1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4 5## 6# = Migration 7## 8 9{ 'include': 'common.json' } 10{ 'include': 'sockets.json' } 11 12## 13# @MigrationStats: 14# 15# Detailed migration status. 16# 17# @transferred: amount of bytes already transferred to the target VM 18# 19# @remaining: amount of bytes remaining to be transferred to the 20# target VM 21# 22# @total: total amount of bytes involved in the migration process 23# 24# @duplicate: number of duplicate (zero) pages (since 1.2) 25# 26# @skipped: number of skipped zero pages. Always zero, only provided for 27# compatibility (since 1.5) 28# 29# @normal: number of normal pages (since 1.2) 30# 31# @normal-bytes: number of normal bytes sent (since 1.2) 32# 33# @dirty-pages-rate: number of pages dirtied by second by the guest 34# (since 1.3) 35# 36# @mbps: throughput in megabits/sec. (since 1.6) 37# 38# @dirty-sync-count: number of times that dirty ram was synchronized 39# (since 2.1) 40# 41# @postcopy-requests: The number of page requests received from the 42# destination (since 2.7) 43# 44# @page-size: The number of bytes per page for the various page-based 45# statistics (since 2.10) 46# 47# @multifd-bytes: The number of bytes sent through multifd (since 3.0) 48# 49# @pages-per-second: the number of memory pages transferred per second 50# (Since 4.0) 51# 52# @precopy-bytes: The number of bytes sent in the pre-copy phase 53# (since 7.0). 54# 55# @downtime-bytes: The number of bytes sent while the guest is paused 56# (since 7.0). 57# 58# @postcopy-bytes: The number of bytes sent during the post-copy phase 59# (since 7.0). 60# 61# @dirty-sync-missed-zero-copy: Number of times dirty RAM 62# synchronization could not avoid copying dirty pages. This is 63# between 0 and @dirty-sync-count * @multifd-channels. (since 64# 7.1) 65# 66# Features: 67# 68# @deprecated: Member @skipped is always zero since 1.5.3 69# 70# Since: 0.14 71# 72## 73{ 'struct': 'MigrationStats', 74 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' , 75 'duplicate': 'int', 76 'skipped': { 'type': 'int', 'features': [ 'deprecated' ] }, 77 'normal': 'int', 78 'normal-bytes': 'int', 'dirty-pages-rate': 'int', 79 'mbps': 'number', 'dirty-sync-count': 'int', 80 'postcopy-requests': 'int', 'page-size': 'int', 81 'multifd-bytes': 'uint64', 'pages-per-second': 'uint64', 82 'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64', 83 'postcopy-bytes': 'uint64', 84 'dirty-sync-missed-zero-copy': 'uint64' } } 85 86## 87# @XBZRLECacheStats: 88# 89# Detailed XBZRLE migration cache statistics 90# 91# @cache-size: XBZRLE cache size 92# 93# @bytes: amount of bytes already transferred to the target VM 94# 95# @pages: amount of pages transferred to the target VM 96# 97# @cache-miss: number of cache miss 98# 99# @cache-miss-rate: rate of cache miss (since 2.1) 100# 101# @encoding-rate: rate of encoded bytes (since 5.1) 102# 103# @overflow: number of overflows 104# 105# Since: 1.2 106## 107{ 'struct': 'XBZRLECacheStats', 108 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int', 109 'cache-miss': 'int', 'cache-miss-rate': 'number', 110 'encoding-rate': 'number', 'overflow': 'int' } } 111 112## 113# @CompressionStats: 114# 115# Detailed migration compression statistics 116# 117# @pages: amount of pages compressed and transferred to the target VM 118# 119# @busy: count of times that no free thread was available to compress 120# data 121# 122# @busy-rate: rate of thread busy 123# 124# @compressed-size: amount of bytes after compression 125# 126# @compression-rate: rate of compressed size 127# 128# Since: 3.1 129## 130{ 'struct': 'CompressionStats', 131 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number', 132 'compressed-size': 'int', 'compression-rate': 'number' } } 133 134## 135# @MigrationStatus: 136# 137# An enumeration of migration status. 138# 139# @none: no migration has ever happened. 140# 141# @setup: migration process has been initiated. 142# 143# @cancelling: in the process of cancelling migration. 144# 145# @cancelled: cancelling migration is finished. 146# 147# @active: in the process of doing migration. 148# 149# @postcopy-active: like active, but now in postcopy mode. (since 150# 2.5) 151# 152# @postcopy-paused: during postcopy but paused. (since 3.0) 153# 154# @postcopy-recover: trying to recover from a paused postcopy. (since 155# 3.0) 156# 157# @completed: migration is finished. 158# 159# @failed: some error occurred during migration process. 160# 161# @colo: VM is in the process of fault tolerance, VM can not get into 162# this state unless colo capability is enabled for migration. 163# (since 2.8) 164# 165# @pre-switchover: Paused before device serialisation. (since 2.11) 166# 167# @device: During device serialisation when pause-before-switchover is 168# enabled (since 2.11) 169# 170# @wait-unplug: wait for device unplug request by guest OS to be 171# completed. (since 4.2) 172# 173# Since: 2.3 174## 175{ 'enum': 'MigrationStatus', 176 'data': [ 'none', 'setup', 'cancelling', 'cancelled', 177 'active', 'postcopy-active', 'postcopy-paused', 178 'postcopy-recover', 'completed', 'failed', 'colo', 179 'pre-switchover', 'device', 'wait-unplug' ] } 180## 181# @VfioStats: 182# 183# Detailed VFIO devices migration statistics 184# 185# @transferred: amount of bytes transferred to the target VM by VFIO 186# devices 187# 188# Since: 5.2 189## 190{ 'struct': 'VfioStats', 191 'data': {'transferred': 'int' } } 192 193## 194# @MigrationInfo: 195# 196# Information about current migration process. 197# 198# @status: @MigrationStatus describing the current migration status. 199# If this field is not returned, no migration process has been 200# initiated 201# 202# @ram: @MigrationStats containing detailed migration status, only 203# returned if status is 'active' or 'completed'(since 1.2) 204# 205# @disk: @MigrationStats containing detailed disk migration status, 206# only returned if status is 'active' and it is a block migration 207# 208# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE 209# migration statistics, only returned if XBZRLE feature is on and 210# status is 'active' or 'completed' (since 1.2) 211# 212# @total-time: total amount of milliseconds since migration started. 213# If migration has ended, it returns the total migration time. 214# (since 1.2) 215# 216# @downtime: only present when migration finishes correctly total 217# downtime in milliseconds for the guest. (since 1.3) 218# 219# @expected-downtime: only present while migration is active expected 220# downtime in milliseconds for the guest in last walk of the dirty 221# bitmap. (since 1.3) 222# 223# @setup-time: amount of setup time in milliseconds *before* the 224# iterations begin but *after* the QMP command is issued. This is 225# designed to provide an accounting of any activities (such as 226# RDMA pinning) which may be expensive, but do not actually occur 227# during the iterative migration rounds themselves. (since 1.6) 228# 229# @cpu-throttle-percentage: percentage of time guest cpus are being 230# throttled during auto-converge. This is only present when 231# auto-converge has started throttling guest cpus. (Since 2.7) 232# 233# @error-desc: the human readable error description string. Clients 234# should not attempt to parse the error strings. (Since 2.7) 235# 236# @postcopy-blocktime: total time when all vCPU were blocked during 237# postcopy live migration. This is only present when the 238# postcopy-blocktime migration capability is enabled. (Since 3.0) 239# 240# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. 241# This is only present when the postcopy-blocktime migration 242# capability is enabled. (Since 3.0) 243# 244# @compression: migration compression statistics, only returned if 245# compression feature is on and status is 'active' or 'completed' 246# (Since 3.1) 247# 248# @socket-address: Only used for tcp, to know what the real port is 249# (Since 4.0) 250# 251# @vfio: @VfioStats containing detailed VFIO devices migration 252# statistics, only returned if VFIO device is present, migration 253# is supported by all VFIO devices and status is 'active' or 254# 'completed' (since 5.2) 255# 256# @blocked-reasons: A list of reasons an outgoing migration is 257# blocked. Present and non-empty when migration is blocked. 258# (since 6.0) 259# 260# @dirty-limit-throttle-time-per-round: Maximum throttle time 261# (in microseconds) of virtual CPUs each dirty ring full round, 262# which shows how MigrationCapability dirty-limit affects the 263# guest during live migration. (Since 8.1) 264# 265# @dirty-limit-ring-full-time: Estimated average dirty ring full time 266# (in microseconds) for each dirty ring full round. The value 267# equals the dirty ring memory size divided by the average dirty 268# page rate of the virtual CPU, which can be used to observe the 269# average memory load of the virtual CPU indirectly. Note that 270# zero means guest doesn't dirty memory. (Since 8.1) 271# 272# Features: 273# 274# @deprecated: Member @disk is deprecated because block migration is. 275# Member @compression is deprecated because it is unreliable and 276# untested. It is recommended to use multifd migration, which 277# offers an alternative compression implementation that is 278# reliable and tested. 279# 280# Since: 0.14 281## 282{ 'struct': 'MigrationInfo', 283 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats', 284 '*disk': { 'type': 'MigrationStats', 'features': [ 'deprecated' ] }, 285 '*vfio': 'VfioStats', 286 '*xbzrle-cache': 'XBZRLECacheStats', 287 '*total-time': 'int', 288 '*expected-downtime': 'int', 289 '*downtime': 'int', 290 '*setup-time': 'int', 291 '*cpu-throttle-percentage': 'int', 292 '*error-desc': 'str', 293 '*blocked-reasons': ['str'], 294 '*postcopy-blocktime': 'uint32', 295 '*postcopy-vcpu-blocktime': ['uint32'], 296 '*compression': { 'type': 'CompressionStats', 'features': [ 'deprecated' ] }, 297 '*socket-address': ['SocketAddress'], 298 '*dirty-limit-throttle-time-per-round': 'uint64', 299 '*dirty-limit-ring-full-time': 'uint64'} } 300 301## 302# @query-migrate: 303# 304# Returns information about current migration process. If migration 305# is active there will be another json-object with RAM migration 306# status and if block migration is active another one with block 307# migration status. 308# 309# Returns: @MigrationInfo 310# 311# Since: 0.14 312# 313# Examples: 314# 315# 1. Before the first migration 316# 317# -> { "execute": "query-migrate" } 318# <- { "return": {} } 319# 320# 2. Migration is done and has succeeded 321# 322# -> { "execute": "query-migrate" } 323# <- { "return": { 324# "status": "completed", 325# "total-time":12345, 326# "setup-time":12345, 327# "downtime":12345, 328# "ram":{ 329# "transferred":123, 330# "remaining":123, 331# "total":246, 332# "duplicate":123, 333# "normal":123, 334# "normal-bytes":123456, 335# "dirty-sync-count":15 336# } 337# } 338# } 339# 340# 3. Migration is done and has failed 341# 342# -> { "execute": "query-migrate" } 343# <- { "return": { "status": "failed" } } 344# 345# 4. Migration is being performed and is not a block migration: 346# 347# -> { "execute": "query-migrate" } 348# <- { 349# "return":{ 350# "status":"active", 351# "total-time":12345, 352# "setup-time":12345, 353# "expected-downtime":12345, 354# "ram":{ 355# "transferred":123, 356# "remaining":123, 357# "total":246, 358# "duplicate":123, 359# "normal":123, 360# "normal-bytes":123456, 361# "dirty-sync-count":15 362# } 363# } 364# } 365# 366# 5. Migration is being performed and is a block migration: 367# 368# -> { "execute": "query-migrate" } 369# <- { 370# "return":{ 371# "status":"active", 372# "total-time":12345, 373# "setup-time":12345, 374# "expected-downtime":12345, 375# "ram":{ 376# "total":1057024, 377# "remaining":1053304, 378# "transferred":3720, 379# "duplicate":123, 380# "normal":123, 381# "normal-bytes":123456, 382# "dirty-sync-count":15 383# }, 384# "disk":{ 385# "total":20971520, 386# "remaining":20880384, 387# "transferred":91136 388# } 389# } 390# } 391# 392# 6. Migration is being performed and XBZRLE is active: 393# 394# -> { "execute": "query-migrate" } 395# <- { 396# "return":{ 397# "status":"active", 398# "total-time":12345, 399# "setup-time":12345, 400# "expected-downtime":12345, 401# "ram":{ 402# "total":1057024, 403# "remaining":1053304, 404# "transferred":3720, 405# "duplicate":10, 406# "normal":3333, 407# "normal-bytes":3412992, 408# "dirty-sync-count":15 409# }, 410# "xbzrle-cache":{ 411# "cache-size":67108864, 412# "bytes":20971520, 413# "pages":2444343, 414# "cache-miss":2244, 415# "cache-miss-rate":0.123, 416# "encoding-rate":80.1, 417# "overflow":34434 418# } 419# } 420# } 421## 422{ 'command': 'query-migrate', 'returns': 'MigrationInfo' } 423 424## 425# @MigrationCapability: 426# 427# Migration capabilities enumeration 428# 429# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length 430# Encoding). This feature allows us to minimize migration traffic 431# for certain work loads, by sending compressed difference of the 432# pages 433# 434# @rdma-pin-all: Controls whether or not the entire VM memory 435# footprint is mlock()'d on demand or all at once. Refer to 436# docs/rdma.txt for usage. Disabled by default. (since 2.0) 437# 438# @zero-blocks: During storage migration encode blocks of zeroes 439# efficiently. This essentially saves 1MB of zeroes per block on 440# the wire. Enabling requires source and target VM to support 441# this feature. To enable it is sufficient to enable the 442# capability on the source VM. The feature is disabled by default. 443# (since 1.6) 444# 445# @compress: Use multiple compression threads to accelerate live 446# migration. This feature can help to reduce the migration 447# traffic, by sending compressed pages. Please note that if 448# compress and xbzrle are both on, compress only takes effect in 449# the ram bulk stage, after that, it will be disabled and only 450# xbzrle takes effect, this can help to minimize migration 451# traffic. The feature is disabled by default. (since 2.4) 452# 453# @events: generate events for each migration state change (since 2.4) 454# 455# @auto-converge: If enabled, QEMU will automatically throttle down 456# the guest to speed up convergence of RAM migration. (since 1.6) 457# 458# @postcopy-ram: Start executing on the migration target before all of 459# RAM has been migrated, pulling the remaining pages along as 460# needed. The capacity must have the same setting on both source 461# and target or migration will not even start. NOTE: If the 462# migration fails during postcopy the VM will fail. (since 2.6) 463# 464# @x-colo: If enabled, migration will never end, and the state of the 465# VM on the primary side will be migrated continuously to the VM 466# on secondary side, this process is called COarse-Grain LOck 467# Stepping (COLO) for Non-stop Service. (since 2.8) 468# 469# @release-ram: if enabled, qemu will free the migrated ram pages on 470# the source during postcopy-ram migration. (since 2.9) 471# 472# @block: If enabled, QEMU will also migrate the contents of all block 473# devices. Default is disabled. A possible alternative uses 474# mirror jobs to a builtin NBD server on the destination, which 475# offers more flexibility. (Since 2.10) 476# 477# @return-path: If enabled, migration will use the return path even 478# for precopy. (since 2.10) 479# 480# @pause-before-switchover: Pause outgoing migration before 481# serialising device state and before disabling block IO (since 482# 2.11) 483# 484# @multifd: Use more than one fd for migration (since 4.0) 485# 486# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps. 487# (since 2.12) 488# 489# @postcopy-blocktime: Calculate downtime for postcopy live migration 490# (since 3.0) 491# 492# @late-block-activate: If enabled, the destination will not activate 493# block devices (and thus take locks) immediately at the end of 494# migration. (since 3.0) 495# 496# @x-ignore-shared: If enabled, QEMU will not migrate shared memory 497# that is accessible on the destination machine. (since 4.0) 498# 499# @validate-uuid: Send the UUID of the source to allow the destination 500# to ensure it is the same. (since 4.2) 501# 502# @background-snapshot: If enabled, the migration stream will be a 503# snapshot of the VM exactly at the point when the migration 504# procedure starts. The VM RAM is saved with running VM. (since 505# 6.0) 506# 507# @zero-copy-send: Controls behavior on sending memory pages on 508# migration. When true, enables a zero-copy mechanism for sending 509# memory pages, if host supports it. Requires that QEMU be 510# permitted to use locked memory for guest RAM pages. (since 7.1) 511# 512# @postcopy-preempt: If enabled, the migration process will allow 513# postcopy requests to preempt precopy stream, so postcopy 514# requests will be handled faster. This is a performance feature 515# and should not affect the correctness of postcopy migration. 516# (since 7.1) 517# 518# @switchover-ack: If enabled, migration will not stop the source VM 519# and complete the migration until an ACK is received from the 520# destination that it's OK to do so. Exactly when this ACK is 521# sent depends on the migrated devices that use this feature. For 522# example, a device can use it to make sure some of its data is 523# sent and loaded in the destination before doing switchover. 524# This can reduce downtime if devices that support this capability 525# are present. 'return-path' capability must be enabled to use 526# it. (since 8.1) 527# 528# @dirty-limit: If enabled, migration will throttle vCPUs as needed to 529# keep their dirty page rate within @vcpu-dirty-limit. This can 530# improve responsiveness of large guests during live migration, 531# and can result in more stable read performance. Requires KVM 532# with accelerator property "dirty-ring-size" set. (Since 8.1) 533# 534# Features: 535# 536# @deprecated: Member @block is deprecated. Use blockdev-mirror with 537# NBD instead. Member @compress is deprecated because it is 538# unreliable and untested. It is recommended to use multifd 539# migration, which offers an alternative compression 540# implementation that is reliable and tested. 541# 542# @unstable: Members @x-colo and @x-ignore-shared are experimental. 543# 544# Since: 1.2 545## 546{ 'enum': 'MigrationCapability', 547 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks', 548 { 'name': 'compress', 'features': [ 'deprecated' ] }, 549 'events', 'postcopy-ram', 550 { 'name': 'x-colo', 'features': [ 'unstable' ] }, 551 'release-ram', 552 { 'name': 'block', 'features': [ 'deprecated' ] }, 553 'return-path', 'pause-before-switchover', 'multifd', 554 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate', 555 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] }, 556 'validate-uuid', 'background-snapshot', 557 'zero-copy-send', 'postcopy-preempt', 'switchover-ack', 558 'dirty-limit'] } 559 560## 561# @MigrationCapabilityStatus: 562# 563# Migration capability information 564# 565# @capability: capability enum 566# 567# @state: capability state bool 568# 569# Since: 1.2 570## 571{ 'struct': 'MigrationCapabilityStatus', 572 'data': { 'capability': 'MigrationCapability', 'state': 'bool' } } 573 574## 575# @migrate-set-capabilities: 576# 577# Enable/Disable the following migration capabilities (like xbzrle) 578# 579# @capabilities: json array of capability modifications to make 580# 581# Since: 1.2 582# 583# Example: 584# 585# -> { "execute": "migrate-set-capabilities" , "arguments": 586# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } } 587# <- { "return": {} } 588## 589{ 'command': 'migrate-set-capabilities', 590 'data': { 'capabilities': ['MigrationCapabilityStatus'] } } 591 592## 593# @query-migrate-capabilities: 594# 595# Returns information about the current migration capabilities status 596# 597# Returns: @MigrationCapabilityStatus 598# 599# Since: 1.2 600# 601# Example: 602# 603# -> { "execute": "query-migrate-capabilities" } 604# <- { "return": [ 605# {"state": false, "capability": "xbzrle"}, 606# {"state": false, "capability": "rdma-pin-all"}, 607# {"state": false, "capability": "auto-converge"}, 608# {"state": false, "capability": "zero-blocks"}, 609# {"state": false, "capability": "compress"}, 610# {"state": true, "capability": "events"}, 611# {"state": false, "capability": "postcopy-ram"}, 612# {"state": false, "capability": "x-colo"} 613# ]} 614## 615{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']} 616 617## 618# @MultiFDCompression: 619# 620# An enumeration of multifd compression methods. 621# 622# @none: no compression. 623# 624# @zlib: use zlib compression method. 625# 626# @zstd: use zstd compression method. 627# 628# Since: 5.0 629## 630{ 'enum': 'MultiFDCompression', 631 'data': [ 'none', 'zlib', 632 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] } 633 634## 635# @MigMode: 636# 637# @normal: the original form of migration. (since 8.2) 638# 639# @cpr-reboot: The migrate command saves state to a file, allowing one to 640# quit qemu, reboot to an updated kernel, and restart an updated 641# version of qemu. The caller must specify a migration URI 642# that writes to and reads from a file. Unlike normal mode, 643# the use of certain local storage options does not block the 644# migration, but the caller must not modify guest block devices 645# between the quit and restart. To avoid saving guest RAM to the 646# file, the memory backend must be shared, and the @x-ignore-shared 647# migration capability must be set. Guest RAM must be non-volatile 648# across reboot, such as by backing it with a dax device, but this 649# is not enforced. The restarted qemu arguments must match those 650# used to initially start qemu, plus the -incoming option. 651# (since 8.2) 652## 653{ 'enum': 'MigMode', 654 'data': [ 'normal', 'cpr-reboot' ] } 655 656## 657# @BitmapMigrationBitmapAliasTransform: 658# 659# @persistent: If present, the bitmap will be made persistent or 660# transient depending on this parameter. 661# 662# Since: 6.0 663## 664{ 'struct': 'BitmapMigrationBitmapAliasTransform', 665 'data': { 666 '*persistent': 'bool' 667 } } 668 669## 670# @BitmapMigrationBitmapAlias: 671# 672# @name: The name of the bitmap. 673# 674# @alias: An alias name for migration (for example the bitmap name on 675# the opposite site). 676# 677# @transform: Allows the modification of the migrated bitmap. (since 678# 6.0) 679# 680# Since: 5.2 681## 682{ 'struct': 'BitmapMigrationBitmapAlias', 683 'data': { 684 'name': 'str', 685 'alias': 'str', 686 '*transform': 'BitmapMigrationBitmapAliasTransform' 687 } } 688 689## 690# @BitmapMigrationNodeAlias: 691# 692# Maps a block node name and the bitmaps it has to aliases for dirty 693# bitmap migration. 694# 695# @node-name: A block node name. 696# 697# @alias: An alias block node name for migration (for example the node 698# name on the opposite site). 699# 700# @bitmaps: Mappings for the bitmaps on this node. 701# 702# Since: 5.2 703## 704{ 'struct': 'BitmapMigrationNodeAlias', 705 'data': { 706 'node-name': 'str', 707 'alias': 'str', 708 'bitmaps': [ 'BitmapMigrationBitmapAlias' ] 709 } } 710 711## 712# @MigrationParameter: 713# 714# Migration parameters enumeration 715# 716# @announce-initial: Initial delay (in milliseconds) before sending 717# the first announce (Since 4.0) 718# 719# @announce-max: Maximum delay (in milliseconds) between packets in 720# the announcement (Since 4.0) 721# 722# @announce-rounds: Number of self-announce packets sent after 723# migration (Since 4.0) 724# 725# @announce-step: Increase in delay (in milliseconds) between 726# subsequent packets in the announcement (Since 4.0) 727# 728# @compress-level: Set the compression level to be used in live 729# migration, the compression level is an integer between 0 and 9, 730# where 0 means no compression, 1 means the best compression 731# speed, and 9 means best compression ratio which will consume 732# more CPU. 733# 734# @compress-threads: Set compression thread count to be used in live 735# migration, the compression thread count is an integer between 1 736# and 255. 737# 738# @compress-wait-thread: Controls behavior when all compression 739# threads are currently busy. If true (default), wait for a free 740# compression thread to become available; otherwise, send the page 741# uncompressed. (Since 3.1) 742# 743# @decompress-threads: Set decompression thread count to be used in 744# live migration, the decompression thread count is an integer 745# between 1 and 255. Usually, decompression is at least 4 times as 746# fast as compression, so set the decompress-threads to the number 747# about 1/4 of compress-threads is adequate. 748# 749# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 750# bytes_xfer_period to trigger throttling. It is expressed as 751# percentage. The default value is 50. (Since 5.0) 752# 753# @cpu-throttle-initial: Initial percentage of time guest cpus are 754# throttled when migration auto-converge is activated. The 755# default value is 20. (Since 2.7) 756# 757# @cpu-throttle-increment: throttle percentage increase each time 758# auto-converge detects that migration is not making progress. 759# The default value is 10. (Since 2.7) 760# 761# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 762# the tail stage of throttling, the Guest is very sensitive to CPU 763# percentage while the @cpu-throttle -increment is excessive 764# usually at tail stage. If this parameter is true, we will 765# compute the ideal CPU percentage used by the Guest, which may 766# exactly make the dirty rate match the dirty rate threshold. 767# Then we will choose a smaller throttle increment between the one 768# specified by @cpu-throttle-increment and the one generated by 769# ideal CPU percentage. Therefore, it is compatible to 770# traditional throttling, meanwhile the throttle increment won't 771# be excessive at tail stage. The default value is false. (Since 772# 5.1) 773# 774# @tls-creds: ID of the 'tls-creds' object that provides credentials 775# for establishing a TLS connection over the migration data 776# channel. On the outgoing side of the migration, the credentials 777# must be for a 'client' endpoint, while for the incoming side the 778# credentials must be for a 'server' endpoint. Setting this will 779# enable TLS for all migrations. The default is unset, resulting 780# in unsecured migration at the QEMU level. (Since 2.7) 781# 782# @tls-hostname: hostname of the target host for the migration. This 783# is required when using x509 based TLS credentials and the 784# migration URI does not already include a hostname. For example 785# if using fd: or exec: based migration, the hostname must be 786# provided so that the server's x509 certificate identity can be 787# validated. (Since 2.7) 788# 789# @tls-authz: ID of the 'authz' object subclass that provides access 790# control checking of the TLS x509 certificate distinguished name. 791# This object is only resolved at time of use, so can be deleted 792# and recreated on the fly while the migration server is active. 793# If missing, it will default to denying access (Since 4.0) 794# 795# @max-bandwidth: to set maximum speed for migration. maximum speed 796# in bytes per second. (Since 2.8) 797# 798# @avail-switchover-bandwidth: to set the available bandwidth that 799# migration can use during switchover phase. NOTE! This does not 800# limit the bandwidth during switchover, but only for calculations when 801# making decisions to switchover. By default, this value is zero, 802# which means QEMU will estimate the bandwidth automatically. This can 803# be set when the estimated value is not accurate, while the user is 804# able to guarantee such bandwidth is available when switching over. 805# When specified correctly, this can make the switchover decision much 806# more accurate. (Since 8.2) 807# 808# @downtime-limit: set maximum tolerated downtime for migration. 809# maximum downtime in milliseconds (Since 2.8) 810# 811# @x-checkpoint-delay: The delay time (in ms) between two COLO 812# checkpoints in periodic mode. (Since 2.8) 813# 814# @block-incremental: Affects how much storage is migrated when the 815# block migration capability is enabled. When false, the entire 816# storage backing chain is migrated into a flattened image at the 817# destination; when true, only the active qcow2 layer is migrated 818# and the destination must already have access to the same backing 819# chain as was used on the source. (since 2.10) 820# 821# @multifd-channels: Number of channels used to migrate data in 822# parallel. This is the same number that the number of sockets 823# used for migration. The default value is 2 (since 4.0) 824# 825# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 826# needs to be a multiple of the target page size and a power of 2 827# (Since 2.11) 828# 829# @max-postcopy-bandwidth: Background transfer bandwidth during 830# postcopy. Defaults to 0 (unlimited). In bytes per second. 831# (Since 3.0) 832# 833# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 834# (Since 3.1) 835# 836# @multifd-compression: Which compression method to use. Defaults to 837# none. (Since 5.0) 838# 839# @multifd-zlib-level: Set the compression level to be used in live 840# migration, the compression level is an integer between 0 and 9, 841# where 0 means no compression, 1 means the best compression 842# speed, and 9 means best compression ratio which will consume 843# more CPU. Defaults to 1. (Since 5.0) 844# 845# @multifd-zstd-level: Set the compression level to be used in live 846# migration, the compression level is an integer between 0 and 20, 847# where 0 means no compression, 1 means the best compression 848# speed, and 20 means best compression ratio which will consume 849# more CPU. Defaults to 1. (Since 5.0) 850# 851# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 852# aliases for the purpose of dirty bitmap migration. Such aliases 853# may for example be the corresponding names on the opposite site. 854# The mapping must be one-to-one, but not necessarily complete: On 855# the source, unmapped bitmaps and all bitmaps on unmapped nodes 856# will be ignored. On the destination, encountering an unmapped 857# alias in the incoming migration stream will result in a report, 858# and all further bitmap migration data will then be discarded. 859# Note that the destination does not know about bitmaps it does 860# not receive, so there is no limitation or requirement regarding 861# the number of bitmaps received, or how they are named, or on 862# which nodes they are placed. By default (when this parameter 863# has never been set), bitmap names are mapped to themselves. 864# Nodes are mapped to their block device name if there is one, and 865# to their node name otherwise. (Since 5.2) 866# 867# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 868# limit during live migration. Should be in the range 1 to 1000ms. 869# Defaults to 1000ms. (Since 8.1) 870# 871# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 872# Defaults to 1. (Since 8.1) 873# 874# @mode: Migration mode. See description in @MigMode. Default is 'normal'. 875# (Since 8.2) 876# 877# Features: 878# 879# @deprecated: Member @block-incremental is deprecated. Use 880# blockdev-mirror with NBD instead. Members @compress-level, 881# @compress-threads, @decompress-threads and @compress-wait-thread 882# are deprecated because @compression is deprecated. 883# 884# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period 885# are experimental. 886# 887# Since: 2.4 888## 889{ 'enum': 'MigrationParameter', 890 'data': ['announce-initial', 'announce-max', 891 'announce-rounds', 'announce-step', 892 { 'name': 'compress-level', 'features': [ 'deprecated' ] }, 893 { 'name': 'compress-threads', 'features': [ 'deprecated' ] }, 894 { 'name': 'decompress-threads', 'features': [ 'deprecated' ] }, 895 { 'name': 'compress-wait-thread', 'features': [ 'deprecated' ] }, 896 'throttle-trigger-threshold', 897 'cpu-throttle-initial', 'cpu-throttle-increment', 898 'cpu-throttle-tailslow', 899 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth', 900 'avail-switchover-bandwidth', 'downtime-limit', 901 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] }, 902 { 'name': 'block-incremental', 'features': [ 'deprecated' ] }, 903 'multifd-channels', 904 'xbzrle-cache-size', 'max-postcopy-bandwidth', 905 'max-cpu-throttle', 'multifd-compression', 906 'multifd-zlib-level', 'multifd-zstd-level', 907 'block-bitmap-mapping', 908 { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] }, 909 'vcpu-dirty-limit', 910 'mode'] } 911 912## 913# @MigrateSetParameters: 914# 915# @announce-initial: Initial delay (in milliseconds) before sending 916# the first announce (Since 4.0) 917# 918# @announce-max: Maximum delay (in milliseconds) between packets in 919# the announcement (Since 4.0) 920# 921# @announce-rounds: Number of self-announce packets sent after 922# migration (Since 4.0) 923# 924# @announce-step: Increase in delay (in milliseconds) between 925# subsequent packets in the announcement (Since 4.0) 926# 927# @compress-level: compression level 928# 929# @compress-threads: compression thread count 930# 931# @compress-wait-thread: Controls behavior when all compression 932# threads are currently busy. If true (default), wait for a free 933# compression thread to become available; otherwise, send the page 934# uncompressed. (Since 3.1) 935# 936# @decompress-threads: decompression thread count 937# 938# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 939# bytes_xfer_period to trigger throttling. It is expressed as 940# percentage. The default value is 50. (Since 5.0) 941# 942# @cpu-throttle-initial: Initial percentage of time guest cpus are 943# throttled when migration auto-converge is activated. The 944# default value is 20. (Since 2.7) 945# 946# @cpu-throttle-increment: throttle percentage increase each time 947# auto-converge detects that migration is not making progress. 948# The default value is 10. (Since 2.7) 949# 950# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 951# the tail stage of throttling, the Guest is very sensitive to CPU 952# percentage while the @cpu-throttle -increment is excessive 953# usually at tail stage. If this parameter is true, we will 954# compute the ideal CPU percentage used by the Guest, which may 955# exactly make the dirty rate match the dirty rate threshold. 956# Then we will choose a smaller throttle increment between the one 957# specified by @cpu-throttle-increment and the one generated by 958# ideal CPU percentage. Therefore, it is compatible to 959# traditional throttling, meanwhile the throttle increment won't 960# be excessive at tail stage. The default value is false. (Since 961# 5.1) 962# 963# @tls-creds: ID of the 'tls-creds' object that provides credentials 964# for establishing a TLS connection over the migration data 965# channel. On the outgoing side of the migration, the credentials 966# must be for a 'client' endpoint, while for the incoming side the 967# credentials must be for a 'server' endpoint. Setting this to a 968# non-empty string enables TLS for all migrations. An empty 969# string means that QEMU will use plain text mode for migration, 970# rather than TLS (Since 2.9) Previously (since 2.7), this was 971# reported by omitting tls-creds instead. 972# 973# @tls-hostname: hostname of the target host for the migration. This 974# is required when using x509 based TLS credentials and the 975# migration URI does not already include a hostname. For example 976# if using fd: or exec: based migration, the hostname must be 977# provided so that the server's x509 certificate identity can be 978# validated. (Since 2.7) An empty string means that QEMU will use 979# the hostname associated with the migration URI, if any. (Since 980# 2.9) Previously (since 2.7), this was reported by omitting 981# tls-hostname instead. 982# 983# @max-bandwidth: to set maximum speed for migration. maximum speed 984# in bytes per second. (Since 2.8) 985# 986# @avail-switchover-bandwidth: to set the available bandwidth that 987# migration can use during switchover phase. NOTE! This does not 988# limit the bandwidth during switchover, but only for calculations when 989# making decisions to switchover. By default, this value is zero, 990# which means QEMU will estimate the bandwidth automatically. This can 991# be set when the estimated value is not accurate, while the user is 992# able to guarantee such bandwidth is available when switching over. 993# When specified correctly, this can make the switchover decision much 994# more accurate. (Since 8.2) 995# 996# @downtime-limit: set maximum tolerated downtime for migration. 997# maximum downtime in milliseconds (Since 2.8) 998# 999# @x-checkpoint-delay: the delay time between two COLO checkpoints. 1000# (Since 2.8) 1001# 1002# @block-incremental: Affects how much storage is migrated when the 1003# block migration capability is enabled. When false, the entire 1004# storage backing chain is migrated into a flattened image at the 1005# destination; when true, only the active qcow2 layer is migrated 1006# and the destination must already have access to the same backing 1007# chain as was used on the source. (since 2.10) 1008# 1009# @multifd-channels: Number of channels used to migrate data in 1010# parallel. This is the same number that the number of sockets 1011# used for migration. The default value is 2 (since 4.0) 1012# 1013# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1014# needs to be a multiple of the target page size and a power of 2 1015# (Since 2.11) 1016# 1017# @max-postcopy-bandwidth: Background transfer bandwidth during 1018# postcopy. Defaults to 0 (unlimited). In bytes per second. 1019# (Since 3.0) 1020# 1021# @max-cpu-throttle: maximum cpu throttle percentage. The default 1022# value is 99. (Since 3.1) 1023# 1024# @multifd-compression: Which compression method to use. Defaults to 1025# none. (Since 5.0) 1026# 1027# @multifd-zlib-level: Set the compression level to be used in live 1028# migration, the compression level is an integer between 0 and 9, 1029# where 0 means no compression, 1 means the best compression 1030# speed, and 9 means best compression ratio which will consume 1031# more CPU. Defaults to 1. (Since 5.0) 1032# 1033# @multifd-zstd-level: Set the compression level to be used in live 1034# migration, the compression level is an integer between 0 and 20, 1035# where 0 means no compression, 1 means the best compression 1036# speed, and 20 means best compression ratio which will consume 1037# more CPU. Defaults to 1. (Since 5.0) 1038# 1039# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1040# aliases for the purpose of dirty bitmap migration. Such aliases 1041# may for example be the corresponding names on the opposite site. 1042# The mapping must be one-to-one, but not necessarily complete: On 1043# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1044# will be ignored. On the destination, encountering an unmapped 1045# alias in the incoming migration stream will result in a report, 1046# and all further bitmap migration data will then be discarded. 1047# Note that the destination does not know about bitmaps it does 1048# not receive, so there is no limitation or requirement regarding 1049# the number of bitmaps received, or how they are named, or on 1050# which nodes they are placed. By default (when this parameter 1051# has never been set), bitmap names are mapped to themselves. 1052# Nodes are mapped to their block device name if there is one, and 1053# to their node name otherwise. (Since 5.2) 1054# 1055# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 1056# limit during live migration. Should be in the range 1 to 1000ms. 1057# Defaults to 1000ms. (Since 8.1) 1058# 1059# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1060# Defaults to 1. (Since 8.1) 1061# 1062# @mode: Migration mode. See description in @MigMode. Default is 'normal'. 1063# (Since 8.2) 1064# 1065# Features: 1066# 1067# @deprecated: Member @block-incremental is deprecated. Use 1068# blockdev-mirror with NBD instead. Members @compress-level, 1069# @compress-threads, @decompress-threads and @compress-wait-thread 1070# are deprecated because @compression is deprecated. 1071# 1072# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period 1073# are experimental. 1074# 1075# TODO: either fuse back into MigrationParameters, or make 1076# MigrationParameters members mandatory 1077# 1078# Since: 2.4 1079## 1080{ 'struct': 'MigrateSetParameters', 1081 'data': { '*announce-initial': 'size', 1082 '*announce-max': 'size', 1083 '*announce-rounds': 'size', 1084 '*announce-step': 'size', 1085 '*compress-level': { 'type': 'uint8', 1086 'features': [ 'deprecated' ] }, 1087 '*compress-threads': { 'type': 'uint8', 1088 'features': [ 'deprecated' ] }, 1089 '*compress-wait-thread': { 'type': 'bool', 1090 'features': [ 'deprecated' ] }, 1091 '*decompress-threads': { 'type': 'uint8', 1092 'features': [ 'deprecated' ] }, 1093 '*throttle-trigger-threshold': 'uint8', 1094 '*cpu-throttle-initial': 'uint8', 1095 '*cpu-throttle-increment': 'uint8', 1096 '*cpu-throttle-tailslow': 'bool', 1097 '*tls-creds': 'StrOrNull', 1098 '*tls-hostname': 'StrOrNull', 1099 '*tls-authz': 'StrOrNull', 1100 '*max-bandwidth': 'size', 1101 '*avail-switchover-bandwidth': 'size', 1102 '*downtime-limit': 'uint64', 1103 '*x-checkpoint-delay': { 'type': 'uint32', 1104 'features': [ 'unstable' ] }, 1105 '*block-incremental': { 'type': 'bool', 1106 'features': [ 'deprecated' ] }, 1107 '*multifd-channels': 'uint8', 1108 '*xbzrle-cache-size': 'size', 1109 '*max-postcopy-bandwidth': 'size', 1110 '*max-cpu-throttle': 'uint8', 1111 '*multifd-compression': 'MultiFDCompression', 1112 '*multifd-zlib-level': 'uint8', 1113 '*multifd-zstd-level': 'uint8', 1114 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1115 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1116 'features': [ 'unstable' ] }, 1117 '*vcpu-dirty-limit': 'uint64', 1118 '*mode': 'MigMode'} } 1119 1120## 1121# @migrate-set-parameters: 1122# 1123# Set various migration parameters. 1124# 1125# Since: 2.4 1126# 1127# Example: 1128# 1129# -> { "execute": "migrate-set-parameters" , 1130# "arguments": { "multifd-channels": 5 } } 1131# <- { "return": {} } 1132## 1133{ 'command': 'migrate-set-parameters', 'boxed': true, 1134 'data': 'MigrateSetParameters' } 1135 1136## 1137# @MigrationParameters: 1138# 1139# The optional members aren't actually optional. 1140# 1141# @announce-initial: Initial delay (in milliseconds) before sending 1142# the first announce (Since 4.0) 1143# 1144# @announce-max: Maximum delay (in milliseconds) between packets in 1145# the announcement (Since 4.0) 1146# 1147# @announce-rounds: Number of self-announce packets sent after 1148# migration (Since 4.0) 1149# 1150# @announce-step: Increase in delay (in milliseconds) between 1151# subsequent packets in the announcement (Since 4.0) 1152# 1153# @compress-level: compression level 1154# 1155# @compress-threads: compression thread count 1156# 1157# @compress-wait-thread: Controls behavior when all compression 1158# threads are currently busy. If true (default), wait for a free 1159# compression thread to become available; otherwise, send the page 1160# uncompressed. (Since 3.1) 1161# 1162# @decompress-threads: decompression thread count 1163# 1164# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 1165# bytes_xfer_period to trigger throttling. It is expressed as 1166# percentage. The default value is 50. (Since 5.0) 1167# 1168# @cpu-throttle-initial: Initial percentage of time guest cpus are 1169# throttled when migration auto-converge is activated. (Since 1170# 2.7) 1171# 1172# @cpu-throttle-increment: throttle percentage increase each time 1173# auto-converge detects that migration is not making progress. 1174# (Since 2.7) 1175# 1176# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 1177# the tail stage of throttling, the Guest is very sensitive to CPU 1178# percentage while the @cpu-throttle -increment is excessive 1179# usually at tail stage. If this parameter is true, we will 1180# compute the ideal CPU percentage used by the Guest, which may 1181# exactly make the dirty rate match the dirty rate threshold. 1182# Then we will choose a smaller throttle increment between the one 1183# specified by @cpu-throttle-increment and the one generated by 1184# ideal CPU percentage. Therefore, it is compatible to 1185# traditional throttling, meanwhile the throttle increment won't 1186# be excessive at tail stage. The default value is false. (Since 1187# 5.1) 1188# 1189# @tls-creds: ID of the 'tls-creds' object that provides credentials 1190# for establishing a TLS connection over the migration data 1191# channel. On the outgoing side of the migration, the credentials 1192# must be for a 'client' endpoint, while for the incoming side the 1193# credentials must be for a 'server' endpoint. An empty string 1194# means that QEMU will use plain text mode for migration, rather 1195# than TLS (Since 2.7) Note: 2.8 reports this by omitting 1196# tls-creds instead. 1197# 1198# @tls-hostname: hostname of the target host for the migration. This 1199# is required when using x509 based TLS credentials and the 1200# migration URI does not already include a hostname. For example 1201# if using fd: or exec: based migration, the hostname must be 1202# provided so that the server's x509 certificate identity can be 1203# validated. (Since 2.7) An empty string means that QEMU will use 1204# the hostname associated with the migration URI, if any. (Since 1205# 2.9) Note: 2.8 reports this by omitting tls-hostname instead. 1206# 1207# @tls-authz: ID of the 'authz' object subclass that provides access 1208# control checking of the TLS x509 certificate distinguished name. 1209# (Since 4.0) 1210# 1211# @max-bandwidth: to set maximum speed for migration. maximum speed 1212# in bytes per second. (Since 2.8) 1213# 1214# @avail-switchover-bandwidth: to set the available bandwidth that 1215# migration can use during switchover phase. NOTE! This does not 1216# limit the bandwidth during switchover, but only for calculations when 1217# making decisions to switchover. By default, this value is zero, 1218# which means QEMU will estimate the bandwidth automatically. This can 1219# be set when the estimated value is not accurate, while the user is 1220# able to guarantee such bandwidth is available when switching over. 1221# When specified correctly, this can make the switchover decision much 1222# more accurate. (Since 8.2) 1223# 1224# @downtime-limit: set maximum tolerated downtime for migration. 1225# maximum downtime in milliseconds (Since 2.8) 1226# 1227# @x-checkpoint-delay: the delay time between two COLO checkpoints. 1228# (Since 2.8) 1229# 1230# @block-incremental: Affects how much storage is migrated when the 1231# block migration capability is enabled. When false, the entire 1232# storage backing chain is migrated into a flattened image at the 1233# destination; when true, only the active qcow2 layer is migrated 1234# and the destination must already have access to the same backing 1235# chain as was used on the source. (since 2.10) 1236# 1237# @multifd-channels: Number of channels used to migrate data in 1238# parallel. This is the same number that the number of sockets 1239# used for migration. The default value is 2 (since 4.0) 1240# 1241# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1242# needs to be a multiple of the target page size and a power of 2 1243# (Since 2.11) 1244# 1245# @max-postcopy-bandwidth: Background transfer bandwidth during 1246# postcopy. Defaults to 0 (unlimited). In bytes per second. 1247# (Since 3.0) 1248# 1249# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 1250# (Since 3.1) 1251# 1252# @multifd-compression: Which compression method to use. Defaults to 1253# none. (Since 5.0) 1254# 1255# @multifd-zlib-level: Set the compression level to be used in live 1256# migration, the compression level is an integer between 0 and 9, 1257# where 0 means no compression, 1 means the best compression 1258# speed, and 9 means best compression ratio which will consume 1259# more CPU. Defaults to 1. (Since 5.0) 1260# 1261# @multifd-zstd-level: Set the compression level to be used in live 1262# migration, the compression level is an integer between 0 and 20, 1263# where 0 means no compression, 1 means the best compression 1264# speed, and 20 means best compression ratio which will consume 1265# more CPU. Defaults to 1. (Since 5.0) 1266# 1267# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1268# aliases for the purpose of dirty bitmap migration. Such aliases 1269# may for example be the corresponding names on the opposite site. 1270# The mapping must be one-to-one, but not necessarily complete: On 1271# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1272# will be ignored. On the destination, encountering an unmapped 1273# alias in the incoming migration stream will result in a report, 1274# and all further bitmap migration data will then be discarded. 1275# Note that the destination does not know about bitmaps it does 1276# not receive, so there is no limitation or requirement regarding 1277# the number of bitmaps received, or how they are named, or on 1278# which nodes they are placed. By default (when this parameter 1279# has never been set), bitmap names are mapped to themselves. 1280# Nodes are mapped to their block device name if there is one, and 1281# to their node name otherwise. (Since 5.2) 1282# 1283# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 1284# limit during live migration. Should be in the range 1 to 1000ms. 1285# Defaults to 1000ms. (Since 8.1) 1286# 1287# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1288# Defaults to 1. (Since 8.1) 1289# 1290# @mode: Migration mode. See description in @MigMode. Default is 'normal'. 1291# (Since 8.2) 1292# 1293# Features: 1294# 1295# @deprecated: Member @block-incremental is deprecated. Use 1296# blockdev-mirror with NBD instead. Members @compress-level, 1297# @compress-threads, @decompress-threads and @compress-wait-thread 1298# are deprecated because @compression is deprecated. 1299# 1300# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period 1301# are experimental. 1302# 1303# Since: 2.4 1304## 1305{ 'struct': 'MigrationParameters', 1306 'data': { '*announce-initial': 'size', 1307 '*announce-max': 'size', 1308 '*announce-rounds': 'size', 1309 '*announce-step': 'size', 1310 '*compress-level': { 'type': 'uint8', 1311 'features': [ 'deprecated' ] }, 1312 '*compress-threads': { 'type': 'uint8', 1313 'features': [ 'deprecated' ] }, 1314 '*compress-wait-thread': { 'type': 'bool', 1315 'features': [ 'deprecated' ] }, 1316 '*decompress-threads': { 'type': 'uint8', 1317 'features': [ 'deprecated' ] }, 1318 '*throttle-trigger-threshold': 'uint8', 1319 '*cpu-throttle-initial': 'uint8', 1320 '*cpu-throttle-increment': 'uint8', 1321 '*cpu-throttle-tailslow': 'bool', 1322 '*tls-creds': 'str', 1323 '*tls-hostname': 'str', 1324 '*tls-authz': 'str', 1325 '*max-bandwidth': 'size', 1326 '*avail-switchover-bandwidth': 'size', 1327 '*downtime-limit': 'uint64', 1328 '*x-checkpoint-delay': { 'type': 'uint32', 1329 'features': [ 'unstable' ] }, 1330 '*block-incremental': { 'type': 'bool', 1331 'features': [ 'deprecated' ] }, 1332 '*multifd-channels': 'uint8', 1333 '*xbzrle-cache-size': 'size', 1334 '*max-postcopy-bandwidth': 'size', 1335 '*max-cpu-throttle': 'uint8', 1336 '*multifd-compression': 'MultiFDCompression', 1337 '*multifd-zlib-level': 'uint8', 1338 '*multifd-zstd-level': 'uint8', 1339 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1340 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1341 'features': [ 'unstable' ] }, 1342 '*vcpu-dirty-limit': 'uint64', 1343 '*mode': 'MigMode'} } 1344 1345## 1346# @query-migrate-parameters: 1347# 1348# Returns information about the current migration parameters 1349# 1350# Returns: @MigrationParameters 1351# 1352# Since: 2.4 1353# 1354# Example: 1355# 1356# -> { "execute": "query-migrate-parameters" } 1357# <- { "return": { 1358# "multifd-channels": 2, 1359# "cpu-throttle-increment": 10, 1360# "cpu-throttle-initial": 20, 1361# "max-bandwidth": 33554432, 1362# "downtime-limit": 300 1363# } 1364# } 1365## 1366{ 'command': 'query-migrate-parameters', 1367 'returns': 'MigrationParameters' } 1368 1369## 1370# @migrate-start-postcopy: 1371# 1372# Followup to a migration command to switch the migration to postcopy 1373# mode. The postcopy-ram capability must be set on both source and 1374# destination before the original migration command. 1375# 1376# Since: 2.5 1377# 1378# Example: 1379# 1380# -> { "execute": "migrate-start-postcopy" } 1381# <- { "return": {} } 1382## 1383{ 'command': 'migrate-start-postcopy' } 1384 1385## 1386# @MIGRATION: 1387# 1388# Emitted when a migration event happens 1389# 1390# @status: @MigrationStatus describing the current migration status. 1391# 1392# Since: 2.4 1393# 1394# Example: 1395# 1396# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001}, 1397# "event": "MIGRATION", 1398# "data": {"status": "completed"} } 1399## 1400{ 'event': 'MIGRATION', 1401 'data': {'status': 'MigrationStatus'}} 1402 1403## 1404# @MIGRATION_PASS: 1405# 1406# Emitted from the source side of a migration at the start of each 1407# pass (when it syncs the dirty bitmap) 1408# 1409# @pass: An incrementing count (starting at 1 on the first pass) 1410# 1411# Since: 2.6 1412# 1413# Example: 1414# 1415# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225}, 1416# "event": "MIGRATION_PASS", "data": {"pass": 2} } 1417## 1418{ 'event': 'MIGRATION_PASS', 1419 'data': { 'pass': 'int' } } 1420 1421## 1422# @COLOMessage: 1423# 1424# The message transmission between Primary side and Secondary side. 1425# 1426# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing 1427# 1428# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for 1429# checkpointing 1430# 1431# @checkpoint-reply: SVM gets PVM's checkpoint request 1432# 1433# @vmstate-send: VM's state will be sent by PVM. 1434# 1435# @vmstate-size: The total size of VMstate. 1436# 1437# @vmstate-received: VM's state has been received by SVM. 1438# 1439# @vmstate-loaded: VM's state has been loaded by SVM. 1440# 1441# Since: 2.8 1442## 1443{ 'enum': 'COLOMessage', 1444 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply', 1445 'vmstate-send', 'vmstate-size', 'vmstate-received', 1446 'vmstate-loaded' ] } 1447 1448## 1449# @COLOMode: 1450# 1451# The COLO current mode. 1452# 1453# @none: COLO is disabled. 1454# 1455# @primary: COLO node in primary side. 1456# 1457# @secondary: COLO node in slave side. 1458# 1459# Since: 2.8 1460## 1461{ 'enum': 'COLOMode', 1462 'data': [ 'none', 'primary', 'secondary'] } 1463 1464## 1465# @FailoverStatus: 1466# 1467# An enumeration of COLO failover status 1468# 1469# @none: no failover has ever happened 1470# 1471# @require: got failover requirement but not handled 1472# 1473# @active: in the process of doing failover 1474# 1475# @completed: finish the process of failover 1476# 1477# @relaunch: restart the failover process, from 'none' -> 'completed' 1478# (Since 2.9) 1479# 1480# Since: 2.8 1481## 1482{ 'enum': 'FailoverStatus', 1483 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] } 1484 1485## 1486# @COLO_EXIT: 1487# 1488# Emitted when VM finishes COLO mode due to some errors happening or 1489# at the request of users. 1490# 1491# @mode: report COLO mode when COLO exited. 1492# 1493# @reason: describes the reason for the COLO exit. 1494# 1495# Since: 3.1 1496# 1497# Example: 1498# 1499# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172}, 1500# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } } 1501## 1502{ 'event': 'COLO_EXIT', 1503 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } } 1504 1505## 1506# @COLOExitReason: 1507# 1508# The reason for a COLO exit. 1509# 1510# @none: failover has never happened. This state does not occur in 1511# the COLO_EXIT event, and is only visible in the result of 1512# query-colo-status. 1513# 1514# @request: COLO exit is due to an external request. 1515# 1516# @error: COLO exit is due to an internal error. 1517# 1518# @processing: COLO is currently handling a failover (since 4.0). 1519# 1520# Since: 3.1 1521## 1522{ 'enum': 'COLOExitReason', 1523 'data': [ 'none', 'request', 'error' , 'processing' ] } 1524 1525## 1526# @x-colo-lost-heartbeat: 1527# 1528# Tell qemu that heartbeat is lost, request it to do takeover 1529# procedures. If this command is sent to the PVM, the Primary side 1530# will exit COLO mode. If sent to the Secondary, the Secondary side 1531# will run failover work, then takes over server operation to become 1532# the service VM. 1533# 1534# Features: 1535# 1536# @unstable: This command is experimental. 1537# 1538# Since: 2.8 1539# 1540# Example: 1541# 1542# -> { "execute": "x-colo-lost-heartbeat" } 1543# <- { "return": {} } 1544## 1545{ 'command': 'x-colo-lost-heartbeat', 1546 'features': [ 'unstable' ], 1547 'if': 'CONFIG_REPLICATION' } 1548 1549## 1550# @migrate_cancel: 1551# 1552# Cancel the current executing migration process. 1553# 1554# Returns: nothing on success 1555# 1556# Notes: This command succeeds even if there is no migration process 1557# running. 1558# 1559# Since: 0.14 1560# 1561# Example: 1562# 1563# -> { "execute": "migrate_cancel" } 1564# <- { "return": {} } 1565## 1566{ 'command': 'migrate_cancel' } 1567 1568## 1569# @migrate-continue: 1570# 1571# Continue migration when it's in a paused state. 1572# 1573# @state: The state the migration is currently expected to be in 1574# 1575# Returns: nothing on success 1576# 1577# Since: 2.11 1578# 1579# Example: 1580# 1581# -> { "execute": "migrate-continue" , "arguments": 1582# { "state": "pre-switchover" } } 1583# <- { "return": {} } 1584## 1585{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} } 1586 1587## 1588# @MigrationAddressType: 1589# 1590# The migration stream transport mechanisms. 1591# 1592# @socket: Migrate via socket. 1593# 1594# @exec: Direct the migration stream to another process. 1595# 1596# @rdma: Migrate via RDMA. 1597# 1598# @file: Direct the migration stream to a file. 1599# 1600# Since: 8.2 1601## 1602{ 'enum': 'MigrationAddressType', 1603 'data': [ 'socket', 'exec', 'rdma', 'file' ] } 1604 1605## 1606# @FileMigrationArgs: 1607# 1608# @filename: The file to receive the migration stream 1609# 1610# @offset: The file offset where the migration stream will start 1611# 1612# Since: 8.2 1613## 1614{ 'struct': 'FileMigrationArgs', 1615 'data': { 'filename': 'str', 1616 'offset': 'uint64' } } 1617 1618## 1619# @MigrationExecCommand: 1620# 1621# @args: command (list head) and arguments to execute. 1622# 1623# Since: 8.2 1624## 1625{ 'struct': 'MigrationExecCommand', 1626 'data': {'args': [ 'str' ] } } 1627 1628## 1629# @MigrationAddress: 1630# 1631# Migration endpoint configuration. 1632# 1633# Since: 8.2 1634## 1635{ 'union': 'MigrationAddress', 1636 'base': { 'transport' : 'MigrationAddressType'}, 1637 'discriminator': 'transport', 1638 'data': { 1639 'socket': 'SocketAddress', 1640 'exec': 'MigrationExecCommand', 1641 'rdma': 'InetSocketAddress', 1642 'file': 'FileMigrationArgs' } } 1643 1644## 1645# @MigrationChannelType: 1646# 1647# The migration channel-type request options. 1648# 1649# @main: Main outbound migration channel. 1650# 1651# Since: 8.1 1652## 1653{ 'enum': 'MigrationChannelType', 1654 'data': [ 'main' ] } 1655 1656## 1657# @MigrationChannel: 1658# 1659# Migration stream channel parameters. 1660# 1661# @channel-type: Channel type for transferring packet information. 1662# 1663# @addr: Migration endpoint configuration on destination interface. 1664# 1665# Since: 8.1 1666## 1667{ 'struct': 'MigrationChannel', 1668 'data': { 1669 'channel-type': 'MigrationChannelType', 1670 'addr': 'MigrationAddress' } } 1671 1672## 1673# @migrate: 1674# 1675# Migrates the current running guest to another Virtual Machine. 1676# 1677# @uri: the Uniform Resource Identifier of the destination VM 1678# 1679# @channels: list of migration stream channels with each stream in the 1680# list connected to a destination interface endpoint. 1681# 1682# @blk: do block migration (full disk copy) 1683# 1684# @inc: incremental disk copy migration 1685# 1686# @detach: this argument exists only for compatibility reasons and is 1687# ignored by QEMU 1688# 1689# @resume: resume one paused migration, default "off". (since 3.0) 1690# 1691# Features: 1692# 1693# @deprecated: Members @inc and @blk are deprecated. Use 1694# blockdev-mirror with NBD instead. 1695# 1696# Returns: nothing on success 1697# 1698# Since: 0.14 1699# 1700# Notes: 1701# 1702# 1. The 'query-migrate' command should be used to check migration's 1703# progress and final result (this information is provided by the 1704# 'status' member) 1705# 1706# 2. All boolean arguments default to false 1707# 1708# 3. The user Monitor's "detach" argument is invalid in QMP and should 1709# not be used 1710# 1711# 4. The uri argument should have the Uniform Resource Identifier of 1712# default destination VM. This connection will be bound to default 1713# network. 1714# 1715# 5. For now, number of migration streams is restricted to one, i.e 1716# number of items in 'channels' list is just 1. 1717# 1718# 6. The 'uri' and 'channels' arguments are mutually exclusive; 1719# exactly one of the two should be present. 1720# 1721# Example: 1722# 1723# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } } 1724# <- { "return": {} } 1725# -> { "execute": "migrate", 1726# "arguments": { 1727# "channels": [ { "channel-type": "main", 1728# "addr": { "transport": "socket", 1729# "type": "inet", 1730# "host": "10.12.34.9", 1731# "port": "1050" } } ] } } 1732# <- { "return": {} } 1733# 1734# -> { "execute": "migrate", 1735# "arguments": { 1736# "channels": [ { "channel-type": "main", 1737# "addr": { "transport": "exec", 1738# "args": [ "/bin/nc", "-p", "6000", 1739# "/some/sock" ] } } ] } } 1740# <- { "return": {} } 1741# 1742# -> { "execute": "migrate", 1743# "arguments": { 1744# "channels": [ { "channel-type": "main", 1745# "addr": { "transport": "rdma", 1746# "host": "10.12.34.9", 1747# "port": "1050" } } ] } } 1748# <- { "return": {} } 1749# 1750# -> { "execute": "migrate", 1751# "arguments": { 1752# "channels": [ { "channel-type": "main", 1753# "addr": { "transport": "file", 1754# "filename": "/tmp/migfile", 1755# "offset": "0x1000" } } ] } } 1756# <- { "return": {} } 1757# 1758## 1759{ 'command': 'migrate', 1760 'data': {'*uri': 'str', 1761 '*channels': [ 'MigrationChannel' ], 1762 '*blk': { 'type': 'bool', 'features': [ 'deprecated' ] }, 1763 '*inc': { 'type': 'bool', 'features': [ 'deprecated' ] }, 1764 '*detach': 'bool', '*resume': 'bool' } } 1765 1766## 1767# @migrate-incoming: 1768# 1769# Start an incoming migration, the qemu must have been started with 1770# -incoming defer 1771# 1772# @uri: The Uniform Resource Identifier identifying the source or 1773# address to listen on 1774# 1775# @channels: list of migration stream channels with each stream in the 1776# list connected to a destination interface endpoint. 1777# 1778# Returns: nothing on success 1779# 1780# Since: 2.3 1781# 1782# Notes: 1783# 1784# 1. It's a bad idea to use a string for the uri, but it needs 1785# to stay compatible with -incoming and the format of the uri 1786# is already exposed above libvirt. 1787# 1788# 2. QEMU must be started with -incoming defer to allow 1789# migrate-incoming to be used. 1790# 1791# 3. The uri format is the same as for -incoming 1792# 1793# 5. For now, number of migration streams is restricted to one, i.e 1794# number of items in 'channels' list is just 1. 1795# 1796# 4. The 'uri' and 'channels' arguments are mutually exclusive; 1797# exactly one of the two should be present. 1798# 1799# Example: 1800# 1801# -> { "execute": "migrate-incoming", 1802# "arguments": { "uri": "tcp::4446" } } 1803# <- { "return": {} } 1804# 1805# -> { "execute": "migrate", 1806# "arguments": { 1807# "channels": [ { "channel-type": "main", 1808# "addr": { "transport": "socket", 1809# "type": "inet", 1810# "host": "10.12.34.9", 1811# "port": "1050" } } ] } } 1812# <- { "return": {} } 1813# 1814# -> { "execute": "migrate", 1815# "arguments": { 1816# "channels": [ { "channel-type": "main", 1817# "addr": { "transport": "exec", 1818# "args": [ "/bin/nc", "-p", "6000", 1819# "/some/sock" ] } } ] } } 1820# <- { "return": {} } 1821# 1822# -> { "execute": "migrate", 1823# "arguments": { 1824# "channels": [ { "channel-type": "main", 1825# "addr": { "transport": "rdma", 1826# "host": "10.12.34.9", 1827# "port": "1050" } } ] } } 1828# <- { "return": {} } 1829## 1830{ 'command': 'migrate-incoming', 1831 'data': {'*uri': 'str', 1832 '*channels': [ 'MigrationChannel' ] } } 1833 1834## 1835# @xen-save-devices-state: 1836# 1837# Save the state of all devices to file. The RAM and the block 1838# devices of the VM are not saved by this command. 1839# 1840# @filename: the file to save the state of the devices to as binary 1841# data. See xen-save-devices-state.txt for a description of the 1842# binary format. 1843# 1844# @live: Optional argument to ask QEMU to treat this command as part 1845# of a live migration. Default to true. (since 2.11) 1846# 1847# Returns: Nothing on success 1848# 1849# Since: 1.1 1850# 1851# Example: 1852# 1853# -> { "execute": "xen-save-devices-state", 1854# "arguments": { "filename": "/tmp/save" } } 1855# <- { "return": {} } 1856## 1857{ 'command': 'xen-save-devices-state', 1858 'data': {'filename': 'str', '*live':'bool' } } 1859 1860## 1861# @xen-set-global-dirty-log: 1862# 1863# Enable or disable the global dirty log mode. 1864# 1865# @enable: true to enable, false to disable. 1866# 1867# Returns: nothing 1868# 1869# Since: 1.3 1870# 1871# Example: 1872# 1873# -> { "execute": "xen-set-global-dirty-log", 1874# "arguments": { "enable": true } } 1875# <- { "return": {} } 1876## 1877{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1878 1879## 1880# @xen-load-devices-state: 1881# 1882# Load the state of all devices from file. The RAM and the block 1883# devices of the VM are not loaded by this command. 1884# 1885# @filename: the file to load the state of the devices from as binary 1886# data. See xen-save-devices-state.txt for a description of the 1887# binary format. 1888# 1889# Since: 2.7 1890# 1891# Example: 1892# 1893# -> { "execute": "xen-load-devices-state", 1894# "arguments": { "filename": "/tmp/resume" } } 1895# <- { "return": {} } 1896## 1897{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 1898 1899## 1900# @xen-set-replication: 1901# 1902# Enable or disable replication. 1903# 1904# @enable: true to enable, false to disable. 1905# 1906# @primary: true for primary or false for secondary. 1907# 1908# @failover: true to do failover, false to stop. but cannot be 1909# specified if 'enable' is true. default value is false. 1910# 1911# Returns: nothing. 1912# 1913# Example: 1914# 1915# -> { "execute": "xen-set-replication", 1916# "arguments": {"enable": true, "primary": false} } 1917# <- { "return": {} } 1918# 1919# Since: 2.9 1920## 1921{ 'command': 'xen-set-replication', 1922 'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' }, 1923 'if': 'CONFIG_REPLICATION' } 1924 1925## 1926# @ReplicationStatus: 1927# 1928# The result format for 'query-xen-replication-status'. 1929# 1930# @error: true if an error happened, false if replication is normal. 1931# 1932# @desc: the human readable error description string, when @error is 1933# 'true'. 1934# 1935# Since: 2.9 1936## 1937{ 'struct': 'ReplicationStatus', 1938 'data': { 'error': 'bool', '*desc': 'str' }, 1939 'if': 'CONFIG_REPLICATION' } 1940 1941## 1942# @query-xen-replication-status: 1943# 1944# Query replication status while the vm is running. 1945# 1946# Returns: A @ReplicationStatus object showing the status. 1947# 1948# Example: 1949# 1950# -> { "execute": "query-xen-replication-status" } 1951# <- { "return": { "error": false } } 1952# 1953# Since: 2.9 1954## 1955{ 'command': 'query-xen-replication-status', 1956 'returns': 'ReplicationStatus', 1957 'if': 'CONFIG_REPLICATION' } 1958 1959## 1960# @xen-colo-do-checkpoint: 1961# 1962# Xen uses this command to notify replication to trigger a checkpoint. 1963# 1964# Returns: nothing. 1965# 1966# Example: 1967# 1968# -> { "execute": "xen-colo-do-checkpoint" } 1969# <- { "return": {} } 1970# 1971# Since: 2.9 1972## 1973{ 'command': 'xen-colo-do-checkpoint', 1974 'if': 'CONFIG_REPLICATION' } 1975 1976## 1977# @COLOStatus: 1978# 1979# The result format for 'query-colo-status'. 1980# 1981# @mode: COLO running mode. If COLO is running, this field will 1982# return 'primary' or 'secondary'. 1983# 1984# @last-mode: COLO last running mode. If COLO is running, this field 1985# will return same like mode field, after failover we can use this 1986# field to get last colo mode. (since 4.0) 1987# 1988# @reason: describes the reason for the COLO exit. 1989# 1990# Since: 3.1 1991## 1992{ 'struct': 'COLOStatus', 1993 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode', 1994 'reason': 'COLOExitReason' }, 1995 'if': 'CONFIG_REPLICATION' } 1996 1997## 1998# @query-colo-status: 1999# 2000# Query COLO status while the vm is running. 2001# 2002# Returns: A @COLOStatus object showing the status. 2003# 2004# Example: 2005# 2006# -> { "execute": "query-colo-status" } 2007# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } } 2008# 2009# Since: 3.1 2010## 2011{ 'command': 'query-colo-status', 2012 'returns': 'COLOStatus', 2013 'if': 'CONFIG_REPLICATION' } 2014 2015## 2016# @migrate-recover: 2017# 2018# Provide a recovery migration stream URI. 2019# 2020# @uri: the URI to be used for the recovery of migration stream. 2021# 2022# Returns: nothing. 2023# 2024# Example: 2025# 2026# -> { "execute": "migrate-recover", 2027# "arguments": { "uri": "tcp:192.168.1.200:12345" } } 2028# <- { "return": {} } 2029# 2030# Since: 3.0 2031## 2032{ 'command': 'migrate-recover', 2033 'data': { 'uri': 'str' }, 2034 'allow-oob': true } 2035 2036## 2037# @migrate-pause: 2038# 2039# Pause a migration. Currently it only supports postcopy. 2040# 2041# Returns: nothing. 2042# 2043# Example: 2044# 2045# -> { "execute": "migrate-pause" } 2046# <- { "return": {} } 2047# 2048# Since: 3.0 2049## 2050{ 'command': 'migrate-pause', 'allow-oob': true } 2051 2052## 2053# @UNPLUG_PRIMARY: 2054# 2055# Emitted from source side of a migration when migration state is 2056# WAIT_UNPLUG. Device was unplugged by guest operating system. Device 2057# resources in QEMU are kept on standby to be able to re-plug it in 2058# case of migration failure. 2059# 2060# @device-id: QEMU device id of the unplugged device 2061# 2062# Since: 4.2 2063# 2064# Example: 2065# 2066# <- { "event": "UNPLUG_PRIMARY", 2067# "data": { "device-id": "hostdev0" }, 2068# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 2069## 2070{ 'event': 'UNPLUG_PRIMARY', 2071 'data': { 'device-id': 'str' } } 2072 2073## 2074# @DirtyRateVcpu: 2075# 2076# Dirty rate of vcpu. 2077# 2078# @id: vcpu index. 2079# 2080# @dirty-rate: dirty rate. 2081# 2082# Since: 6.2 2083## 2084{ 'struct': 'DirtyRateVcpu', 2085 'data': { 'id': 'int', 'dirty-rate': 'int64' } } 2086 2087## 2088# @DirtyRateStatus: 2089# 2090# Dirty page rate measurement status. 2091# 2092# @unstarted: measuring thread has not been started yet 2093# 2094# @measuring: measuring thread is running 2095# 2096# @measured: dirty page rate is measured and the results are available 2097# 2098# Since: 5.2 2099## 2100{ 'enum': 'DirtyRateStatus', 2101 'data': [ 'unstarted', 'measuring', 'measured'] } 2102 2103## 2104# @DirtyRateMeasureMode: 2105# 2106# Method used to measure dirty page rate. Differences between 2107# available methods are explained in @calc-dirty-rate. 2108# 2109# @page-sampling: use page sampling 2110# 2111# @dirty-ring: use dirty ring 2112# 2113# @dirty-bitmap: use dirty bitmap 2114# 2115# Since: 6.2 2116## 2117{ 'enum': 'DirtyRateMeasureMode', 2118 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] } 2119 2120## 2121# @TimeUnit: 2122# 2123# Specifies unit in which time-related value is specified. 2124# 2125# @second: value is in seconds 2126# 2127# @millisecond: value is in milliseconds 2128# 2129# Since: 8.2 2130# 2131## 2132{ 'enum': 'TimeUnit', 2133 'data': ['second', 'millisecond'] } 2134 2135## 2136# @DirtyRateInfo: 2137# 2138# Information about measured dirty page rate. 2139# 2140# @dirty-rate: an estimate of the dirty page rate of the VM in units 2141# of MiB/s. Value is present only when @status is 'measured'. 2142# 2143# @status: current status of dirty page rate measurements 2144# 2145# @start-time: start time in units of second for calculation 2146# 2147# @calc-time: time period for which dirty page rate was measured, 2148# expressed and rounded down to @calc-time-unit. 2149# 2150# @calc-time-unit: time unit of @calc-time (Since 8.2) 2151# 2152# @sample-pages: number of sampled pages per GiB of guest memory. 2153# Valid only in page-sampling mode (Since 6.1) 2154# 2155# @mode: mode that was used to measure dirty page rate (Since 6.2) 2156# 2157# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was 2158# specified (Since 6.2) 2159# 2160# Since: 5.2 2161## 2162{ 'struct': 'DirtyRateInfo', 2163 'data': {'*dirty-rate': 'int64', 2164 'status': 'DirtyRateStatus', 2165 'start-time': 'int64', 2166 'calc-time': 'int64', 2167 'calc-time-unit': 'TimeUnit', 2168 'sample-pages': 'uint64', 2169 'mode': 'DirtyRateMeasureMode', 2170 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } } 2171 2172## 2173# @calc-dirty-rate: 2174# 2175# Start measuring dirty page rate of the VM. Results can be retrieved 2176# with @query-dirty-rate after measurements are completed. 2177# 2178# Dirty page rate is the number of pages changed in a given time 2179# period expressed in MiB/s. The following methods of calculation are 2180# available: 2181# 2182# 1. In page sampling mode, a random subset of pages are selected and 2183# hashed twice: once at the beginning of measurement time period, 2184# and once again at the end. If two hashes for some page are 2185# different, the page is counted as changed. Since this method 2186# relies on sampling and hashing, calculated dirty page rate is 2187# only an estimate of its true value. Increasing @sample-pages 2188# improves estimation quality at the cost of higher computational 2189# overhead. 2190# 2191# 2. Dirty bitmap mode captures writes to memory (for example by 2192# temporarily revoking write access to all pages) and counting page 2193# faults. Information about modified pages is collected into a 2194# bitmap, where each bit corresponds to one guest page. This mode 2195# requires that KVM accelerator property "dirty-ring-size" is *not* 2196# set. 2197# 2198# 3. Dirty ring mode is similar to dirty bitmap mode, but the 2199# information about modified pages is collected into ring buffer. 2200# This mode tracks page modification per each vCPU separately. It 2201# requires that KVM accelerator property "dirty-ring-size" is set. 2202# 2203# @calc-time: time period for which dirty page rate is calculated. 2204# By default it is specified in seconds, but the unit can be set 2205# explicitly with @calc-time-unit. Note that larger @calc-time 2206# values will typically result in smaller dirty page rates because 2207# page dirtying is a one-time event. Once some page is counted 2208# as dirty during @calc-time period, further writes to this page 2209# will not increase dirty page rate anymore. 2210# 2211# @calc-time-unit: time unit in which @calc-time is specified. 2212# By default it is seconds. (Since 8.2) 2213# 2214# @sample-pages: number of sampled pages per each GiB of guest memory. 2215# Default value is 512. For 4KiB guest pages this corresponds to 2216# sampling ratio of 0.2%. This argument is used only in page 2217# sampling mode. (Since 6.1) 2218# 2219# @mode: mechanism for tracking dirty pages. Default value is 2220# 'page-sampling'. Others are 'dirty-bitmap' and 'dirty-ring'. 2221# (Since 6.1) 2222# 2223# Since: 5.2 2224# 2225# Example: 2226# 2227# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1, 2228# 'sample-pages': 512} } 2229# <- { "return": {} } 2230# 2231# Measure dirty rate using dirty bitmap for 500 milliseconds: 2232# 2233# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500, 2234# "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} } 2235# 2236# <- { "return": {} } 2237## 2238{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64', 2239 '*calc-time-unit': 'TimeUnit', 2240 '*sample-pages': 'int', 2241 '*mode': 'DirtyRateMeasureMode'} } 2242 2243## 2244# @query-dirty-rate: 2245# 2246# Query results of the most recent invocation of @calc-dirty-rate. 2247# 2248# @calc-time-unit: time unit in which to report calculation time. 2249# By default it is reported in seconds. (Since 8.2) 2250# 2251# Since: 5.2 2252# 2253# Examples: 2254# 2255# 1. Measurement is in progress: 2256# 2257# <- {"status": "measuring", "sample-pages": 512, 2258# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2259# "calc-time-unit": "second"} 2260# 2261# 2. Measurement has been completed: 2262# 2263# <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108, 2264# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2265# "calc-time-unit": "second"} 2266## 2267{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' }, 2268 'returns': 'DirtyRateInfo' } 2269 2270## 2271# @DirtyLimitInfo: 2272# 2273# Dirty page rate limit information of a virtual CPU. 2274# 2275# @cpu-index: index of a virtual CPU. 2276# 2277# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual 2278# CPU, 0 means unlimited. 2279# 2280# @current-rate: current dirty page rate (MB/s) for a virtual CPU. 2281# 2282# Since: 7.1 2283## 2284{ 'struct': 'DirtyLimitInfo', 2285 'data': { 'cpu-index': 'int', 2286 'limit-rate': 'uint64', 2287 'current-rate': 'uint64' } } 2288 2289## 2290# @set-vcpu-dirty-limit: 2291# 2292# Set the upper limit of dirty page rate for virtual CPUs. 2293# 2294# Requires KVM with accelerator property "dirty-ring-size" set. A 2295# virtual CPU's dirty page rate is a measure of its memory load. To 2296# observe dirty page rates, use @calc-dirty-rate. 2297# 2298# @cpu-index: index of a virtual CPU, default is all. 2299# 2300# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs. 2301# 2302# Since: 7.1 2303# 2304# Example: 2305# 2306# -> {"execute": "set-vcpu-dirty-limit"} 2307# "arguments": { "dirty-rate": 200, 2308# "cpu-index": 1 } } 2309# <- { "return": {} } 2310## 2311{ 'command': 'set-vcpu-dirty-limit', 2312 'data': { '*cpu-index': 'int', 2313 'dirty-rate': 'uint64' } } 2314 2315## 2316# @cancel-vcpu-dirty-limit: 2317# 2318# Cancel the upper limit of dirty page rate for virtual CPUs. 2319# 2320# Cancel the dirty page limit for the vCPU which has been set with 2321# set-vcpu-dirty-limit command. Note that this command requires 2322# support from dirty ring, same as the "set-vcpu-dirty-limit". 2323# 2324# @cpu-index: index of a virtual CPU, default is all. 2325# 2326# Since: 7.1 2327# 2328# Example: 2329# 2330# -> {"execute": "cancel-vcpu-dirty-limit"}, 2331# "arguments": { "cpu-index": 1 } } 2332# <- { "return": {} } 2333## 2334{ 'command': 'cancel-vcpu-dirty-limit', 2335 'data': { '*cpu-index': 'int'} } 2336 2337## 2338# @query-vcpu-dirty-limit: 2339# 2340# Returns information about virtual CPU dirty page rate limits, if 2341# any. 2342# 2343# Since: 7.1 2344# 2345# Example: 2346# 2347# -> {"execute": "query-vcpu-dirty-limit"} 2348# <- {"return": [ 2349# { "limit-rate": 60, "current-rate": 3, "cpu-index": 0}, 2350# { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]} 2351## 2352{ 'command': 'query-vcpu-dirty-limit', 2353 'returns': [ 'DirtyLimitInfo' ] } 2354 2355## 2356# @MigrationThreadInfo: 2357# 2358# Information about migrationthreads 2359# 2360# @name: the name of migration thread 2361# 2362# @thread-id: ID of the underlying host thread 2363# 2364# Since: 7.2 2365## 2366{ 'struct': 'MigrationThreadInfo', 2367 'data': {'name': 'str', 2368 'thread-id': 'int'} } 2369 2370## 2371# @query-migrationthreads: 2372# 2373# Returns information of migration threads 2374# 2375# data: migration thread name 2376# 2377# Returns: information about migration threads 2378# 2379# Since: 7.2 2380## 2381{ 'command': 'query-migrationthreads', 2382 'returns': ['MigrationThreadInfo'] } 2383 2384## 2385# @snapshot-save: 2386# 2387# Save a VM snapshot 2388# 2389# @job-id: identifier for the newly created job 2390# 2391# @tag: name of the snapshot to create 2392# 2393# @vmstate: block device node name to save vmstate to 2394# 2395# @devices: list of block device node names to save a snapshot to 2396# 2397# Applications should not assume that the snapshot save is complete 2398# when this command returns. The job commands / events must be used 2399# to determine completion and to fetch details of any errors that 2400# arise. 2401# 2402# Note that execution of the guest CPUs may be stopped during the time 2403# it takes to save the snapshot. A future version of QEMU may ensure 2404# CPUs are executing continuously. 2405# 2406# It is strongly recommended that @devices contain all writable block 2407# device nodes if a consistent snapshot is required. 2408# 2409# If @tag already exists, an error will be reported 2410# 2411# Returns: nothing 2412# 2413# Example: 2414# 2415# -> { "execute": "snapshot-save", 2416# "arguments": { 2417# "job-id": "snapsave0", 2418# "tag": "my-snap", 2419# "vmstate": "disk0", 2420# "devices": ["disk0", "disk1"] 2421# } 2422# } 2423# <- { "return": { } } 2424# <- {"event": "JOB_STATUS_CHANGE", 2425# "timestamp": {"seconds": 1432121972, "microseconds": 744001}, 2426# "data": {"status": "created", "id": "snapsave0"}} 2427# <- {"event": "JOB_STATUS_CHANGE", 2428# "timestamp": {"seconds": 1432122172, "microseconds": 744001}, 2429# "data": {"status": "running", "id": "snapsave0"}} 2430# <- {"event": "STOP", 2431# "timestamp": {"seconds": 1432122372, "microseconds": 744001} } 2432# <- {"event": "RESUME", 2433# "timestamp": {"seconds": 1432122572, "microseconds": 744001} } 2434# <- {"event": "JOB_STATUS_CHANGE", 2435# "timestamp": {"seconds": 1432122772, "microseconds": 744001}, 2436# "data": {"status": "waiting", "id": "snapsave0"}} 2437# <- {"event": "JOB_STATUS_CHANGE", 2438# "timestamp": {"seconds": 1432122972, "microseconds": 744001}, 2439# "data": {"status": "pending", "id": "snapsave0"}} 2440# <- {"event": "JOB_STATUS_CHANGE", 2441# "timestamp": {"seconds": 1432123172, "microseconds": 744001}, 2442# "data": {"status": "concluded", "id": "snapsave0"}} 2443# -> {"execute": "query-jobs"} 2444# <- {"return": [{"current-progress": 1, 2445# "status": "concluded", 2446# "total-progress": 1, 2447# "type": "snapshot-save", 2448# "id": "snapsave0"}]} 2449# 2450# Since: 6.0 2451## 2452{ 'command': 'snapshot-save', 2453 'data': { 'job-id': 'str', 2454 'tag': 'str', 2455 'vmstate': 'str', 2456 'devices': ['str'] } } 2457 2458## 2459# @snapshot-load: 2460# 2461# Load a VM snapshot 2462# 2463# @job-id: identifier for the newly created job 2464# 2465# @tag: name of the snapshot to load. 2466# 2467# @vmstate: block device node name to load vmstate from 2468# 2469# @devices: list of block device node names to load a snapshot from 2470# 2471# Applications should not assume that the snapshot load is complete 2472# when this command returns. The job commands / events must be used 2473# to determine completion and to fetch details of any errors that 2474# arise. 2475# 2476# Note that execution of the guest CPUs will be stopped during the 2477# time it takes to load the snapshot. 2478# 2479# It is strongly recommended that @devices contain all writable block 2480# device nodes that can have changed since the original @snapshot-save 2481# command execution. 2482# 2483# Returns: nothing 2484# 2485# Example: 2486# 2487# -> { "execute": "snapshot-load", 2488# "arguments": { 2489# "job-id": "snapload0", 2490# "tag": "my-snap", 2491# "vmstate": "disk0", 2492# "devices": ["disk0", "disk1"] 2493# } 2494# } 2495# <- { "return": { } } 2496# <- {"event": "JOB_STATUS_CHANGE", 2497# "timestamp": {"seconds": 1472124172, "microseconds": 744001}, 2498# "data": {"status": "created", "id": "snapload0"}} 2499# <- {"event": "JOB_STATUS_CHANGE", 2500# "timestamp": {"seconds": 1472125172, "microseconds": 744001}, 2501# "data": {"status": "running", "id": "snapload0"}} 2502# <- {"event": "STOP", 2503# "timestamp": {"seconds": 1472125472, "microseconds": 744001} } 2504# <- {"event": "RESUME", 2505# "timestamp": {"seconds": 1472125872, "microseconds": 744001} } 2506# <- {"event": "JOB_STATUS_CHANGE", 2507# "timestamp": {"seconds": 1472126172, "microseconds": 744001}, 2508# "data": {"status": "waiting", "id": "snapload0"}} 2509# <- {"event": "JOB_STATUS_CHANGE", 2510# "timestamp": {"seconds": 1472127172, "microseconds": 744001}, 2511# "data": {"status": "pending", "id": "snapload0"}} 2512# <- {"event": "JOB_STATUS_CHANGE", 2513# "timestamp": {"seconds": 1472128172, "microseconds": 744001}, 2514# "data": {"status": "concluded", "id": "snapload0"}} 2515# -> {"execute": "query-jobs"} 2516# <- {"return": [{"current-progress": 1, 2517# "status": "concluded", 2518# "total-progress": 1, 2519# "type": "snapshot-load", 2520# "id": "snapload0"}]} 2521# 2522# Since: 6.0 2523## 2524{ 'command': 'snapshot-load', 2525 'data': { 'job-id': 'str', 2526 'tag': 'str', 2527 'vmstate': 'str', 2528 'devices': ['str'] } } 2529 2530## 2531# @snapshot-delete: 2532# 2533# Delete a VM snapshot 2534# 2535# @job-id: identifier for the newly created job 2536# 2537# @tag: name of the snapshot to delete. 2538# 2539# @devices: list of block device node names to delete a snapshot from 2540# 2541# Applications should not assume that the snapshot delete is complete 2542# when this command returns. The job commands / events must be used 2543# to determine completion and to fetch details of any errors that 2544# arise. 2545# 2546# Returns: nothing 2547# 2548# Example: 2549# 2550# -> { "execute": "snapshot-delete", 2551# "arguments": { 2552# "job-id": "snapdelete0", 2553# "tag": "my-snap", 2554# "devices": ["disk0", "disk1"] 2555# } 2556# } 2557# <- { "return": { } } 2558# <- {"event": "JOB_STATUS_CHANGE", 2559# "timestamp": {"seconds": 1442124172, "microseconds": 744001}, 2560# "data": {"status": "created", "id": "snapdelete0"}} 2561# <- {"event": "JOB_STATUS_CHANGE", 2562# "timestamp": {"seconds": 1442125172, "microseconds": 744001}, 2563# "data": {"status": "running", "id": "snapdelete0"}} 2564# <- {"event": "JOB_STATUS_CHANGE", 2565# "timestamp": {"seconds": 1442126172, "microseconds": 744001}, 2566# "data": {"status": "waiting", "id": "snapdelete0"}} 2567# <- {"event": "JOB_STATUS_CHANGE", 2568# "timestamp": {"seconds": 1442127172, "microseconds": 744001}, 2569# "data": {"status": "pending", "id": "snapdelete0"}} 2570# <- {"event": "JOB_STATUS_CHANGE", 2571# "timestamp": {"seconds": 1442128172, "microseconds": 744001}, 2572# "data": {"status": "concluded", "id": "snapdelete0"}} 2573# -> {"execute": "query-jobs"} 2574# <- {"return": [{"current-progress": 1, 2575# "status": "concluded", 2576# "total-progress": 1, 2577# "type": "snapshot-delete", 2578# "id": "snapdelete0"}]} 2579# 2580# Since: 6.0 2581## 2582{ 'command': 'snapshot-delete', 2583 'data': { 'job-id': 'str', 2584 'tag': 'str', 2585 'devices': ['str'] } } 2586