xref: /openbmc/qemu/qapi/misc.json (revision 25a9d6ca)
1# -*- Mode: Python -*-
2#
3
4##
5# = Miscellanea
6##
7
8{ 'include': 'common.json' }
9
10##
11# @qmp_capabilities:
12#
13# Enable QMP capabilities.
14#
15# Arguments:
16#
17# @enable:   An optional list of QMPCapability values to enable.  The
18#            client must not enable any capability that is not
19#            mentioned in the QMP greeting message.  If the field is not
20#            provided, it means no QMP capabilities will be enabled.
21#            (since 2.12)
22#
23# Example:
24#
25# -> { "execute": "qmp_capabilities",
26#      "arguments": { "enable": [ "oob" ] } }
27# <- { "return": {} }
28#
29# Notes: This command is valid exactly when first connecting: it must be
30# issued before any other command will be accepted, and will fail once the
31# monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
32#
33# The QMP client needs to explicitly enable QMP capabilities, otherwise
34# all the QMP capabilities will be turned off by default.
35#
36# Since: 0.13
37#
38##
39{ 'command': 'qmp_capabilities',
40  'data': { '*enable': [ 'QMPCapability' ] },
41  'allow-preconfig': true }
42
43##
44# @QMPCapability:
45#
46# Enumeration of capabilities to be advertised during initial client
47# connection, used for agreeing on particular QMP extension behaviors.
48#
49# @oob:   QMP ability to support out-of-band requests.
50#         (Please refer to qmp-spec.txt for more information on OOB)
51#
52# Since: 2.12
53#
54##
55{ 'enum': 'QMPCapability',
56  'data': [ 'oob' ] }
57
58##
59# @VersionTriple:
60#
61# A three-part version number.
62#
63# @major:  The major version number.
64#
65# @minor:  The minor version number.
66#
67# @micro:  The micro version number.
68#
69# Since: 2.4
70##
71{ 'struct': 'VersionTriple',
72  'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
73
74
75##
76# @VersionInfo:
77#
78# A description of QEMU's version.
79#
80# @qemu:        The version of QEMU.  By current convention, a micro
81#               version of 50 signifies a development branch.  A micro version
82#               greater than or equal to 90 signifies a release candidate for
83#               the next minor version.  A micro version of less than 50
84#               signifies a stable release.
85#
86# @package:     QEMU will always set this field to an empty string.  Downstream
87#               versions of QEMU should set this to a non-empty string.  The
88#               exact format depends on the downstream however it highly
89#               recommended that a unique name is used.
90#
91# Since: 0.14.0
92##
93{ 'struct': 'VersionInfo',
94  'data': {'qemu': 'VersionTriple', 'package': 'str'} }
95
96##
97# @query-version:
98#
99# Returns the current version of QEMU.
100#
101# Returns:  A @VersionInfo object describing the current version of QEMU.
102#
103# Since: 0.14.0
104#
105# Example:
106#
107# -> { "execute": "query-version" }
108# <- {
109#       "return":{
110#          "qemu":{
111#             "major":0,
112#             "minor":11,
113#             "micro":5
114#          },
115#          "package":""
116#       }
117#    }
118#
119##
120{ 'command': 'query-version', 'returns': 'VersionInfo',
121  'allow-preconfig': true }
122
123##
124# @CommandInfo:
125#
126# Information about a QMP command
127#
128# @name: The command name
129#
130# Since: 0.14.0
131##
132{ 'struct': 'CommandInfo', 'data': {'name': 'str'} }
133
134##
135# @query-commands:
136#
137# Return a list of supported QMP commands by this server
138#
139# Returns: A list of @CommandInfo for all supported commands
140#
141# Since: 0.14.0
142#
143# Example:
144#
145# -> { "execute": "query-commands" }
146# <- {
147#      "return":[
148#         {
149#            "name":"query-balloon"
150#         },
151#         {
152#            "name":"system_powerdown"
153#         }
154#      ]
155#    }
156#
157# Note: This example has been shortened as the real response is too long.
158#
159##
160{ 'command': 'query-commands', 'returns': ['CommandInfo'],
161  'allow-preconfig': true }
162
163##
164# @LostTickPolicy:
165#
166# Policy for handling lost ticks in timer devices.
167#
168# @discard: throw away the missed tick(s) and continue with future injection
169#           normally.  Guest time may be delayed, unless the OS has explicit
170#           handling of lost ticks
171#
172# @delay: continue to deliver ticks at the normal rate.  Guest time will be
173#         delayed due to the late tick
174#
175# @merge: merge the missed tick(s) into one tick and inject.  Guest time
176#         may be delayed, depending on how the OS reacts to the merging
177#         of ticks
178#
179# @slew: deliver ticks at a higher rate to catch up with the missed tick. The
180#        guest time should not be delayed once catchup is complete.
181#
182# Since: 2.0
183##
184{ 'enum': 'LostTickPolicy',
185  'data': ['discard', 'delay', 'merge', 'slew' ] }
186
187##
188# @add_client:
189#
190# Allow client connections for VNC, Spice and socket based
191# character devices to be passed in to QEMU via SCM_RIGHTS.
192#
193# @protocol: protocol name. Valid names are "vnc", "spice" or the
194#            name of a character device (eg. from -chardev id=XXXX)
195#
196# @fdname: file descriptor name previously passed via 'getfd' command
197#
198# @skipauth: whether to skip authentication. Only applies
199#            to "vnc" and "spice" protocols
200#
201# @tls: whether to perform TLS. Only applies to the "spice"
202#       protocol
203#
204# Returns: nothing on success.
205#
206# Since: 0.14.0
207#
208# Example:
209#
210# -> { "execute": "add_client", "arguments": { "protocol": "vnc",
211#                                              "fdname": "myclient" } }
212# <- { "return": {} }
213#
214##
215{ 'command': 'add_client',
216  'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
217            '*tls': 'bool' } }
218
219##
220# @NameInfo:
221#
222# Guest name information.
223#
224# @name: The name of the guest
225#
226# Since: 0.14.0
227##
228{ 'struct': 'NameInfo', 'data': {'*name': 'str'} }
229
230##
231# @query-name:
232#
233# Return the name information of a guest.
234#
235# Returns: @NameInfo of the guest
236#
237# Since: 0.14.0
238#
239# Example:
240#
241# -> { "execute": "query-name" }
242# <- { "return": { "name": "qemu-name" } }
243#
244##
245{ 'command': 'query-name', 'returns': 'NameInfo', 'allow-preconfig': true }
246
247##
248# @KvmInfo:
249#
250# Information about support for KVM acceleration
251#
252# @enabled: true if KVM acceleration is active
253#
254# @present: true if KVM acceleration is built into this executable
255#
256# Since: 0.14.0
257##
258{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
259
260##
261# @query-kvm:
262#
263# Returns information about KVM acceleration
264#
265# Returns: @KvmInfo
266#
267# Since: 0.14.0
268#
269# Example:
270#
271# -> { "execute": "query-kvm" }
272# <- { "return": { "enabled": true, "present": true } }
273#
274##
275{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
276
277##
278# @UuidInfo:
279#
280# Guest UUID information (Universally Unique Identifier).
281#
282# @UUID: the UUID of the guest
283#
284# Since: 0.14.0
285#
286# Notes: If no UUID was specified for the guest, a null UUID is returned.
287##
288{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
289
290##
291# @query-uuid:
292#
293# Query the guest UUID information.
294#
295# Returns: The @UuidInfo for the guest
296#
297# Since: 0.14.0
298#
299# Example:
300#
301# -> { "execute": "query-uuid" }
302# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
303#
304##
305{ 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
306
307##
308# @EventInfo:
309#
310# Information about a QMP event
311#
312# @name: The event name
313#
314# Since: 1.2.0
315##
316{ 'struct': 'EventInfo', 'data': {'name': 'str'} }
317
318##
319# @query-events:
320#
321# Return a list of supported QMP events by this server
322#
323# Returns: A list of @EventInfo for all supported events
324#
325# Since: 1.2.0
326#
327# Example:
328#
329# -> { "execute": "query-events" }
330# <- {
331#      "return": [
332#          {
333#             "name":"SHUTDOWN"
334#          },
335#          {
336#             "name":"RESET"
337#          }
338#       ]
339#    }
340#
341# Note: This example has been shortened as the real response is too long.
342#
343##
344{ 'command': 'query-events', 'returns': ['EventInfo'] }
345
346##
347# @CpuInfoArch:
348#
349# An enumeration of cpu types that enable additional information during
350# @query-cpus and @query-cpus-fast.
351#
352# @s390: since 2.12
353#
354# @riscv: since 2.12
355#
356# Since: 2.6
357##
358{ 'enum': 'CpuInfoArch',
359  'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'riscv', 'other' ] }
360
361##
362# @CpuInfo:
363#
364# Information about a virtual CPU
365#
366# @CPU: the index of the virtual CPU
367#
368# @current: this only exists for backwards compatibility and should be ignored
369#
370# @halted: true if the virtual CPU is in the halt state.  Halt usually refers
371#          to a processor specific low power mode.
372#
373# @qom_path: path to the CPU object in the QOM tree (since 2.4)
374#
375# @thread_id: ID of the underlying host thread
376#
377# @props: properties describing to which node/socket/core/thread
378#         virtual CPU belongs to, provided if supported by board (since 2.10)
379#
380# @arch: architecture of the cpu, which determines which additional fields
381#        will be listed (since 2.6)
382#
383# Since: 0.14.0
384#
385# Notes: @halted is a transient state that changes frequently.  By the time the
386#        data is sent to the client, the guest may no longer be halted.
387##
388{ 'union': 'CpuInfo',
389  'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
390           'qom_path': 'str', 'thread_id': 'int',
391           '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
392  'discriminator': 'arch',
393  'data': { 'x86': 'CpuInfoX86',
394            'sparc': 'CpuInfoSPARC',
395            'ppc': 'CpuInfoPPC',
396            'mips': 'CpuInfoMIPS',
397            'tricore': 'CpuInfoTricore',
398            's390': 'CpuInfoS390',
399            'riscv': 'CpuInfoRISCV' } }
400
401##
402# @CpuInfoX86:
403#
404# Additional information about a virtual i386 or x86_64 CPU
405#
406# @pc: the 64-bit instruction pointer
407#
408# Since: 2.6
409##
410{ 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
411
412##
413# @CpuInfoSPARC:
414#
415# Additional information about a virtual SPARC CPU
416#
417# @pc: the PC component of the instruction pointer
418#
419# @npc: the NPC component of the instruction pointer
420#
421# Since: 2.6
422##
423{ 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
424
425##
426# @CpuInfoPPC:
427#
428# Additional information about a virtual PPC CPU
429#
430# @nip: the instruction pointer
431#
432# Since: 2.6
433##
434{ 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
435
436##
437# @CpuInfoMIPS:
438#
439# Additional information about a virtual MIPS CPU
440#
441# @PC: the instruction pointer
442#
443# Since: 2.6
444##
445{ 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
446
447##
448# @CpuInfoTricore:
449#
450# Additional information about a virtual Tricore CPU
451#
452# @PC: the instruction pointer
453#
454# Since: 2.6
455##
456{ 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
457
458##
459# @CpuInfoRISCV:
460#
461# Additional information about a virtual RISCV CPU
462#
463# @pc: the instruction pointer
464#
465# Since 2.12
466##
467{ 'struct': 'CpuInfoRISCV', 'data': { 'pc': 'int' } }
468
469##
470# @CpuS390State:
471#
472# An enumeration of cpu states that can be assumed by a virtual
473# S390 CPU
474#
475# Since: 2.12
476##
477{ 'enum': 'CpuS390State',
478  'prefix': 'S390_CPU_STATE',
479  'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
480
481##
482# @CpuInfoS390:
483#
484# Additional information about a virtual S390 CPU
485#
486# @cpu-state: the virtual CPU's state
487#
488# Since: 2.12
489##
490{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } }
491
492##
493# @query-cpus:
494#
495# Returns a list of information about each virtual CPU.
496#
497# This command causes vCPU threads to exit to userspace, which causes
498# a small interruption to guest CPU execution. This will have a negative
499# impact on realtime guests and other latency sensitive guest workloads.
500# It is recommended to use @query-cpus-fast instead of this command to
501# avoid the vCPU interruption.
502#
503# Returns: a list of @CpuInfo for each virtual CPU
504#
505# Since: 0.14.0
506#
507# Example:
508#
509# -> { "execute": "query-cpus" }
510# <- { "return": [
511#          {
512#             "CPU":0,
513#             "current":true,
514#             "halted":false,
515#             "qom_path":"/machine/unattached/device[0]",
516#             "arch":"x86",
517#             "pc":3227107138,
518#             "thread_id":3134
519#          },
520#          {
521#             "CPU":1,
522#             "current":false,
523#             "halted":true,
524#             "qom_path":"/machine/unattached/device[2]",
525#             "arch":"x86",
526#             "pc":7108165,
527#             "thread_id":3135
528#          }
529#       ]
530#    }
531#
532# Notes: This interface is deprecated (since 2.12.0), and it is strongly
533#        recommended that you avoid using it. Use @query-cpus-fast to
534#        obtain information about virtual CPUs.
535#
536##
537{ 'command': 'query-cpus', 'returns': ['CpuInfo'] }
538
539##
540# @CpuInfoFast:
541#
542# Information about a virtual CPU
543#
544# @cpu-index: index of the virtual CPU
545#
546# @qom-path: path to the CPU object in the QOM tree
547#
548# @thread-id: ID of the underlying host thread
549#
550# @props: properties describing to which node/socket/core/thread
551#         virtual CPU belongs to, provided if supported by board
552#
553# @arch: base architecture of the cpu; deprecated since 3.0.0 in favor
554#        of @target
555#
556# @target: the QEMU system emulation target, which determines which
557#          additional fields will be listed (since 3.0)
558#
559# Since: 2.12
560#
561##
562{ 'union'         : 'CpuInfoFast',
563  'base'          : { 'cpu-index'    : 'int',
564                      'qom-path'     : 'str',
565                      'thread-id'    : 'int',
566                      '*props'       : 'CpuInstanceProperties',
567                      'arch'         : 'CpuInfoArch',
568                      'target'       : 'SysEmuTarget' },
569  'discriminator' : 'target',
570  'data'          : { 's390x'        : 'CpuInfoS390' } }
571
572##
573# @query-cpus-fast:
574#
575# Returns information about all virtual CPUs. This command does not
576# incur a performance penalty and should be used in production
577# instead of query-cpus.
578#
579# Returns: list of @CpuInfoFast
580#
581# Since: 2.12
582#
583# Example:
584#
585# -> { "execute": "query-cpus-fast" }
586# <- { "return": [
587#         {
588#             "thread-id": 25627,
589#             "props": {
590#                 "core-id": 0,
591#                 "thread-id": 0,
592#                 "socket-id": 0
593#             },
594#             "qom-path": "/machine/unattached/device[0]",
595#             "arch":"x86",
596#             "target":"x86_64",
597#             "cpu-index": 0
598#         },
599#         {
600#             "thread-id": 25628,
601#             "props": {
602#                 "core-id": 0,
603#                 "thread-id": 0,
604#                 "socket-id": 1
605#             },
606#             "qom-path": "/machine/unattached/device[2]",
607#             "arch":"x86",
608#             "target":"x86_64",
609#             "cpu-index": 1
610#         }
611#     ]
612# }
613##
614{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
615
616##
617# @IOThreadInfo:
618#
619# Information about an iothread
620#
621# @id: the identifier of the iothread
622#
623# @thread-id: ID of the underlying host thread
624#
625# @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
626#               (since 2.9)
627#
628# @poll-grow: how many ns will be added to polling time, 0 means that it's not
629#             configured (since 2.9)
630#
631# @poll-shrink: how many ns will be removed from polling time, 0 means that
632#               it's not configured (since 2.9)
633#
634# Since: 2.0
635##
636{ 'struct': 'IOThreadInfo',
637  'data': {'id': 'str',
638           'thread-id': 'int',
639           'poll-max-ns': 'int',
640           'poll-grow': 'int',
641           'poll-shrink': 'int' } }
642
643##
644# @query-iothreads:
645#
646# Returns a list of information about each iothread.
647#
648# Note: this list excludes the QEMU main loop thread, which is not declared
649# using the -object iothread command-line option.  It is always the main thread
650# of the process.
651#
652# Returns: a list of @IOThreadInfo for each iothread
653#
654# Since: 2.0
655#
656# Example:
657#
658# -> { "execute": "query-iothreads" }
659# <- { "return": [
660#          {
661#             "id":"iothread0",
662#             "thread-id":3134
663#          },
664#          {
665#             "id":"iothread1",
666#             "thread-id":3135
667#          }
668#       ]
669#    }
670#
671##
672{ 'command': 'query-iothreads', 'returns': ['IOThreadInfo'],
673  'allow-preconfig': true }
674
675##
676# @BalloonInfo:
677#
678# Information about the guest balloon device.
679#
680# @actual: the number of bytes the balloon currently contains
681#
682# Since: 0.14.0
683#
684##
685{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
686
687##
688# @query-balloon:
689#
690# Return information about the balloon device.
691#
692# Returns: @BalloonInfo on success
693#
694#          If the balloon driver is enabled but not functional because the KVM
695#          kernel module cannot support it, KvmMissingCap
696#
697#          If no balloon device is present, DeviceNotActive
698#
699# Since: 0.14.0
700#
701# Example:
702#
703# -> { "execute": "query-balloon" }
704# <- { "return": {
705#          "actual": 1073741824,
706#       }
707#    }
708#
709##
710{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
711
712##
713# @BALLOON_CHANGE:
714#
715# Emitted when the guest changes the actual BALLOON level. This value is
716# equivalent to the @actual field return by the 'query-balloon' command
717#
718# @actual: actual level of the guest memory balloon in bytes
719#
720# Note: this event is rate-limited.
721#
722# Since: 1.2
723#
724# Example:
725#
726# <- { "event": "BALLOON_CHANGE",
727#      "data": { "actual": 944766976 },
728#      "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
729#
730##
731{ 'event': 'BALLOON_CHANGE',
732  'data': { 'actual': 'int' } }
733
734##
735# @PciMemoryRange:
736#
737# A PCI device memory region
738#
739# @base: the starting address (guest physical)
740#
741# @limit: the ending address (guest physical)
742#
743# Since: 0.14.0
744##
745{ 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
746
747##
748# @PciMemoryRegion:
749#
750# Information about a PCI device I/O region.
751#
752# @bar: the index of the Base Address Register for this region
753#
754# @type: 'io' if the region is a PIO region
755#        'memory' if the region is a MMIO region
756#
757# @size: memory size
758#
759# @prefetch: if @type is 'memory', true if the memory is prefetchable
760#
761# @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
762#
763# Since: 0.14.0
764##
765{ 'struct': 'PciMemoryRegion',
766  'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
767           '*prefetch': 'bool', '*mem_type_64': 'bool' } }
768
769##
770# @PciBusInfo:
771#
772# Information about a bus of a PCI Bridge device
773#
774# @number: primary bus interface number.  This should be the number of the
775#          bus the device resides on.
776#
777# @secondary: secondary bus interface number.  This is the number of the
778#             main bus for the bridge
779#
780# @subordinate: This is the highest number bus that resides below the
781#               bridge.
782#
783# @io_range: The PIO range for all devices on this bridge
784#
785# @memory_range: The MMIO range for all devices on this bridge
786#
787# @prefetchable_range: The range of prefetchable MMIO for all devices on
788#                      this bridge
789#
790# Since: 2.4
791##
792{ 'struct': 'PciBusInfo',
793  'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
794           'io_range': 'PciMemoryRange',
795           'memory_range': 'PciMemoryRange',
796           'prefetchable_range': 'PciMemoryRange' } }
797
798##
799# @PciBridgeInfo:
800#
801# Information about a PCI Bridge device
802#
803# @bus: information about the bus the device resides on
804#
805# @devices: a list of @PciDeviceInfo for each device on this bridge
806#
807# Since: 0.14.0
808##
809{ 'struct': 'PciBridgeInfo',
810  'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
811
812##
813# @PciDeviceClass:
814#
815# Information about the Class of a PCI device
816#
817# @desc: a string description of the device's class
818#
819# @class: the class code of the device
820#
821# Since: 2.4
822##
823{ 'struct': 'PciDeviceClass',
824  'data': {'*desc': 'str', 'class': 'int'} }
825
826##
827# @PciDeviceId:
828#
829# Information about the Id of a PCI device
830#
831# @device: the PCI device id
832#
833# @vendor: the PCI vendor id
834#
835# @subsystem: the PCI subsystem id (since 3.1)
836#
837# @subsystem-vendor: the PCI subsystem vendor id (since 3.1)
838#
839# Since: 2.4
840##
841{ 'struct': 'PciDeviceId',
842  'data': {'device': 'int', 'vendor': 'int', '*subsystem': 'int',
843            '*subsystem-vendor': 'int'} }
844
845##
846# @PciDeviceInfo:
847#
848# Information about a PCI device
849#
850# @bus: the bus number of the device
851#
852# @slot: the slot the device is located in
853#
854# @function: the function of the slot used by the device
855#
856# @class_info: the class of the device
857#
858# @id: the PCI device id
859#
860# @irq: if an IRQ is assigned to the device, the IRQ number
861#
862# @qdev_id: the device name of the PCI device
863#
864# @pci_bridge: if the device is a PCI bridge, the bridge information
865#
866# @regions: a list of the PCI I/O regions associated with the device
867#
868# Notes: the contents of @class_info.desc are not stable and should only be
869#        treated as informational.
870#
871# Since: 0.14.0
872##
873{ 'struct': 'PciDeviceInfo',
874  'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
875           'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
876           '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
877           'regions': ['PciMemoryRegion']} }
878
879##
880# @PciInfo:
881#
882# Information about a PCI bus
883#
884# @bus: the bus index
885#
886# @devices: a list of devices on this bus
887#
888# Since: 0.14.0
889##
890{ 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
891
892##
893# @query-pci:
894#
895# Return information about the PCI bus topology of the guest.
896#
897# Returns: a list of @PciInfo for each PCI bus. Each bus is
898# represented by a json-object, which has a key with a json-array of
899# all PCI devices attached to it. Each device is represented by a
900# json-object.
901#
902# Since: 0.14.0
903#
904# Example:
905#
906# -> { "execute": "query-pci" }
907# <- { "return": [
908#          {
909#             "bus": 0,
910#             "devices": [
911#                {
912#                   "bus": 0,
913#                   "qdev_id": "",
914#                   "slot": 0,
915#                   "class_info": {
916#                      "class": 1536,
917#                      "desc": "Host bridge"
918#                   },
919#                   "id": {
920#                      "device": 32902,
921#                      "vendor": 4663
922#                   },
923#                   "function": 0,
924#                   "regions": [
925#                   ]
926#                },
927#                {
928#                   "bus": 0,
929#                   "qdev_id": "",
930#                   "slot": 1,
931#                   "class_info": {
932#                      "class": 1537,
933#                      "desc": "ISA bridge"
934#                   },
935#                   "id": {
936#                      "device": 32902,
937#                      "vendor": 28672
938#                   },
939#                   "function": 0,
940#                   "regions": [
941#                   ]
942#                },
943#                {
944#                   "bus": 0,
945#                   "qdev_id": "",
946#                   "slot": 1,
947#                   "class_info": {
948#                      "class": 257,
949#                      "desc": "IDE controller"
950#                   },
951#                   "id": {
952#                      "device": 32902,
953#                      "vendor": 28688
954#                   },
955#                   "function": 1,
956#                   "regions": [
957#                      {
958#                         "bar": 4,
959#                         "size": 16,
960#                         "address": 49152,
961#                         "type": "io"
962#                      }
963#                   ]
964#                },
965#                {
966#                   "bus": 0,
967#                   "qdev_id": "",
968#                   "slot": 2,
969#                   "class_info": {
970#                      "class": 768,
971#                      "desc": "VGA controller"
972#                   },
973#                   "id": {
974#                      "device": 4115,
975#                      "vendor": 184
976#                   },
977#                   "function": 0,
978#                   "regions": [
979#                      {
980#                         "prefetch": true,
981#                         "mem_type_64": false,
982#                         "bar": 0,
983#                         "size": 33554432,
984#                         "address": 4026531840,
985#                         "type": "memory"
986#                      },
987#                      {
988#                         "prefetch": false,
989#                         "mem_type_64": false,
990#                         "bar": 1,
991#                         "size": 4096,
992#                         "address": 4060086272,
993#                         "type": "memory"
994#                      },
995#                      {
996#                         "prefetch": false,
997#                         "mem_type_64": false,
998#                         "bar": 6,
999#                         "size": 65536,
1000#                         "address": -1,
1001#                         "type": "memory"
1002#                      }
1003#                   ]
1004#                },
1005#                {
1006#                   "bus": 0,
1007#                   "qdev_id": "",
1008#                   "irq": 11,
1009#                   "slot": 4,
1010#                   "class_info": {
1011#                      "class": 1280,
1012#                      "desc": "RAM controller"
1013#                   },
1014#                   "id": {
1015#                      "device": 6900,
1016#                      "vendor": 4098
1017#                   },
1018#                   "function": 0,
1019#                   "regions": [
1020#                      {
1021#                         "bar": 0,
1022#                         "size": 32,
1023#                         "address": 49280,
1024#                         "type": "io"
1025#                      }
1026#                   ]
1027#                }
1028#             ]
1029#          }
1030#       ]
1031#    }
1032#
1033# Note: This example has been shortened as the real response is too long.
1034#
1035##
1036{ 'command': 'query-pci', 'returns': ['PciInfo'] }
1037
1038##
1039# @quit:
1040#
1041# This command will cause the QEMU process to exit gracefully.  While every
1042# attempt is made to send the QMP response before terminating, this is not
1043# guaranteed.  When using this interface, a premature EOF would not be
1044# unexpected.
1045#
1046# Since: 0.14.0
1047#
1048# Example:
1049#
1050# -> { "execute": "quit" }
1051# <- { "return": {} }
1052##
1053{ 'command': 'quit' }
1054
1055##
1056# @stop:
1057#
1058# Stop all guest VCPU execution.
1059#
1060# Since:  0.14.0
1061#
1062# Notes:  This function will succeed even if the guest is already in the stopped
1063#         state.  In "inmigrate" state, it will ensure that the guest
1064#         remains paused once migration finishes, as if the -S option was
1065#         passed on the command line.
1066#
1067# Example:
1068#
1069# -> { "execute": "stop" }
1070# <- { "return": {} }
1071#
1072##
1073{ 'command': 'stop' }
1074
1075##
1076# @system_reset:
1077#
1078# Performs a hard reset of a guest.
1079#
1080# Since: 0.14.0
1081#
1082# Example:
1083#
1084# -> { "execute": "system_reset" }
1085# <- { "return": {} }
1086#
1087##
1088{ 'command': 'system_reset' }
1089
1090##
1091# @system_powerdown:
1092#
1093# Requests that a guest perform a powerdown operation.
1094#
1095# Since: 0.14.0
1096#
1097# Notes: A guest may or may not respond to this command.  This command
1098#        returning does not indicate that a guest has accepted the request or
1099#        that it has shut down.  Many guests will respond to this command by
1100#        prompting the user in some way.
1101# Example:
1102#
1103# -> { "execute": "system_powerdown" }
1104# <- { "return": {} }
1105#
1106##
1107{ 'command': 'system_powerdown' }
1108
1109##
1110# @cpu-add:
1111#
1112# Adds CPU with specified ID.
1113#
1114# @id: ID of CPU to be created, valid values [0..max_cpus)
1115#
1116# Returns: Nothing on success
1117#
1118# Since: 1.5
1119#
1120# Note: This command is deprecated.  The `device_add` command should be
1121#       used instead.  See the `query-hotpluggable-cpus` command for
1122#       details.
1123#
1124# Example:
1125#
1126# -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1127# <- { "return": {} }
1128#
1129##
1130{ 'command': 'cpu-add', 'data': {'id': 'int'} }
1131
1132##
1133# @memsave:
1134#
1135# Save a portion of guest memory to a file.
1136#
1137# @val: the virtual address of the guest to start from
1138#
1139# @size: the size of memory region to save
1140#
1141# @filename: the file to save the memory to as binary data
1142#
1143# @cpu-index: the index of the virtual CPU to use for translating the
1144#                       virtual address (defaults to CPU 0)
1145#
1146# Returns: Nothing on success
1147#
1148# Since: 0.14.0
1149#
1150# Notes: Errors were not reliably returned until 1.1
1151#
1152# Example:
1153#
1154# -> { "execute": "memsave",
1155#      "arguments": { "val": 10,
1156#                     "size": 100,
1157#                     "filename": "/tmp/virtual-mem-dump" } }
1158# <- { "return": {} }
1159#
1160##
1161{ 'command': 'memsave',
1162  'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1163
1164##
1165# @pmemsave:
1166#
1167# Save a portion of guest physical memory to a file.
1168#
1169# @val: the physical address of the guest to start from
1170#
1171# @size: the size of memory region to save
1172#
1173# @filename: the file to save the memory to as binary data
1174#
1175# Returns: Nothing on success
1176#
1177# Since: 0.14.0
1178#
1179# Notes: Errors were not reliably returned until 1.1
1180#
1181# Example:
1182#
1183# -> { "execute": "pmemsave",
1184#      "arguments": { "val": 10,
1185#                     "size": 100,
1186#                     "filename": "/tmp/physical-mem-dump" } }
1187# <- { "return": {} }
1188#
1189##
1190{ 'command': 'pmemsave',
1191  'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1192
1193##
1194# @cont:
1195#
1196# Resume guest VCPU execution.
1197#
1198# Since:  0.14.0
1199#
1200# Returns:  If successful, nothing
1201#
1202# Notes:  This command will succeed if the guest is currently running.  It
1203#         will also succeed if the guest is in the "inmigrate" state; in
1204#         this case, the effect of the command is to make sure the guest
1205#         starts once migration finishes, removing the effect of the -S
1206#         command line option if it was passed.
1207#
1208# Example:
1209#
1210# -> { "execute": "cont" }
1211# <- { "return": {} }
1212#
1213##
1214{ 'command': 'cont' }
1215
1216##
1217# @x-exit-preconfig:
1218#
1219# Exit from "preconfig" state
1220#
1221# This command makes QEMU exit the preconfig state and proceed with
1222# VM initialization using configuration data provided on the command line
1223# and via the QMP monitor during the preconfig state. The command is only
1224# available during the preconfig state (i.e. when the --preconfig command
1225# line option was in use).
1226#
1227# Since 3.0
1228#
1229# Returns: nothing
1230#
1231# Example:
1232#
1233# -> { "execute": "x-exit-preconfig" }
1234# <- { "return": {} }
1235#
1236##
1237{ 'command': 'x-exit-preconfig', 'allow-preconfig': true }
1238
1239##
1240# @system_wakeup:
1241#
1242# Wake up guest from suspend. If the guest has wake-up from suspend
1243# support enabled (wakeup-suspend-support flag from
1244# query-current-machine), wake-up guest from suspend if the guest is
1245# in SUSPENDED state. Return an error otherwise.
1246#
1247# Since:  1.1
1248#
1249# Returns:  nothing.
1250#
1251# Note: prior to 4.0, this command does nothing in case the guest
1252# isn't suspended.
1253#
1254# Example:
1255#
1256# -> { "execute": "system_wakeup" }
1257# <- { "return": {} }
1258#
1259##
1260{ 'command': 'system_wakeup' }
1261
1262##
1263# @inject-nmi:
1264#
1265# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1266# The command fails when the guest doesn't support injecting.
1267#
1268# Returns:  If successful, nothing
1269#
1270# Since:  0.14.0
1271#
1272# Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1273#
1274# Example:
1275#
1276# -> { "execute": "inject-nmi" }
1277# <- { "return": {} }
1278#
1279##
1280{ 'command': 'inject-nmi' }
1281
1282##
1283# @balloon:
1284#
1285# Request the balloon driver to change its balloon size.
1286#
1287# @value: the target size of the balloon in bytes
1288#
1289# Returns: Nothing on success
1290#          If the balloon driver is enabled but not functional because the KVM
1291#            kernel module cannot support it, KvmMissingCap
1292#          If no balloon device is present, DeviceNotActive
1293#
1294# Notes: This command just issues a request to the guest.  When it returns,
1295#        the balloon size may not have changed.  A guest can change the balloon
1296#        size independent of this command.
1297#
1298# Since: 0.14.0
1299#
1300# Example:
1301#
1302# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1303# <- { "return": {} }
1304#
1305##
1306{ 'command': 'balloon', 'data': {'value': 'int'} }
1307
1308##
1309# @human-monitor-command:
1310#
1311# Execute a command on the human monitor and return the output.
1312#
1313# @command-line: the command to execute in the human monitor
1314#
1315# @cpu-index: The CPU to use for commands that require an implicit CPU
1316#
1317# Returns: the output of the command as a string
1318#
1319# Since: 0.14.0
1320#
1321# Notes: This command only exists as a stop-gap.  Its use is highly
1322#        discouraged.  The semantics of this command are not
1323#        guaranteed: this means that command names, arguments and
1324#        responses can change or be removed at ANY time.  Applications
1325#        that rely on long term stability guarantees should NOT
1326#        use this command.
1327#
1328#        Known limitations:
1329#
1330#        * This command is stateless, this means that commands that depend
1331#          on state information (such as getfd) might not work
1332#
1333#        * Commands that prompt the user for data don't currently work
1334#
1335# Example:
1336#
1337# -> { "execute": "human-monitor-command",
1338#      "arguments": { "command-line": "info kvm" } }
1339# <- { "return": "kvm support: enabled\r\n" }
1340#
1341##
1342{ 'command': 'human-monitor-command',
1343  'data': {'command-line': 'str', '*cpu-index': 'int'},
1344  'returns': 'str' }
1345
1346##
1347# @ObjectPropertyInfo:
1348#
1349# @name: the name of the property
1350#
1351# @type: the type of the property.  This will typically come in one of four
1352#        forms:
1353#
1354#        1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1355#           These types are mapped to the appropriate JSON type.
1356#
1357#        2) A child type in the form 'child<subtype>' where subtype is a qdev
1358#           device type name.  Child properties create the composition tree.
1359#
1360#        3) A link type in the form 'link<subtype>' where subtype is a qdev
1361#           device type name.  Link properties form the device model graph.
1362#
1363# @description: if specified, the description of the property.
1364#
1365# Since: 1.2
1366##
1367{ 'struct': 'ObjectPropertyInfo',
1368  'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
1369
1370##
1371# @qom-list:
1372#
1373# This command will list any properties of a object given a path in the object
1374# model.
1375#
1376# @path: the path within the object model.  See @qom-get for a description of
1377#        this parameter.
1378#
1379# Returns: a list of @ObjectPropertyInfo that describe the properties of the
1380#          object.
1381#
1382# Since: 1.2
1383#
1384# Example:
1385#
1386# -> { "execute": "qom-list",
1387#      "arguments": { "path": "/chardevs" } }
1388# <- { "return": [ { "name": "type", "type": "string" },
1389#                  { "name": "parallel0", "type": "child<chardev-vc>" },
1390#                  { "name": "serial0", "type": "child<chardev-vc>" },
1391#                  { "name": "mon0", "type": "child<chardev-stdio>" } ] }
1392#
1393##
1394{ 'command': 'qom-list',
1395  'data': { 'path': 'str' },
1396  'returns': [ 'ObjectPropertyInfo' ],
1397  'allow-preconfig': true }
1398
1399##
1400# @qom-get:
1401#
1402# This command will get a property from a object model path and return the
1403# value.
1404#
1405# @path: The path within the object model.  There are two forms of supported
1406#        paths--absolute and partial paths.
1407#
1408#        Absolute paths are derived from the root object and can follow child<>
1409#        or link<> properties.  Since they can follow link<> properties, they
1410#        can be arbitrarily long.  Absolute paths look like absolute filenames
1411#        and are prefixed  with a leading slash.
1412#
1413#        Partial paths look like relative filenames.  They do not begin
1414#        with a prefix.  The matching rules for partial paths are subtle but
1415#        designed to make specifying objects easy.  At each level of the
1416#        composition tree, the partial path is matched as an absolute path.
1417#        The first match is not returned.  At least two matches are searched
1418#        for.  A successful result is only returned if only one match is
1419#        found.  If more than one match is found, a flag is return to
1420#        indicate that the match was ambiguous.
1421#
1422# @property: The property name to read
1423#
1424# Returns: The property value.  The type depends on the property
1425#          type. child<> and link<> properties are returned as #str
1426#          pathnames.  All integer property types (u8, u16, etc) are
1427#          returned as #int.
1428#
1429# Since: 1.2
1430#
1431# Example:
1432#
1433# 1. Use absolute path
1434#
1435# -> { "execute": "qom-get",
1436#      "arguments": { "path": "/machine/unattached/device[0]",
1437#                     "property": "hotplugged" } }
1438# <- { "return": false }
1439#
1440# 2. Use partial path
1441#
1442# -> { "execute": "qom-get",
1443#      "arguments": { "path": "unattached/sysbus",
1444#                     "property": "type" } }
1445# <- { "return": "System" }
1446#
1447##
1448{ 'command': 'qom-get',
1449  'data': { 'path': 'str', 'property': 'str' },
1450  'returns': 'any',
1451  'allow-preconfig': true }
1452
1453##
1454# @qom-set:
1455#
1456# This command will set a property from a object model path.
1457#
1458# @path: see @qom-get for a description of this parameter
1459#
1460# @property: the property name to set
1461#
1462# @value: a value who's type is appropriate for the property type.  See @qom-get
1463#         for a description of type mapping.
1464#
1465# Since: 1.2
1466#
1467# Example:
1468#
1469# -> { "execute": "qom-set",
1470#      "arguments": { "path": "/machine",
1471#                     "property": "graphics",
1472#                     "value": false } }
1473# <- { "return": {} }
1474#
1475##
1476{ 'command': 'qom-set',
1477  'data': { 'path': 'str', 'property': 'str', 'value': 'any' },
1478  'allow-preconfig': true }
1479
1480##
1481# @change:
1482#
1483# This command is multiple commands multiplexed together.
1484#
1485# @device: This is normally the name of a block device but it may also be 'vnc'.
1486#          when it's 'vnc', then sub command depends on @target
1487#
1488# @target: If @device is a block device, then this is the new filename.
1489#          If @device is 'vnc', then if the value 'password' selects the vnc
1490#          change password command.   Otherwise, this specifies a new server URI
1491#          address to listen to for VNC connections.
1492#
1493# @arg:    If @device is a block device, then this is an optional format to open
1494#          the device with.
1495#          If @device is 'vnc' and @target is 'password', this is the new VNC
1496#          password to set.  See change-vnc-password for additional notes.
1497#
1498# Returns: Nothing on success.
1499#          If @device is not a valid block device, DeviceNotFound
1500#
1501# Notes:  This interface is deprecated, and it is strongly recommended that you
1502#         avoid using it.  For changing block devices, use
1503#         blockdev-change-medium; for changing VNC parameters, use
1504#         change-vnc-password.
1505#
1506# Since: 0.14.0
1507#
1508# Example:
1509#
1510# 1. Change a removable medium
1511#
1512# -> { "execute": "change",
1513#      "arguments": { "device": "ide1-cd0",
1514#                     "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1515# <- { "return": {} }
1516#
1517# 2. Change VNC password
1518#
1519# -> { "execute": "change",
1520#      "arguments": { "device": "vnc", "target": "password",
1521#                     "arg": "foobar1" } }
1522# <- { "return": {} }
1523#
1524##
1525{ 'command': 'change',
1526  'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1527
1528##
1529# @ObjectTypeInfo:
1530#
1531# This structure describes a search result from @qom-list-types
1532#
1533# @name: the type name found in the search
1534#
1535# @abstract: the type is abstract and can't be directly instantiated.
1536#            Omitted if false. (since 2.10)
1537#
1538# @parent: Name of parent type, if any (since 2.10)
1539#
1540# Since: 1.1
1541##
1542{ 'struct': 'ObjectTypeInfo',
1543  'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1544
1545##
1546# @qom-list-types:
1547#
1548# This command will return a list of types given search parameters
1549#
1550# @implements: if specified, only return types that implement this type name
1551#
1552# @abstract: if true, include abstract types in the results
1553#
1554# Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1555#
1556# Since: 1.1
1557##
1558{ 'command': 'qom-list-types',
1559  'data': { '*implements': 'str', '*abstract': 'bool' },
1560  'returns': [ 'ObjectTypeInfo' ],
1561  'allow-preconfig': true }
1562
1563##
1564# @device-list-properties:
1565#
1566# List properties associated with a device.
1567#
1568# @typename: the type name of a device
1569#
1570# Returns: a list of ObjectPropertyInfo describing a devices properties
1571#
1572# Note: objects can create properties at runtime, for example to describe
1573# links between different devices and/or objects. These properties
1574# are not included in the output of this command.
1575#
1576# Since: 1.2
1577##
1578{ 'command': 'device-list-properties',
1579  'data': { 'typename': 'str'},
1580  'returns': [ 'ObjectPropertyInfo' ] }
1581
1582##
1583# @qom-list-properties:
1584#
1585# List properties associated with a QOM object.
1586#
1587# @typename: the type name of an object
1588#
1589# Note: objects can create properties at runtime, for example to describe
1590# links between different devices and/or objects. These properties
1591# are not included in the output of this command.
1592#
1593# Returns: a list of ObjectPropertyInfo describing object properties
1594#
1595# Since: 2.12
1596##
1597{ 'command': 'qom-list-properties',
1598  'data': { 'typename': 'str'},
1599  'returns': [ 'ObjectPropertyInfo' ],
1600  'allow-preconfig': true }
1601
1602##
1603# @xen-set-global-dirty-log:
1604#
1605# Enable or disable the global dirty log mode.
1606#
1607# @enable: true to enable, false to disable.
1608#
1609# Returns: nothing
1610#
1611# Since: 1.3
1612#
1613# Example:
1614#
1615# -> { "execute": "xen-set-global-dirty-log",
1616#      "arguments": { "enable": true } }
1617# <- { "return": {} }
1618#
1619##
1620{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1621
1622##
1623# @device_add:
1624#
1625# @driver: the name of the new device's driver
1626#
1627# @bus: the device's parent bus (device tree path)
1628#
1629# @id: the device's ID, must be unique
1630#
1631# Additional arguments depend on the type.
1632#
1633# Add a device.
1634#
1635# Notes:
1636# 1. For detailed information about this command, please refer to the
1637#    'docs/qdev-device-use.txt' file.
1638#
1639# 2. It's possible to list device properties by running QEMU with the
1640#    "-device DEVICE,help" command-line argument, where DEVICE is the
1641#    device's name
1642#
1643# Example:
1644#
1645# -> { "execute": "device_add",
1646#      "arguments": { "driver": "e1000", "id": "net1",
1647#                     "bus": "pci.0",
1648#                     "mac": "52:54:00:12:34:56" } }
1649# <- { "return": {} }
1650#
1651# TODO: This command effectively bypasses QAPI completely due to its
1652# "additional arguments" business.  It shouldn't have been added to
1653# the schema in this form.  It should be qapified properly, or
1654# replaced by a properly qapified command.
1655#
1656# Since: 0.13
1657##
1658{ 'command': 'device_add',
1659  'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1660  'gen': false } # so we can get the additional arguments
1661
1662##
1663# @device_del:
1664#
1665# Remove a device from a guest
1666#
1667# @id: the device's ID or QOM path
1668#
1669# Returns: Nothing on success
1670#          If @id is not a valid device, DeviceNotFound
1671#
1672# Notes: When this command completes, the device may not be removed from the
1673#        guest.  Hot removal is an operation that requires guest cooperation.
1674#        This command merely requests that the guest begin the hot removal
1675#        process.  Completion of the device removal process is signaled with a
1676#        DEVICE_DELETED event. Guest reset will automatically complete removal
1677#        for all devices.
1678#
1679# Since: 0.14.0
1680#
1681# Example:
1682#
1683# -> { "execute": "device_del",
1684#      "arguments": { "id": "net1" } }
1685# <- { "return": {} }
1686#
1687# -> { "execute": "device_del",
1688#      "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1689# <- { "return": {} }
1690#
1691##
1692{ 'command': 'device_del', 'data': {'id': 'str'} }
1693
1694##
1695# @DEVICE_DELETED:
1696#
1697# Emitted whenever the device removal completion is acknowledged by the guest.
1698# At this point, it's safe to reuse the specified device ID. Device removal can
1699# be initiated by the guest or by HMP/QMP commands.
1700#
1701# @device: device name
1702#
1703# @path: device path
1704#
1705# Since: 1.5
1706#
1707# Example:
1708#
1709# <- { "event": "DEVICE_DELETED",
1710#      "data": { "device": "virtio-net-pci-0",
1711#                "path": "/machine/peripheral/virtio-net-pci-0" },
1712#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1713#
1714##
1715{ 'event': 'DEVICE_DELETED',
1716  'data': { '*device': 'str', 'path': 'str' } }
1717
1718##
1719# @DumpGuestMemoryFormat:
1720#
1721# An enumeration of guest-memory-dump's format.
1722#
1723# @elf: elf format
1724#
1725# @kdump-zlib: kdump-compressed format with zlib-compressed
1726#
1727# @kdump-lzo: kdump-compressed format with lzo-compressed
1728#
1729# @kdump-snappy: kdump-compressed format with snappy-compressed
1730#
1731# @win-dmp: Windows full crashdump format,
1732#           can be used instead of ELF converting (since 2.13)
1733#
1734# Since: 2.0
1735##
1736{ 'enum': 'DumpGuestMemoryFormat',
1737  'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy', 'win-dmp' ] }
1738
1739##
1740# @dump-guest-memory:
1741#
1742# Dump guest's memory to vmcore. It is a synchronous operation that can take
1743# very long depending on the amount of guest memory.
1744#
1745# @paging: if true, do paging to get guest's memory mapping. This allows
1746#          using gdb to process the core file.
1747#
1748#          IMPORTANT: this option can make QEMU allocate several gigabytes
1749#                     of RAM. This can happen for a large guest, or a
1750#                     malicious guest pretending to be large.
1751#
1752#          Also, paging=true has the following limitations:
1753#
1754#             1. The guest may be in a catastrophic state or can have corrupted
1755#                memory, which cannot be trusted
1756#             2. The guest can be in real-mode even if paging is enabled. For
1757#                example, the guest uses ACPI to sleep, and ACPI sleep state
1758#                goes in real-mode
1759#             3. Currently only supported on i386 and x86_64.
1760#
1761# @protocol: the filename or file descriptor of the vmcore. The supported
1762#            protocols are:
1763#
1764#            1. file: the protocol starts with "file:", and the following
1765#               string is the file's path.
1766#            2. fd: the protocol starts with "fd:", and the following string
1767#               is the fd's name.
1768#
1769# @detach: if true, QMP will return immediately rather than
1770#          waiting for the dump to finish. The user can track progress
1771#          using "query-dump". (since 2.6).
1772#
1773# @begin: if specified, the starting physical address.
1774#
1775# @length: if specified, the memory size, in bytes. If you don't
1776#          want to dump all guest's memory, please specify the start @begin
1777#          and @length
1778#
1779# @format: if specified, the format of guest memory dump. But non-elf
1780#          format is conflict with paging and filter, ie. @paging, @begin and
1781#          @length is not allowed to be specified with non-elf @format at the
1782#          same time (since 2.0)
1783#
1784# Note: All boolean arguments default to false
1785#
1786# Returns: nothing on success
1787#
1788# Since: 1.2
1789#
1790# Example:
1791#
1792# -> { "execute": "dump-guest-memory",
1793#      "arguments": { "protocol": "fd:dump" } }
1794# <- { "return": {} }
1795#
1796##
1797{ 'command': 'dump-guest-memory',
1798  'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1799            '*begin': 'int', '*length': 'int',
1800            '*format': 'DumpGuestMemoryFormat'} }
1801
1802##
1803# @DumpStatus:
1804#
1805# Describe the status of a long-running background guest memory dump.
1806#
1807# @none: no dump-guest-memory has started yet.
1808#
1809# @active: there is one dump running in background.
1810#
1811# @completed: the last dump has finished successfully.
1812#
1813# @failed: the last dump has failed.
1814#
1815# Since: 2.6
1816##
1817{ 'enum': 'DumpStatus',
1818  'data': [ 'none', 'active', 'completed', 'failed' ] }
1819
1820##
1821# @DumpQueryResult:
1822#
1823# The result format for 'query-dump'.
1824#
1825# @status: enum of @DumpStatus, which shows current dump status
1826#
1827# @completed: bytes written in latest dump (uncompressed)
1828#
1829# @total: total bytes to be written in latest dump (uncompressed)
1830#
1831# Since: 2.6
1832##
1833{ 'struct': 'DumpQueryResult',
1834  'data': { 'status': 'DumpStatus',
1835            'completed': 'int',
1836            'total': 'int' } }
1837
1838##
1839# @query-dump:
1840#
1841# Query latest dump status.
1842#
1843# Returns: A @DumpStatus object showing the dump status.
1844#
1845# Since: 2.6
1846#
1847# Example:
1848#
1849# -> { "execute": "query-dump" }
1850# <- { "return": { "status": "active", "completed": 1024000,
1851#                  "total": 2048000 } }
1852#
1853##
1854{ 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1855
1856##
1857# @DUMP_COMPLETED:
1858#
1859# Emitted when background dump has completed
1860#
1861# @result: final dump status
1862#
1863# @error: human-readable error string that provides
1864#         hint on why dump failed. Only presents on failure. The
1865#         user should not try to interpret the error string.
1866#
1867# Since: 2.6
1868#
1869# Example:
1870#
1871# { "event": "DUMP_COMPLETED",
1872#   "data": {"result": {"total": 1090650112, "status": "completed",
1873#                       "completed": 1090650112} } }
1874#
1875##
1876{ 'event': 'DUMP_COMPLETED' ,
1877  'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1878
1879##
1880# @DumpGuestMemoryCapability:
1881#
1882# A list of the available formats for dump-guest-memory
1883#
1884# Since: 2.0
1885##
1886{ 'struct': 'DumpGuestMemoryCapability',
1887  'data': {
1888      'formats': ['DumpGuestMemoryFormat'] } }
1889
1890##
1891# @query-dump-guest-memory-capability:
1892#
1893# Returns the available formats for dump-guest-memory
1894#
1895# Returns:  A @DumpGuestMemoryCapability object listing available formats for
1896#           dump-guest-memory
1897#
1898# Since: 2.0
1899#
1900# Example:
1901#
1902# -> { "execute": "query-dump-guest-memory-capability" }
1903# <- { "return": { "formats":
1904#                  ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1905#
1906##
1907{ 'command': 'query-dump-guest-memory-capability',
1908  'returns': 'DumpGuestMemoryCapability' }
1909
1910##
1911# @object-add:
1912#
1913# Create a QOM object.
1914#
1915# @qom-type: the class name for the object to be created
1916#
1917# @id: the name of the new object
1918#
1919# @props: a dictionary of properties to be passed to the backend
1920#
1921# Returns: Nothing on success
1922#          Error if @qom-type is not a valid class name
1923#
1924# Since: 2.0
1925#
1926# Example:
1927#
1928# -> { "execute": "object-add",
1929#      "arguments": { "qom-type": "rng-random", "id": "rng1",
1930#                     "props": { "filename": "/dev/hwrng" } } }
1931# <- { "return": {} }
1932#
1933##
1934{ 'command': 'object-add',
1935  'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1936
1937##
1938# @object-del:
1939#
1940# Remove a QOM object.
1941#
1942# @id: the name of the QOM object to remove
1943#
1944# Returns: Nothing on success
1945#          Error if @id is not a valid id for a QOM object
1946#
1947# Since: 2.0
1948#
1949# Example:
1950#
1951# -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1952# <- { "return": {} }
1953#
1954##
1955{ 'command': 'object-del', 'data': {'id': 'str'} }
1956
1957##
1958# @getfd:
1959#
1960# Receive a file descriptor via SCM rights and assign it a name
1961#
1962# @fdname: file descriptor name
1963#
1964# Returns: Nothing on success
1965#
1966# Since: 0.14.0
1967#
1968# Notes: If @fdname already exists, the file descriptor assigned to
1969#        it will be closed and replaced by the received file
1970#        descriptor.
1971#
1972#        The 'closefd' command can be used to explicitly close the
1973#        file descriptor when it is no longer needed.
1974#
1975# Example:
1976#
1977# -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1978# <- { "return": {} }
1979#
1980##
1981{ 'command': 'getfd', 'data': {'fdname': 'str'} }
1982
1983##
1984# @closefd:
1985#
1986# Close a file descriptor previously passed via SCM rights
1987#
1988# @fdname: file descriptor name
1989#
1990# Returns: Nothing on success
1991#
1992# Since: 0.14.0
1993#
1994# Example:
1995#
1996# -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1997# <- { "return": {} }
1998#
1999##
2000{ 'command': 'closefd', 'data': {'fdname': 'str'} }
2001
2002##
2003# @MachineInfo:
2004#
2005# Information describing a machine.
2006#
2007# @name: the name of the machine
2008#
2009# @alias: an alias for the machine name
2010#
2011# @is-default: whether the machine is default
2012#
2013# @cpu-max: maximum number of CPUs supported by the machine type
2014#           (since 1.5.0)
2015#
2016# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
2017#
2018# Since: 1.2.0
2019##
2020{ 'struct': 'MachineInfo',
2021  'data': { 'name': 'str', '*alias': 'str',
2022            '*is-default': 'bool', 'cpu-max': 'int',
2023            'hotpluggable-cpus': 'bool'} }
2024
2025##
2026# @query-machines:
2027#
2028# Return a list of supported machines
2029#
2030# Returns: a list of MachineInfo
2031#
2032# Since: 1.2.0
2033##
2034{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
2035
2036##
2037# @CurrentMachineParams:
2038#
2039# Information describing the running machine parameters.
2040#
2041# @wakeup-suspend-support: true if the machine supports wake up from
2042#                          suspend
2043#
2044# Since: 4.0
2045##
2046{ 'struct': 'CurrentMachineParams',
2047  'data': { 'wakeup-suspend-support': 'bool'} }
2048
2049##
2050# @query-current-machine:
2051#
2052# Return information on the current virtual machine.
2053#
2054# Returns: CurrentMachineParams
2055#
2056# Since: 4.0
2057##
2058{ 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
2059
2060##
2061# @MemoryInfo:
2062#
2063# Actual memory information in bytes.
2064#
2065# @base-memory: size of "base" memory specified with command line
2066#               option -m.
2067#
2068# @plugged-memory: size of memory that can be hot-unplugged. This field
2069#                  is omitted if target doesn't support memory hotplug
2070#                  (i.e. CONFIG_MEM_DEVICE not defined at build time).
2071#
2072# Since: 2.11.0
2073##
2074{ 'struct': 'MemoryInfo',
2075  'data'  : { 'base-memory': 'size', '*plugged-memory': 'size' } }
2076
2077##
2078# @query-memory-size-summary:
2079#
2080# Return the amount of initially allocated and present hotpluggable (if
2081# enabled) memory in bytes.
2082#
2083# Example:
2084#
2085# -> { "execute": "query-memory-size-summary" }
2086# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
2087#
2088# Since: 2.11.0
2089##
2090{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
2091
2092
2093##
2094# @CpuModelInfo:
2095#
2096# Virtual CPU model.
2097#
2098# A CPU model consists of the name of a CPU definition, to which
2099# delta changes are applied (e.g. features added/removed). Most magic values
2100# that an architecture might require should be hidden behind the name.
2101# However, if required, architectures can expose relevant properties.
2102#
2103# @name: the name of the CPU definition the model is based on
2104# @props: a dictionary of QOM properties to be applied
2105#
2106# Since: 2.8.0
2107##
2108{ 'struct': 'CpuModelInfo',
2109  'data': { 'name': 'str',
2110            '*props': 'any' } }
2111
2112##
2113# @CpuModelExpansionType:
2114#
2115# An enumeration of CPU model expansion types.
2116#
2117# @static: Expand to a static CPU model, a combination of a static base
2118#          model name and property delta changes. As the static base model will
2119#          never change, the expanded CPU model will be the same, independent of
2120#          QEMU version, machine type, machine options, and accelerator options.
2121#          Therefore, the resulting model can be used by tooling without having
2122#          to specify a compatibility machine - e.g. when displaying the "host"
2123#          model. The @static CPU models are migration-safe.
2124
2125# @full: Expand all properties. The produced model is not guaranteed to be
2126#        migration-safe, but allows tooling to get an insight and work with
2127#        model details.
2128#
2129# Note: When a non-migration-safe CPU model is expanded in static mode, some
2130# features enabled by the CPU model may be omitted, because they can't be
2131# implemented by a static CPU model definition (e.g. cache info passthrough and
2132# PMU passthrough in x86). If you need an accurate representation of the
2133# features enabled by a non-migration-safe CPU model, use @full. If you need a
2134# static representation that will keep ABI compatibility even when changing QEMU
2135# version or machine-type, use @static (but keep in mind that some features may
2136# be omitted).
2137#
2138# Since: 2.8.0
2139##
2140{ 'enum': 'CpuModelExpansionType',
2141  'data': [ 'static', 'full' ] }
2142
2143
2144##
2145# @CpuModelCompareResult:
2146#
2147# An enumeration of CPU model comparison results. The result is usually
2148# calculated using e.g. CPU features or CPU generations.
2149#
2150# @incompatible: If model A is incompatible to model B, model A is not
2151#                guaranteed to run where model B runs and the other way around.
2152#
2153# @identical: If model A is identical to model B, model A is guaranteed to run
2154#             where model B runs and the other way around.
2155#
2156# @superset: If model A is a superset of model B, model B is guaranteed to run
2157#            where model A runs. There are no guarantees about the other way.
2158#
2159# @subset: If model A is a subset of model B, model A is guaranteed to run
2160#          where model B runs. There are no guarantees about the other way.
2161#
2162# Since: 2.8.0
2163##
2164{ 'enum': 'CpuModelCompareResult',
2165  'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2166
2167##
2168# @AddfdInfo:
2169#
2170# Information about a file descriptor that was added to an fd set.
2171#
2172# @fdset-id: The ID of the fd set that @fd was added to.
2173#
2174# @fd: The file descriptor that was received via SCM rights and
2175#      added to the fd set.
2176#
2177# Since: 1.2.0
2178##
2179{ 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2180
2181##
2182# @add-fd:
2183#
2184# Add a file descriptor, that was passed via SCM rights, to an fd set.
2185#
2186# @fdset-id: The ID of the fd set to add the file descriptor to.
2187#
2188# @opaque: A free-form string that can be used to describe the fd.
2189#
2190# Returns: @AddfdInfo on success
2191#
2192#          If file descriptor was not received, FdNotSupplied
2193#
2194#          If @fdset-id is a negative value, InvalidParameterValue
2195#
2196# Notes: The list of fd sets is shared by all monitor connections.
2197#
2198#        If @fdset-id is not specified, a new fd set will be created.
2199#
2200# Since: 1.2.0
2201#
2202# Example:
2203#
2204# -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2205# <- { "return": { "fdset-id": 1, "fd": 3 } }
2206#
2207##
2208{ 'command': 'add-fd',
2209  'data': { '*fdset-id': 'int',
2210            '*opaque': 'str' },
2211  'returns': 'AddfdInfo' }
2212
2213##
2214# @remove-fd:
2215#
2216# Remove a file descriptor from an fd set.
2217#
2218# @fdset-id: The ID of the fd set that the file descriptor belongs to.
2219#
2220# @fd: The file descriptor that is to be removed.
2221#
2222# Returns: Nothing on success
2223#          If @fdset-id or @fd is not found, FdNotFound
2224#
2225# Since: 1.2.0
2226#
2227# Notes: The list of fd sets is shared by all monitor connections.
2228#
2229#        If @fd is not specified, all file descriptors in @fdset-id
2230#        will be removed.
2231#
2232# Example:
2233#
2234# -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2235# <- { "return": {} }
2236#
2237##
2238{ 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2239
2240##
2241# @FdsetFdInfo:
2242#
2243# Information about a file descriptor that belongs to an fd set.
2244#
2245# @fd: The file descriptor value.
2246#
2247# @opaque: A free-form string that can be used to describe the fd.
2248#
2249# Since: 1.2.0
2250##
2251{ 'struct': 'FdsetFdInfo',
2252  'data': {'fd': 'int', '*opaque': 'str'} }
2253
2254##
2255# @FdsetInfo:
2256#
2257# Information about an fd set.
2258#
2259# @fdset-id: The ID of the fd set.
2260#
2261# @fds: A list of file descriptors that belong to this fd set.
2262#
2263# Since: 1.2.0
2264##
2265{ 'struct': 'FdsetInfo',
2266  'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2267
2268##
2269# @query-fdsets:
2270#
2271# Return information describing all fd sets.
2272#
2273# Returns: A list of @FdsetInfo
2274#
2275# Since: 1.2.0
2276#
2277# Note: The list of fd sets is shared by all monitor connections.
2278#
2279# Example:
2280#
2281# -> { "execute": "query-fdsets" }
2282# <- { "return": [
2283#        {
2284#          "fds": [
2285#            {
2286#              "fd": 30,
2287#              "opaque": "rdonly:/path/to/file"
2288#            },
2289#            {
2290#              "fd": 24,
2291#              "opaque": "rdwr:/path/to/file"
2292#            }
2293#          ],
2294#          "fdset-id": 1
2295#        },
2296#        {
2297#          "fds": [
2298#            {
2299#              "fd": 28
2300#            },
2301#            {
2302#              "fd": 29
2303#            }
2304#          ],
2305#          "fdset-id": 0
2306#        }
2307#      ]
2308#    }
2309#
2310##
2311{ 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2312
2313##
2314# @TargetInfo:
2315#
2316# Information describing the QEMU target.
2317#
2318# @arch: the target architecture
2319#
2320# Since: 1.2.0
2321##
2322{ 'struct': 'TargetInfo',
2323  'data': { 'arch': 'SysEmuTarget' } }
2324
2325##
2326# @query-target:
2327#
2328# Return information about the target for this QEMU
2329#
2330# Returns: TargetInfo
2331#
2332# Since: 1.2.0
2333##
2334{ 'command': 'query-target', 'returns': 'TargetInfo' }
2335
2336##
2337# @AcpiTableOptions:
2338#
2339# Specify an ACPI table on the command line to load.
2340#
2341# At most one of @file and @data can be specified. The list of files specified
2342# by any one of them is loaded and concatenated in order. If both are omitted,
2343# @data is implied.
2344#
2345# Other fields / optargs can be used to override fields of the generic ACPI
2346# table header; refer to the ACPI specification 5.0, section 5.2.6 System
2347# Description Table Header. If a header field is not overridden, then the
2348# corresponding value from the concatenated blob is used (in case of @file), or
2349# it is filled in with a hard-coded value (in case of @data).
2350#
2351# String fields are copied into the matching ACPI member from lowest address
2352# upwards, and silently truncated / NUL-padded to length.
2353#
2354# @sig: table signature / identifier (4 bytes)
2355#
2356# @rev: table revision number (dependent on signature, 1 byte)
2357#
2358# @oem_id: OEM identifier (6 bytes)
2359#
2360# @oem_table_id: OEM table identifier (8 bytes)
2361#
2362# @oem_rev: OEM-supplied revision number (4 bytes)
2363#
2364# @asl_compiler_id: identifier of the utility that created the table
2365#                   (4 bytes)
2366#
2367# @asl_compiler_rev: revision number of the utility that created the
2368#                    table (4 bytes)
2369#
2370# @file: colon (:) separated list of pathnames to load and
2371#        concatenate as table data. The resultant binary blob is expected to
2372#        have an ACPI table header. At least one file is required. This field
2373#        excludes @data.
2374#
2375# @data: colon (:) separated list of pathnames to load and
2376#        concatenate as table data. The resultant binary blob must not have an
2377#        ACPI table header. At least one file is required. This field excludes
2378#        @file.
2379#
2380# Since: 1.5
2381##
2382{ 'struct': 'AcpiTableOptions',
2383  'data': {
2384    '*sig':               'str',
2385    '*rev':               'uint8',
2386    '*oem_id':            'str',
2387    '*oem_table_id':      'str',
2388    '*oem_rev':           'uint32',
2389    '*asl_compiler_id':   'str',
2390    '*asl_compiler_rev':  'uint32',
2391    '*file':              'str',
2392    '*data':              'str' }}
2393
2394##
2395# @CommandLineParameterType:
2396#
2397# Possible types for an option parameter.
2398#
2399# @string: accepts a character string
2400#
2401# @boolean: accepts "on" or "off"
2402#
2403# @number: accepts a number
2404#
2405# @size: accepts a number followed by an optional suffix (K)ilo,
2406#        (M)ega, (G)iga, (T)era
2407#
2408# Since: 1.5
2409##
2410{ 'enum': 'CommandLineParameterType',
2411  'data': ['string', 'boolean', 'number', 'size'] }
2412
2413##
2414# @CommandLineParameterInfo:
2415#
2416# Details about a single parameter of a command line option.
2417#
2418# @name: parameter name
2419#
2420# @type: parameter @CommandLineParameterType
2421#
2422# @help: human readable text string, not suitable for parsing.
2423#
2424# @default: default value string (since 2.1)
2425#
2426# Since: 1.5
2427##
2428{ 'struct': 'CommandLineParameterInfo',
2429  'data': { 'name': 'str',
2430            'type': 'CommandLineParameterType',
2431            '*help': 'str',
2432            '*default': 'str' } }
2433
2434##
2435# @CommandLineOptionInfo:
2436#
2437# Details about a command line option, including its list of parameter details
2438#
2439# @option: option name
2440#
2441# @parameters: an array of @CommandLineParameterInfo
2442#
2443# Since: 1.5
2444##
2445{ 'struct': 'CommandLineOptionInfo',
2446  'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2447
2448##
2449# @query-command-line-options:
2450#
2451# Query command line option schema.
2452#
2453# @option: option name
2454#
2455# Returns: list of @CommandLineOptionInfo for all options (or for the given
2456#          @option).  Returns an error if the given @option doesn't exist.
2457#
2458# Since: 1.5
2459#
2460# Example:
2461#
2462# -> { "execute": "query-command-line-options",
2463#      "arguments": { "option": "option-rom" } }
2464# <- { "return": [
2465#         {
2466#             "parameters": [
2467#                 {
2468#                     "name": "romfile",
2469#                     "type": "string"
2470#                 },
2471#                 {
2472#                     "name": "bootindex",
2473#                     "type": "number"
2474#                 }
2475#             ],
2476#             "option": "option-rom"
2477#         }
2478#      ]
2479#    }
2480#
2481##
2482{'command': 'query-command-line-options',
2483 'data': { '*option': 'str' },
2484 'returns': ['CommandLineOptionInfo'],
2485 'allow-preconfig': true }
2486
2487##
2488# @X86CPURegister32:
2489#
2490# A X86 32-bit register
2491#
2492# Since: 1.5
2493##
2494{ 'enum': 'X86CPURegister32',
2495  'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2496
2497##
2498# @X86CPUFeatureWordInfo:
2499#
2500# Information about a X86 CPU feature word
2501#
2502# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2503#
2504# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2505#                   feature word
2506#
2507# @cpuid-register: Output register containing the feature bits
2508#
2509# @features: value of output register, containing the feature bits
2510#
2511# Since: 1.5
2512##
2513{ 'struct': 'X86CPUFeatureWordInfo',
2514  'data': { 'cpuid-input-eax': 'int',
2515            '*cpuid-input-ecx': 'int',
2516            'cpuid-register': 'X86CPURegister32',
2517            'features': 'int' } }
2518
2519##
2520# @DummyForceArrays:
2521#
2522# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2523#
2524# Since: 2.5
2525##
2526{ 'struct': 'DummyForceArrays',
2527  'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2528
2529
2530##
2531# @NumaOptionsType:
2532#
2533# @node: NUMA nodes configuration
2534#
2535# @dist: NUMA distance configuration (since 2.10)
2536#
2537# @cpu: property based CPU(s) to node mapping (Since: 2.10)
2538#
2539# Since: 2.1
2540##
2541{ 'enum': 'NumaOptionsType',
2542  'data': [ 'node', 'dist', 'cpu' ] }
2543
2544##
2545# @NumaOptions:
2546#
2547# A discriminated record of NUMA options. (for OptsVisitor)
2548#
2549# Since: 2.1
2550##
2551{ 'union': 'NumaOptions',
2552  'base': { 'type': 'NumaOptionsType' },
2553  'discriminator': 'type',
2554  'data': {
2555    'node': 'NumaNodeOptions',
2556    'dist': 'NumaDistOptions',
2557    'cpu': 'NumaCpuOptions' }}
2558
2559##
2560# @NumaNodeOptions:
2561#
2562# Create a guest NUMA node. (for OptsVisitor)
2563#
2564# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2565#
2566# @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2567#         if omitted)
2568#
2569# @mem: memory size of this node; mutually exclusive with @memdev.
2570#       Equally divide total memory among nodes if both @mem and @memdev are
2571#       omitted.
2572#
2573# @memdev: memory backend object.  If specified for one node,
2574#          it must be specified for all nodes.
2575#
2576# Since: 2.1
2577##
2578{ 'struct': 'NumaNodeOptions',
2579  'data': {
2580   '*nodeid': 'uint16',
2581   '*cpus':   ['uint16'],
2582   '*mem':    'size',
2583   '*memdev': 'str' }}
2584
2585##
2586# @NumaDistOptions:
2587#
2588# Set the distance between 2 NUMA nodes.
2589#
2590# @src: source NUMA node.
2591#
2592# @dst: destination NUMA node.
2593#
2594# @val: NUMA distance from source node to destination node.
2595#       When a node is unreachable from another node, set the distance
2596#       between them to 255.
2597#
2598# Since: 2.10
2599##
2600{ 'struct': 'NumaDistOptions',
2601  'data': {
2602   'src': 'uint16',
2603   'dst': 'uint16',
2604   'val': 'uint8' }}
2605
2606##
2607# @NumaCpuOptions:
2608#
2609# Option "-numa cpu" overrides default cpu to node mapping.
2610# It accepts the same set of cpu properties as returned by
2611# query-hotpluggable-cpus[].props, where node-id could be used to
2612# override default node mapping.
2613#
2614# Since: 2.10
2615##
2616{ 'struct': 'NumaCpuOptions',
2617   'base': 'CpuInstanceProperties',
2618   'data' : {} }
2619
2620##
2621# @HostMemPolicy:
2622#
2623# Host memory policy types
2624#
2625# @default: restore default policy, remove any nondefault policy
2626#
2627# @preferred: set the preferred host nodes for allocation
2628#
2629# @bind: a strict policy that restricts memory allocation to the
2630#        host nodes specified
2631#
2632# @interleave: memory allocations are interleaved across the set
2633#              of host nodes specified
2634#
2635# Since: 2.1
2636##
2637{ 'enum': 'HostMemPolicy',
2638  'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2639
2640##
2641# @Memdev:
2642#
2643# Information about memory backend
2644#
2645# @id: backend's ID if backend has 'id' property (since 2.9)
2646#
2647# @size: memory backend size
2648#
2649# @merge: enables or disables memory merge support
2650#
2651# @dump: includes memory backend's memory in a core dump or not
2652#
2653# @prealloc: enables or disables memory preallocation
2654#
2655# @host-nodes: host nodes for its memory policy
2656#
2657# @policy: memory policy of memory backend
2658#
2659# Since: 2.1
2660##
2661{ 'struct': 'Memdev',
2662  'data': {
2663    '*id':        'str',
2664    'size':       'size',
2665    'merge':      'bool',
2666    'dump':       'bool',
2667    'prealloc':   'bool',
2668    'host-nodes': ['uint16'],
2669    'policy':     'HostMemPolicy' }}
2670
2671##
2672# @query-memdev:
2673#
2674# Returns information for all memory backends.
2675#
2676# Returns: a list of @Memdev.
2677#
2678# Since: 2.1
2679#
2680# Example:
2681#
2682# -> { "execute": "query-memdev" }
2683# <- { "return": [
2684#        {
2685#          "id": "mem1",
2686#          "size": 536870912,
2687#          "merge": false,
2688#          "dump": true,
2689#          "prealloc": false,
2690#          "host-nodes": [0, 1],
2691#          "policy": "bind"
2692#        },
2693#        {
2694#          "size": 536870912,
2695#          "merge": false,
2696#          "dump": true,
2697#          "prealloc": true,
2698#          "host-nodes": [2, 3],
2699#          "policy": "preferred"
2700#        }
2701#      ]
2702#    }
2703#
2704##
2705{ 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
2706
2707##
2708# @PCDIMMDeviceInfo:
2709#
2710# PCDIMMDevice state information
2711#
2712# @id: device's ID
2713#
2714# @addr: physical address, where device is mapped
2715#
2716# @size: size of memory that the device provides
2717#
2718# @slot: slot number at which device is plugged in
2719#
2720# @node: NUMA node number where device is plugged in
2721#
2722# @memdev: memory backend linked with device
2723#
2724# @hotplugged: true if device was hotplugged
2725#
2726# @hotpluggable: true if device if could be added/removed while machine is running
2727#
2728# Since: 2.1
2729##
2730{ 'struct': 'PCDIMMDeviceInfo',
2731  'data': { '*id': 'str',
2732            'addr': 'int',
2733            'size': 'int',
2734            'slot': 'int',
2735            'node': 'int',
2736            'memdev': 'str',
2737            'hotplugged': 'bool',
2738            'hotpluggable': 'bool'
2739          }
2740}
2741
2742##
2743# @MemoryDeviceInfo:
2744#
2745# Union containing information about a memory device
2746#
2747# Since: 2.1
2748##
2749{ 'union': 'MemoryDeviceInfo',
2750  'data': { 'dimm': 'PCDIMMDeviceInfo',
2751            'nvdimm': 'PCDIMMDeviceInfo'
2752          }
2753}
2754
2755##
2756# @query-memory-devices:
2757#
2758# Lists available memory devices and their state
2759#
2760# Since: 2.1
2761#
2762# Example:
2763#
2764# -> { "execute": "query-memory-devices" }
2765# <- { "return": [ { "data":
2766#                       { "addr": 5368709120,
2767#                         "hotpluggable": true,
2768#                         "hotplugged": true,
2769#                         "id": "d1",
2770#                         "memdev": "/objects/memX",
2771#                         "node": 0,
2772#                         "size": 1073741824,
2773#                         "slot": 0},
2774#                    "type": "dimm"
2775#                  } ] }
2776#
2777##
2778{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2779
2780##
2781# @MEM_UNPLUG_ERROR:
2782#
2783# Emitted when memory hot unplug error occurs.
2784#
2785# @device: device name
2786#
2787# @msg: Informative message
2788#
2789# Since: 2.4
2790#
2791# Example:
2792#
2793# <- { "event": "MEM_UNPLUG_ERROR"
2794#      "data": { "device": "dimm1",
2795#                "msg": "acpi: device unplug for unsupported device"
2796#      },
2797#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2798#
2799##
2800{ 'event': 'MEM_UNPLUG_ERROR',
2801  'data': { 'device': 'str', 'msg': 'str' } }
2802
2803##
2804# @ACPISlotType:
2805#
2806# @DIMM: memory slot
2807# @CPU: logical CPU slot (since 2.7)
2808##
2809{ 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
2810
2811##
2812# @ACPIOSTInfo:
2813#
2814# OSPM Status Indication for a device
2815# For description of possible values of @source and @status fields
2816# see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
2817#
2818# @device: device ID associated with slot
2819#
2820# @slot: slot ID, unique per slot of a given @slot-type
2821#
2822# @slot-type: type of the slot
2823#
2824# @source: an integer containing the source event
2825#
2826# @status: an integer containing the status code
2827#
2828# Since: 2.1
2829##
2830{ 'struct': 'ACPIOSTInfo',
2831  'data'  : { '*device': 'str',
2832              'slot': 'str',
2833              'slot-type': 'ACPISlotType',
2834              'source': 'int',
2835              'status': 'int' } }
2836
2837##
2838# @query-acpi-ospm-status:
2839#
2840# Return a list of ACPIOSTInfo for devices that support status
2841# reporting via ACPI _OST method.
2842#
2843# Since: 2.1
2844#
2845# Example:
2846#
2847# -> { "execute": "query-acpi-ospm-status" }
2848# <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
2849#                  { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
2850#                  { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
2851#                  { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
2852#    ]}
2853#
2854##
2855{ 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
2856
2857##
2858# @ACPI_DEVICE_OST:
2859#
2860# Emitted when guest executes ACPI _OST method.
2861#
2862# @info: OSPM Status Indication
2863#
2864# Since: 2.1
2865#
2866# Example:
2867#
2868# <- { "event": "ACPI_DEVICE_OST",
2869#      "data": { "device": "d1", "slot": "0",
2870#                "slot-type": "DIMM", "source": 1, "status": 0 } }
2871#
2872##
2873{ 'event': 'ACPI_DEVICE_OST',
2874     'data': { 'info': 'ACPIOSTInfo' } }
2875
2876##
2877# @RTC_CHANGE:
2878#
2879# Emitted when the guest changes the RTC time.
2880#
2881# @offset: offset between base RTC clock (as specified by -rtc base), and
2882#          new RTC clock value. Note that value will be different depending
2883#          on clock chosen to drive RTC (specified by -rtc clock).
2884#
2885# Note: This event is rate-limited.
2886#
2887# Since: 0.13.0
2888#
2889# Example:
2890#
2891# <-   { "event": "RTC_CHANGE",
2892#        "data": { "offset": 78 },
2893#        "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
2894#
2895##
2896{ 'event': 'RTC_CHANGE',
2897  'data': { 'offset': 'int' } }
2898
2899##
2900# @ReplayMode:
2901#
2902# Mode of the replay subsystem.
2903#
2904# @none: normal execution mode. Replay or record are not enabled.
2905#
2906# @record: record mode. All non-deterministic data is written into the
2907#          replay log.
2908#
2909# @play: replay mode. Non-deterministic data required for system execution
2910#        is read from the log.
2911#
2912# Since: 2.5
2913##
2914{ 'enum': 'ReplayMode',
2915  'data': [ 'none', 'record', 'play' ] }
2916
2917##
2918# @xen-load-devices-state:
2919#
2920# Load the state of all devices from file. The RAM and the block devices
2921# of the VM are not loaded by this command.
2922#
2923# @filename: the file to load the state of the devices from as binary
2924# data. See xen-save-devices-state.txt for a description of the binary
2925# format.
2926#
2927# Since: 2.7
2928#
2929# Example:
2930#
2931# -> { "execute": "xen-load-devices-state",
2932#      "arguments": { "filename": "/tmp/resume" } }
2933# <- { "return": {} }
2934#
2935##
2936{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
2937
2938##
2939# @CpuInstanceProperties:
2940#
2941# List of properties to be used for hotplugging a CPU instance,
2942# it should be passed by management with device_add command when
2943# a CPU is being hotplugged.
2944#
2945# @node-id: NUMA node ID the CPU belongs to
2946# @socket-id: socket number within node/board the CPU belongs to
2947# @core-id: core number within socket the CPU belongs to
2948# @thread-id: thread number within core the CPU belongs to
2949#
2950# Note: currently there are 4 properties that could be present
2951# but management should be prepared to pass through other
2952# properties with device_add command to allow for future
2953# interface extension. This also requires the filed names to be kept in
2954# sync with the properties passed to -device/device_add.
2955#
2956# Since: 2.7
2957##
2958{ 'struct': 'CpuInstanceProperties',
2959  'data': { '*node-id': 'int',
2960            '*socket-id': 'int',
2961            '*core-id': 'int',
2962            '*thread-id': 'int'
2963  }
2964}
2965
2966##
2967# @HotpluggableCPU:
2968#
2969# @type: CPU object type for usage with device_add command
2970# @props: list of properties to be used for hotplugging CPU
2971# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
2972# @qom-path: link to existing CPU object if CPU is present or
2973#            omitted if CPU is not present.
2974#
2975# Since: 2.7
2976##
2977{ 'struct': 'HotpluggableCPU',
2978  'data': { 'type': 'str',
2979            'vcpus-count': 'int',
2980            'props': 'CpuInstanceProperties',
2981            '*qom-path': 'str'
2982          }
2983}
2984
2985##
2986# @query-hotpluggable-cpus:
2987#
2988# TODO: Better documentation; currently there is none.
2989#
2990# Returns: a list of HotpluggableCPU objects.
2991#
2992# Since: 2.7
2993#
2994# Example:
2995#
2996# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
2997#
2998# -> { "execute": "query-hotpluggable-cpus" }
2999# <- {"return": [
3000#      { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
3001#        "vcpus-count": 1 },
3002#      { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
3003#        "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
3004#    ]}'
3005#
3006# For pc machine type started with -smp 1,maxcpus=2:
3007#
3008# -> { "execute": "query-hotpluggable-cpus" }
3009# <- {"return": [
3010#      {
3011#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3012#         "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
3013#      },
3014#      {
3015#         "qom-path": "/machine/unattached/device[0]",
3016#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3017#         "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
3018#      }
3019#    ]}
3020#
3021# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
3022# (Since: 2.11):
3023#
3024# -> { "execute": "query-hotpluggable-cpus" }
3025# <- {"return": [
3026#      {
3027#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
3028#         "props": { "core-id": 1 }
3029#      },
3030#      {
3031#         "qom-path": "/machine/unattached/device[0]",
3032#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
3033#         "props": { "core-id": 0 }
3034#      }
3035#    ]}
3036#
3037##
3038{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
3039             'allow-preconfig': true }
3040
3041##
3042# @GuidInfo:
3043#
3044# GUID information.
3045#
3046# @guid: the globally unique identifier
3047#
3048# Since: 2.9
3049##
3050{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3051
3052##
3053# @query-vm-generation-id:
3054#
3055# Show Virtual Machine Generation ID
3056#
3057# Since: 2.9
3058##
3059{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
3060
3061##
3062# @set-numa-node:
3063#
3064# Runtime equivalent of '-numa' CLI option, available at
3065# preconfigure stage to configure numa mapping before initializing
3066# machine.
3067#
3068# Since 3.0
3069##
3070{ 'command': 'set-numa-node', 'boxed': true,
3071  'data': 'NumaOptions',
3072  'allow-preconfig': true
3073}
3074