1# -*- Mode: Python -*- 2# 3 4## 5# = Miscellanea 6## 7 8## 9# @qmp_capabilities: 10# 11# Enable QMP capabilities. 12# 13# Arguments: None. 14# 15# Example: 16# 17# -> { "execute": "qmp_capabilities" } 18# <- { "return": {} } 19# 20# Notes: This command is valid exactly when first connecting: it must be 21# issued before any other command will be accepted, and will fail once the 22# monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt) 23# 24# Since: 0.13 25# 26## 27{ 'command': 'qmp_capabilities' } 28 29## 30# @VersionTriple: 31# 32# A three-part version number. 33# 34# @major: The major version number. 35# 36# @minor: The minor version number. 37# 38# @micro: The micro version number. 39# 40# Since: 2.4 41## 42{ 'struct': 'VersionTriple', 43 'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} } 44 45 46## 47# @VersionInfo: 48# 49# A description of QEMU's version. 50# 51# @qemu: The version of QEMU. By current convention, a micro 52# version of 50 signifies a development branch. A micro version 53# greater than or equal to 90 signifies a release candidate for 54# the next minor version. A micro version of less than 50 55# signifies a stable release. 56# 57# @package: QEMU will always set this field to an empty string. Downstream 58# versions of QEMU should set this to a non-empty string. The 59# exact format depends on the downstream however it highly 60# recommended that a unique name is used. 61# 62# Since: 0.14.0 63## 64{ 'struct': 'VersionInfo', 65 'data': {'qemu': 'VersionTriple', 'package': 'str'} } 66 67## 68# @query-version: 69# 70# Returns the current version of QEMU. 71# 72# Returns: A @VersionInfo object describing the current version of QEMU. 73# 74# Since: 0.14.0 75# 76# Example: 77# 78# -> { "execute": "query-version" } 79# <- { 80# "return":{ 81# "qemu":{ 82# "major":0, 83# "minor":11, 84# "micro":5 85# }, 86# "package":"" 87# } 88# } 89# 90## 91{ 'command': 'query-version', 'returns': 'VersionInfo' } 92 93## 94# @CommandInfo: 95# 96# Information about a QMP command 97# 98# @name: The command name 99# 100# Since: 0.14.0 101## 102{ 'struct': 'CommandInfo', 'data': {'name': 'str'} } 103 104## 105# @query-commands: 106# 107# Return a list of supported QMP commands by this server 108# 109# Returns: A list of @CommandInfo for all supported commands 110# 111# Since: 0.14.0 112# 113# Example: 114# 115# -> { "execute": "query-commands" } 116# <- { 117# "return":[ 118# { 119# "name":"query-balloon" 120# }, 121# { 122# "name":"system_powerdown" 123# } 124# ] 125# } 126# 127# Note: This example has been shortened as the real response is too long. 128# 129## 130{ 'command': 'query-commands', 'returns': ['CommandInfo'] } 131 132## 133# @LostTickPolicy: 134# 135# Policy for handling lost ticks in timer devices. 136# 137# @discard: throw away the missed tick(s) and continue with future injection 138# normally. Guest time may be delayed, unless the OS has explicit 139# handling of lost ticks 140# 141# @delay: continue to deliver ticks at the normal rate. Guest time will be 142# delayed due to the late tick 143# 144# @merge: merge the missed tick(s) into one tick and inject. Guest time 145# may be delayed, depending on how the OS reacts to the merging 146# of ticks 147# 148# @slew: deliver ticks at a higher rate to catch up with the missed tick. The 149# guest time should not be delayed once catchup is complete. 150# 151# Since: 2.0 152## 153{ 'enum': 'LostTickPolicy', 154 'data': ['discard', 'delay', 'merge', 'slew' ] } 155 156## 157# @add_client: 158# 159# Allow client connections for VNC, Spice and socket based 160# character devices to be passed in to QEMU via SCM_RIGHTS. 161# 162# @protocol: protocol name. Valid names are "vnc", "spice" or the 163# name of a character device (eg. from -chardev id=XXXX) 164# 165# @fdname: file descriptor name previously passed via 'getfd' command 166# 167# @skipauth: whether to skip authentication. Only applies 168# to "vnc" and "spice" protocols 169# 170# @tls: whether to perform TLS. Only applies to the "spice" 171# protocol 172# 173# Returns: nothing on success. 174# 175# Since: 0.14.0 176# 177# Example: 178# 179# -> { "execute": "add_client", "arguments": { "protocol": "vnc", 180# "fdname": "myclient" } } 181# <- { "return": {} } 182# 183## 184{ 'command': 'add_client', 185 'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool', 186 '*tls': 'bool' } } 187 188## 189# @NameInfo: 190# 191# Guest name information. 192# 193# @name: The name of the guest 194# 195# Since: 0.14.0 196## 197{ 'struct': 'NameInfo', 'data': {'*name': 'str'} } 198 199## 200# @query-name: 201# 202# Return the name information of a guest. 203# 204# Returns: @NameInfo of the guest 205# 206# Since: 0.14.0 207# 208# Example: 209# 210# -> { "execute": "query-name" } 211# <- { "return": { "name": "qemu-name" } } 212# 213## 214{ 'command': 'query-name', 'returns': 'NameInfo' } 215 216## 217# @KvmInfo: 218# 219# Information about support for KVM acceleration 220# 221# @enabled: true if KVM acceleration is active 222# 223# @present: true if KVM acceleration is built into this executable 224# 225# Since: 0.14.0 226## 227{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} } 228 229## 230# @query-kvm: 231# 232# Returns information about KVM acceleration 233# 234# Returns: @KvmInfo 235# 236# Since: 0.14.0 237# 238# Example: 239# 240# -> { "execute": "query-kvm" } 241# <- { "return": { "enabled": true, "present": true } } 242# 243## 244{ 'command': 'query-kvm', 'returns': 'KvmInfo' } 245 246## 247# @UuidInfo: 248# 249# Guest UUID information (Universally Unique Identifier). 250# 251# @UUID: the UUID of the guest 252# 253# Since: 0.14.0 254# 255# Notes: If no UUID was specified for the guest, a null UUID is returned. 256## 257{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} } 258 259## 260# @query-uuid: 261# 262# Query the guest UUID information. 263# 264# Returns: The @UuidInfo for the guest 265# 266# Since: 0.14.0 267# 268# Example: 269# 270# -> { "execute": "query-uuid" } 271# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } } 272# 273## 274{ 'command': 'query-uuid', 'returns': 'UuidInfo' } 275 276## 277# @EventInfo: 278# 279# Information about a QMP event 280# 281# @name: The event name 282# 283# Since: 1.2.0 284## 285{ 'struct': 'EventInfo', 'data': {'name': 'str'} } 286 287## 288# @query-events: 289# 290# Return a list of supported QMP events by this server 291# 292# Returns: A list of @EventInfo for all supported events 293# 294# Since: 1.2.0 295# 296# Example: 297# 298# -> { "execute": "query-events" } 299# <- { 300# "return": [ 301# { 302# "name":"SHUTDOWN" 303# }, 304# { 305# "name":"RESET" 306# } 307# ] 308# } 309# 310# Note: This example has been shortened as the real response is too long. 311# 312## 313{ 'command': 'query-events', 'returns': ['EventInfo'] } 314 315## 316# @CpuInfoArch: 317# 318# An enumeration of cpu types that enable additional information during 319# @query-cpus and @query-cpus-fast. 320# 321# @s390: since 2.12 322# 323# Since: 2.6 324## 325{ 'enum': 'CpuInfoArch', 326 'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 's390', 'other' ] } 327 328## 329# @CpuInfo: 330# 331# Information about a virtual CPU 332# 333# @CPU: the index of the virtual CPU 334# 335# @current: this only exists for backwards compatibility and should be ignored 336# 337# @halted: true if the virtual CPU is in the halt state. Halt usually refers 338# to a processor specific low power mode. 339# 340# @qom_path: path to the CPU object in the QOM tree (since 2.4) 341# 342# @thread_id: ID of the underlying host thread 343# 344# @props: properties describing to which node/socket/core/thread 345# virtual CPU belongs to, provided if supported by board (since 2.10) 346# 347# @arch: architecture of the cpu, which determines which additional fields 348# will be listed (since 2.6) 349# 350# Since: 0.14.0 351# 352# Notes: @halted is a transient state that changes frequently. By the time the 353# data is sent to the client, the guest may no longer be halted. 354## 355{ 'union': 'CpuInfo', 356 'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool', 357 'qom_path': 'str', 'thread_id': 'int', 358 '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' }, 359 'discriminator': 'arch', 360 'data': { 'x86': 'CpuInfoX86', 361 'sparc': 'CpuInfoSPARC', 362 'ppc': 'CpuInfoPPC', 363 'mips': 'CpuInfoMIPS', 364 'tricore': 'CpuInfoTricore', 365 's390': 'CpuInfoS390', 366 'other': 'CpuInfoOther' } } 367 368## 369# @CpuInfoX86: 370# 371# Additional information about a virtual i386 or x86_64 CPU 372# 373# @pc: the 64-bit instruction pointer 374# 375# Since: 2.6 376## 377{ 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } } 378 379## 380# @CpuInfoSPARC: 381# 382# Additional information about a virtual SPARC CPU 383# 384# @pc: the PC component of the instruction pointer 385# 386# @npc: the NPC component of the instruction pointer 387# 388# Since: 2.6 389## 390{ 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } } 391 392## 393# @CpuInfoPPC: 394# 395# Additional information about a virtual PPC CPU 396# 397# @nip: the instruction pointer 398# 399# Since: 2.6 400## 401{ 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } } 402 403## 404# @CpuInfoMIPS: 405# 406# Additional information about a virtual MIPS CPU 407# 408# @PC: the instruction pointer 409# 410# Since: 2.6 411## 412{ 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } } 413 414## 415# @CpuInfoTricore: 416# 417# Additional information about a virtual Tricore CPU 418# 419# @PC: the instruction pointer 420# 421# Since: 2.6 422## 423{ 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } } 424 425## 426# @CpuInfoOther: 427# 428# No additional information is available about the virtual CPU 429# 430# Since: 2.6 431# 432## 433{ 'struct': 'CpuInfoOther', 'data': { } } 434 435## 436# @CpuS390State: 437# 438# An enumeration of cpu states that can be assumed by a virtual 439# S390 CPU 440# 441# Since: 2.12 442## 443{ 'enum': 'CpuS390State', 444 'prefix': 'S390_CPU_STATE', 445 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] } 446 447## 448# @CpuInfoS390: 449# 450# Additional information about a virtual S390 CPU 451# 452# @cpu-state: the virtual CPU's state 453# 454# Since: 2.12 455## 456{ 'struct': 'CpuInfoS390', 'data': { 'cpu-state': 'CpuS390State' } } 457 458## 459# @query-cpus: 460# 461# Returns a list of information about each virtual CPU. 462# 463# This command causes vCPU threads to exit to userspace, which causes 464# a small interruption to guest CPU execution. This will have a negative 465# impact on realtime guests and other latency sensitive guest workloads. 466# It is recommended to use @query-cpus-fast instead of this command to 467# avoid the vCPU interruption. 468# 469# Returns: a list of @CpuInfo for each virtual CPU 470# 471# Since: 0.14.0 472# 473# Example: 474# 475# -> { "execute": "query-cpus" } 476# <- { "return": [ 477# { 478# "CPU":0, 479# "current":true, 480# "halted":false, 481# "qom_path":"/machine/unattached/device[0]", 482# "arch":"x86", 483# "pc":3227107138, 484# "thread_id":3134 485# }, 486# { 487# "CPU":1, 488# "current":false, 489# "halted":true, 490# "qom_path":"/machine/unattached/device[2]", 491# "arch":"x86", 492# "pc":7108165, 493# "thread_id":3135 494# } 495# ] 496# } 497# 498# Notes: This interface is deprecated (since 2.12.0), and it is strongly 499# recommended that you avoid using it. Use @query-cpus-fast to 500# obtain information about virtual CPUs. 501# 502## 503{ 'command': 'query-cpus', 'returns': ['CpuInfo'] } 504 505## 506# @CpuInfoFast: 507# 508# Information about a virtual CPU 509# 510# @cpu-index: index of the virtual CPU 511# 512# @qom-path: path to the CPU object in the QOM tree 513# 514# @thread-id: ID of the underlying host thread 515# 516# @props: properties describing to which node/socket/core/thread 517# virtual CPU belongs to, provided if supported by board 518# 519# @arch: architecture of the cpu, which determines which additional fields 520# will be listed 521# 522# Since: 2.12 523# 524## 525{ 'union': 'CpuInfoFast', 526 'base': {'cpu-index': 'int', 'qom-path': 'str', 527 'thread-id': 'int', '*props': 'CpuInstanceProperties', 528 'arch': 'CpuInfoArch' }, 529 'discriminator': 'arch', 530 'data': { 'x86': 'CpuInfoOther', 531 'sparc': 'CpuInfoOther', 532 'ppc': 'CpuInfoOther', 533 'mips': 'CpuInfoOther', 534 'tricore': 'CpuInfoOther', 535 's390': 'CpuInfoS390', 536 'other': 'CpuInfoOther' } } 537 538## 539# @query-cpus-fast: 540# 541# Returns information about all virtual CPUs. This command does not 542# incur a performance penalty and should be used in production 543# instead of query-cpus. 544# 545# Returns: list of @CpuInfoFast 546# 547# Since: 2.12 548# 549# Example: 550# 551# -> { "execute": "query-cpus-fast" } 552# <- { "return": [ 553# { 554# "thread-id": 25627, 555# "props": { 556# "core-id": 0, 557# "thread-id": 0, 558# "socket-id": 0 559# }, 560# "qom-path": "/machine/unattached/device[0]", 561# "arch":"x86", 562# "cpu-index": 0 563# }, 564# { 565# "thread-id": 25628, 566# "props": { 567# "core-id": 0, 568# "thread-id": 0, 569# "socket-id": 1 570# }, 571# "qom-path": "/machine/unattached/device[2]", 572# "arch":"x86", 573# "cpu-index": 1 574# } 575# ] 576# } 577## 578{ 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] } 579 580## 581# @IOThreadInfo: 582# 583# Information about an iothread 584# 585# @id: the identifier of the iothread 586# 587# @thread-id: ID of the underlying host thread 588# 589# @poll-max-ns: maximum polling time in ns, 0 means polling is disabled 590# (since 2.9) 591# 592# @poll-grow: how many ns will be added to polling time, 0 means that it's not 593# configured (since 2.9) 594# 595# @poll-shrink: how many ns will be removed from polling time, 0 means that 596# it's not configured (since 2.9) 597# 598# Since: 2.0 599## 600{ 'struct': 'IOThreadInfo', 601 'data': {'id': 'str', 602 'thread-id': 'int', 603 'poll-max-ns': 'int', 604 'poll-grow': 'int', 605 'poll-shrink': 'int' } } 606 607## 608# @query-iothreads: 609# 610# Returns a list of information about each iothread. 611# 612# Note: this list excludes the QEMU main loop thread, which is not declared 613# using the -object iothread command-line option. It is always the main thread 614# of the process. 615# 616# Returns: a list of @IOThreadInfo for each iothread 617# 618# Since: 2.0 619# 620# Example: 621# 622# -> { "execute": "query-iothreads" } 623# <- { "return": [ 624# { 625# "id":"iothread0", 626# "thread-id":3134 627# }, 628# { 629# "id":"iothread1", 630# "thread-id":3135 631# } 632# ] 633# } 634# 635## 636{ 'command': 'query-iothreads', 'returns': ['IOThreadInfo'] } 637 638## 639# @BalloonInfo: 640# 641# Information about the guest balloon device. 642# 643# @actual: the number of bytes the balloon currently contains 644# 645# Since: 0.14.0 646# 647## 648{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } } 649 650## 651# @query-balloon: 652# 653# Return information about the balloon device. 654# 655# Returns: @BalloonInfo on success 656# 657# If the balloon driver is enabled but not functional because the KVM 658# kernel module cannot support it, KvmMissingCap 659# 660# If no balloon device is present, DeviceNotActive 661# 662# Since: 0.14.0 663# 664# Example: 665# 666# -> { "execute": "query-balloon" } 667# <- { "return": { 668# "actual": 1073741824, 669# } 670# } 671# 672## 673{ 'command': 'query-balloon', 'returns': 'BalloonInfo' } 674 675## 676# @BALLOON_CHANGE: 677# 678# Emitted when the guest changes the actual BALLOON level. This value is 679# equivalent to the @actual field return by the 'query-balloon' command 680# 681# @actual: actual level of the guest memory balloon in bytes 682# 683# Note: this event is rate-limited. 684# 685# Since: 1.2 686# 687# Example: 688# 689# <- { "event": "BALLOON_CHANGE", 690# "data": { "actual": 944766976 }, 691# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } } 692# 693## 694{ 'event': 'BALLOON_CHANGE', 695 'data': { 'actual': 'int' } } 696 697## 698# @PciMemoryRange: 699# 700# A PCI device memory region 701# 702# @base: the starting address (guest physical) 703# 704# @limit: the ending address (guest physical) 705# 706# Since: 0.14.0 707## 708{ 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} } 709 710## 711# @PciMemoryRegion: 712# 713# Information about a PCI device I/O region. 714# 715# @bar: the index of the Base Address Register for this region 716# 717# @type: 'io' if the region is a PIO region 718# 'memory' if the region is a MMIO region 719# 720# @size: memory size 721# 722# @prefetch: if @type is 'memory', true if the memory is prefetchable 723# 724# @mem_type_64: if @type is 'memory', true if the BAR is 64-bit 725# 726# Since: 0.14.0 727## 728{ 'struct': 'PciMemoryRegion', 729 'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int', 730 '*prefetch': 'bool', '*mem_type_64': 'bool' } } 731 732## 733# @PciBusInfo: 734# 735# Information about a bus of a PCI Bridge device 736# 737# @number: primary bus interface number. This should be the number of the 738# bus the device resides on. 739# 740# @secondary: secondary bus interface number. This is the number of the 741# main bus for the bridge 742# 743# @subordinate: This is the highest number bus that resides below the 744# bridge. 745# 746# @io_range: The PIO range for all devices on this bridge 747# 748# @memory_range: The MMIO range for all devices on this bridge 749# 750# @prefetchable_range: The range of prefetchable MMIO for all devices on 751# this bridge 752# 753# Since: 2.4 754## 755{ 'struct': 'PciBusInfo', 756 'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int', 757 'io_range': 'PciMemoryRange', 758 'memory_range': 'PciMemoryRange', 759 'prefetchable_range': 'PciMemoryRange' } } 760 761## 762# @PciBridgeInfo: 763# 764# Information about a PCI Bridge device 765# 766# @bus: information about the bus the device resides on 767# 768# @devices: a list of @PciDeviceInfo for each device on this bridge 769# 770# Since: 0.14.0 771## 772{ 'struct': 'PciBridgeInfo', 773 'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} } 774 775## 776# @PciDeviceClass: 777# 778# Information about the Class of a PCI device 779# 780# @desc: a string description of the device's class 781# 782# @class: the class code of the device 783# 784# Since: 2.4 785## 786{ 'struct': 'PciDeviceClass', 787 'data': {'*desc': 'str', 'class': 'int'} } 788 789## 790# @PciDeviceId: 791# 792# Information about the Id of a PCI device 793# 794# @device: the PCI device id 795# 796# @vendor: the PCI vendor id 797# 798# Since: 2.4 799## 800{ 'struct': 'PciDeviceId', 801 'data': {'device': 'int', 'vendor': 'int'} } 802 803## 804# @PciDeviceInfo: 805# 806# Information about a PCI device 807# 808# @bus: the bus number of the device 809# 810# @slot: the slot the device is located in 811# 812# @function: the function of the slot used by the device 813# 814# @class_info: the class of the device 815# 816# @id: the PCI device id 817# 818# @irq: if an IRQ is assigned to the device, the IRQ number 819# 820# @qdev_id: the device name of the PCI device 821# 822# @pci_bridge: if the device is a PCI bridge, the bridge information 823# 824# @regions: a list of the PCI I/O regions associated with the device 825# 826# Notes: the contents of @class_info.desc are not stable and should only be 827# treated as informational. 828# 829# Since: 0.14.0 830## 831{ 'struct': 'PciDeviceInfo', 832 'data': {'bus': 'int', 'slot': 'int', 'function': 'int', 833 'class_info': 'PciDeviceClass', 'id': 'PciDeviceId', 834 '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo', 835 'regions': ['PciMemoryRegion']} } 836 837## 838# @PciInfo: 839# 840# Information about a PCI bus 841# 842# @bus: the bus index 843# 844# @devices: a list of devices on this bus 845# 846# Since: 0.14.0 847## 848{ 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} } 849 850## 851# @query-pci: 852# 853# Return information about the PCI bus topology of the guest. 854# 855# Returns: a list of @PciInfo for each PCI bus. Each bus is 856# represented by a json-object, which has a key with a json-array of 857# all PCI devices attached to it. Each device is represented by a 858# json-object. 859# 860# Since: 0.14.0 861# 862# Example: 863# 864# -> { "execute": "query-pci" } 865# <- { "return": [ 866# { 867# "bus": 0, 868# "devices": [ 869# { 870# "bus": 0, 871# "qdev_id": "", 872# "slot": 0, 873# "class_info": { 874# "class": 1536, 875# "desc": "Host bridge" 876# }, 877# "id": { 878# "device": 32902, 879# "vendor": 4663 880# }, 881# "function": 0, 882# "regions": [ 883# ] 884# }, 885# { 886# "bus": 0, 887# "qdev_id": "", 888# "slot": 1, 889# "class_info": { 890# "class": 1537, 891# "desc": "ISA bridge" 892# }, 893# "id": { 894# "device": 32902, 895# "vendor": 28672 896# }, 897# "function": 0, 898# "regions": [ 899# ] 900# }, 901# { 902# "bus": 0, 903# "qdev_id": "", 904# "slot": 1, 905# "class_info": { 906# "class": 257, 907# "desc": "IDE controller" 908# }, 909# "id": { 910# "device": 32902, 911# "vendor": 28688 912# }, 913# "function": 1, 914# "regions": [ 915# { 916# "bar": 4, 917# "size": 16, 918# "address": 49152, 919# "type": "io" 920# } 921# ] 922# }, 923# { 924# "bus": 0, 925# "qdev_id": "", 926# "slot": 2, 927# "class_info": { 928# "class": 768, 929# "desc": "VGA controller" 930# }, 931# "id": { 932# "device": 4115, 933# "vendor": 184 934# }, 935# "function": 0, 936# "regions": [ 937# { 938# "prefetch": true, 939# "mem_type_64": false, 940# "bar": 0, 941# "size": 33554432, 942# "address": 4026531840, 943# "type": "memory" 944# }, 945# { 946# "prefetch": false, 947# "mem_type_64": false, 948# "bar": 1, 949# "size": 4096, 950# "address": 4060086272, 951# "type": "memory" 952# }, 953# { 954# "prefetch": false, 955# "mem_type_64": false, 956# "bar": 6, 957# "size": 65536, 958# "address": -1, 959# "type": "memory" 960# } 961# ] 962# }, 963# { 964# "bus": 0, 965# "qdev_id": "", 966# "irq": 11, 967# "slot": 4, 968# "class_info": { 969# "class": 1280, 970# "desc": "RAM controller" 971# }, 972# "id": { 973# "device": 6900, 974# "vendor": 4098 975# }, 976# "function": 0, 977# "regions": [ 978# { 979# "bar": 0, 980# "size": 32, 981# "address": 49280, 982# "type": "io" 983# } 984# ] 985# } 986# ] 987# } 988# ] 989# } 990# 991# Note: This example has been shortened as the real response is too long. 992# 993## 994{ 'command': 'query-pci', 'returns': ['PciInfo'] } 995 996## 997# @quit: 998# 999# This command will cause the QEMU process to exit gracefully. While every 1000# attempt is made to send the QMP response before terminating, this is not 1001# guaranteed. When using this interface, a premature EOF would not be 1002# unexpected. 1003# 1004# Since: 0.14.0 1005# 1006# Example: 1007# 1008# -> { "execute": "quit" } 1009# <- { "return": {} } 1010## 1011{ 'command': 'quit' } 1012 1013## 1014# @stop: 1015# 1016# Stop all guest VCPU execution. 1017# 1018# Since: 0.14.0 1019# 1020# Notes: This function will succeed even if the guest is already in the stopped 1021# state. In "inmigrate" state, it will ensure that the guest 1022# remains paused once migration finishes, as if the -S option was 1023# passed on the command line. 1024# 1025# Example: 1026# 1027# -> { "execute": "stop" } 1028# <- { "return": {} } 1029# 1030## 1031{ 'command': 'stop' } 1032 1033## 1034# @system_reset: 1035# 1036# Performs a hard reset of a guest. 1037# 1038# Since: 0.14.0 1039# 1040# Example: 1041# 1042# -> { "execute": "system_reset" } 1043# <- { "return": {} } 1044# 1045## 1046{ 'command': 'system_reset' } 1047 1048## 1049# @system_powerdown: 1050# 1051# Requests that a guest perform a powerdown operation. 1052# 1053# Since: 0.14.0 1054# 1055# Notes: A guest may or may not respond to this command. This command 1056# returning does not indicate that a guest has accepted the request or 1057# that it has shut down. Many guests will respond to this command by 1058# prompting the user in some way. 1059# Example: 1060# 1061# -> { "execute": "system_powerdown" } 1062# <- { "return": {} } 1063# 1064## 1065{ 'command': 'system_powerdown' } 1066 1067## 1068# @cpu-add: 1069# 1070# Adds CPU with specified ID 1071# 1072# @id: ID of CPU to be created, valid values [0..max_cpus) 1073# 1074# Returns: Nothing on success 1075# 1076# Since: 1.5 1077# 1078# Example: 1079# 1080# -> { "execute": "cpu-add", "arguments": { "id": 2 } } 1081# <- { "return": {} } 1082# 1083## 1084{ 'command': 'cpu-add', 'data': {'id': 'int'} } 1085 1086## 1087# @memsave: 1088# 1089# Save a portion of guest memory to a file. 1090# 1091# @val: the virtual address of the guest to start from 1092# 1093# @size: the size of memory region to save 1094# 1095# @filename: the file to save the memory to as binary data 1096# 1097# @cpu-index: the index of the virtual CPU to use for translating the 1098# virtual address (defaults to CPU 0) 1099# 1100# Returns: Nothing on success 1101# 1102# Since: 0.14.0 1103# 1104# Notes: Errors were not reliably returned until 1.1 1105# 1106# Example: 1107# 1108# -> { "execute": "memsave", 1109# "arguments": { "val": 10, 1110# "size": 100, 1111# "filename": "/tmp/virtual-mem-dump" } } 1112# <- { "return": {} } 1113# 1114## 1115{ 'command': 'memsave', 1116 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} } 1117 1118## 1119# @pmemsave: 1120# 1121# Save a portion of guest physical memory to a file. 1122# 1123# @val: the physical address of the guest to start from 1124# 1125# @size: the size of memory region to save 1126# 1127# @filename: the file to save the memory to as binary data 1128# 1129# Returns: Nothing on success 1130# 1131# Since: 0.14.0 1132# 1133# Notes: Errors were not reliably returned until 1.1 1134# 1135# Example: 1136# 1137# -> { "execute": "pmemsave", 1138# "arguments": { "val": 10, 1139# "size": 100, 1140# "filename": "/tmp/physical-mem-dump" } } 1141# <- { "return": {} } 1142# 1143## 1144{ 'command': 'pmemsave', 1145 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} } 1146 1147## 1148# @cont: 1149# 1150# Resume guest VCPU execution. 1151# 1152# Since: 0.14.0 1153# 1154# Returns: If successful, nothing 1155# 1156# Notes: This command will succeed if the guest is currently running. It 1157# will also succeed if the guest is in the "inmigrate" state; in 1158# this case, the effect of the command is to make sure the guest 1159# starts once migration finishes, removing the effect of the -S 1160# command line option if it was passed. 1161# 1162# Example: 1163# 1164# -> { "execute": "cont" } 1165# <- { "return": {} } 1166# 1167## 1168{ 'command': 'cont' } 1169 1170## 1171# @system_wakeup: 1172# 1173# Wakeup guest from suspend. Does nothing in case the guest isn't suspended. 1174# 1175# Since: 1.1 1176# 1177# Returns: nothing. 1178# 1179# Example: 1180# 1181# -> { "execute": "system_wakeup" } 1182# <- { "return": {} } 1183# 1184## 1185{ 'command': 'system_wakeup' } 1186 1187## 1188# @inject-nmi: 1189# 1190# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64). 1191# The command fails when the guest doesn't support injecting. 1192# 1193# Returns: If successful, nothing 1194# 1195# Since: 0.14.0 1196# 1197# Note: prior to 2.1, this command was only supported for x86 and s390 VMs 1198# 1199# Example: 1200# 1201# -> { "execute": "inject-nmi" } 1202# <- { "return": {} } 1203# 1204## 1205{ 'command': 'inject-nmi' } 1206 1207## 1208# @balloon: 1209# 1210# Request the balloon driver to change its balloon size. 1211# 1212# @value: the target size of the balloon in bytes 1213# 1214# Returns: Nothing on success 1215# If the balloon driver is enabled but not functional because the KVM 1216# kernel module cannot support it, KvmMissingCap 1217# If no balloon device is present, DeviceNotActive 1218# 1219# Notes: This command just issues a request to the guest. When it returns, 1220# the balloon size may not have changed. A guest can change the balloon 1221# size independent of this command. 1222# 1223# Since: 0.14.0 1224# 1225# Example: 1226# 1227# -> { "execute": "balloon", "arguments": { "value": 536870912 } } 1228# <- { "return": {} } 1229# 1230## 1231{ 'command': 'balloon', 'data': {'value': 'int'} } 1232 1233## 1234# @human-monitor-command: 1235# 1236# Execute a command on the human monitor and return the output. 1237# 1238# @command-line: the command to execute in the human monitor 1239# 1240# @cpu-index: The CPU to use for commands that require an implicit CPU 1241# 1242# Returns: the output of the command as a string 1243# 1244# Since: 0.14.0 1245# 1246# Notes: This command only exists as a stop-gap. Its use is highly 1247# discouraged. The semantics of this command are not 1248# guaranteed: this means that command names, arguments and 1249# responses can change or be removed at ANY time. Applications 1250# that rely on long term stability guarantees should NOT 1251# use this command. 1252# 1253# Known limitations: 1254# 1255# * This command is stateless, this means that commands that depend 1256# on state information (such as getfd) might not work 1257# 1258# * Commands that prompt the user for data don't currently work 1259# 1260# Example: 1261# 1262# -> { "execute": "human-monitor-command", 1263# "arguments": { "command-line": "info kvm" } } 1264# <- { "return": "kvm support: enabled\r\n" } 1265# 1266## 1267{ 'command': 'human-monitor-command', 1268 'data': {'command-line': 'str', '*cpu-index': 'int'}, 1269 'returns': 'str' } 1270 1271## 1272# @ObjectPropertyInfo: 1273# 1274# @name: the name of the property 1275# 1276# @type: the type of the property. This will typically come in one of four 1277# forms: 1278# 1279# 1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'. 1280# These types are mapped to the appropriate JSON type. 1281# 1282# 2) A child type in the form 'child<subtype>' where subtype is a qdev 1283# device type name. Child properties create the composition tree. 1284# 1285# 3) A link type in the form 'link<subtype>' where subtype is a qdev 1286# device type name. Link properties form the device model graph. 1287# 1288# Since: 1.2 1289## 1290{ 'struct': 'ObjectPropertyInfo', 1291 'data': { 'name': 'str', 'type': 'str' } } 1292 1293## 1294# @qom-list: 1295# 1296# This command will list any properties of a object given a path in the object 1297# model. 1298# 1299# @path: the path within the object model. See @qom-get for a description of 1300# this parameter. 1301# 1302# Returns: a list of @ObjectPropertyInfo that describe the properties of the 1303# object. 1304# 1305# Since: 1.2 1306## 1307{ 'command': 'qom-list', 1308 'data': { 'path': 'str' }, 1309 'returns': [ 'ObjectPropertyInfo' ] } 1310 1311## 1312# @qom-get: 1313# 1314# This command will get a property from a object model path and return the 1315# value. 1316# 1317# @path: The path within the object model. There are two forms of supported 1318# paths--absolute and partial paths. 1319# 1320# Absolute paths are derived from the root object and can follow child<> 1321# or link<> properties. Since they can follow link<> properties, they 1322# can be arbitrarily long. Absolute paths look like absolute filenames 1323# and are prefixed with a leading slash. 1324# 1325# Partial paths look like relative filenames. They do not begin 1326# with a prefix. The matching rules for partial paths are subtle but 1327# designed to make specifying objects easy. At each level of the 1328# composition tree, the partial path is matched as an absolute path. 1329# The first match is not returned. At least two matches are searched 1330# for. A successful result is only returned if only one match is 1331# found. If more than one match is found, a flag is return to 1332# indicate that the match was ambiguous. 1333# 1334# @property: The property name to read 1335# 1336# Returns: The property value. The type depends on the property 1337# type. child<> and link<> properties are returned as #str 1338# pathnames. All integer property types (u8, u16, etc) are 1339# returned as #int. 1340# 1341# Since: 1.2 1342## 1343{ 'command': 'qom-get', 1344 'data': { 'path': 'str', 'property': 'str' }, 1345 'returns': 'any' } 1346 1347## 1348# @qom-set: 1349# 1350# This command will set a property from a object model path. 1351# 1352# @path: see @qom-get for a description of this parameter 1353# 1354# @property: the property name to set 1355# 1356# @value: a value who's type is appropriate for the property type. See @qom-get 1357# for a description of type mapping. 1358# 1359# Since: 1.2 1360## 1361{ 'command': 'qom-set', 1362 'data': { 'path': 'str', 'property': 'str', 'value': 'any' } } 1363 1364## 1365# @change: 1366# 1367# This command is multiple commands multiplexed together. 1368# 1369# @device: This is normally the name of a block device but it may also be 'vnc'. 1370# when it's 'vnc', then sub command depends on @target 1371# 1372# @target: If @device is a block device, then this is the new filename. 1373# If @device is 'vnc', then if the value 'password' selects the vnc 1374# change password command. Otherwise, this specifies a new server URI 1375# address to listen to for VNC connections. 1376# 1377# @arg: If @device is a block device, then this is an optional format to open 1378# the device with. 1379# If @device is 'vnc' and @target is 'password', this is the new VNC 1380# password to set. See change-vnc-password for additional notes. 1381# 1382# Returns: Nothing on success. 1383# If @device is not a valid block device, DeviceNotFound 1384# 1385# Notes: This interface is deprecated, and it is strongly recommended that you 1386# avoid using it. For changing block devices, use 1387# blockdev-change-medium; for changing VNC parameters, use 1388# change-vnc-password. 1389# 1390# Since: 0.14.0 1391# 1392# Example: 1393# 1394# 1. Change a removable medium 1395# 1396# -> { "execute": "change", 1397# "arguments": { "device": "ide1-cd0", 1398# "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } } 1399# <- { "return": {} } 1400# 1401# 2. Change VNC password 1402# 1403# -> { "execute": "change", 1404# "arguments": { "device": "vnc", "target": "password", 1405# "arg": "foobar1" } } 1406# <- { "return": {} } 1407# 1408## 1409{ 'command': 'change', 1410 'data': {'device': 'str', 'target': 'str', '*arg': 'str'} } 1411 1412## 1413# @ObjectTypeInfo: 1414# 1415# This structure describes a search result from @qom-list-types 1416# 1417# @name: the type name found in the search 1418# 1419# @abstract: the type is abstract and can't be directly instantiated. 1420# Omitted if false. (since 2.10) 1421# 1422# @parent: Name of parent type, if any (since 2.10) 1423# 1424# Since: 1.1 1425## 1426{ 'struct': 'ObjectTypeInfo', 1427 'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } } 1428 1429## 1430# @qom-list-types: 1431# 1432# This command will return a list of types given search parameters 1433# 1434# @implements: if specified, only return types that implement this type name 1435# 1436# @abstract: if true, include abstract types in the results 1437# 1438# Returns: a list of @ObjectTypeInfo or an empty list if no results are found 1439# 1440# Since: 1.1 1441## 1442{ 'command': 'qom-list-types', 1443 'data': { '*implements': 'str', '*abstract': 'bool' }, 1444 'returns': [ 'ObjectTypeInfo' ] } 1445 1446## 1447# @DevicePropertyInfo: 1448# 1449# Information about device properties. 1450# 1451# @name: the name of the property 1452# @type: the typename of the property 1453# @description: if specified, the description of the property. 1454# (since 2.2) 1455# 1456# Since: 1.2 1457## 1458{ 'struct': 'DevicePropertyInfo', 1459 'data': { 'name': 'str', 'type': 'str', '*description': 'str' } } 1460 1461## 1462# @device-list-properties: 1463# 1464# List properties associated with a device. 1465# 1466# @typename: the type name of a device 1467# 1468# Returns: a list of DevicePropertyInfo describing a devices properties 1469# 1470# Since: 1.2 1471## 1472{ 'command': 'device-list-properties', 1473 'data': { 'typename': 'str'}, 1474 'returns': [ 'DevicePropertyInfo' ] } 1475 1476## 1477# @xen-set-global-dirty-log: 1478# 1479# Enable or disable the global dirty log mode. 1480# 1481# @enable: true to enable, false to disable. 1482# 1483# Returns: nothing 1484# 1485# Since: 1.3 1486# 1487# Example: 1488# 1489# -> { "execute": "xen-set-global-dirty-log", 1490# "arguments": { "enable": true } } 1491# <- { "return": {} } 1492# 1493## 1494{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1495 1496## 1497# @device_add: 1498# 1499# @driver: the name of the new device's driver 1500# 1501# @bus: the device's parent bus (device tree path) 1502# 1503# @id: the device's ID, must be unique 1504# 1505# Additional arguments depend on the type. 1506# 1507# Add a device. 1508# 1509# Notes: 1510# 1. For detailed information about this command, please refer to the 1511# 'docs/qdev-device-use.txt' file. 1512# 1513# 2. It's possible to list device properties by running QEMU with the 1514# "-device DEVICE,help" command-line argument, where DEVICE is the 1515# device's name 1516# 1517# Example: 1518# 1519# -> { "execute": "device_add", 1520# "arguments": { "driver": "e1000", "id": "net1", 1521# "bus": "pci.0", 1522# "mac": "52:54:00:12:34:56" } } 1523# <- { "return": {} } 1524# 1525# TODO: This command effectively bypasses QAPI completely due to its 1526# "additional arguments" business. It shouldn't have been added to 1527# the schema in this form. It should be qapified properly, or 1528# replaced by a properly qapified command. 1529# 1530# Since: 0.13 1531## 1532{ 'command': 'device_add', 1533 'data': {'driver': 'str', '*bus': 'str', '*id': 'str'}, 1534 'gen': false } # so we can get the additional arguments 1535 1536## 1537# @device_del: 1538# 1539# Remove a device from a guest 1540# 1541# @id: the device's ID or QOM path 1542# 1543# Returns: Nothing on success 1544# If @id is not a valid device, DeviceNotFound 1545# 1546# Notes: When this command completes, the device may not be removed from the 1547# guest. Hot removal is an operation that requires guest cooperation. 1548# This command merely requests that the guest begin the hot removal 1549# process. Completion of the device removal process is signaled with a 1550# DEVICE_DELETED event. Guest reset will automatically complete removal 1551# for all devices. 1552# 1553# Since: 0.14.0 1554# 1555# Example: 1556# 1557# -> { "execute": "device_del", 1558# "arguments": { "id": "net1" } } 1559# <- { "return": {} } 1560# 1561# -> { "execute": "device_del", 1562# "arguments": { "id": "/machine/peripheral-anon/device[0]" } } 1563# <- { "return": {} } 1564# 1565## 1566{ 'command': 'device_del', 'data': {'id': 'str'} } 1567 1568## 1569# @DEVICE_DELETED: 1570# 1571# Emitted whenever the device removal completion is acknowledged by the guest. 1572# At this point, it's safe to reuse the specified device ID. Device removal can 1573# be initiated by the guest or by HMP/QMP commands. 1574# 1575# @device: device name 1576# 1577# @path: device path 1578# 1579# Since: 1.5 1580# 1581# Example: 1582# 1583# <- { "event": "DEVICE_DELETED", 1584# "data": { "device": "virtio-net-pci-0", 1585# "path": "/machine/peripheral/virtio-net-pci-0" }, 1586# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 1587# 1588## 1589{ 'event': 'DEVICE_DELETED', 1590 'data': { '*device': 'str', 'path': 'str' } } 1591 1592## 1593# @DumpGuestMemoryFormat: 1594# 1595# An enumeration of guest-memory-dump's format. 1596# 1597# @elf: elf format 1598# 1599# @kdump-zlib: kdump-compressed format with zlib-compressed 1600# 1601# @kdump-lzo: kdump-compressed format with lzo-compressed 1602# 1603# @kdump-snappy: kdump-compressed format with snappy-compressed 1604# 1605# Since: 2.0 1606## 1607{ 'enum': 'DumpGuestMemoryFormat', 1608 'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy' ] } 1609 1610## 1611# @dump-guest-memory: 1612# 1613# Dump guest's memory to vmcore. It is a synchronous operation that can take 1614# very long depending on the amount of guest memory. 1615# 1616# @paging: if true, do paging to get guest's memory mapping. This allows 1617# using gdb to process the core file. 1618# 1619# IMPORTANT: this option can make QEMU allocate several gigabytes 1620# of RAM. This can happen for a large guest, or a 1621# malicious guest pretending to be large. 1622# 1623# Also, paging=true has the following limitations: 1624# 1625# 1. The guest may be in a catastrophic state or can have corrupted 1626# memory, which cannot be trusted 1627# 2. The guest can be in real-mode even if paging is enabled. For 1628# example, the guest uses ACPI to sleep, and ACPI sleep state 1629# goes in real-mode 1630# 3. Currently only supported on i386 and x86_64. 1631# 1632# @protocol: the filename or file descriptor of the vmcore. The supported 1633# protocols are: 1634# 1635# 1. file: the protocol starts with "file:", and the following 1636# string is the file's path. 1637# 2. fd: the protocol starts with "fd:", and the following string 1638# is the fd's name. 1639# 1640# @detach: if true, QMP will return immediately rather than 1641# waiting for the dump to finish. The user can track progress 1642# using "query-dump". (since 2.6). 1643# 1644# @begin: if specified, the starting physical address. 1645# 1646# @length: if specified, the memory size, in bytes. If you don't 1647# want to dump all guest's memory, please specify the start @begin 1648# and @length 1649# 1650# @format: if specified, the format of guest memory dump. But non-elf 1651# format is conflict with paging and filter, ie. @paging, @begin and 1652# @length is not allowed to be specified with non-elf @format at the 1653# same time (since 2.0) 1654# 1655# Note: All boolean arguments default to false 1656# 1657# Returns: nothing on success 1658# 1659# Since: 1.2 1660# 1661# Example: 1662# 1663# -> { "execute": "dump-guest-memory", 1664# "arguments": { "protocol": "fd:dump" } } 1665# <- { "return": {} } 1666# 1667## 1668{ 'command': 'dump-guest-memory', 1669 'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool', 1670 '*begin': 'int', '*length': 'int', 1671 '*format': 'DumpGuestMemoryFormat'} } 1672 1673## 1674# @DumpStatus: 1675# 1676# Describe the status of a long-running background guest memory dump. 1677# 1678# @none: no dump-guest-memory has started yet. 1679# 1680# @active: there is one dump running in background. 1681# 1682# @completed: the last dump has finished successfully. 1683# 1684# @failed: the last dump has failed. 1685# 1686# Since: 2.6 1687## 1688{ 'enum': 'DumpStatus', 1689 'data': [ 'none', 'active', 'completed', 'failed' ] } 1690 1691## 1692# @DumpQueryResult: 1693# 1694# The result format for 'query-dump'. 1695# 1696# @status: enum of @DumpStatus, which shows current dump status 1697# 1698# @completed: bytes written in latest dump (uncompressed) 1699# 1700# @total: total bytes to be written in latest dump (uncompressed) 1701# 1702# Since: 2.6 1703## 1704{ 'struct': 'DumpQueryResult', 1705 'data': { 'status': 'DumpStatus', 1706 'completed': 'int', 1707 'total': 'int' } } 1708 1709## 1710# @query-dump: 1711# 1712# Query latest dump status. 1713# 1714# Returns: A @DumpStatus object showing the dump status. 1715# 1716# Since: 2.6 1717# 1718# Example: 1719# 1720# -> { "execute": "query-dump" } 1721# <- { "return": { "status": "active", "completed": 1024000, 1722# "total": 2048000 } } 1723# 1724## 1725{ 'command': 'query-dump', 'returns': 'DumpQueryResult' } 1726 1727## 1728# @DUMP_COMPLETED: 1729# 1730# Emitted when background dump has completed 1731# 1732# @result: final dump status 1733# 1734# @error: human-readable error string that provides 1735# hint on why dump failed. Only presents on failure. The 1736# user should not try to interpret the error string. 1737# 1738# Since: 2.6 1739# 1740# Example: 1741# 1742# { "event": "DUMP_COMPLETED", 1743# "data": {"result": {"total": 1090650112, "status": "completed", 1744# "completed": 1090650112} } } 1745# 1746## 1747{ 'event': 'DUMP_COMPLETED' , 1748 'data': { 'result': 'DumpQueryResult', '*error': 'str' } } 1749 1750## 1751# @DumpGuestMemoryCapability: 1752# 1753# A list of the available formats for dump-guest-memory 1754# 1755# Since: 2.0 1756## 1757{ 'struct': 'DumpGuestMemoryCapability', 1758 'data': { 1759 'formats': ['DumpGuestMemoryFormat'] } } 1760 1761## 1762# @query-dump-guest-memory-capability: 1763# 1764# Returns the available formats for dump-guest-memory 1765# 1766# Returns: A @DumpGuestMemoryCapability object listing available formats for 1767# dump-guest-memory 1768# 1769# Since: 2.0 1770# 1771# Example: 1772# 1773# -> { "execute": "query-dump-guest-memory-capability" } 1774# <- { "return": { "formats": 1775# ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] } 1776# 1777## 1778{ 'command': 'query-dump-guest-memory-capability', 1779 'returns': 'DumpGuestMemoryCapability' } 1780 1781## 1782# @dump-skeys: 1783# 1784# Dump guest's storage keys 1785# 1786# @filename: the path to the file to dump to 1787# 1788# This command is only supported on s390 architecture. 1789# 1790# Since: 2.5 1791# 1792# Example: 1793# 1794# -> { "execute": "dump-skeys", 1795# "arguments": { "filename": "/tmp/skeys" } } 1796# <- { "return": {} } 1797# 1798## 1799{ 'command': 'dump-skeys', 1800 'data': { 'filename': 'str' } } 1801 1802## 1803# @object-add: 1804# 1805# Create a QOM object. 1806# 1807# @qom-type: the class name for the object to be created 1808# 1809# @id: the name of the new object 1810# 1811# @props: a dictionary of properties to be passed to the backend 1812# 1813# Returns: Nothing on success 1814# Error if @qom-type is not a valid class name 1815# 1816# Since: 2.0 1817# 1818# Example: 1819# 1820# -> { "execute": "object-add", 1821# "arguments": { "qom-type": "rng-random", "id": "rng1", 1822# "props": { "filename": "/dev/hwrng" } } } 1823# <- { "return": {} } 1824# 1825## 1826{ 'command': 'object-add', 1827 'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} } 1828 1829## 1830# @object-del: 1831# 1832# Remove a QOM object. 1833# 1834# @id: the name of the QOM object to remove 1835# 1836# Returns: Nothing on success 1837# Error if @id is not a valid id for a QOM object 1838# 1839# Since: 2.0 1840# 1841# Example: 1842# 1843# -> { "execute": "object-del", "arguments": { "id": "rng1" } } 1844# <- { "return": {} } 1845# 1846## 1847{ 'command': 'object-del', 'data': {'id': 'str'} } 1848 1849## 1850# @getfd: 1851# 1852# Receive a file descriptor via SCM rights and assign it a name 1853# 1854# @fdname: file descriptor name 1855# 1856# Returns: Nothing on success 1857# 1858# Since: 0.14.0 1859# 1860# Notes: If @fdname already exists, the file descriptor assigned to 1861# it will be closed and replaced by the received file 1862# descriptor. 1863# 1864# The 'closefd' command can be used to explicitly close the 1865# file descriptor when it is no longer needed. 1866# 1867# Example: 1868# 1869# -> { "execute": "getfd", "arguments": { "fdname": "fd1" } } 1870# <- { "return": {} } 1871# 1872## 1873{ 'command': 'getfd', 'data': {'fdname': 'str'} } 1874 1875## 1876# @closefd: 1877# 1878# Close a file descriptor previously passed via SCM rights 1879# 1880# @fdname: file descriptor name 1881# 1882# Returns: Nothing on success 1883# 1884# Since: 0.14.0 1885# 1886# Example: 1887# 1888# -> { "execute": "closefd", "arguments": { "fdname": "fd1" } } 1889# <- { "return": {} } 1890# 1891## 1892{ 'command': 'closefd', 'data': {'fdname': 'str'} } 1893 1894## 1895# @MachineInfo: 1896# 1897# Information describing a machine. 1898# 1899# @name: the name of the machine 1900# 1901# @alias: an alias for the machine name 1902# 1903# @is-default: whether the machine is default 1904# 1905# @cpu-max: maximum number of CPUs supported by the machine type 1906# (since 1.5.0) 1907# 1908# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0) 1909# 1910# Since: 1.2.0 1911## 1912{ 'struct': 'MachineInfo', 1913 'data': { 'name': 'str', '*alias': 'str', 1914 '*is-default': 'bool', 'cpu-max': 'int', 1915 'hotpluggable-cpus': 'bool'} } 1916 1917## 1918# @query-machines: 1919# 1920# Return a list of supported machines 1921# 1922# Returns: a list of MachineInfo 1923# 1924# Since: 1.2.0 1925## 1926{ 'command': 'query-machines', 'returns': ['MachineInfo'] } 1927 1928## 1929# @CpuDefinitionInfo: 1930# 1931# Virtual CPU definition. 1932# 1933# @name: the name of the CPU definition 1934# 1935# @migration-safe: whether a CPU definition can be safely used for 1936# migration in combination with a QEMU compatibility machine 1937# when migrating between different QMU versions and between 1938# hosts with different sets of (hardware or software) 1939# capabilities. If not provided, information is not available 1940# and callers should not assume the CPU definition to be 1941# migration-safe. (since 2.8) 1942# 1943# @static: whether a CPU definition is static and will not change depending on 1944# QEMU version, machine type, machine options and accelerator options. 1945# A static model is always migration-safe. (since 2.8) 1946# 1947# @unavailable-features: List of properties that prevent 1948# the CPU model from running in the current 1949# host. (since 2.8) 1950# @typename: Type name that can be used as argument to @device-list-properties, 1951# to introspect properties configurable using -cpu or -global. 1952# (since 2.9) 1953# 1954# @unavailable-features is a list of QOM property names that 1955# represent CPU model attributes that prevent the CPU from running. 1956# If the QOM property is read-only, that means there's no known 1957# way to make the CPU model run in the current host. Implementations 1958# that choose not to provide specific information return the 1959# property name "type". 1960# If the property is read-write, it means that it MAY be possible 1961# to run the CPU model in the current host if that property is 1962# changed. Management software can use it as hints to suggest or 1963# choose an alternative for the user, or just to generate meaningful 1964# error messages explaining why the CPU model can't be used. 1965# If @unavailable-features is an empty list, the CPU model is 1966# runnable using the current host and machine-type. 1967# If @unavailable-features is not present, runnability 1968# information for the CPU is not available. 1969# 1970# Since: 1.2.0 1971## 1972{ 'struct': 'CpuDefinitionInfo', 1973 'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool', 1974 '*unavailable-features': [ 'str' ], 'typename': 'str' } } 1975 1976## 1977# @MemoryInfo: 1978# 1979# Actual memory information in bytes. 1980# 1981# @base-memory: size of "base" memory specified with command line 1982# option -m. 1983# 1984# @plugged-memory: size of memory that can be hot-unplugged. This field 1985# is omitted if target doesn't support memory hotplug 1986# (i.e. CONFIG_MEM_HOTPLUG not defined on build time). 1987# 1988# Since: 2.11.0 1989## 1990{ 'struct': 'MemoryInfo', 1991 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } } 1992 1993## 1994# @query-memory-size-summary: 1995# 1996# Return the amount of initially allocated and present hotpluggable (if 1997# enabled) memory in bytes. 1998# 1999# Example: 2000# 2001# -> { "execute": "query-memory-size-summary" } 2002# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } } 2003# 2004# Since: 2.11.0 2005## 2006{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' } 2007 2008## 2009# @query-cpu-definitions: 2010# 2011# Return a list of supported virtual CPU definitions 2012# 2013# Returns: a list of CpuDefInfo 2014# 2015# Since: 1.2.0 2016## 2017{ 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] } 2018 2019## 2020# @CpuModelInfo: 2021# 2022# Virtual CPU model. 2023# 2024# A CPU model consists of the name of a CPU definition, to which 2025# delta changes are applied (e.g. features added/removed). Most magic values 2026# that an architecture might require should be hidden behind the name. 2027# However, if required, architectures can expose relevant properties. 2028# 2029# @name: the name of the CPU definition the model is based on 2030# @props: a dictionary of QOM properties to be applied 2031# 2032# Since: 2.8.0 2033## 2034{ 'struct': 'CpuModelInfo', 2035 'data': { 'name': 'str', 2036 '*props': 'any' } } 2037 2038## 2039# @CpuModelExpansionType: 2040# 2041# An enumeration of CPU model expansion types. 2042# 2043# @static: Expand to a static CPU model, a combination of a static base 2044# model name and property delta changes. As the static base model will 2045# never change, the expanded CPU model will be the same, independent of 2046# independent of QEMU version, machine type, machine options, and 2047# accelerator options. Therefore, the resulting model can be used by 2048# tooling without having to specify a compatibility machine - e.g. when 2049# displaying the "host" model. static CPU models are migration-safe. 2050# 2051# @full: Expand all properties. The produced model is not guaranteed to be 2052# migration-safe, but allows tooling to get an insight and work with 2053# model details. 2054# 2055# Note: When a non-migration-safe CPU model is expanded in static mode, some 2056# features enabled by the CPU model may be omitted, because they can't be 2057# implemented by a static CPU model definition (e.g. cache info passthrough and 2058# PMU passthrough in x86). If you need an accurate representation of the 2059# features enabled by a non-migration-safe CPU model, use @full. If you need a 2060# static representation that will keep ABI compatibility even when changing QEMU 2061# version or machine-type, use @static (but keep in mind that some features may 2062# be omitted). 2063# 2064# Since: 2.8.0 2065## 2066{ 'enum': 'CpuModelExpansionType', 2067 'data': [ 'static', 'full' ] } 2068 2069 2070## 2071# @CpuModelExpansionInfo: 2072# 2073# The result of a cpu model expansion. 2074# 2075# @model: the expanded CpuModelInfo. 2076# 2077# Since: 2.8.0 2078## 2079{ 'struct': 'CpuModelExpansionInfo', 2080 'data': { 'model': 'CpuModelInfo' } } 2081 2082 2083## 2084# @query-cpu-model-expansion: 2085# 2086# Expands a given CPU model (or a combination of CPU model + additional options) 2087# to different granularities, allowing tooling to get an understanding what a 2088# specific CPU model looks like in QEMU under a certain configuration. 2089# 2090# This interface can be used to query the "host" CPU model. 2091# 2092# The data returned by this command may be affected by: 2093# 2094# * QEMU version: CPU models may look different depending on the QEMU version. 2095# (Except for CPU models reported as "static" in query-cpu-definitions.) 2096# * machine-type: CPU model may look different depending on the machine-type. 2097# (Except for CPU models reported as "static" in query-cpu-definitions.) 2098# * machine options (including accelerator): in some architectures, CPU models 2099# may look different depending on machine and accelerator options. (Except for 2100# CPU models reported as "static" in query-cpu-definitions.) 2101# * "-cpu" arguments and global properties: arguments to the -cpu option and 2102# global properties may affect expansion of CPU models. Using 2103# query-cpu-model-expansion while using these is not advised. 2104# 2105# Some architectures may not support all expansion types. s390x supports 2106# "full" and "static". 2107# 2108# Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is 2109# not supported, if the model cannot be expanded, if the model contains 2110# an unknown CPU definition name, unknown properties or properties 2111# with a wrong type. Also returns an error if an expansion type is 2112# not supported. 2113# 2114# Since: 2.8.0 2115## 2116{ 'command': 'query-cpu-model-expansion', 2117 'data': { 'type': 'CpuModelExpansionType', 2118 'model': 'CpuModelInfo' }, 2119 'returns': 'CpuModelExpansionInfo' } 2120 2121## 2122# @CpuModelCompareResult: 2123# 2124# An enumeration of CPU model comparison results. The result is usually 2125# calculated using e.g. CPU features or CPU generations. 2126# 2127# @incompatible: If model A is incompatible to model B, model A is not 2128# guaranteed to run where model B runs and the other way around. 2129# 2130# @identical: If model A is identical to model B, model A is guaranteed to run 2131# where model B runs and the other way around. 2132# 2133# @superset: If model A is a superset of model B, model B is guaranteed to run 2134# where model A runs. There are no guarantees about the other way. 2135# 2136# @subset: If model A is a subset of model B, model A is guaranteed to run 2137# where model B runs. There are no guarantees about the other way. 2138# 2139# Since: 2.8.0 2140## 2141{ 'enum': 'CpuModelCompareResult', 2142 'data': [ 'incompatible', 'identical', 'superset', 'subset' ] } 2143 2144## 2145# @CpuModelCompareInfo: 2146# 2147# The result of a CPU model comparison. 2148# 2149# @result: The result of the compare operation. 2150# @responsible-properties: List of properties that led to the comparison result 2151# not being identical. 2152# 2153# @responsible-properties is a list of QOM property names that led to 2154# both CPUs not being detected as identical. For identical models, this 2155# list is empty. 2156# If a QOM property is read-only, that means there's no known way to make the 2157# CPU models identical. If the special property name "type" is included, the 2158# models are by definition not identical and cannot be made identical. 2159# 2160# Since: 2.8.0 2161## 2162{ 'struct': 'CpuModelCompareInfo', 2163 'data': {'result': 'CpuModelCompareResult', 2164 'responsible-properties': ['str'] 2165 } 2166} 2167 2168## 2169# @query-cpu-model-comparison: 2170# 2171# Compares two CPU models, returning how they compare in a specific 2172# configuration. The results indicates how both models compare regarding 2173# runnability. This result can be used by tooling to make decisions if a 2174# certain CPU model will run in a certain configuration or if a compatible 2175# CPU model has to be created by baselining. 2176# 2177# Usually, a CPU model is compared against the maximum possible CPU model 2178# of a certain configuration (e.g. the "host" model for KVM). If that CPU 2179# model is identical or a subset, it will run in that configuration. 2180# 2181# The result returned by this command may be affected by: 2182# 2183# * QEMU version: CPU models may look different depending on the QEMU version. 2184# (Except for CPU models reported as "static" in query-cpu-definitions.) 2185# * machine-type: CPU model may look different depending on the machine-type. 2186# (Except for CPU models reported as "static" in query-cpu-definitions.) 2187# * machine options (including accelerator): in some architectures, CPU models 2188# may look different depending on machine and accelerator options. (Except for 2189# CPU models reported as "static" in query-cpu-definitions.) 2190# * "-cpu" arguments and global properties: arguments to the -cpu option and 2191# global properties may affect expansion of CPU models. Using 2192# query-cpu-model-expansion while using these is not advised. 2193# 2194# Some architectures may not support comparing CPU models. s390x supports 2195# comparing CPU models. 2196# 2197# Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is 2198# not supported, if a model cannot be used, if a model contains 2199# an unknown cpu definition name, unknown properties or properties 2200# with wrong types. 2201# 2202# Since: 2.8.0 2203## 2204{ 'command': 'query-cpu-model-comparison', 2205 'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' }, 2206 'returns': 'CpuModelCompareInfo' } 2207 2208## 2209# @CpuModelBaselineInfo: 2210# 2211# The result of a CPU model baseline. 2212# 2213# @model: the baselined CpuModelInfo. 2214# 2215# Since: 2.8.0 2216## 2217{ 'struct': 'CpuModelBaselineInfo', 2218 'data': { 'model': 'CpuModelInfo' } } 2219 2220## 2221# @query-cpu-model-baseline: 2222# 2223# Baseline two CPU models, creating a compatible third model. The created 2224# model will always be a static, migration-safe CPU model (see "static" 2225# CPU model expansion for details). 2226# 2227# This interface can be used by tooling to create a compatible CPU model out 2228# two CPU models. The created CPU model will be identical to or a subset of 2229# both CPU models when comparing them. Therefore, the created CPU model is 2230# guaranteed to run where the given CPU models run. 2231# 2232# The result returned by this command may be affected by: 2233# 2234# * QEMU version: CPU models may look different depending on the QEMU version. 2235# (Except for CPU models reported as "static" in query-cpu-definitions.) 2236# * machine-type: CPU model may look different depending on the machine-type. 2237# (Except for CPU models reported as "static" in query-cpu-definitions.) 2238# * machine options (including accelerator): in some architectures, CPU models 2239# may look different depending on machine and accelerator options. (Except for 2240# CPU models reported as "static" in query-cpu-definitions.) 2241# * "-cpu" arguments and global properties: arguments to the -cpu option and 2242# global properties may affect expansion of CPU models. Using 2243# query-cpu-model-expansion while using these is not advised. 2244# 2245# Some architectures may not support baselining CPU models. s390x supports 2246# baselining CPU models. 2247# 2248# Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is 2249# not supported, if a model cannot be used, if a model contains 2250# an unknown cpu definition name, unknown properties or properties 2251# with wrong types. 2252# 2253# Since: 2.8.0 2254## 2255{ 'command': 'query-cpu-model-baseline', 2256 'data': { 'modela': 'CpuModelInfo', 2257 'modelb': 'CpuModelInfo' }, 2258 'returns': 'CpuModelBaselineInfo' } 2259 2260## 2261# @AddfdInfo: 2262# 2263# Information about a file descriptor that was added to an fd set. 2264# 2265# @fdset-id: The ID of the fd set that @fd was added to. 2266# 2267# @fd: The file descriptor that was received via SCM rights and 2268# added to the fd set. 2269# 2270# Since: 1.2.0 2271## 2272{ 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} } 2273 2274## 2275# @add-fd: 2276# 2277# Add a file descriptor, that was passed via SCM rights, to an fd set. 2278# 2279# @fdset-id: The ID of the fd set to add the file descriptor to. 2280# 2281# @opaque: A free-form string that can be used to describe the fd. 2282# 2283# Returns: @AddfdInfo on success 2284# 2285# If file descriptor was not received, FdNotSupplied 2286# 2287# If @fdset-id is a negative value, InvalidParameterValue 2288# 2289# Notes: The list of fd sets is shared by all monitor connections. 2290# 2291# If @fdset-id is not specified, a new fd set will be created. 2292# 2293# Since: 1.2.0 2294# 2295# Example: 2296# 2297# -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } } 2298# <- { "return": { "fdset-id": 1, "fd": 3 } } 2299# 2300## 2301{ 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'}, 2302 'returns': 'AddfdInfo' } 2303 2304## 2305# @remove-fd: 2306# 2307# Remove a file descriptor from an fd set. 2308# 2309# @fdset-id: The ID of the fd set that the file descriptor belongs to. 2310# 2311# @fd: The file descriptor that is to be removed. 2312# 2313# Returns: Nothing on success 2314# If @fdset-id or @fd is not found, FdNotFound 2315# 2316# Since: 1.2.0 2317# 2318# Notes: The list of fd sets is shared by all monitor connections. 2319# 2320# If @fd is not specified, all file descriptors in @fdset-id 2321# will be removed. 2322# 2323# Example: 2324# 2325# -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } } 2326# <- { "return": {} } 2327# 2328## 2329{ 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} } 2330 2331## 2332# @FdsetFdInfo: 2333# 2334# Information about a file descriptor that belongs to an fd set. 2335# 2336# @fd: The file descriptor value. 2337# 2338# @opaque: A free-form string that can be used to describe the fd. 2339# 2340# Since: 1.2.0 2341## 2342{ 'struct': 'FdsetFdInfo', 2343 'data': {'fd': 'int', '*opaque': 'str'} } 2344 2345## 2346# @FdsetInfo: 2347# 2348# Information about an fd set. 2349# 2350# @fdset-id: The ID of the fd set. 2351# 2352# @fds: A list of file descriptors that belong to this fd set. 2353# 2354# Since: 1.2.0 2355## 2356{ 'struct': 'FdsetInfo', 2357 'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} } 2358 2359## 2360# @query-fdsets: 2361# 2362# Return information describing all fd sets. 2363# 2364# Returns: A list of @FdsetInfo 2365# 2366# Since: 1.2.0 2367# 2368# Note: The list of fd sets is shared by all monitor connections. 2369# 2370# Example: 2371# 2372# -> { "execute": "query-fdsets" } 2373# <- { "return": [ 2374# { 2375# "fds": [ 2376# { 2377# "fd": 30, 2378# "opaque": "rdonly:/path/to/file" 2379# }, 2380# { 2381# "fd": 24, 2382# "opaque": "rdwr:/path/to/file" 2383# } 2384# ], 2385# "fdset-id": 1 2386# }, 2387# { 2388# "fds": [ 2389# { 2390# "fd": 28 2391# }, 2392# { 2393# "fd": 29 2394# } 2395# ], 2396# "fdset-id": 0 2397# } 2398# ] 2399# } 2400# 2401## 2402{ 'command': 'query-fdsets', 'returns': ['FdsetInfo'] } 2403 2404## 2405# @TargetInfo: 2406# 2407# Information describing the QEMU target. 2408# 2409# @arch: the target architecture (eg "x86_64", "i386", etc) 2410# 2411# Since: 1.2.0 2412## 2413{ 'struct': 'TargetInfo', 2414 'data': { 'arch': 'str' } } 2415 2416## 2417# @query-target: 2418# 2419# Return information about the target for this QEMU 2420# 2421# Returns: TargetInfo 2422# 2423# Since: 1.2.0 2424## 2425{ 'command': 'query-target', 'returns': 'TargetInfo' } 2426 2427## 2428# @AcpiTableOptions: 2429# 2430# Specify an ACPI table on the command line to load. 2431# 2432# At most one of @file and @data can be specified. The list of files specified 2433# by any one of them is loaded and concatenated in order. If both are omitted, 2434# @data is implied. 2435# 2436# Other fields / optargs can be used to override fields of the generic ACPI 2437# table header; refer to the ACPI specification 5.0, section 5.2.6 System 2438# Description Table Header. If a header field is not overridden, then the 2439# corresponding value from the concatenated blob is used (in case of @file), or 2440# it is filled in with a hard-coded value (in case of @data). 2441# 2442# String fields are copied into the matching ACPI member from lowest address 2443# upwards, and silently truncated / NUL-padded to length. 2444# 2445# @sig: table signature / identifier (4 bytes) 2446# 2447# @rev: table revision number (dependent on signature, 1 byte) 2448# 2449# @oem_id: OEM identifier (6 bytes) 2450# 2451# @oem_table_id: OEM table identifier (8 bytes) 2452# 2453# @oem_rev: OEM-supplied revision number (4 bytes) 2454# 2455# @asl_compiler_id: identifier of the utility that created the table 2456# (4 bytes) 2457# 2458# @asl_compiler_rev: revision number of the utility that created the 2459# table (4 bytes) 2460# 2461# @file: colon (:) separated list of pathnames to load and 2462# concatenate as table data. The resultant binary blob is expected to 2463# have an ACPI table header. At least one file is required. This field 2464# excludes @data. 2465# 2466# @data: colon (:) separated list of pathnames to load and 2467# concatenate as table data. The resultant binary blob must not have an 2468# ACPI table header. At least one file is required. This field excludes 2469# @file. 2470# 2471# Since: 1.5 2472## 2473{ 'struct': 'AcpiTableOptions', 2474 'data': { 2475 '*sig': 'str', 2476 '*rev': 'uint8', 2477 '*oem_id': 'str', 2478 '*oem_table_id': 'str', 2479 '*oem_rev': 'uint32', 2480 '*asl_compiler_id': 'str', 2481 '*asl_compiler_rev': 'uint32', 2482 '*file': 'str', 2483 '*data': 'str' }} 2484 2485## 2486# @CommandLineParameterType: 2487# 2488# Possible types for an option parameter. 2489# 2490# @string: accepts a character string 2491# 2492# @boolean: accepts "on" or "off" 2493# 2494# @number: accepts a number 2495# 2496# @size: accepts a number followed by an optional suffix (K)ilo, 2497# (M)ega, (G)iga, (T)era 2498# 2499# Since: 1.5 2500## 2501{ 'enum': 'CommandLineParameterType', 2502 'data': ['string', 'boolean', 'number', 'size'] } 2503 2504## 2505# @CommandLineParameterInfo: 2506# 2507# Details about a single parameter of a command line option. 2508# 2509# @name: parameter name 2510# 2511# @type: parameter @CommandLineParameterType 2512# 2513# @help: human readable text string, not suitable for parsing. 2514# 2515# @default: default value string (since 2.1) 2516# 2517# Since: 1.5 2518## 2519{ 'struct': 'CommandLineParameterInfo', 2520 'data': { 'name': 'str', 2521 'type': 'CommandLineParameterType', 2522 '*help': 'str', 2523 '*default': 'str' } } 2524 2525## 2526# @CommandLineOptionInfo: 2527# 2528# Details about a command line option, including its list of parameter details 2529# 2530# @option: option name 2531# 2532# @parameters: an array of @CommandLineParameterInfo 2533# 2534# Since: 1.5 2535## 2536{ 'struct': 'CommandLineOptionInfo', 2537 'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } } 2538 2539## 2540# @query-command-line-options: 2541# 2542# Query command line option schema. 2543# 2544# @option: option name 2545# 2546# Returns: list of @CommandLineOptionInfo for all options (or for the given 2547# @option). Returns an error if the given @option doesn't exist. 2548# 2549# Since: 1.5 2550# 2551# Example: 2552# 2553# -> { "execute": "query-command-line-options", 2554# "arguments": { "option": "option-rom" } } 2555# <- { "return": [ 2556# { 2557# "parameters": [ 2558# { 2559# "name": "romfile", 2560# "type": "string" 2561# }, 2562# { 2563# "name": "bootindex", 2564# "type": "number" 2565# } 2566# ], 2567# "option": "option-rom" 2568# } 2569# ] 2570# } 2571# 2572## 2573{'command': 'query-command-line-options', 'data': { '*option': 'str' }, 2574 'returns': ['CommandLineOptionInfo'] } 2575 2576## 2577# @X86CPURegister32: 2578# 2579# A X86 32-bit register 2580# 2581# Since: 1.5 2582## 2583{ 'enum': 'X86CPURegister32', 2584 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] } 2585 2586## 2587# @X86CPUFeatureWordInfo: 2588# 2589# Information about a X86 CPU feature word 2590# 2591# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word 2592# 2593# @cpuid-input-ecx: Input ECX value for CPUID instruction for that 2594# feature word 2595# 2596# @cpuid-register: Output register containing the feature bits 2597# 2598# @features: value of output register, containing the feature bits 2599# 2600# Since: 1.5 2601## 2602{ 'struct': 'X86CPUFeatureWordInfo', 2603 'data': { 'cpuid-input-eax': 'int', 2604 '*cpuid-input-ecx': 'int', 2605 'cpuid-register': 'X86CPURegister32', 2606 'features': 'int' } } 2607 2608## 2609# @DummyForceArrays: 2610# 2611# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally 2612# 2613# Since: 2.5 2614## 2615{ 'struct': 'DummyForceArrays', 2616 'data': { 'unused': ['X86CPUFeatureWordInfo'] } } 2617 2618 2619## 2620# @NumaOptionsType: 2621# 2622# @node: NUMA nodes configuration 2623# 2624# @dist: NUMA distance configuration (since 2.10) 2625# 2626# @cpu: property based CPU(s) to node mapping (Since: 2.10) 2627# 2628# Since: 2.1 2629## 2630{ 'enum': 'NumaOptionsType', 2631 'data': [ 'node', 'dist', 'cpu' ] } 2632 2633## 2634# @NumaOptions: 2635# 2636# A discriminated record of NUMA options. (for OptsVisitor) 2637# 2638# Since: 2.1 2639## 2640{ 'union': 'NumaOptions', 2641 'base': { 'type': 'NumaOptionsType' }, 2642 'discriminator': 'type', 2643 'data': { 2644 'node': 'NumaNodeOptions', 2645 'dist': 'NumaDistOptions', 2646 'cpu': 'NumaCpuOptions' }} 2647 2648## 2649# @NumaNodeOptions: 2650# 2651# Create a guest NUMA node. (for OptsVisitor) 2652# 2653# @nodeid: NUMA node ID (increase by 1 from 0 if omitted) 2654# 2655# @cpus: VCPUs belonging to this node (assign VCPUS round-robin 2656# if omitted) 2657# 2658# @mem: memory size of this node; mutually exclusive with @memdev. 2659# Equally divide total memory among nodes if both @mem and @memdev are 2660# omitted. 2661# 2662# @memdev: memory backend object. If specified for one node, 2663# it must be specified for all nodes. 2664# 2665# Since: 2.1 2666## 2667{ 'struct': 'NumaNodeOptions', 2668 'data': { 2669 '*nodeid': 'uint16', 2670 '*cpus': ['uint16'], 2671 '*mem': 'size', 2672 '*memdev': 'str' }} 2673 2674## 2675# @NumaDistOptions: 2676# 2677# Set the distance between 2 NUMA nodes. 2678# 2679# @src: source NUMA node. 2680# 2681# @dst: destination NUMA node. 2682# 2683# @val: NUMA distance from source node to destination node. 2684# When a node is unreachable from another node, set the distance 2685# between them to 255. 2686# 2687# Since: 2.10 2688## 2689{ 'struct': 'NumaDistOptions', 2690 'data': { 2691 'src': 'uint16', 2692 'dst': 'uint16', 2693 'val': 'uint8' }} 2694 2695## 2696# @NumaCpuOptions: 2697# 2698# Option "-numa cpu" overrides default cpu to node mapping. 2699# It accepts the same set of cpu properties as returned by 2700# query-hotpluggable-cpus[].props, where node-id could be used to 2701# override default node mapping. 2702# 2703# Since: 2.10 2704## 2705{ 'struct': 'NumaCpuOptions', 2706 'base': 'CpuInstanceProperties', 2707 'data' : {} } 2708 2709## 2710# @HostMemPolicy: 2711# 2712# Host memory policy types 2713# 2714# @default: restore default policy, remove any nondefault policy 2715# 2716# @preferred: set the preferred host nodes for allocation 2717# 2718# @bind: a strict policy that restricts memory allocation to the 2719# host nodes specified 2720# 2721# @interleave: memory allocations are interleaved across the set 2722# of host nodes specified 2723# 2724# Since: 2.1 2725## 2726{ 'enum': 'HostMemPolicy', 2727 'data': [ 'default', 'preferred', 'bind', 'interleave' ] } 2728 2729## 2730# @Memdev: 2731# 2732# Information about memory backend 2733# 2734# @id: backend's ID if backend has 'id' property (since 2.9) 2735# 2736# @size: memory backend size 2737# 2738# @merge: enables or disables memory merge support 2739# 2740# @dump: includes memory backend's memory in a core dump or not 2741# 2742# @prealloc: enables or disables memory preallocation 2743# 2744# @host-nodes: host nodes for its memory policy 2745# 2746# @policy: memory policy of memory backend 2747# 2748# Since: 2.1 2749## 2750{ 'struct': 'Memdev', 2751 'data': { 2752 '*id': 'str', 2753 'size': 'size', 2754 'merge': 'bool', 2755 'dump': 'bool', 2756 'prealloc': 'bool', 2757 'host-nodes': ['uint16'], 2758 'policy': 'HostMemPolicy' }} 2759 2760## 2761# @query-memdev: 2762# 2763# Returns information for all memory backends. 2764# 2765# Returns: a list of @Memdev. 2766# 2767# Since: 2.1 2768# 2769# Example: 2770# 2771# -> { "execute": "query-memdev" } 2772# <- { "return": [ 2773# { 2774# "id": "mem1", 2775# "size": 536870912, 2776# "merge": false, 2777# "dump": true, 2778# "prealloc": false, 2779# "host-nodes": [0, 1], 2780# "policy": "bind" 2781# }, 2782# { 2783# "size": 536870912, 2784# "merge": false, 2785# "dump": true, 2786# "prealloc": true, 2787# "host-nodes": [2, 3], 2788# "policy": "preferred" 2789# } 2790# ] 2791# } 2792# 2793## 2794{ 'command': 'query-memdev', 'returns': ['Memdev'] } 2795 2796## 2797# @PCDIMMDeviceInfo: 2798# 2799# PCDIMMDevice state information 2800# 2801# @id: device's ID 2802# 2803# @addr: physical address, where device is mapped 2804# 2805# @size: size of memory that the device provides 2806# 2807# @slot: slot number at which device is plugged in 2808# 2809# @node: NUMA node number where device is plugged in 2810# 2811# @memdev: memory backend linked with device 2812# 2813# @hotplugged: true if device was hotplugged 2814# 2815# @hotpluggable: true if device if could be added/removed while machine is running 2816# 2817# Since: 2.1 2818## 2819{ 'struct': 'PCDIMMDeviceInfo', 2820 'data': { '*id': 'str', 2821 'addr': 'int', 2822 'size': 'int', 2823 'slot': 'int', 2824 'node': 'int', 2825 'memdev': 'str', 2826 'hotplugged': 'bool', 2827 'hotpluggable': 'bool' 2828 } 2829} 2830 2831## 2832# @MemoryDeviceInfo: 2833# 2834# Union containing information about a memory device 2835# 2836# Since: 2.1 2837## 2838{ 'union': 'MemoryDeviceInfo', 'data': {'dimm': 'PCDIMMDeviceInfo'} } 2839 2840## 2841# @query-memory-devices: 2842# 2843# Lists available memory devices and their state 2844# 2845# Since: 2.1 2846# 2847# Example: 2848# 2849# -> { "execute": "query-memory-devices" } 2850# <- { "return": [ { "data": 2851# { "addr": 5368709120, 2852# "hotpluggable": true, 2853# "hotplugged": true, 2854# "id": "d1", 2855# "memdev": "/objects/memX", 2856# "node": 0, 2857# "size": 1073741824, 2858# "slot": 0}, 2859# "type": "dimm" 2860# } ] } 2861# 2862## 2863{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] } 2864 2865## 2866# @MEM_UNPLUG_ERROR: 2867# 2868# Emitted when memory hot unplug error occurs. 2869# 2870# @device: device name 2871# 2872# @msg: Informative message 2873# 2874# Since: 2.4 2875# 2876# Example: 2877# 2878# <- { "event": "MEM_UNPLUG_ERROR" 2879# "data": { "device": "dimm1", 2880# "msg": "acpi: device unplug for unsupported device" 2881# }, 2882# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 2883# 2884## 2885{ 'event': 'MEM_UNPLUG_ERROR', 2886 'data': { 'device': 'str', 'msg': 'str' } } 2887 2888## 2889# @ACPISlotType: 2890# 2891# @DIMM: memory slot 2892# @CPU: logical CPU slot (since 2.7) 2893## 2894{ 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] } 2895 2896## 2897# @ACPIOSTInfo: 2898# 2899# OSPM Status Indication for a device 2900# For description of possible values of @source and @status fields 2901# see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec. 2902# 2903# @device: device ID associated with slot 2904# 2905# @slot: slot ID, unique per slot of a given @slot-type 2906# 2907# @slot-type: type of the slot 2908# 2909# @source: an integer containing the source event 2910# 2911# @status: an integer containing the status code 2912# 2913# Since: 2.1 2914## 2915{ 'struct': 'ACPIOSTInfo', 2916 'data' : { '*device': 'str', 2917 'slot': 'str', 2918 'slot-type': 'ACPISlotType', 2919 'source': 'int', 2920 'status': 'int' } } 2921 2922## 2923# @query-acpi-ospm-status: 2924# 2925# Return a list of ACPIOSTInfo for devices that support status 2926# reporting via ACPI _OST method. 2927# 2928# Since: 2.1 2929# 2930# Example: 2931# 2932# -> { "execute": "query-acpi-ospm-status" } 2933# <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0}, 2934# { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0}, 2935# { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0}, 2936# { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0} 2937# ]} 2938# 2939## 2940{ 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] } 2941 2942## 2943# @ACPI_DEVICE_OST: 2944# 2945# Emitted when guest executes ACPI _OST method. 2946# 2947# @info: OSPM Status Indication 2948# 2949# Since: 2.1 2950# 2951# Example: 2952# 2953# <- { "event": "ACPI_DEVICE_OST", 2954# "data": { "device": "d1", "slot": "0", 2955# "slot-type": "DIMM", "source": 1, "status": 0 } } 2956# 2957## 2958{ 'event': 'ACPI_DEVICE_OST', 2959 'data': { 'info': 'ACPIOSTInfo' } } 2960 2961## 2962# @rtc-reset-reinjection: 2963# 2964# This command will reset the RTC interrupt reinjection backlog. 2965# Can be used if another mechanism to synchronize guest time 2966# is in effect, for example QEMU guest agent's guest-set-time 2967# command. 2968# 2969# Since: 2.1 2970# 2971# Example: 2972# 2973# -> { "execute": "rtc-reset-reinjection" } 2974# <- { "return": {} } 2975# 2976## 2977{ 'command': 'rtc-reset-reinjection' } 2978 2979## 2980# @RTC_CHANGE: 2981# 2982# Emitted when the guest changes the RTC time. 2983# 2984# @offset: offset between base RTC clock (as specified by -rtc base), and 2985# new RTC clock value 2986# 2987# Note: This event is rate-limited. 2988# 2989# Since: 0.13.0 2990# 2991# Example: 2992# 2993# <- { "event": "RTC_CHANGE", 2994# "data": { "offset": 78 }, 2995# "timestamp": { "seconds": 1267020223, "microseconds": 435656 } } 2996# 2997## 2998{ 'event': 'RTC_CHANGE', 2999 'data': { 'offset': 'int' } } 3000 3001## 3002# @ReplayMode: 3003# 3004# Mode of the replay subsystem. 3005# 3006# @none: normal execution mode. Replay or record are not enabled. 3007# 3008# @record: record mode. All non-deterministic data is written into the 3009# replay log. 3010# 3011# @play: replay mode. Non-deterministic data required for system execution 3012# is read from the log. 3013# 3014# Since: 2.5 3015## 3016{ 'enum': 'ReplayMode', 3017 'data': [ 'none', 'record', 'play' ] } 3018 3019## 3020# @xen-load-devices-state: 3021# 3022# Load the state of all devices from file. The RAM and the block devices 3023# of the VM are not loaded by this command. 3024# 3025# @filename: the file to load the state of the devices from as binary 3026# data. See xen-save-devices-state.txt for a description of the binary 3027# format. 3028# 3029# Since: 2.7 3030# 3031# Example: 3032# 3033# -> { "execute": "xen-load-devices-state", 3034# "arguments": { "filename": "/tmp/resume" } } 3035# <- { "return": {} } 3036# 3037## 3038{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 3039 3040## 3041# @GICCapability: 3042# 3043# The struct describes capability for a specific GIC (Generic 3044# Interrupt Controller) version. These bits are not only decided by 3045# QEMU/KVM software version, but also decided by the hardware that 3046# the program is running upon. 3047# 3048# @version: version of GIC to be described. Currently, only 2 and 3 3049# are supported. 3050# 3051# @emulated: whether current QEMU/hardware supports emulated GIC 3052# device in user space. 3053# 3054# @kernel: whether current QEMU/hardware supports hardware 3055# accelerated GIC device in kernel. 3056# 3057# Since: 2.6 3058## 3059{ 'struct': 'GICCapability', 3060 'data': { 'version': 'int', 3061 'emulated': 'bool', 3062 'kernel': 'bool' } } 3063 3064## 3065# @query-gic-capabilities: 3066# 3067# This command is ARM-only. It will return a list of GICCapability 3068# objects that describe its capability bits. 3069# 3070# Returns: a list of GICCapability objects. 3071# 3072# Since: 2.6 3073# 3074# Example: 3075# 3076# -> { "execute": "query-gic-capabilities" } 3077# <- { "return": [{ "version": 2, "emulated": true, "kernel": false }, 3078# { "version": 3, "emulated": false, "kernel": true } ] } 3079# 3080## 3081{ 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] } 3082 3083## 3084# @CpuInstanceProperties: 3085# 3086# List of properties to be used for hotplugging a CPU instance, 3087# it should be passed by management with device_add command when 3088# a CPU is being hotplugged. 3089# 3090# @node-id: NUMA node ID the CPU belongs to 3091# @socket-id: socket number within node/board the CPU belongs to 3092# @core-id: core number within socket the CPU belongs to 3093# @thread-id: thread number within core the CPU belongs to 3094# 3095# Note: currently there are 4 properties that could be present 3096# but management should be prepared to pass through other 3097# properties with device_add command to allow for future 3098# interface extension. This also requires the filed names to be kept in 3099# sync with the properties passed to -device/device_add. 3100# 3101# Since: 2.7 3102## 3103{ 'struct': 'CpuInstanceProperties', 3104 'data': { '*node-id': 'int', 3105 '*socket-id': 'int', 3106 '*core-id': 'int', 3107 '*thread-id': 'int' 3108 } 3109} 3110 3111## 3112# @HotpluggableCPU: 3113# 3114# @type: CPU object type for usage with device_add command 3115# @props: list of properties to be used for hotplugging CPU 3116# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides 3117# @qom-path: link to existing CPU object if CPU is present or 3118# omitted if CPU is not present. 3119# 3120# Since: 2.7 3121## 3122{ 'struct': 'HotpluggableCPU', 3123 'data': { 'type': 'str', 3124 'vcpus-count': 'int', 3125 'props': 'CpuInstanceProperties', 3126 '*qom-path': 'str' 3127 } 3128} 3129 3130## 3131# @query-hotpluggable-cpus: 3132# 3133# Returns: a list of HotpluggableCPU objects. 3134# 3135# Since: 2.7 3136# 3137# Example: 3138# 3139# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8: 3140# 3141# -> { "execute": "query-hotpluggable-cpus" } 3142# <- {"return": [ 3143# { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core", 3144# "vcpus-count": 1 }, 3145# { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core", 3146# "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"} 3147# ]}' 3148# 3149# For pc machine type started with -smp 1,maxcpus=2: 3150# 3151# -> { "execute": "query-hotpluggable-cpus" } 3152# <- {"return": [ 3153# { 3154# "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 3155# "props": {"core-id": 0, "socket-id": 1, "thread-id": 0} 3156# }, 3157# { 3158# "qom-path": "/machine/unattached/device[0]", 3159# "type": "qemu64-x86_64-cpu", "vcpus-count": 1, 3160# "props": {"core-id": 0, "socket-id": 0, "thread-id": 0} 3161# } 3162# ]} 3163# 3164# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu 3165# (Since: 2.11): 3166# 3167# -> { "execute": "query-hotpluggable-cpus" } 3168# <- {"return": [ 3169# { 3170# "type": "qemu-s390x-cpu", "vcpus-count": 1, 3171# "props": { "core-id": 1 } 3172# }, 3173# { 3174# "qom-path": "/machine/unattached/device[0]", 3175# "type": "qemu-s390x-cpu", "vcpus-count": 1, 3176# "props": { "core-id": 0 } 3177# } 3178# ]} 3179# 3180## 3181{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'] } 3182 3183## 3184# @GuidInfo: 3185# 3186# GUID information. 3187# 3188# @guid: the globally unique identifier 3189# 3190# Since: 2.9 3191## 3192{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} } 3193 3194## 3195# @query-vm-generation-id: 3196# 3197# Show Virtual Machine Generation ID 3198# 3199# Since: 2.9 3200## 3201{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' } 3202