1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4 5## 6# @rtc-reset-reinjection: 7# 8# This command will reset the RTC interrupt reinjection backlog. 9# Can be used if another mechanism to synchronize guest time 10# is in effect, for example QEMU guest agent's guest-set-time 11# command. 12# 13# Since: 2.1 14# 15# Example: 16# 17# -> { "execute": "rtc-reset-reinjection" } 18# <- { "return": {} } 19# 20## 21{ 'command': 'rtc-reset-reinjection', 22 'if': 'TARGET_I386' } 23 24 25## 26# @SevState: 27# 28# An enumeration of SEV state information used during @query-sev. 29# 30# @uninit: The guest is uninitialized. 31# 32# @launch-update: The guest is currently being launched; plaintext data and 33# register state is being imported. 34# 35# @launch-secret: The guest is currently being launched; ciphertext data 36# is being imported. 37# 38# @running: The guest is fully launched or migrated in. 39# 40# @send-update: The guest is currently being migrated out to another machine. 41# 42# @receive-update: The guest is currently being migrated from another machine. 43# 44# Since: 2.12 45## 46{ 'enum': 'SevState', 47 'data': ['uninit', 'launch-update', 'launch-secret', 'running', 48 'send-update', 'receive-update' ], 49 'if': 'TARGET_I386' } 50 51## 52# @SevInfo: 53# 54# Information about Secure Encrypted Virtualization (SEV) support 55# 56# @enabled: true if SEV is active 57# 58# @api-major: SEV API major version 59# 60# @api-minor: SEV API minor version 61# 62# @build-id: SEV FW build id 63# 64# @policy: SEV policy value 65# 66# @state: SEV guest state 67# 68# @handle: SEV firmware handle 69# 70# Since: 2.12 71## 72{ 'struct': 'SevInfo', 73 'data': { 'enabled': 'bool', 74 'api-major': 'uint8', 75 'api-minor' : 'uint8', 76 'build-id' : 'uint8', 77 'policy' : 'uint32', 78 'state' : 'SevState', 79 'handle' : 'uint32' 80 }, 81 'if': 'TARGET_I386' 82} 83 84## 85# @query-sev: 86# 87# Returns information about SEV 88# 89# Returns: @SevInfo 90# 91# Since: 2.12 92# 93# Example: 94# 95# -> { "execute": "query-sev" } 96# <- { "return": { "enabled": true, "api-major" : 0, "api-minor" : 0, 97# "build-id" : 0, "policy" : 0, "state" : "running", 98# "handle" : 1 } } 99# 100## 101{ 'command': 'query-sev', 'returns': 'SevInfo', 102 'if': 'TARGET_I386' } 103 104 105## 106# @SevLaunchMeasureInfo: 107# 108# SEV Guest Launch measurement information 109# 110# @data: the measurement value encoded in base64 111# 112# Since: 2.12 113# 114## 115{ 'struct': 'SevLaunchMeasureInfo', 'data': {'data': 'str'}, 116 'if': 'TARGET_I386' } 117 118## 119# @query-sev-launch-measure: 120# 121# Query the SEV guest launch information. 122# 123# Returns: The @SevLaunchMeasureInfo for the guest 124# 125# Since: 2.12 126# 127# Example: 128# 129# -> { "execute": "query-sev-launch-measure" } 130# <- { "return": { "data": "4l8LXeNlSPUDlXPJG5966/8%YZ" } } 131# 132## 133{ 'command': 'query-sev-launch-measure', 'returns': 'SevLaunchMeasureInfo', 134 'if': 'TARGET_I386' } 135 136 137## 138# @SevCapability: 139# 140# The struct describes capability for a Secure Encrypted Virtualization 141# feature. 142# 143# @pdh: Platform Diffie-Hellman key (base64 encoded) 144# 145# @cert-chain: PDH certificate chain (base64 encoded) 146# 147# @cbitpos: C-bit location in page table entry 148# 149# @reduced-phys-bits: Number of physical Address bit reduction when SEV is 150# enabled 151# 152# Since: 2.12 153## 154{ 'struct': 'SevCapability', 155 'data': { 'pdh': 'str', 156 'cert-chain': 'str', 157 'cbitpos': 'int', 158 'reduced-phys-bits': 'int'}, 159 'if': 'TARGET_I386' } 160 161## 162# @query-sev-capabilities: 163# 164# This command is used to get the SEV capabilities, and is supported on AMD 165# X86 platforms only. 166# 167# Returns: SevCapability objects. 168# 169# Since: 2.12 170# 171# Example: 172# 173# -> { "execute": "query-sev-capabilities" } 174# <- { "return": { "pdh": "8CCDD8DDD", "cert-chain": "888CCCDDDEE", 175# "cbitpos": 47, "reduced-phys-bits": 5}} 176# 177## 178{ 'command': 'query-sev-capabilities', 'returns': 'SevCapability', 179 'if': 'TARGET_I386' } 180 181## 182# @sev-inject-launch-secret: 183# 184# This command injects a secret blob into memory of SEV guest. 185# 186# @packet-header: the launch secret packet header encoded in base64 187# 188# @secret: the launch secret data to be injected encoded in base64 189# 190# @gpa: the guest physical address where secret will be injected. 191# 192# Since: 6.0 193# 194## 195{ 'command': 'sev-inject-launch-secret', 196 'data': { 'packet-header': 'str', 'secret': 'str', '*gpa': 'uint64' }, 197 'if': 'TARGET_I386' } 198 199## 200# @SevAttestationReport: 201# 202# The struct describes attestation report for a Secure Encrypted 203# Virtualization feature. 204# 205# @data: guest attestation report (base64 encoded) 206# 207# 208# Since: 6.1 209## 210{ 'struct': 'SevAttestationReport', 211 'data': { 'data': 'str'}, 212 'if': 'TARGET_I386' } 213 214## 215# @query-sev-attestation-report: 216# 217# This command is used to get the SEV attestation report, and is 218# supported on AMD X86 platforms only. 219# 220# @mnonce: a random 16 bytes value encoded in base64 (it will be 221# included in report) 222# 223# Returns: SevAttestationReport objects. 224# 225# Since: 6.1 226# 227# Example: 228# 229# -> { "execute" : "query-sev-attestation-report", 230# "arguments": { "mnonce": "aaaaaaa" } } 231# <- { "return" : { "data": "aaaaaaaabbbddddd"} } 232# 233## 234{ 'command': 'query-sev-attestation-report', 235 'data': { 'mnonce': 'str' }, 236 'returns': 'SevAttestationReport', 237 'if': 'TARGET_I386' } 238 239## 240# @dump-skeys: 241# 242# Dump guest's storage keys 243# 244# @filename: the path to the file to dump to 245# 246# This command is only supported on s390 architecture. 247# 248# Since: 2.5 249# 250# Example: 251# 252# -> { "execute": "dump-skeys", 253# "arguments": { "filename": "/tmp/skeys" } } 254# <- { "return": {} } 255# 256## 257{ 'command': 'dump-skeys', 258 'data': { 'filename': 'str' }, 259 'if': 'TARGET_S390X' } 260 261## 262# @GICCapability: 263# 264# The struct describes capability for a specific GIC (Generic 265# Interrupt Controller) version. These bits are not only decided by 266# QEMU/KVM software version, but also decided by the hardware that 267# the program is running upon. 268# 269# @version: version of GIC to be described. Currently, only 2 and 3 270# are supported. 271# 272# @emulated: whether current QEMU/hardware supports emulated GIC 273# device in user space. 274# 275# @kernel: whether current QEMU/hardware supports hardware 276# accelerated GIC device in kernel. 277# 278# Since: 2.6 279## 280{ 'struct': 'GICCapability', 281 'data': { 'version': 'int', 282 'emulated': 'bool', 283 'kernel': 'bool' }, 284 'if': 'TARGET_ARM' } 285 286## 287# @query-gic-capabilities: 288# 289# This command is ARM-only. It will return a list of GICCapability 290# objects that describe its capability bits. 291# 292# Returns: a list of GICCapability objects. 293# 294# Since: 2.6 295# 296# Example: 297# 298# -> { "execute": "query-gic-capabilities" } 299# <- { "return": [{ "version": 2, "emulated": true, "kernel": false }, 300# { "version": 3, "emulated": false, "kernel": true } ] } 301# 302## 303{ 'command': 'query-gic-capabilities', 'returns': ['GICCapability'], 304 'if': 'TARGET_ARM' } 305 306 307## 308# @SGXEPCSection: 309# 310# Information about intel SGX EPC section info 311# 312# @node: the numa node 313# 314# @size: the size of EPC section 315# 316# Since: 7.0 317## 318{ 'struct': 'SGXEPCSection', 319 'data': { 'node': 'int', 320 'size': 'uint64'}} 321 322## 323# @SGXInfo: 324# 325# Information about intel Safe Guard eXtension (SGX) support 326# 327# @sgx: true if SGX is supported 328# 329# @sgx1: true if SGX1 is supported 330# 331# @sgx2: true if SGX2 is supported 332# 333# @flc: true if FLC is supported 334# 335# @section-size: The EPC section size for guest 336# Redundant with @sections. Just for backward compatibility. 337# 338# @sections: The EPC sections info for guest (Since: 7.0) 339# 340# Features: 341# @deprecated: Member @section-size is deprecated. Use @sections instead. 342# 343# Since: 6.2 344## 345{ 'struct': 'SGXInfo', 346 'data': { 'sgx': 'bool', 347 'sgx1': 'bool', 348 'sgx2': 'bool', 349 'flc': 'bool', 350 'section-size': { 'type': 'uint64', 351 'features': [ 'deprecated' ] }, 352 'sections': ['SGXEPCSection']}, 353 'if': 'TARGET_I386' } 354 355## 356# @query-sgx: 357# 358# Returns information about SGX 359# 360# Returns: @SGXInfo 361# 362# Since: 6.2 363# 364# Example: 365# 366# -> { "execute": "query-sgx" } 367# <- { "return": { "sgx": true, "sgx1" : true, "sgx2" : true, 368# "flc": true, "section-size" : 96468992, 369# "sections": [{"node": 0, "size": 67108864}, 370# {"node": 1, "size": 29360128}]} } 371# 372## 373{ 'command': 'query-sgx', 'returns': 'SGXInfo', 'if': 'TARGET_I386' } 374 375## 376# @query-sgx-capabilities: 377# 378# Returns information from host SGX capabilities 379# 380# Returns: @SGXInfo 381# 382# Since: 6.2 383# 384# Example: 385# 386# -> { "execute": "query-sgx-capabilities" } 387# <- { "return": { "sgx": true, "sgx1" : true, "sgx2" : true, 388# "flc": true, "section-size" : 96468992, 389# "section" : [{"node": 0, "size": 67108864}, 390# {"node": 1, "size": 29360128}]} } 391# 392## 393{ 'command': 'query-sgx-capabilities', 'returns': 'SGXInfo', 'if': 'TARGET_I386' } 394