note: When a non-migration-safe CPU model is expanded in static mode, some 2139# features enabled by the CPU model may be omitted, because they can't be 2140# implemented by a static CPU model definition (e.g. cache info passthrough and 2141# PMU passthrough in x86). If you need an accurate representation of the 2142# features enabled by a non-migration-safe CPU model, use @full. If you need a 2143# static representation that will keep ABI compatibility even when changing QEMU 2144# version or machine-type, use @static (but keep in mind that some features may 2145# be omitted). 2146# 2147# Since: 2.8.0 2148## 2149{ 'enum': 'CpuModelExpansionType', 2150 'data': [ 'static', 'full' ] } 2151 2152 2153## 2154# @CpuModelExpansionInfo: 2155# 2156# The result of a cpu model expansion. 2157# 2158# @model: the expanded CpuModelInfo. 2159# 2160# Since: 2.8.0 2161## 2162{ 'struct': 'CpuModelExpansionInfo', 2163 'data': { 'model': 'CpuModelInfo' } } 2164 2165 2166## 2167# @query-cpu-model-expansion: 2168# 2169# Expands a given CPU model (or a combination of CPU model + additional options) 2170# to different granularities, allowing tooling to get an understanding what a 2171# specific CPU model looks like in QEMU under a certain configuration. 2172# 2173# This interface can be used to query the "host" CPU model. 2174# 2175# The data returned by this command may be affected by: 2176# 2177# * QEMU version: CPU models may look different depending on the QEMU version. 2178# (Except for CPU models reported as "static" in query-cpu-definitions.) 2179# * machine-type: CPU model may look different depending on the machine-type. 2180# (Except for CPU models reported as "static" in query-cpu-definitions.) 2181# * machine options (including accelerator): in some architectures, CPU models 2182# may look different depending on machine and accelerator options. (Except for 2183# CPU models reported as "static" in query-cpu-definitions.) 2184# * "-cpu" arguments and global properties: arguments to the -cpu option and 2185# global properties may affect expansion of CPU models. Using 2186# query-cpu-model-expansion while using these is not advised. 2187# 2188# Some architectures may not support all expansion types. s390x supports 2189# "full" and "static". 2190# 2191# Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is 2192# not supported, if the model cannot be expanded, if the model contains 2193# an unknown CPU definition name, unknown properties or properties 2194# with a wrong type. Also returns an error if an expansion type is 2195# not supported. 2196# 2197# Since: 2.8.0 2198## 2199{ 'command': 'query-cpu-model-expansion', 2200 'data': { 'type': 'CpuModelExpansionType', 2201 'model': 'CpuModelInfo' }, 2202 'returns': 'CpuModelExpansionInfo' } 2203 2204## 2205# @CpuModelCompareResult: 2206# 2207# An enumeration of CPU model comparison results. The result is usually 2208# calculated using e.g. CPU features or CPU generations. 2209# 2210# @incompatible: If model A is incompatible to model B, model A is not 2211# guaranteed to run where model B runs and the other way around. 2212# 2213# @identical: If model A is identical to model B, model A is guaranteed to run 2214# where model B runs and the other way around. 2215# 2216# @superset: If model A is a superset of model B, model B is guaranteed to run 2217# where model A runs. There are no guarantees about the other way. 2218# 2219# @subset: If model A is a subset of model B, model A is guaranteed to run 2220# where model B runs. There are no guarantees about the other way. 2221# 2222# Since: 2.8.0 2223## 2224{ 'enum': 'CpuModelCompareResult', 2225 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] } 2226 2227## 2228# @CpuModelCompareInfo: 2229# 2230# The result of a CPU model comparison. 2231# 2232# @result: The result of the compare operation. 2233# @responsible-properties: List of properties that led to the comparison result 2234# not being identical. 2235# 2236# @responsible-properties is a list of QOM property names that led to 2237# both CPUs not being detected as identical. For identical models, this 2238# list is empty. 2239# If a QOM property is read-only, that means there's no known way to make the 2240# CPU models identical. If the special property name "type" is included, the 2241# models are by definition not identical and cannot be made identical. 2242# 2243# Since: 2.8.0 2244## 2245{ 'struct': 'CpuModelCompareInfo', 2246 'data': {'result': 'CpuModelCompareResult', 2247 'responsible-properties': ['str'] 2248 } 2249} 2250 2251## 2252# @query-cpu-model-comparison: 2253# 2254# Compares two CPU models, returning how they compare in a specific 2255# configuration. The results indicates how both models compare regarding 2256# runnability. This result can be used by tooling to make decisions if a 2257# certain CPU model will run in a certain configuration or if a compatible 2258# CPU model has to be created by baselining. 2259# 2260# Usually, a CPU model is compared against the maximum possible CPU model 2261# of a certain configuration (e.g. the "host" model for KVM). If that CPU 2262# model is identical or a subset, it will run in that configuration. 2263# 2264# The result returned by this command may be affected by: 2265# 2266# * QEMU version: CPU models may look different depending on the QEMU version. 2267# (Except for CPU models reported as "static" in query-cpu-definitions.) 2268# * machine-type: CPU model may look different depending on the machine-type. 2269# (Except for CPU models reported as "static" in query-cpu-definitions.) 2270# * machine options (including accelerator): in some architectures, CPU models 2271# may look different depending on machine and accelerator options. (Except for 2272# CPU models reported as "static" in query-cpu-definitions.) 2273# * "-cpu" arguments and global properties: arguments to the -cpu option and 2274# global properties may affect expansion of CPU models. Using 2275# query-cpu-model-expansion while using these is not advised. 2276# 2277# Some architectures may not support comparing CPU models. s390x supports 2278# comparing CPU models. 2279# 2280# Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is 2281# not supported, if a model cannot be used, if a model contains 2282# an unknown cpu definition name, unknown properties or properties 2283# with wrong types. 2284# 2285# Since: 2.8.0 2286## 2287{ 'command': 'query-cpu-model-comparison', 2288 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' }, 2289 'returns': 'CpuModelCompareInfo' } 2290 2291## 2292# @CpuModelBaselineInfo: 2293# 2294# The result of a CPU model baseline. 2295# 2296# @model: the baselined CpuModelInfo. 2297# 2298# Since: 2.8.0 2299## 2300{ 'struct': 'CpuModelBaselineInfo', 2301 'data': { 'model': 'CpuModelInfo' } } 2302 2303## 2304# @query-cpu-model-baseline: 2305# 2306# Baseline two CPU models, creating a compatible third model. The created 2307# model will always be a static, migration-safe CPU model (see "static" 2308# CPU model expansion for details). 2309# 2310# This interface can be used by tooling to create a compatible CPU model out 2311# two CPU models. The created CPU model will be identical to or a subset of 2312# both CPU models when comparing them. Therefore, the created CPU model is 2313# guaranteed to run where the given CPU models run. 2314# 2315# The result returned by this command may be affected by: 2316# 2317# * QEMU version: CPU models may look different depending on the QEMU version. 2318# (Except for CPU models reported as "static" in query-cpu-definitions.) 2319# * machine-type: CPU model may look different depending on the machine-type. 2320# (Except for CPU models reported as "static" in query-cpu-definitions.) 2321# * machine options (including accelerator): in some architectures, CPU models 2322# may look different depending on machine and accelerator options. (Except for 2323# CPU models reported as "static" in query-cpu-definitions.) 2324# * "-cpu" arguments and global properties: arguments to the -cpu option and 2325# global properties may affect expansion of CPU models. Using 2326# query-cpu-model-expansion while using these is not advised. 2327# 2328# Some architectures may not support baselining CPU models. s390x supports 2329# baselining CPU models. 2330# 2331# Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is 2332# not supported, if a model cannot be used, if a model contains 2333# an unknown cpu definition name, unknown properties or properties 2334# with wrong types. 2335# 2336# Since: 2.8.0 2337## 2338{ 'command': 'query-cpu-model-baseline', 2339 'data': { 'modela': 'CpuModelInfo', 2340 'modelb': 'CpuModelInfo' }, 2341 'returns': 'CpuModelBaselineInfo' } 2342 2343## 2344# @AddfdInfo: 2345# 2346# Information about a file descriptor that was added to an fd set. 2347# 2348# @fdset-id: The ID of the fd set that @fd was added to. 2349# 2350# @fd: The file descriptor that was received via SCM rights and 2351# added to the fd set. 2352# 2353# Since: 1.2.0 2354## 2355{ 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} } 2356 2357## 2358# @add-fd: 2359# 2360# Add a file descriptor, that was passed via SCM rights, to an fd set. 2361# 2362# @fdset-id: The ID of the fd set to add the file descriptor to. 2363# 2364# @opaque: A free-form string that can be used to describe the fd. 2365# 2366# Returns: @AddfdInfo on success 2367# 2368# If file descriptor was not received, FdNotSupplied 2369# 2370# If @fdset-id is a negative value, InvalidParameterValue 2371# 2372# Notes: The list of fd sets is shared by all monitor connections. 2373# 2374# If @fdset-id is not specified, a new fd set will be created. 2375# 2376# Since: 1.2.0 2377# 2378# Example: 2379# 2380# -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } } 2381# <- { "return": { "fdset-id": 1, "fd": 3 } } 2382# 2383## 2384{ 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'}, 2385 'returns': 'AddfdInfo' } 2386 2387## 2388# @remove-fd: 2389# 2390# Remove a file descriptor from an fd set. 2391# 2392# @fdset-id: The ID of the fd set that the file descriptor belongs to. 2393# 2394# @fd: The file descriptor that is to be removed. 2395# 2396# Returns: Nothing on success 2397# If @fdset-id or @fd is not found, FdNotFound 2398# 2399# Since: 1.2.0 2400# 2401# Notes: The list of fd sets is shared by all monitor connections. 2402# 2403# If @fd is not specified, all file descriptors in @fdset-id 2404# will be removed. 2405# 2406# Example: 2407# 2408# -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } } 2409# <- { "return": {} } 2410# 2411## 2412{ 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} } 2413 2414## 2415# @FdsetFdInfo: 2416# 2417# Information about a file descriptor that belongs to an fd set. 2418# 2419# @fd: The file descriptor value. 2420# 2421# @opaque: A free-form string that can be used to describe the fd. 2422# 2423# Since: 1.2.0 2424## 2425{ 'struct': 'FdsetFdInfo', 2426 'data': {'fd': 'int', '*opaque': 'str'} } 2427 2428## 2429# @FdsetInfo: 2430# 2431# Information about an fd set. 2432# 2433# @fdset-id: The ID of the fd set. 2434# 2435# @fds: A list of file descriptors that belong to this fd set. 2436# 2437# Since: 1.2.0 2438## 2439{ 'struct': 'FdsetInfo', 2440 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} } 2441 2442## 2443# @query-fdsets: 2444# 2445# Return information describing all fd sets. 2446# 2447# Returns: A list of @FdsetInfo 2448# 2449# Since: 1.2.0 2450# 2451# Note: The list of fd sets is shared by all monitor connections. 2452# 2453# Example: 2454# 2455# -> { "execute": "query-fdsets" } 2456# <- { "return": [ 2457# { 2458# "fds": [ 2459# { 2460# "fd": 30, 2461# "opaque": "rdonly:/path/to/file" 2462# }, 2463# { 2464# "fd": 24, 2465# "opaque": "rdwr:/path/to/file" 2466# } 2467# ], 2468# "fdset-id": 1 2469# }, 2470# { 2471# "fds": [ 2472# { 2473# "fd": 28 2474# }, 2475# { 2476# "fd": 29 2477# } 2478# ], 2479# "fdset-id": 0 2480# } 2481# ] 2482# } 2483# 2484## 2485{ 'command': 'query-fdsets', 'returns': ['FdsetInfo'] } 2486 2487## 2488# @TargetInfo: 2489# 2490# Information describing the QEMU target. 2491# 2492# @arch: the target architecture 2493# 2494# Since: 1.2.0 2495## 2496{ 'struct': 'TargetInfo', 2497 'data': { 'arch': 'SysEmuTarget' } } 2498 2499## 2500# @query-target: 2501# 2502# Return information about the target for this QEMU 2503# 2504# Returns: TargetInfo 2505# 2506# Since: 1.2.0 2507## 2508{ 'command': 'query-target', 'returns': 'TargetInfo' } 2509 2510## 2511# @AcpiTableOptions: 2512# 2513# Specify an ACPI table on the command line to load. 2514# 2515# At most one of @file and @data can be specified. The list of files specified 2516# by any one of them is loaded and concatenated in order. If both are omitted, 2517# @data is implied. 2518# 2519# Other fields / optargs can be used to override fields of the generic ACPI 2520# table header; refer to the ACPI specification 5.0, section 5.2.6 System 2521# Description Table Header. If a header field is not overridden, then the 2522# corresponding value from the concatenated blob is used (in case of @file), or 2523# it is filled in with a hard-coded value (in case of @data). 2524# 2525# String fields are copied into the matching ACPI member from lowest address 2526# upwards, and silently truncated / NUL-padded to length. 2527# 2528# @sig: table signature / identifier (4 bytes) 2529# 2530# @rev: table revision number (dependent on signature, 1 byte) 2531# 2532# @oem_id: OEM identifier (6 bytes) 2533# 2534# @oem_table_id: OEM table identifier (8 bytes) 2535# 2536# @oem_rev: OEM-supplied revision number (4 bytes) 2537# 2538# @asl_compiler_id: identifier of the utility that created the table 2539# (4 bytes) 2540# 2541# @asl_compiler_rev: revision number of the utility that created the 2542# table (4 bytes) 2543# 2544# @file: colon (:) separated list of pathnames to load and 2545# concatenate as table data. The resultant binary blob is expected to 2546# have an ACPI table header. At least one file is required. This field 2547# excludes @data. 2548# 2549# @data: colon (:) separated list of pathnames to load and 2550# concatenate as table data. The resultant binary blob must not have an 2551# ACPI table header. At least one file is required. This field excludes 2552# @file. 2553# 2554# Since: 1.5 2555## 2556{ 'struct': 'AcpiTableOptions', 2557 'data': { 2558 '*sig': 'str', 2559 '*rev': 'uint8', 2560 '*oem_id': 'str', 2561 '*oem_table_id': 'str', 2562 '*oem_rev': 'uint32', 2563 '*asl_compiler_id': 'str', 2564 '*asl_compiler_rev': 'uint32', 2565 '*file': 'str', 2566 '*data': 'str' }} 2567 2568## 2569# @CommandLineParameterType: 2570# 2571# Possible types for an option parameter. 2572# 2573# @string: accepts a character string 2574# 2575# @boolean: accepts "on" or "off" 2576# 2577# @number: accepts a number 2578# 2579# @size: accepts a number followed by an optional suffix (K)ilo, 2580# (M)ega, (G)iga, (T)era 2581# 2582# Since: 1.5 2583## 2584{ 'enum': 'CommandLineParameterType', 2585 'data': ['string', 'boolean', 'number', 'size'] } 2586 2587## 2588# @CommandLineParameterInfo: 2589# 2590# Details about a single parameter of a command line option. 2591# 2592# @name: parameter name 2593# 2594# @type: parameter @CommandLineParameterType 2595# 2596# @help: human readable text string, not suitable for parsing. 2597# 2598# @default: default value string (since 2.1) 2599# 2600# Since: 1.5 2601## 2602{ 'struct': 'CommandLineParameterInfo', 2603 'data': { 'name': 'str', 2604 'type': 'CommandLineParameterType', 2605 '*help': 'str', 2606 '*default': 'str' } } 2607 2608## 2609# @CommandLineOptionInfo: 2610# 2611# Details about a command line option, including its list of parameter details 2612# 2613# @option: option name 2614# 2615# @parameters: an array of @CommandLineParameterInfo 2616# 2617# Since: 1.5 2618## 2619{ 'struct': 'CommandLineOptionInfo', 2620 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } } 2621 2622## 2623# @query-command-line-options: 2624# 2625# Query command line option schema. 2626# 2627# @option: option name 2628# 2629# Returns: list of @CommandLineOptionInfo for all options (or for the given 2630# @option). Returns an error if the given @option doesn't exist. 2631# 2632# Since: 1.5 2633# 2634# Example: 2635# 2636# -> { "execute": "query-command-line-options", 2637# "arguments": { "option": "option-rom" } } 2638# <- { "return": [ 2639# { 2640# "parameters": [ 2641# { 2642# "name": "romfile", 2643# "type": "string" 2644# }, 2645# { 2646# "name": "bootindex", 2647# "type": "number" 2648# } 2649# ], 2650# "option": "option-rom" 2651# } 2652# ] 2653# } 2654# 2655## 2656{'command': 'query-command-line-options', 'data': { '*option': 'str' }, 2657 'returns': ['CommandLineOptionInfo'], 2658 'allow-preconfig': true } 2659 2660## 2661# @X86CPURegister32: 2662# 2663# A X86 32-bit register 2664# 2665# Since: 1.5 2666## 2667{ 'enum': 'X86CPURegister32', 2668 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] } 2669 2670## 2671# @X86CPUFeatureWordInfo: 2672# 2673# Information about a X86 CPU feature word 2674# 2675# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word 2676# 2677# @cpuid-input-ecx: Input ECX value for CPUID instruction for that 2678# feature word 2679# 2680# @cpuid-register: Output register containing the feature bits 2681# 2682# @features: value of output register, containing the feature bits 2683# 2684# Since: 1.5 2685## 2686{ 'struct': 'X86CPUFeatureWordInfo', 2687 'data': { 'cpuid-input-eax': 'int', 2688 '*cpuid-input-ecx': 'int', 2689 'cpuid-register': 'X86CPURegister32', 2690 'features': 'int' } } 2691 2692## 2693# @DummyForceArrays: 2694# 2695# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally 2696# 2697# Since: 2.5 2698## 2699{ 'struct': 'DummyForceArrays', 2700 'data': { 'unused': ['X86CPUFeatureWordInfo'] } } 2701 2702 2703## 2704# @NumaOptionsType: 2705# 2706# @node: NUMA nodes configuration 2707# 2708# @dist: NUMA distance configuration (since 2.10) 2709# 2710# @cpu: property based CPU(s) to node mapping (Since: 2.10) 2711# 2712# Since: 2.1 2713## 2714{ 'enum': 'NumaOptionsType', 2715 'data': [ 'node', 'dist', 'cpu' ] } 2716 2717## 2718# @NumaOptions: 2719# 2720# A discriminated record of NUMA options. (for OptsVisitor) 2721# 2722# Since: 2.1 2723## 2724{ 'union': 'NumaOptions', 2725 'base': { 'type': 'NumaOptionsType' }, 2726 'discriminator': 'type', 2727 'data': { 2728 'node': 'NumaNodeOptions', 2729 'dist': 'NumaDistOptions', 2730 'cpu': 'NumaCpuOptions' }} 2731 2732## 2733# @NumaNodeOptions: 2734# 2735# Create a guest NUMA node. (for OptsVisitor) 2736# 2737# @nodeid: NUMA node ID (increase by 1 from 0 if omitted) 2738# 2739# @cpus: VCPUs belonging to this node (assign VCPUS round-robin 2740# if omitted) 2741# 2742# @mem: memory size of this node; mutually exclusive with @memdev. 2743# Equally divide total memory among nodes if both @mem and @memdev are 2744# omitted. 2745# 2746# @memdev: memory backend object. If specified for one node, 2747# it must be specified for all nodes. 2748# 2749# Since: 2.1 2750## 2751{ 'struct': 'NumaNodeOptions', 2752 'data': { 2753 '*nodeid': 'uint16', 2754 '*cpus': ['uint16'], 2755 '*mem': 'size', 2756 '*memdev': 'str' }} 2757 2758## 2759# @NumaDistOptions: 2760# 2761# Set the distance between 2 NUMA nodes. 2762# 2763# @src: source NUMA node. 2764# 2765# @dst: destination NUMA node. 2766# 2767# @val: NUMA distance from source node to destination node. 2768# When a node is unreachable from another node, set the distance 2769# between them to 255. 2770# 2771# Since: 2.10 2772## 2773{ 'struct': 'NumaDistOptions', 2774 'data': { 2775 'src': 'uint16', 2776 'dst': 'uint16', 2777 'val': 'uint8' }} 2778 2779## 2780# @NumaCpuOptions: 2781# 2782# Option "-numa cpu" overrides default cpu to node mapping. 2783# It accepts the same set of cpu properties as returned by 2784# query-hotpluggable-cpus[].props, where node-id could be used to 2785# override default node mapping. 2786# 2787# Since: 2.10 2788## 2789{ 'struct': 'NumaCpuOptions', 2790 'base': 'CpuInstanceProperties', 2791 'data' : {} } 2792 2793## 2794# @HostMemPolicy: 2795# 2796# Host memory policy types 2797# 2798# @default: restore default policy, remove any nondefault policy 2799# 2800# @preferred: set the preferred host nodes for allocation 2801# 2802# @bind: a strict policy that restricts memory allocation to the 2803# host nodes specified 2804# 2805# @interleave: memory allocations are interleaved across the set 2806# of host nodes specified 2807# 2808# Since: 2.1 2809## 2810{ 'enum': 'HostMemPolicy', 2811 'data': [ 'default', 'preferred', 'bind', 'interleave' ] } 2812 2813## 2814# @Memdev: 2815# 2816# Information about memory backend 2817# 2818# @id: backend's ID if backend has 'id' property (since 2.9) 2819# 2820# @size: memory backend size 2821# 2822# @merge: enables or disables memory merge support 2823# 2824# @dump: includes memory backend's memory in a core dump or not 2825# 2826# @prealloc: enables or disables memory preallocation 2827# 2828# @host-nodes: host nodes for its memory policy 2829# 2830# @policy: memory policy of memory backend 2831# 2832# Since: 2.1 2833## 2834{ 'struct': 'Memdev', 2835 'data': { 2836 '*id': 'str', 2837 'size': 'size', 2838 'merge': 'bool', 2839 'dump': 'bool', 2840 'prealloc': 'bool', 2841 'host-nodes': ['uint16'], 2842 'policy': 'HostMemPolicy' }} 2843 2844## 2845# @query-memdev: 2846# 2847# Returns information for all memory backends. 2848# 2849# Returns: a list of @Memdev. 2850# 2851# Since: 2.1 2852# 2853# Example: 2854# 2855# -> { "execute": "query-memdev" } 2856# <- { "return": [ 2857# { 2858# "id": "mem1", 2859# "size": 536870912, 2860# "merge": false, 2861# "dump": true, 2862# "prealloc": false, 2863# "host-nodes": [0, 1], 2864# "policy": "bind" 2865# }, 2866# { 2867# "size": 536870912, 2868# "merge": false, 2869# "dump": true, 2870# "prealloc": true, 2871# "host-nodes": [2, 3], 2872# "policy": "preferred" 2873# } 2874# ] 2875# } 2876# 2877## 2878{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true } 2879 2880## 2881# @PCDIMMDeviceInfo: 2882# 2883# PCDIMMDevice state information 2884# 2885# @id: device's ID 2886# 2887# @addr: physical address, where device is mapped 2888# 2889# @size: size of memory that the device provides 2890# 2891# @slot: slot number at which device is plugged in 2892# 2893# @node: NUMA node number where device is plugged in 2894# 2895# @memdev: memory backend linked with device 2896# 2897# @hotplugged: true if device was hotplugged 2898# 2899# @hotpluggable: true if device if could be added/removed while machine is running 2900# 2901# Since: 2.1 2902## 2903{ 'struct': 'PCDIMMDeviceInfo', 2904 'data': { '*id': 'str', 2905 'addr': 'int', 2906 'size': 'int', 2907 'slot': 'int', 2908 'node': 'int', 2909 'memdev': 'str', 2910 'hotplugged': 'bool', 2911 'hotpluggable': 'bool' 2912 } 2913} 2914 2915## 2916# @MemoryDeviceInfo: 2917# 2918# Union containing information about a memory device 2919# 2920# Since: 2.1 2921## 2922{ 'union': 'MemoryDeviceInfo', 2923 'data': { 'dimm': 'PCDIMMDeviceInfo', 2924 'nvdimm': 'PCDIMMDeviceInfo' 2925 } 2926} 2927 2928## 2929# @query-memory-devices: 2930# 2931# Lists available memory devices and their state 2932# 2933# Since: 2.1 2934# 2935# Example: 2936# 2937# -> { "execute": "query-memory-devices" } 2938# <- { "return": [ { "data": 2939# { "addr": 5368709120, 2940# "hotpluggable": true, 2941# "hotplugged": true, 2942# "id": "d1", 2943# "memdev": "/objects/memX", 2944# "node": 0, 2945# "size": 1073741824, 2946# "slot": 0}, 2947# "type": "dimm" 2948# } ] } 2949# 2950## 2951{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] } 2952 2953## 2954# @MEM_UNPLUG_ERROR: 2955# 2956# Emitted when memory hot unplug error occurs. 2957# 2958# @device: device name 2959# 2960# @msg: Informative message 2961# 2962# Since: 2.4 2963# 2964# Example: 2965# 2966# <- { "event": "MEM_UNPLUG_ERROR" 2967# "data": { "device": "dimm1", 2968# "msg": "acpi: device unplug for unsupported device" 2969# }, 2970# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 2971# 2972## 2973{ 'event': 'MEM_UNPLUG_ERROR', 2974 'data': { 'device': 'str', 'msg': 'str' } } 2975 2976## 2977# @ACPISlotType: 2978# 2979# @DIMM: memory slot 2980# @CPU: logical CPU slot (since 2.7) 2981## 2982{ 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] } 2983 2984## 2985# @ACPIOSTInfo: 2986# 2987# OSPM Status Indication for a device 2988# For description of possible values of @source and @status fields 2989# see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec. 2990# 2991# @device: device ID associated with slot 2992# 2993# @slot: slot ID, unique per slot of a given @slot-type 2994# 2995# @slot-type: type of the slot 2996# 2997# @source: an integer containing the source event 2998# 2999# @status: an integer containing the status code 3000# 3001# Since: 2.1 3002## 3003{ 'struct': 'ACPIOSTInfo', 3004 'data' : { '*device': 'str', 3005 'slot': 'str', 3006 'slot-type': 'ACPISlotType', 3007 'source': 'int', 3008 'status': 'int' } } 3009 3010## 3011# @query-acpi-ospm-status: 3012# 3013# Return a list of ACPIOSTInfo for devices that support status 3014# reporting via ACPI _OST method. 3015# 3016# Since: 2.1 3017# 3018# Example: 3019# 3020# -> { "execute": "query-acpi-ospm-status" } 3021# <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0}, 3022# { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0}, 3023# { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0}, 3024# { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0} 3025# ]} 3026# 3027## 3028{ 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] } 3029 3030## 3031# @ACPI_DEVICE_OST: 3032# 3033# Emitted when guest executes ACPI _OST method. 3034# 3035# @info: OSPM Status Indication 3036# 3037# Since: 2.1 3038# 3039# Example: 3040# 3041# <- { "event": "ACPI_DEVICE_OST", 3042# "data": { "device": "d1", "slot": "0", 3043# "slot-type": "DIMM", "source": 1, "status": 0 } } 3044# 3045## 3046{ 'event': 'ACPI_DEVICE_OST', 3047 'data': { 'info': 'ACPIOSTInfo' } } 3048 3049## 3050# @rtc-reset-reinjection: 3051# 3052# This command will reset the RTC interrupt reinjection backlog. 3053# Can be used if another mechanism to synchronize guest time 3054# is in effect, for example QEMU guest agent's guest-set-time 3055# command. 3056# 3057# Since: 2.1 3058# 3059# Example: 3060# 3061# -> { "execute": "rtc-reset-reinjection" } 3062# <- { "return": {} } 3063# 3064## 3065{ 'command': 'rtc-reset-reinjection' } 3066 3067## 3068# @RTC_CHANGE: 3069# 3070# Emitted when the guest changes the RTC time. 3071# 3072# @offset: offset between base RTC clock (as specified by -rtc base), and 3073# new RTC clock value. Note that value will be different depending 3074# on clock chosen to drive RTC (specified by -rtc clock). 3075# 3076# Note: This event is rate-limited. 3077# 3078# Since: 0.13.0 3079# 3080# Example: 3081# 3082# <- { "event": "RTC_CHANGE", 3083# "data": { "offset": 78 }, 3084# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } } 3085# 3086## 3087{ 'event': 'RTC_CHANGE', 3088 'data': { 'offset': 'int' } } 3089 3090## 3091# @ReplayMode: 3092# 3093# Mode of the replay subsystem. 3094# 3095# @none: normal execution mode. Replay or record are not enabled. 3096# 3097# @record: record mode. All non-deterministic data is written into the 3098# replay log. 3099# 3100# @play: replay mode. Non-deterministic data required for system execution 3101# is read from the log. 3102# 3103# Since: 2.5 3104## 3105{ 'enum': 'ReplayMode', 3106 'data': [ 'none', 'record', 'play' ] } 3107 3108## 3109# @xen-load-devices-state: 3110# 3111# Load the state of all devices from file. The RAM and the block devices 3112# of the VM are not loaded by this command. 3113# 3114# @filename: the file to load the state of the devices from as binary 3115# data. See xen-save-devices-state.txt for a description of the binary 3116# format. 3117# 3118# Since: 2.7 3119# 3120# Example: 3121# 3122# -> { "execute": "xen-load-devices-state", 3123# "arguments": { "filename": "/tmp/resume" } } 3124# <- { "return": {} } 3125# 3126## 3127{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 3128 3129## 3130# @GICCapability: 3131# 3132# The struct describes capability for a specific GIC (Generic 3133# Interrupt Controller) version. These bits are not only decided by 3134# QEMU/KVM software version, but also decided by the hardware that 3135# the program is running upon. 3136# 3137# @version: version of GIC to be described. Currently, only 2 and 3 3138# are supported. 3139# 3140# @emulated: whether current QEMU/hardware supports emulated GIC 3141# device in user space. 3142# 3143# @kernel: whether current QEMU/hardware supports hardware 3144# accelerated GIC device in kernel. 3145# 3146# Since: 2.6 3147## 3148{ 'struct': 'GICCapability', 3149 'data': { 'version': 'int', 3150 'emulated': 'bool', 3151 'kernel': 'bool' } } 3152 3153## 3154# @query-gic-capabilities: 3155# 3156# This command is ARM-only. It will return a list of GICCapability 3157# objects that describe its capability bits. 3158# 3159# Returns: a list of GICCapability objects. 3160# 3161# Since: 2.6 3162# 3163# Example: 3164# 3165# -> { "execute": "query-gic-capabilities" } 3166# <- { "return": [{ "version": 2, "emulated": true, "kernel": false }, 3167# { "version": 3, "emulated": false, "kernel": true } ] } 3168# 3169## 3170{ 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] } 3171 3172## 3173# @CpuInstanceProperties: 3174# 3175# List of properties to be used for hotplugging a CPU instance, 3176# it should be passed by management with device_add command when 3177# a CPU is being hotplugged. 3178# 3179# @node-id: NUMA node ID the CPU belongs to 3180# @socket-id: socket number within node/board the CPU belongs to 3181# @core-id: core number within socket the CPU belongs to 3182# @thread-id: thread number within core the CPU belongs to 3183# 3184# Note: currently there are 4 properties that could be present 3185# but management should be prepared to pass through other 3186# properties with device_add command to allow for future 3187# interface extension. This also requires the filed names to be kept in 3188# sync with the properties passed to -device/device_add. 3189# 3190# Since: 2.7 3191## 3192{ 'struct': 'CpuInstanceProperties', 3193 'data': { '*node-id': 'int', 3194 '*socket-id': 'int', 3195 '*core-id': 'int', 3196 '*thread-id': 'int' 3197 } 3198} 3199 3200## 3201# @HotpluggableCPU: 3202# 3203# @type: CPU object type for usage with device_add command 3204# @props: list of properties to be used for hotplugging CPU 3205# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides 3206# @qom-path: link to existing CPU object if CPU is present or 3207# omitted if CPU is not present. 3208# 3209# Since: 2.7 3210## 3211{ 'struct': 'HotpluggableCPU', 3212 'data': { 'type': 'str', 3213 'vcpus-count': 'int', 3214 'props': 'CpuInstanceProperties', 3215 '*qom-path': 'str' 3216 } 3217} 3218 3219## 3220# @query-hotpluggable-cpus: 3221# 3222# Returns: a list of HotpluggableCPU objects. 3223# 3224# Since: 2.7 3225# 3226# Example: 3227# 3228# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8: 3229# 3230# -> { "execute": "query-hotpluggable-cpus" } 3231# <- {"return": [ 3232# { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core", 3233# "vcpus-count": 1 }, 3234# { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core", 3235# "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"} 3236# ]}' 3237# 3238# For pc machine type started with -smp 1,maxcpus=2: 3239# 3240# -> { "execute": "query-hotpluggable-cpus" } 3241# <- {"return": [ 3242# { 3243# "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 3244# "props": {"core-id": 0, "socket-id": 1, "thread-id": 0} 3245# }, 3246# { 3247# "qom-path": "/machine/unattached/device[0]", 3248# "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 3249# "props": {"core-id": 0, "socket-id": 0, "thread-id": 0} 3250# } 3251# ]} 3252# 3253# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu 3254# (Since: 2.11): 3255# 3256# -> { "execute": "query-hotpluggable-cpus" } 3257# <- {"return": [ 3258# { 3259# "type": "qemu-s390x-cpu", "vcpus-count": 1, 3260# "props": { "core-id": 1 } 3261# }, 3262# { 3263# "qom-path": "/machine/unattached/device[0]", 3264# "type": "qemu-s390x-cpu", "vcpus-count": 1, 3265# "props": { "core-id": 0 } 3266# } 3267# ]} 3268# 3269## 3270{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'], 3271 'allow-preconfig': true } 3272 3273## 3274# @GuidInfo: 3275# 3276# GUID information. 3277# 3278# @guid: the globally unique identifier 3279# 3280# Since: 2.9 3281## 3282{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} } 3283 3284## 3285# @query-vm-generation-id: 3286# 3287# Show Virtual Machine Generation ID 3288# 3289# Since: 2.9 3290## 3291{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' } 3292 3293 3294## 3295# @SevState: 3296# 3297# An enumeration of SEV state information used during @query-sev. 3298# 3299# @uninit: The guest is uninitialized. 3300# 3301# @launch-update: The guest is currently being launched; plaintext data and 3302# register state is being imported. 3303# 3304# @launch-secret: The guest is currently being launched; ciphertext data 3305# is being imported. 3306# 3307# @running: The guest is fully launched or migrated in. 3308# 3309# @send-update: The guest is currently being migrated out to another machine. 3310# 3311# @receive-update: The guest is currently being migrated from another machine. 3312# 3313# Since: 2.12 3314## 3315{ 'enum': 'SevState', 3316 'data': ['uninit', 'launch-update', 'launch-secret', 'running', 3317 'send-update', 'receive-update' ] } 3318 3319## 3320# @SevInfo: 3321# 3322# Information about Secure Encrypted Virtualization (SEV) support 3323# 3324# @enabled: true if SEV is active 3325# 3326# @api-major: SEV API major version 3327# 3328# @api-minor: SEV API minor version 3329# 3330# @build-id: SEV FW build id 3331# 3332# @policy: SEV policy value 3333# 3334# @state: SEV guest state 3335# 3336# @handle: SEV firmware handle 3337# 3338# Since: 2.12 3339## 3340{ 'struct': 'SevInfo', 3341 'data': { 'enabled': 'bool', 3342 'api-major': 'uint8', 3343 'api-minor' : 'uint8', 3344 'build-id' : 'uint8', 3345 'policy' : 'uint32', 3346 'state' : 'SevState', 3347 'handle' : 'uint32' 3348 } 3349} 3350 3351## 3352# @query-sev: 3353# 3354# Returns information about SEV 3355# 3356# Returns: @SevInfo 3357# 3358# Since: 2.12 3359# 3360# Example: 3361# 3362# -> { "execute": "query-sev" } 3363# <- { "return": { "enabled": true, "api-major" : 0, "api-minor" : 0, 3364# "build-id" : 0, "policy" : 0, "state" : "running", 3365# "handle" : 1 } } 3366# 3367## 3368{ 'command': 'query-sev', 'returns': 'SevInfo' } 3369 3370## 3371# @SevLaunchMeasureInfo: 3372# 3373# SEV Guest Launch measurement information 3374# 3375# @data: the measurement value encoded in base64 3376# 3377# Since: 2.12 3378# 3379## 3380{ 'struct': 'SevLaunchMeasureInfo', 'data': {'data': 'str'} } 3381 3382## 3383# @query-sev-launch-measure: 3384# 3385# Query the SEV guest launch information. 3386# 3387# Returns: The @SevLaunchMeasureInfo for the guest 3388# 3389# Since: 2.12 3390# 3391# Example: 3392# 3393# -> { "execute": "query-sev-launch-measure" } 3394# <- { "return": { "data": "4l8LXeNlSPUDlXPJG5966/8%YZ" } } 3395# 3396## 3397{ 'command': 'query-sev-launch-measure', 'returns': 'SevLaunchMeasureInfo' } 3398 3399## 3400# @SevCapability: 3401# 3402# The struct describes capability for a Secure Encrypted Virtualization 3403# feature. 3404# 3405# @pdh: Platform Diffie-Hellman key (base64 encoded) 3406# 3407# @cert-chain: PDH certificate chain (base64 encoded) 3408# 3409# @cbitpos: C-bit location in page table entry 3410# 3411# @reduced-phys-bits: Number of physical Address bit reduction when SEV is 3412# enabled 3413# 3414# Since: 2.12 3415## 3416{ 'struct': 'SevCapability', 3417 'data': { 'pdh': 'str', 3418 'cert-chain': 'str', 3419 'cbitpos': 'int', 3420 'reduced-phys-bits': 'int'} } 3421 3422## 3423# @query-sev-capabilities: 3424# 3425# This command is used to get the SEV capabilities, and is supported on AMD 3426# X86 platforms only. 3427# 3428# Returns: SevCapability objects. 3429# 3430# Since: 2.12 3431# 3432# Example: 3433# 3434# -> { "execute": "query-sev-capabilities" } 3435# <- { "return": { "pdh": "8CCDD8DDD", "cert-chain": "888CCCDDDEE", 3436# "cbitpos": 47, "reduced-phys-bits": 5}} 3437# 3438## 3439{ 'command': 'query-sev-capabilities', 'returns': 'SevCapability' } 3440 3441## 3442# @CommandDropReason: 3443# 3444# Reasons that caused one command to be dropped. 3445# 3446# @queue-full: the command queue is full. This can only occur when 3447# the client sends a new non-oob command before the 3448# response to the previous non-oob command has been 3449# received. 3450# 3451# Since: 2.12 3452## 3453{ 'enum': 'CommandDropReason', 3454 'data': [ 'queue-full' ] } 3455 3456## 3457# @COMMAND_DROPPED: 3458# 3459# Emitted when a command is dropped due to some reason. Commands can 3460# only be dropped when the oob capability is enabled. 3461# 3462# @id: The dropped command's "id" field. 3463# FIXME Broken by design. Events are broadcast to all monitors. If 3464# another monitor's client has a command with the same ID in flight, 3465# the event will incorrectly claim that command was dropped. 3466# 3467# @reason: The reason why the command is dropped. 3468# 3469# Since: 2.12 3470# 3471# Example: 3472# 3473# { "event": "COMMAND_DROPPED", 3474# "data": {"result": {"id": "libvirt-102", 3475# "reason": "queue-full" } } } 3476# 3477## 3478{ 'event': 'COMMAND_DROPPED' , 3479 'data': { 'id': 'any', 'reason': 'CommandDropReason' } } 3480 3481## 3482# @set-numa-node: 3483# 3484# Runtime equivalent of '-numa' CLI option, available at 3485# preconfigure stage to configure numa mapping before initializing 3486# machine. 3487# 3488# Since 3.0 3489## 3490{ 'command': 'set-numa-node', 'boxed': true, 3491 'data': 'NumaOptions', 3492 'allow-preconfig': true 3493} 3494