xref: /openbmc/qemu/qapi/migration.json (revision f65f6ad5)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4
5##
6# = Migration
7##
8
9{ 'include': 'common.json' }
10{ 'include': 'sockets.json' }
11
12##
13# @MigrationStats:
14#
15# Detailed migration status.
16#
17# @transferred: amount of bytes already transferred to the target VM
18#
19# @remaining: amount of bytes remaining to be transferred to the
20#     target VM
21#
22# @total: total amount of bytes involved in the migration process
23#
24# @duplicate: number of duplicate (zero) pages (since 1.2)
25#
26# @skipped: number of skipped zero pages (since 1.5)
27#
28# @normal: number of normal pages (since 1.2)
29#
30# @normal-bytes: number of normal bytes sent (since 1.2)
31#
32# @dirty-pages-rate: number of pages dirtied by second by the guest
33#     (since 1.3)
34#
35# @mbps: throughput in megabits/sec.  (since 1.6)
36#
37# @dirty-sync-count: number of times that dirty ram was synchronized
38#     (since 2.1)
39#
40# @postcopy-requests: The number of page requests received from the
41#     destination (since 2.7)
42#
43# @page-size: The number of bytes per page for the various page-based
44#     statistics (since 2.10)
45#
46# @multifd-bytes: The number of bytes sent through multifd (since 3.0)
47#
48# @pages-per-second: the number of memory pages transferred per second
49#     (Since 4.0)
50#
51# @precopy-bytes: The number of bytes sent in the pre-copy phase
52#     (since 7.0).
53#
54# @downtime-bytes: The number of bytes sent while the guest is paused
55#     (since 7.0).
56#
57# @postcopy-bytes: The number of bytes sent during the post-copy phase
58#     (since 7.0).
59#
60# @dirty-sync-missed-zero-copy: Number of times dirty RAM
61#     synchronization could not avoid copying dirty pages.  This is
62#     between 0 and @dirty-sync-count * @multifd-channels.  (since
63#     7.1)
64#
65# Since: 0.14
66##
67{ 'struct': 'MigrationStats',
68  'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
69           'duplicate': 'int', 'skipped': 'int', 'normal': 'int',
70           'normal-bytes': 'int', 'dirty-pages-rate' : 'int',
71           'mbps' : 'number', 'dirty-sync-count' : 'int',
72           'postcopy-requests' : 'int', 'page-size' : 'int',
73           'multifd-bytes' : 'uint64', 'pages-per-second' : 'uint64',
74           'precopy-bytes' : 'uint64', 'downtime-bytes' : 'uint64',
75           'postcopy-bytes' : 'uint64',
76           'dirty-sync-missed-zero-copy' : 'uint64' } }
77
78##
79# @XBZRLECacheStats:
80#
81# Detailed XBZRLE migration cache statistics
82#
83# @cache-size: XBZRLE cache size
84#
85# @bytes: amount of bytes already transferred to the target VM
86#
87# @pages: amount of pages transferred to the target VM
88#
89# @cache-miss: number of cache miss
90#
91# @cache-miss-rate: rate of cache miss (since 2.1)
92#
93# @encoding-rate: rate of encoded bytes (since 5.1)
94#
95# @overflow: number of overflows
96#
97# Since: 1.2
98##
99{ 'struct': 'XBZRLECacheStats',
100  'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
101           'cache-miss': 'int', 'cache-miss-rate': 'number',
102           'encoding-rate': 'number', 'overflow': 'int' } }
103
104##
105# @CompressionStats:
106#
107# Detailed migration compression statistics
108#
109# @pages: amount of pages compressed and transferred to the target VM
110#
111# @busy: count of times that no free thread was available to compress
112#     data
113#
114# @busy-rate: rate of thread busy
115#
116# @compressed-size: amount of bytes after compression
117#
118# @compression-rate: rate of compressed size
119#
120# Since: 3.1
121##
122{ 'struct': 'CompressionStats',
123  'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
124           'compressed-size': 'int', 'compression-rate': 'number' } }
125
126##
127# @MigrationStatus:
128#
129# An enumeration of migration status.
130#
131# @none: no migration has ever happened.
132#
133# @setup: migration process has been initiated.
134#
135# @cancelling: in the process of cancelling migration.
136#
137# @cancelled: cancelling migration is finished.
138#
139# @active: in the process of doing migration.
140#
141# @postcopy-active: like active, but now in postcopy mode.  (since
142#     2.5)
143#
144# @postcopy-paused: during postcopy but paused.  (since 3.0)
145#
146# @postcopy-recover: trying to recover from a paused postcopy.  (since
147#     3.0)
148#
149# @completed: migration is finished.
150#
151# @failed: some error occurred during migration process.
152#
153# @colo: VM is in the process of fault tolerance, VM can not get into
154#     this state unless colo capability is enabled for migration.
155#     (since 2.8)
156#
157# @pre-switchover: Paused before device serialisation.  (since 2.11)
158#
159# @device: During device serialisation when pause-before-switchover is
160#     enabled (since 2.11)
161#
162# @wait-unplug: wait for device unplug request by guest OS to be
163#     completed.  (since 4.2)
164#
165# Since: 2.3
166##
167{ 'enum': 'MigrationStatus',
168  'data': [ 'none', 'setup', 'cancelling', 'cancelled',
169            'active', 'postcopy-active', 'postcopy-paused',
170            'postcopy-recover', 'completed', 'failed', 'colo',
171            'pre-switchover', 'device', 'wait-unplug' ] }
172##
173# @VfioStats:
174#
175# Detailed VFIO devices migration statistics
176#
177# @transferred: amount of bytes transferred to the target VM by VFIO
178#     devices
179#
180# Since: 5.2
181##
182{ 'struct': 'VfioStats',
183  'data': {'transferred': 'int' } }
184
185##
186# @MigrationInfo:
187#
188# Information about current migration process.
189#
190# @status: @MigrationStatus describing the current migration status.
191#     If this field is not returned, no migration process has been
192#     initiated
193#
194# @ram: @MigrationStats containing detailed migration status, only
195#     returned if status is 'active' or 'completed'(since 1.2)
196#
197# @disk: @MigrationStats containing detailed disk migration status,
198#     only returned if status is 'active' and it is a block migration
199#
200# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
201#     migration statistics, only returned if XBZRLE feature is on and
202#     status is 'active' or 'completed' (since 1.2)
203#
204# @total-time: total amount of milliseconds since migration started.
205#     If migration has ended, it returns the total migration time.
206#     (since 1.2)
207#
208# @downtime: only present when migration finishes correctly total
209#     downtime in milliseconds for the guest.  (since 1.3)
210#
211# @expected-downtime: only present while migration is active expected
212#     downtime in milliseconds for the guest in last walk of the dirty
213#     bitmap.  (since 1.3)
214#
215# @setup-time: amount of setup time in milliseconds *before* the
216#     iterations begin but *after* the QMP command is issued.  This is
217#     designed to provide an accounting of any activities (such as
218#     RDMA pinning) which may be expensive, but do not actually occur
219#     during the iterative migration rounds themselves.  (since 1.6)
220#
221# @cpu-throttle-percentage: percentage of time guest cpus are being
222#     throttled during auto-converge.  This is only present when
223#     auto-converge has started throttling guest cpus.  (Since 2.7)
224#
225# @error-desc: the human readable error description string, when
226#     @status is 'failed'. Clients should not attempt to parse the
227#     error strings.  (Since 2.7)
228#
229# @postcopy-blocktime: total time when all vCPU were blocked during
230#     postcopy live migration.  This is only present when the
231#     postcopy-blocktime migration capability is enabled.  (Since 3.0)
232#
233# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU.
234#     This is only present when the postcopy-blocktime migration
235#     capability is enabled.  (Since 3.0)
236#
237# @compression: migration compression statistics, only returned if
238#     compression feature is on and status is 'active' or 'completed'
239#     (Since 3.1)
240#
241# @socket-address: Only used for tcp, to know what the real port is
242#     (Since 4.0)
243#
244# @vfio: @VfioStats containing detailed VFIO devices migration
245#     statistics, only returned if VFIO device is present, migration
246#     is supported by all VFIO devices and status is 'active' or
247#     'completed' (since 5.2)
248#
249# @blocked-reasons: A list of reasons an outgoing migration is
250#     blocked.  Present and non-empty when migration is blocked.
251#     (since 6.0)
252#
253# Since: 0.14
254##
255{ 'struct': 'MigrationInfo',
256  'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
257           '*disk': 'MigrationStats',
258           '*vfio': 'VfioStats',
259           '*xbzrle-cache': 'XBZRLECacheStats',
260           '*total-time': 'int',
261           '*expected-downtime': 'int',
262           '*downtime': 'int',
263           '*setup-time': 'int',
264           '*cpu-throttle-percentage': 'int',
265           '*error-desc': 'str',
266           '*blocked-reasons': ['str'],
267           '*postcopy-blocktime' : 'uint32',
268           '*postcopy-vcpu-blocktime': ['uint32'],
269           '*compression': 'CompressionStats',
270           '*socket-address': ['SocketAddress'] } }
271
272##
273# @query-migrate:
274#
275# Returns information about current migration process.  If migration
276# is active there will be another json-object with RAM migration
277# status and if block migration is active another one with block
278# migration status.
279#
280# Returns: @MigrationInfo
281#
282# Since: 0.14
283#
284# Examples:
285#
286# 1. Before the first migration
287#
288# -> { "execute": "query-migrate" }
289# <- { "return": {} }
290#
291# 2. Migration is done and has succeeded
292#
293# -> { "execute": "query-migrate" }
294# <- { "return": {
295#         "status": "completed",
296#         "total-time":12345,
297#         "setup-time":12345,
298#         "downtime":12345,
299#         "ram":{
300#           "transferred":123,
301#           "remaining":123,
302#           "total":246,
303#           "duplicate":123,
304#           "normal":123,
305#           "normal-bytes":123456,
306#           "dirty-sync-count":15
307#         }
308#      }
309#    }
310#
311# 3. Migration is done and has failed
312#
313# -> { "execute": "query-migrate" }
314# <- { "return": { "status": "failed" } }
315#
316# 4. Migration is being performed and is not a block migration:
317#
318# -> { "execute": "query-migrate" }
319# <- {
320#       "return":{
321#          "status":"active",
322#          "total-time":12345,
323#          "setup-time":12345,
324#          "expected-downtime":12345,
325#          "ram":{
326#             "transferred":123,
327#             "remaining":123,
328#             "total":246,
329#             "duplicate":123,
330#             "normal":123,
331#             "normal-bytes":123456,
332#             "dirty-sync-count":15
333#          }
334#       }
335#    }
336#
337# 5. Migration is being performed and is a block migration:
338#
339# -> { "execute": "query-migrate" }
340# <- {
341#       "return":{
342#          "status":"active",
343#          "total-time":12345,
344#          "setup-time":12345,
345#          "expected-downtime":12345,
346#          "ram":{
347#             "total":1057024,
348#             "remaining":1053304,
349#             "transferred":3720,
350#             "duplicate":123,
351#             "normal":123,
352#             "normal-bytes":123456,
353#             "dirty-sync-count":15
354#          },
355#          "disk":{
356#             "total":20971520,
357#             "remaining":20880384,
358#             "transferred":91136
359#          }
360#       }
361#    }
362#
363# 6. Migration is being performed and XBZRLE is active:
364#
365# -> { "execute": "query-migrate" }
366# <- {
367#       "return":{
368#          "status":"active",
369#          "total-time":12345,
370#          "setup-time":12345,
371#          "expected-downtime":12345,
372#          "ram":{
373#             "total":1057024,
374#             "remaining":1053304,
375#             "transferred":3720,
376#             "duplicate":10,
377#             "normal":3333,
378#             "normal-bytes":3412992,
379#             "dirty-sync-count":15
380#          },
381#          "xbzrle-cache":{
382#             "cache-size":67108864,
383#             "bytes":20971520,
384#             "pages":2444343,
385#             "cache-miss":2244,
386#             "cache-miss-rate":0.123,
387#             "encoding-rate":80.1,
388#             "overflow":34434
389#          }
390#       }
391#    }
392##
393{ 'command': 'query-migrate', 'returns': 'MigrationInfo' }
394
395##
396# @MigrationCapability:
397#
398# Migration capabilities enumeration
399#
400# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length
401#     Encoding). This feature allows us to minimize migration traffic
402#     for certain work loads, by sending compressed difference of the
403#     pages
404#
405# @rdma-pin-all: Controls whether or not the entire VM memory
406#     footprint is mlock()'d on demand or all at once.  Refer to
407#     docs/rdma.txt for usage.  Disabled by default.  (since 2.0)
408#
409# @zero-blocks: During storage migration encode blocks of zeroes
410#     efficiently.  This essentially saves 1MB of zeroes per block on
411#     the wire.  Enabling requires source and target VM to support
412#     this feature.  To enable it is sufficient to enable the
413#     capability on the source VM. The feature is disabled by default.
414#     (since 1.6)
415#
416# @compress: Use multiple compression threads to accelerate live
417#     migration.  This feature can help to reduce the migration
418#     traffic, by sending compressed pages.  Please note that if
419#     compress and xbzrle are both on, compress only takes effect in
420#     the ram bulk stage, after that, it will be disabled and only
421#     xbzrle takes effect, this can help to minimize migration
422#     traffic.  The feature is disabled by default.  (since 2.4 )
423#
424# @events: generate events for each migration state change (since 2.4
425#     )
426#
427# @auto-converge: If enabled, QEMU will automatically throttle down
428#     the guest to speed up convergence of RAM migration.  (since 1.6)
429#
430# @postcopy-ram: Start executing on the migration target before all of
431#     RAM has been migrated, pulling the remaining pages along as
432#     needed.  The capacity must have the same setting on both source
433#     and target or migration will not even start.  NOTE: If the
434#     migration fails during postcopy the VM will fail.  (since 2.6)
435#
436# @x-colo: If enabled, migration will never end, and the state of the
437#     VM on the primary side will be migrated continuously to the VM
438#     on secondary side, this process is called COarse-Grain LOck
439#     Stepping (COLO) for Non-stop Service.  (since 2.8)
440#
441# @release-ram: if enabled, qemu will free the migrated ram pages on
442#     the source during postcopy-ram migration.  (since 2.9)
443#
444# @block: If enabled, QEMU will also migrate the contents of all block
445#     devices.  Default is disabled.  A possible alternative uses
446#     mirror jobs to a builtin NBD server on the destination, which
447#     offers more flexibility.  (Since 2.10)
448#
449# @return-path: If enabled, migration will use the return path even
450#     for precopy.  (since 2.10)
451#
452# @pause-before-switchover: Pause outgoing migration before
453#     serialising device state and before disabling block IO (since
454#     2.11)
455#
456# @multifd: Use more than one fd for migration (since 4.0)
457#
458# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
459#     (since 2.12)
460#
461# @postcopy-blocktime: Calculate downtime for postcopy live migration
462#     (since 3.0)
463#
464# @late-block-activate: If enabled, the destination will not activate
465#     block devices (and thus take locks) immediately at the end of
466#     migration.  (since 3.0)
467#
468# @x-ignore-shared: If enabled, QEMU will not migrate shared memory that is
469#     accessible on the destination machine. (since 4.0)
470#
471# @validate-uuid: Send the UUID of the source to allow the destination
472#     to ensure it is the same.  (since 4.2)
473#
474# @background-snapshot: If enabled, the migration stream will be a
475#     snapshot of the VM exactly at the point when the migration
476#     procedure starts.  The VM RAM is saved with running VM. (since
477#     6.0)
478#
479# @zero-copy-send: Controls behavior on sending memory pages on
480#     migration.  When true, enables a zero-copy mechanism for sending
481#     memory pages, if host supports it.  Requires that QEMU be
482#     permitted to use locked memory for guest RAM pages.  (since 7.1)
483#
484# @postcopy-preempt: If enabled, the migration process will allow
485#     postcopy requests to preempt precopy stream, so postcopy
486#     requests will be handled faster.  This is a performance feature
487#     and should not affect the correctness of postcopy migration.
488#     (since 7.1)
489#
490# Features:
491#
492# @unstable: Members @x-colo and @x-ignore-shared are experimental.
493#
494# Since: 1.2
495##
496{ 'enum': 'MigrationCapability',
497  'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
498           'compress', 'events', 'postcopy-ram',
499           { 'name': 'x-colo', 'features': [ 'unstable' ] },
500           'release-ram',
501           'block', 'return-path', 'pause-before-switchover', 'multifd',
502           'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
503           { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
504           'validate-uuid', 'background-snapshot',
505           'zero-copy-send', 'postcopy-preempt'] }
506
507##
508# @MigrationCapabilityStatus:
509#
510# Migration capability information
511#
512# @capability: capability enum
513#
514# @state: capability state bool
515#
516# Since: 1.2
517##
518{ 'struct': 'MigrationCapabilityStatus',
519  'data': { 'capability' : 'MigrationCapability', 'state' : 'bool' } }
520
521##
522# @migrate-set-capabilities:
523#
524# Enable/Disable the following migration capabilities (like xbzrle)
525#
526# @capabilities: json array of capability modifications to make
527#
528# Since: 1.2
529#
530# Example:
531#
532# -> { "execute": "migrate-set-capabilities" , "arguments":
533#      { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
534# <- { "return": {} }
535##
536{ 'command': 'migrate-set-capabilities',
537  'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
538
539##
540# @query-migrate-capabilities:
541#
542# Returns information about the current migration capabilities status
543#
544# Returns: @MigrationCapabilityStatus
545#
546# Since: 1.2
547#
548# Example:
549#
550# -> { "execute": "query-migrate-capabilities" }
551# <- { "return": [
552#       {"state": false, "capability": "xbzrle"},
553#       {"state": false, "capability": "rdma-pin-all"},
554#       {"state": false, "capability": "auto-converge"},
555#       {"state": false, "capability": "zero-blocks"},
556#       {"state": false, "capability": "compress"},
557#       {"state": true, "capability": "events"},
558#       {"state": false, "capability": "postcopy-ram"},
559#       {"state": false, "capability": "x-colo"}
560#    ]}
561##
562{ 'command': 'query-migrate-capabilities', 'returns':   ['MigrationCapabilityStatus']}
563
564##
565# @MultiFDCompression:
566#
567# An enumeration of multifd compression methods.
568#
569# @none: no compression.
570#
571# @zlib: use zlib compression method.
572#
573# @zstd: use zstd compression method.
574#
575# Since: 5.0
576##
577{ 'enum': 'MultiFDCompression',
578  'data': [ 'none', 'zlib',
579            { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
580
581##
582# @BitmapMigrationBitmapAliasTransform:
583#
584# @persistent: If present, the bitmap will be made persistent or
585#     transient depending on this parameter.
586#
587# Since: 6.0
588##
589{ 'struct': 'BitmapMigrationBitmapAliasTransform',
590  'data': {
591      '*persistent': 'bool'
592  } }
593
594##
595# @BitmapMigrationBitmapAlias:
596#
597# @name: The name of the bitmap.
598#
599# @alias: An alias name for migration (for example the bitmap name on
600#     the opposite site).
601#
602# @transform: Allows the modification of the migrated bitmap.  (since
603#     6.0)
604#
605# Since: 5.2
606##
607{ 'struct': 'BitmapMigrationBitmapAlias',
608  'data': {
609      'name': 'str',
610      'alias': 'str',
611      '*transform': 'BitmapMigrationBitmapAliasTransform'
612  } }
613
614##
615# @BitmapMigrationNodeAlias:
616#
617# Maps a block node name and the bitmaps it has to aliases for dirty
618# bitmap migration.
619#
620# @node-name: A block node name.
621#
622# @alias: An alias block node name for migration (for example the node
623#     name on the opposite site).
624#
625# @bitmaps: Mappings for the bitmaps on this node.
626#
627# Since: 5.2
628##
629{ 'struct': 'BitmapMigrationNodeAlias',
630  'data': {
631      'node-name': 'str',
632      'alias': 'str',
633      'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
634  } }
635
636##
637# @MigrationParameter:
638#
639# Migration parameters enumeration
640#
641# @announce-initial: Initial delay (in milliseconds) before sending
642#     the first announce (Since 4.0)
643#
644# @announce-max: Maximum delay (in milliseconds) between packets in
645#     the announcement (Since 4.0)
646#
647# @announce-rounds: Number of self-announce packets sent after
648#     migration (Since 4.0)
649#
650# @announce-step: Increase in delay (in milliseconds) between
651#     subsequent packets in the announcement (Since 4.0)
652#
653# @compress-level: Set the compression level to be used in live
654#     migration, the compression level is an integer between 0 and 9,
655#     where 0 means no compression, 1 means the best compression
656#     speed, and 9 means best compression ratio which will consume
657#     more CPU.
658#
659# @compress-threads: Set compression thread count to be used in live
660#     migration, the compression thread count is an integer between 1
661#     and 255.
662#
663# @compress-wait-thread: Controls behavior when all compression
664#     threads are currently busy.  If true (default), wait for a free
665#     compression thread to become available; otherwise, send the page
666#     uncompressed.  (Since 3.1)
667#
668# @decompress-threads: Set decompression thread count to be used in
669#     live migration, the decompression thread count is an integer
670#     between 1 and 255. Usually, decompression is at least 4 times as
671#     fast as compression, so set the decompress-threads to the number
672#     about 1/4 of compress-threads is adequate.
673#
674# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
675#     bytes_xfer_period to trigger throttling.  It is expressed as
676#     percentage.  The default value is 50. (Since 5.0)
677#
678# @cpu-throttle-initial: Initial percentage of time guest cpus are
679#     throttled when migration auto-converge is activated.  The
680#     default value is 20. (Since 2.7)
681#
682# @cpu-throttle-increment: throttle percentage increase each time
683#     auto-converge detects that migration is not making progress.
684#     The default value is 10. (Since 2.7)
685#
686# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
687#     the tail stage of throttling, the Guest is very sensitive to CPU
688#     percentage while the @cpu-throttle -increment is excessive
689#     usually at tail stage.  If this parameter is true, we will
690#     compute the ideal CPU percentage used by the Guest, which may
691#     exactly make the dirty rate match the dirty rate threshold.
692#     Then we will choose a smaller throttle increment between the one
693#     specified by @cpu-throttle-increment and the one generated by
694#     ideal CPU percentage.  Therefore, it is compatible to
695#     traditional throttling, meanwhile the throttle increment won't
696#     be excessive at tail stage.  The default value is false.  (Since
697#     5.1)
698#
699# @tls-creds: ID of the 'tls-creds' object that provides credentials
700#     for establishing a TLS connection over the migration data
701#     channel.  On the outgoing side of the migration, the credentials
702#     must be for a 'client' endpoint, while for the incoming side the
703#     credentials must be for a 'server' endpoint.  Setting this will
704#     enable TLS for all migrations.  The default is unset, resulting
705#     in unsecured migration at the QEMU level.  (Since 2.7)
706#
707# @tls-hostname: hostname of the target host for the migration.  This
708#     is required when using x509 based TLS credentials and the
709#     migration URI does not already include a hostname.  For example
710#     if using fd: or exec: based migration, the hostname must be
711#     provided so that the server's x509 certificate identity can be
712#     validated.  (Since 2.7)
713#
714# @tls-authz: ID of the 'authz' object subclass that provides access
715#     control checking of the TLS x509 certificate distinguished name.
716#     This object is only resolved at time of use, so can be deleted
717#     and recreated on the fly while the migration server is active.
718#     If missing, it will default to denying access (Since 4.0)
719#
720# @max-bandwidth: to set maximum speed for migration.  maximum speed
721#     in bytes per second.  (Since 2.8)
722#
723# @downtime-limit: set maximum tolerated downtime for migration.
724#     maximum downtime in milliseconds (Since 2.8)
725#
726# @x-checkpoint-delay: The delay time (in ms) between two COLO
727#     checkpoints in periodic mode.  (Since 2.8)
728#
729# @block-incremental: Affects how much storage is migrated when the
730#     block migration capability is enabled.  When false, the entire
731#     storage backing chain is migrated into a flattened image at the
732#     destination; when true, only the active qcow2 layer is migrated
733#     and the destination must already have access to the same backing
734#     chain as was used on the source.  (since 2.10)
735#
736# @multifd-channels: Number of channels used to migrate data in
737#     parallel.  This is the same number that the number of sockets
738#     used for migration.  The default value is 2 (since 4.0)
739#
740# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
741#     needs to be a multiple of the target page size and a power of 2
742#     (Since 2.11)
743#
744# @max-postcopy-bandwidth: Background transfer bandwidth during
745#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
746#     (Since 3.0)
747#
748# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
749#     (Since 3.1)
750#
751# @multifd-compression: Which compression method to use.  Defaults to
752#     none.  (Since 5.0)
753#
754# @multifd-zlib-level: Set the compression level to be used in live
755#     migration, the compression level is an integer between 0 and 9,
756#     where 0 means no compression, 1 means the best compression
757#     speed, and 9 means best compression ratio which will consume
758#     more CPU. Defaults to 1. (Since 5.0)
759#
760# @multifd-zstd-level: Set the compression level to be used in live
761#     migration, the compression level is an integer between 0 and 20,
762#     where 0 means no compression, 1 means the best compression
763#     speed, and 20 means best compression ratio which will consume
764#     more CPU. Defaults to 1. (Since 5.0)
765#
766# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
767#     aliases for the purpose of dirty bitmap migration.  Such aliases
768#     may for example be the corresponding names on the opposite site.
769#     The mapping must be one-to-one, but not necessarily complete: On
770#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
771#     will be ignored.  On the destination, encountering an unmapped
772#     alias in the incoming migration stream will result in a report,
773#     and all further bitmap migration data will then be discarded.
774#     Note that the destination does not know about bitmaps it does
775#     not receive, so there is no limitation or requirement regarding
776#     the number of bitmaps received, or how they are named, or on
777#     which nodes they are placed.  By default (when this parameter
778#     has never been set), bitmap names are mapped to themselves.
779#     Nodes are mapped to their block device name if there is one, and
780#     to their node name otherwise.  (Since 5.2)
781#
782# Features:
783#
784# @unstable: Member @x-checkpoint-delay is experimental.
785#
786# Since: 2.4
787##
788{ 'enum': 'MigrationParameter',
789  'data': ['announce-initial', 'announce-max',
790           'announce-rounds', 'announce-step',
791           'compress-level', 'compress-threads', 'decompress-threads',
792           'compress-wait-thread', 'throttle-trigger-threshold',
793           'cpu-throttle-initial', 'cpu-throttle-increment',
794           'cpu-throttle-tailslow',
795           'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
796           'downtime-limit',
797           { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
798           'block-incremental',
799           'multifd-channels',
800           'xbzrle-cache-size', 'max-postcopy-bandwidth',
801           'max-cpu-throttle', 'multifd-compression',
802           'multifd-zlib-level' ,'multifd-zstd-level',
803           'block-bitmap-mapping' ] }
804
805##
806# @MigrateSetParameters:
807#
808# @announce-initial: Initial delay (in milliseconds) before sending
809#     the first announce (Since 4.0)
810#
811# @announce-max: Maximum delay (in milliseconds) between packets in
812#     the announcement (Since 4.0)
813#
814# @announce-rounds: Number of self-announce packets sent after
815#     migration (Since 4.0)
816#
817# @announce-step: Increase in delay (in milliseconds) between
818#     subsequent packets in the announcement (Since 4.0)
819#
820# @compress-level: compression level
821#
822# @compress-threads: compression thread count
823#
824# @compress-wait-thread: Controls behavior when all compression
825#     threads are currently busy.  If true (default), wait for a free
826#     compression thread to become available; otherwise, send the page
827#     uncompressed.  (Since 3.1)
828#
829# @decompress-threads: decompression thread count
830#
831# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
832#     bytes_xfer_period to trigger throttling.  It is expressed as
833#     percentage.  The default value is 50. (Since 5.0)
834#
835# @cpu-throttle-initial: Initial percentage of time guest cpus are
836#     throttled when migration auto-converge is activated.  The
837#     default value is 20. (Since 2.7)
838#
839# @cpu-throttle-increment: throttle percentage increase each time
840#     auto-converge detects that migration is not making progress.
841#     The default value is 10. (Since 2.7)
842#
843# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
844#     the tail stage of throttling, the Guest is very sensitive to CPU
845#     percentage while the @cpu-throttle -increment is excessive
846#     usually at tail stage.  If this parameter is true, we will
847#     compute the ideal CPU percentage used by the Guest, which may
848#     exactly make the dirty rate match the dirty rate threshold.
849#     Then we will choose a smaller throttle increment between the one
850#     specified by @cpu-throttle-increment and the one generated by
851#     ideal CPU percentage.  Therefore, it is compatible to
852#     traditional throttling, meanwhile the throttle increment won't
853#     be excessive at tail stage.  The default value is false.  (Since
854#     5.1)
855#
856# @tls-creds: ID of the 'tls-creds' object that provides credentials
857#     for establishing a TLS connection over the migration data
858#     channel.  On the outgoing side of the migration, the credentials
859#     must be for a 'client' endpoint, while for the incoming side the
860#     credentials must be for a 'server' endpoint.  Setting this to a
861#     non-empty string enables TLS for all migrations.  An empty
862#     string means that QEMU will use plain text mode for migration,
863#     rather than TLS (Since 2.9) Previously (since 2.7), this was
864#     reported by omitting tls-creds instead.
865#
866# @tls-hostname: hostname of the target host for the migration.  This
867#     is required when using x509 based TLS credentials and the
868#     migration URI does not already include a hostname.  For example
869#     if using fd: or exec: based migration, the hostname must be
870#     provided so that the server's x509 certificate identity can be
871#     validated.  (Since 2.7) An empty string means that QEMU will use
872#     the hostname associated with the migration URI, if any.  (Since
873#     2.9) Previously (since 2.7), this was reported by omitting
874#     tls-hostname instead.
875#
876# @max-bandwidth: to set maximum speed for migration.  maximum speed
877#     in bytes per second.  (Since 2.8)
878#
879# @downtime-limit: set maximum tolerated downtime for migration.
880#     maximum downtime in milliseconds (Since 2.8)
881#
882# @x-checkpoint-delay: the delay time between two COLO checkpoints.
883#     (Since 2.8)
884#
885# @block-incremental: Affects how much storage is migrated when the
886#     block migration capability is enabled.  When false, the entire
887#     storage backing chain is migrated into a flattened image at the
888#     destination; when true, only the active qcow2 layer is migrated
889#     and the destination must already have access to the same backing
890#     chain as was used on the source.  (since 2.10)
891#
892# @multifd-channels: Number of channels used to migrate data in
893#     parallel.  This is the same number that the number of sockets
894#     used for migration.  The default value is 2 (since 4.0)
895#
896# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
897#     needs to be a multiple of the target page size and a power of 2
898#     (Since 2.11)
899#
900# @max-postcopy-bandwidth: Background transfer bandwidth during
901#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
902#     (Since 3.0)
903#
904# @max-cpu-throttle: maximum cpu throttle percentage.  The default
905#     value is 99. (Since 3.1)
906#
907# @multifd-compression: Which compression method to use.  Defaults to
908#     none.  (Since 5.0)
909#
910# @multifd-zlib-level: Set the compression level to be used in live
911#     migration, the compression level is an integer between 0 and 9,
912#     where 0 means no compression, 1 means the best compression
913#     speed, and 9 means best compression ratio which will consume
914#     more CPU. Defaults to 1. (Since 5.0)
915#
916# @multifd-zstd-level: Set the compression level to be used in live
917#     migration, the compression level is an integer between 0 and 20,
918#     where 0 means no compression, 1 means the best compression
919#     speed, and 20 means best compression ratio which will consume
920#     more CPU. Defaults to 1. (Since 5.0)
921#
922# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
923#     aliases for the purpose of dirty bitmap migration.  Such aliases
924#     may for example be the corresponding names on the opposite site.
925#     The mapping must be one-to-one, but not necessarily complete: On
926#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
927#     will be ignored.  On the destination, encountering an unmapped
928#     alias in the incoming migration stream will result in a report,
929#     and all further bitmap migration data will then be discarded.
930#     Note that the destination does not know about bitmaps it does
931#     not receive, so there is no limitation or requirement regarding
932#     the number of bitmaps received, or how they are named, or on
933#     which nodes they are placed.  By default (when this parameter
934#     has never been set), bitmap names are mapped to themselves.
935#     Nodes are mapped to their block device name if there is one, and
936#     to their node name otherwise.  (Since 5.2)
937#
938# Features:
939#
940# @unstable: Member @x-checkpoint-delay is experimental.
941#
942# TODO: either fuse back into MigrationParameters, or make
943#     MigrationParameters members mandatory
944#
945# Since: 2.4
946##
947{ 'struct': 'MigrateSetParameters',
948  'data': { '*announce-initial': 'size',
949            '*announce-max': 'size',
950            '*announce-rounds': 'size',
951            '*announce-step': 'size',
952            '*compress-level': 'uint8',
953            '*compress-threads': 'uint8',
954            '*compress-wait-thread': 'bool',
955            '*decompress-threads': 'uint8',
956            '*throttle-trigger-threshold': 'uint8',
957            '*cpu-throttle-initial': 'uint8',
958            '*cpu-throttle-increment': 'uint8',
959            '*cpu-throttle-tailslow': 'bool',
960            '*tls-creds': 'StrOrNull',
961            '*tls-hostname': 'StrOrNull',
962            '*tls-authz': 'StrOrNull',
963            '*max-bandwidth': 'size',
964            '*downtime-limit': 'uint64',
965            '*x-checkpoint-delay': { 'type': 'uint32',
966                                     'features': [ 'unstable' ] },
967            '*block-incremental': 'bool',
968            '*multifd-channels': 'uint8',
969            '*xbzrle-cache-size': 'size',
970            '*max-postcopy-bandwidth': 'size',
971            '*max-cpu-throttle': 'uint8',
972            '*multifd-compression': 'MultiFDCompression',
973            '*multifd-zlib-level': 'uint8',
974            '*multifd-zstd-level': 'uint8',
975            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } }
976
977##
978# @migrate-set-parameters:
979#
980# Set various migration parameters.
981#
982# Since: 2.4
983#
984# Example:
985#
986# -> { "execute": "migrate-set-parameters" ,
987#      "arguments": { "compress-level": 1 } }
988# <- { "return": {} }
989##
990{ 'command': 'migrate-set-parameters', 'boxed': true,
991  'data': 'MigrateSetParameters' }
992
993##
994# @MigrationParameters:
995#
996# The optional members aren't actually optional.
997#
998# @announce-initial: Initial delay (in milliseconds) before sending
999#     the first announce (Since 4.0)
1000#
1001# @announce-max: Maximum delay (in milliseconds) between packets in
1002#     the announcement (Since 4.0)
1003#
1004# @announce-rounds: Number of self-announce packets sent after
1005#     migration (Since 4.0)
1006#
1007# @announce-step: Increase in delay (in milliseconds) between
1008#     subsequent packets in the announcement (Since 4.0)
1009#
1010# @compress-level: compression level
1011#
1012# @compress-threads: compression thread count
1013#
1014# @compress-wait-thread: Controls behavior when all compression
1015#     threads are currently busy.  If true (default), wait for a free
1016#     compression thread to become available; otherwise, send the page
1017#     uncompressed.  (Since 3.1)
1018#
1019# @decompress-threads: decompression thread count
1020#
1021# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
1022#     bytes_xfer_period to trigger throttling.  It is expressed as
1023#     percentage.  The default value is 50. (Since 5.0)
1024#
1025# @cpu-throttle-initial: Initial percentage of time guest cpus are
1026#     throttled when migration auto-converge is activated.  (Since
1027#     2.7)
1028#
1029# @cpu-throttle-increment: throttle percentage increase each time
1030#     auto-converge detects that migration is not making progress.
1031#     (Since 2.7)
1032#
1033# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
1034#     the tail stage of throttling, the Guest is very sensitive to CPU
1035#     percentage while the @cpu-throttle -increment is excessive
1036#     usually at tail stage.  If this parameter is true, we will
1037#     compute the ideal CPU percentage used by the Guest, which may
1038#     exactly make the dirty rate match the dirty rate threshold.
1039#     Then we will choose a smaller throttle increment between the one
1040#     specified by @cpu-throttle-increment and the one generated by
1041#     ideal CPU percentage.  Therefore, it is compatible to
1042#     traditional throttling, meanwhile the throttle increment won't
1043#     be excessive at tail stage.  The default value is false.  (Since
1044#     5.1)
1045#
1046# @tls-creds: ID of the 'tls-creds' object that provides credentials
1047#     for establishing a TLS connection over the migration data
1048#     channel.  On the outgoing side of the migration, the credentials
1049#     must be for a 'client' endpoint, while for the incoming side the
1050#     credentials must be for a 'server' endpoint.  An empty string
1051#     means that QEMU will use plain text mode for migration, rather
1052#     than TLS (Since 2.7) Note: 2.8 reports this by omitting
1053#     tls-creds instead.
1054#
1055# @tls-hostname: hostname of the target host for the migration.  This
1056#     is required when using x509 based TLS credentials and the
1057#     migration URI does not already include a hostname.  For example
1058#     if using fd: or exec: based migration, the hostname must be
1059#     provided so that the server's x509 certificate identity can be
1060#     validated.  (Since 2.7) An empty string means that QEMU will use
1061#     the hostname associated with the migration URI, if any.  (Since
1062#     2.9) Note: 2.8 reports this by omitting tls-hostname instead.
1063#
1064# @tls-authz: ID of the 'authz' object subclass that provides access
1065#     control checking of the TLS x509 certificate distinguished name.
1066#     (Since 4.0)
1067#
1068# @max-bandwidth: to set maximum speed for migration.  maximum speed
1069#     in bytes per second.  (Since 2.8)
1070#
1071# @downtime-limit: set maximum tolerated downtime for migration.
1072#     maximum downtime in milliseconds (Since 2.8)
1073#
1074# @x-checkpoint-delay: the delay time between two COLO checkpoints.
1075#     (Since 2.8)
1076#
1077# @block-incremental: Affects how much storage is migrated when the
1078#     block migration capability is enabled.  When false, the entire
1079#     storage backing chain is migrated into a flattened image at the
1080#     destination; when true, only the active qcow2 layer is migrated
1081#     and the destination must already have access to the same backing
1082#     chain as was used on the source.  (since 2.10)
1083#
1084# @multifd-channels: Number of channels used to migrate data in
1085#     parallel.  This is the same number that the number of sockets
1086#     used for migration.  The default value is 2 (since 4.0)
1087#
1088# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
1089#     needs to be a multiple of the target page size and a power of 2
1090#     (Since 2.11)
1091#
1092# @max-postcopy-bandwidth: Background transfer bandwidth during
1093#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
1094#     (Since 3.0)
1095#
1096# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
1097#     (Since 3.1)
1098#
1099# @multifd-compression: Which compression method to use.  Defaults to
1100#     none.  (Since 5.0)
1101#
1102# @multifd-zlib-level: Set the compression level to be used in live
1103#     migration, the compression level is an integer between 0 and 9,
1104#     where 0 means no compression, 1 means the best compression
1105#     speed, and 9 means best compression ratio which will consume
1106#     more CPU. Defaults to 1. (Since 5.0)
1107#
1108# @multifd-zstd-level: Set the compression level to be used in live
1109#     migration, the compression level is an integer between 0 and 20,
1110#     where 0 means no compression, 1 means the best compression
1111#     speed, and 20 means best compression ratio which will consume
1112#     more CPU. Defaults to 1. (Since 5.0)
1113#
1114# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1115#     aliases for the purpose of dirty bitmap migration.  Such aliases
1116#     may for example be the corresponding names on the opposite site.
1117#     The mapping must be one-to-one, but not necessarily complete: On
1118#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
1119#     will be ignored.  On the destination, encountering an unmapped
1120#     alias in the incoming migration stream will result in a report,
1121#     and all further bitmap migration data will then be discarded.
1122#     Note that the destination does not know about bitmaps it does
1123#     not receive, so there is no limitation or requirement regarding
1124#     the number of bitmaps received, or how they are named, or on
1125#     which nodes they are placed.  By default (when this parameter
1126#     has never been set), bitmap names are mapped to themselves.
1127#     Nodes are mapped to their block device name if there is one, and
1128#     to their node name otherwise.  (Since 5.2)
1129#
1130# Features:
1131#
1132# @unstable: Member @x-checkpoint-delay is experimental.
1133#
1134# Since: 2.4
1135##
1136{ 'struct': 'MigrationParameters',
1137  'data': { '*announce-initial': 'size',
1138            '*announce-max': 'size',
1139            '*announce-rounds': 'size',
1140            '*announce-step': 'size',
1141            '*compress-level': 'uint8',
1142            '*compress-threads': 'uint8',
1143            '*compress-wait-thread': 'bool',
1144            '*decompress-threads': 'uint8',
1145            '*throttle-trigger-threshold': 'uint8',
1146            '*cpu-throttle-initial': 'uint8',
1147            '*cpu-throttle-increment': 'uint8',
1148            '*cpu-throttle-tailslow': 'bool',
1149            '*tls-creds': 'str',
1150            '*tls-hostname': 'str',
1151            '*tls-authz': 'str',
1152            '*max-bandwidth': 'size',
1153            '*downtime-limit': 'uint64',
1154            '*x-checkpoint-delay': { 'type': 'uint32',
1155                                     'features': [ 'unstable' ] },
1156            '*block-incremental': 'bool',
1157            '*multifd-channels': 'uint8',
1158            '*xbzrle-cache-size': 'size',
1159            '*max-postcopy-bandwidth': 'size',
1160            '*max-cpu-throttle': 'uint8',
1161            '*multifd-compression': 'MultiFDCompression',
1162            '*multifd-zlib-level': 'uint8',
1163            '*multifd-zstd-level': 'uint8',
1164            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } }
1165
1166##
1167# @query-migrate-parameters:
1168#
1169# Returns information about the current migration parameters
1170#
1171# Returns: @MigrationParameters
1172#
1173# Since: 2.4
1174#
1175# Example:
1176#
1177# -> { "execute": "query-migrate-parameters" }
1178# <- { "return": {
1179#          "decompress-threads": 2,
1180#          "cpu-throttle-increment": 10,
1181#          "compress-threads": 8,
1182#          "compress-level": 1,
1183#          "cpu-throttle-initial": 20,
1184#          "max-bandwidth": 33554432,
1185#          "downtime-limit": 300
1186#       }
1187#    }
1188##
1189{ 'command': 'query-migrate-parameters',
1190  'returns': 'MigrationParameters' }
1191
1192##
1193# @migrate-start-postcopy:
1194#
1195# Followup to a migration command to switch the migration to postcopy
1196# mode.  The postcopy-ram capability must be set on both source and
1197# destination before the original migration command.
1198#
1199# Since: 2.5
1200#
1201# Example:
1202#
1203# -> { "execute": "migrate-start-postcopy" }
1204# <- { "return": {} }
1205##
1206{ 'command': 'migrate-start-postcopy' }
1207
1208##
1209# @MIGRATION:
1210#
1211# Emitted when a migration event happens
1212#
1213# @status: @MigrationStatus describing the current migration status.
1214#
1215# Since: 2.4
1216#
1217# Example:
1218#
1219# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1220#     "event": "MIGRATION",
1221#     "data": {"status": "completed"} }
1222##
1223{ 'event': 'MIGRATION',
1224  'data': {'status': 'MigrationStatus'}}
1225
1226##
1227# @MIGRATION_PASS:
1228#
1229# Emitted from the source side of a migration at the start of each
1230# pass (when it syncs the dirty bitmap)
1231#
1232# @pass: An incrementing count (starting at 1 on the first pass)
1233#
1234# Since: 2.6
1235#
1236# Example:
1237#
1238# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1239#       "event": "MIGRATION_PASS", "data": {"pass": 2} }
1240##
1241{ 'event': 'MIGRATION_PASS',
1242  'data': { 'pass': 'int' } }
1243
1244##
1245# @COLOMessage:
1246#
1247# The message transmission between Primary side and Secondary side.
1248#
1249# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1250#
1251# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for
1252#     checkpointing
1253#
1254# @checkpoint-reply: SVM gets PVM's checkpoint request
1255#
1256# @vmstate-send: VM's state will be sent by PVM.
1257#
1258# @vmstate-size: The total size of VMstate.
1259#
1260# @vmstate-received: VM's state has been received by SVM.
1261#
1262# @vmstate-loaded: VM's state has been loaded by SVM.
1263#
1264# Since: 2.8
1265##
1266{ 'enum': 'COLOMessage',
1267  'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1268            'vmstate-send', 'vmstate-size', 'vmstate-received',
1269            'vmstate-loaded' ] }
1270
1271##
1272# @COLOMode:
1273#
1274# The COLO current mode.
1275#
1276# @none: COLO is disabled.
1277#
1278# @primary: COLO node in primary side.
1279#
1280# @secondary: COLO node in slave side.
1281#
1282# Since: 2.8
1283##
1284{ 'enum': 'COLOMode',
1285  'data': [ 'none', 'primary', 'secondary'] }
1286
1287##
1288# @FailoverStatus:
1289#
1290# An enumeration of COLO failover status
1291#
1292# @none: no failover has ever happened
1293#
1294# @require: got failover requirement but not handled
1295#
1296# @active: in the process of doing failover
1297#
1298# @completed: finish the process of failover
1299#
1300# @relaunch: restart the failover process, from 'none' -> 'completed'
1301#     (Since 2.9)
1302#
1303# Since: 2.8
1304##
1305{ 'enum': 'FailoverStatus',
1306  'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1307
1308##
1309# @COLO_EXIT:
1310#
1311# Emitted when VM finishes COLO mode due to some errors happening or
1312# at the request of users.
1313#
1314# @mode: report COLO mode when COLO exited.
1315#
1316# @reason: describes the reason for the COLO exit.
1317#
1318# Since: 3.1
1319#
1320# Example:
1321#
1322# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1323#      "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1324##
1325{ 'event': 'COLO_EXIT',
1326  'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1327
1328##
1329# @COLOExitReason:
1330#
1331# The reason for a COLO exit.
1332#
1333# @none: failover has never happened.  This state does not occur in
1334#     the COLO_EXIT event, and is only visible in the result of
1335#     query-colo-status.
1336#
1337# @request: COLO exit is due to an external request.
1338#
1339# @error: COLO exit is due to an internal error.
1340#
1341# @processing: COLO is currently handling a failover (since 4.0).
1342#
1343# Since: 3.1
1344##
1345{ 'enum': 'COLOExitReason',
1346  'data': [ 'none', 'request', 'error' , 'processing' ] }
1347
1348##
1349# @x-colo-lost-heartbeat:
1350#
1351# Tell qemu that heartbeat is lost, request it to do takeover
1352# procedures.  If this command is sent to the PVM, the Primary side
1353# will exit COLO mode.  If sent to the Secondary, the Secondary side
1354# will run failover work, then takes over server operation to become
1355# the service VM.
1356#
1357# Features:
1358#
1359# @unstable: This command is experimental.
1360#
1361# Since: 2.8
1362#
1363# Example:
1364#
1365# -> { "execute": "x-colo-lost-heartbeat" }
1366# <- { "return": {} }
1367##
1368{ 'command': 'x-colo-lost-heartbeat',
1369  'features': [ 'unstable' ],
1370  'if': 'CONFIG_REPLICATION' }
1371
1372##
1373# @migrate_cancel:
1374#
1375# Cancel the current executing migration process.
1376#
1377# Returns: nothing on success
1378#
1379# Notes: This command succeeds even if there is no migration process
1380#     running.
1381#
1382# Since: 0.14
1383#
1384# Example:
1385#
1386# -> { "execute": "migrate_cancel" }
1387# <- { "return": {} }
1388##
1389{ 'command': 'migrate_cancel' }
1390
1391##
1392# @migrate-continue:
1393#
1394# Continue migration when it's in a paused state.
1395#
1396# @state: The state the migration is currently expected to be in
1397#
1398# Returns: nothing on success
1399#
1400# Since: 2.11
1401#
1402# Example:
1403#
1404# -> { "execute": "migrate-continue" , "arguments":
1405#      { "state": "pre-switchover" } }
1406# <- { "return": {} }
1407##
1408{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1409
1410##
1411# @migrate:
1412#
1413# Migrates the current running guest to another Virtual Machine.
1414#
1415# @uri: the Uniform Resource Identifier of the destination VM
1416#
1417# @blk: do block migration (full disk copy)
1418#
1419# @inc: incremental disk copy migration
1420#
1421# @detach: this argument exists only for compatibility reasons and is
1422#     ignored by QEMU
1423#
1424# @resume: resume one paused migration, default "off". (since 3.0)
1425#
1426# Returns: nothing on success
1427#
1428# Since: 0.14
1429#
1430# Notes:
1431#
1432# 1. The 'query-migrate' command should be used to check migration's
1433#    progress and final result (this information is provided by the
1434#    'status' member)
1435#
1436# 2. All boolean arguments default to false
1437#
1438# 3. The user Monitor's "detach" argument is invalid in QMP and should
1439#    not be used
1440#
1441# Example:
1442#
1443# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1444# <- { "return": {} }
1445##
1446{ 'command': 'migrate',
1447  'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool',
1448           '*detach': 'bool', '*resume': 'bool' } }
1449
1450##
1451# @migrate-incoming:
1452#
1453# Start an incoming migration, the qemu must have been started with
1454# -incoming defer
1455#
1456# @uri: The Uniform Resource Identifier identifying the source or
1457#     address to listen on
1458#
1459# Returns: nothing on success
1460#
1461# Since: 2.3
1462#
1463# Notes:
1464#
1465# 1. It's a bad idea to use a string for the uri, but it needs
1466#    to stay compatible with -incoming and the format of the uri
1467#    is already exposed above libvirt.
1468#
1469# 2. QEMU must be started with -incoming defer to allow
1470#    migrate-incoming to be used.
1471#
1472# 3. The uri format is the same as for -incoming
1473#
1474# Example:
1475#
1476# -> { "execute": "migrate-incoming",
1477#      "arguments": { "uri": "tcp::4446" } }
1478# <- { "return": {} }
1479##
1480{ 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
1481
1482##
1483# @xen-save-devices-state:
1484#
1485# Save the state of all devices to file.  The RAM and the block
1486# devices of the VM are not saved by this command.
1487#
1488# @filename: the file to save the state of the devices to as binary
1489#     data.  See xen-save-devices-state.txt for a description of the
1490#     binary format.
1491#
1492# @live: Optional argument to ask QEMU to treat this command as part
1493#     of a live migration.  Default to true.  (since 2.11)
1494#
1495# Returns: Nothing on success
1496#
1497# Since: 1.1
1498#
1499# Example:
1500#
1501# -> { "execute": "xen-save-devices-state",
1502#      "arguments": { "filename": "/tmp/save" } }
1503# <- { "return": {} }
1504##
1505{ 'command': 'xen-save-devices-state',
1506  'data': {'filename': 'str', '*live':'bool' } }
1507
1508##
1509# @xen-set-global-dirty-log:
1510#
1511# Enable or disable the global dirty log mode.
1512#
1513# @enable: true to enable, false to disable.
1514#
1515# Returns: nothing
1516#
1517# Since: 1.3
1518#
1519# Example:
1520#
1521# -> { "execute": "xen-set-global-dirty-log",
1522#      "arguments": { "enable": true } }
1523# <- { "return": {} }
1524##
1525{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1526
1527##
1528# @xen-load-devices-state:
1529#
1530# Load the state of all devices from file.  The RAM and the block
1531# devices of the VM are not loaded by this command.
1532#
1533# @filename: the file to load the state of the devices from as binary
1534#     data.  See xen-save-devices-state.txt for a description of the
1535#     binary format.
1536#
1537# Since: 2.7
1538#
1539# Example:
1540#
1541# -> { "execute": "xen-load-devices-state",
1542#      "arguments": { "filename": "/tmp/resume" } }
1543# <- { "return": {} }
1544##
1545{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1546
1547##
1548# @xen-set-replication:
1549#
1550# Enable or disable replication.
1551#
1552# @enable: true to enable, false to disable.
1553#
1554# @primary: true for primary or false for secondary.
1555#
1556# @failover: true to do failover, false to stop.  but cannot be
1557#     specified if 'enable' is true.  default value is false.
1558#
1559# Returns: nothing.
1560#
1561# Example:
1562#
1563# -> { "execute": "xen-set-replication",
1564#      "arguments": {"enable": true, "primary": false} }
1565# <- { "return": {} }
1566#
1567# Since: 2.9
1568##
1569{ 'command': 'xen-set-replication',
1570  'data': { 'enable': 'bool', 'primary': 'bool', '*failover' : 'bool' },
1571  'if': 'CONFIG_REPLICATION' }
1572
1573##
1574# @ReplicationStatus:
1575#
1576# The result format for 'query-xen-replication-status'.
1577#
1578# @error: true if an error happened, false if replication is normal.
1579#
1580# @desc: the human readable error description string, when @error is
1581#     'true'.
1582#
1583# Since: 2.9
1584##
1585{ 'struct': 'ReplicationStatus',
1586  'data': { 'error': 'bool', '*desc': 'str' },
1587  'if': 'CONFIG_REPLICATION' }
1588
1589##
1590# @query-xen-replication-status:
1591#
1592# Query replication status while the vm is running.
1593#
1594# Returns: A @ReplicationStatus object showing the status.
1595#
1596# Example:
1597#
1598# -> { "execute": "query-xen-replication-status" }
1599# <- { "return": { "error": false } }
1600#
1601# Since: 2.9
1602##
1603{ 'command': 'query-xen-replication-status',
1604  'returns': 'ReplicationStatus',
1605  'if': 'CONFIG_REPLICATION' }
1606
1607##
1608# @xen-colo-do-checkpoint:
1609#
1610# Xen uses this command to notify replication to trigger a checkpoint.
1611#
1612# Returns: nothing.
1613#
1614# Example:
1615#
1616# -> { "execute": "xen-colo-do-checkpoint" }
1617# <- { "return": {} }
1618#
1619# Since: 2.9
1620##
1621{ 'command': 'xen-colo-do-checkpoint',
1622  'if': 'CONFIG_REPLICATION' }
1623
1624##
1625# @COLOStatus:
1626#
1627# The result format for 'query-colo-status'.
1628#
1629# @mode: COLO running mode.  If COLO is running, this field will
1630#     return 'primary' or 'secondary'.
1631#
1632# @last-mode: COLO last running mode.  If COLO is running, this field
1633#     will return same like mode field, after failover we can use this
1634#     field to get last colo mode.  (since 4.0)
1635#
1636# @reason: describes the reason for the COLO exit.
1637#
1638# Since: 3.1
1639##
1640{ 'struct': 'COLOStatus',
1641  'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
1642            'reason': 'COLOExitReason' },
1643  'if': 'CONFIG_REPLICATION' }
1644
1645##
1646# @query-colo-status:
1647#
1648# Query COLO status while the vm is running.
1649#
1650# Returns: A @COLOStatus object showing the status.
1651#
1652# Example:
1653#
1654# -> { "execute": "query-colo-status" }
1655# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
1656#
1657# Since: 3.1
1658##
1659{ 'command': 'query-colo-status',
1660  'returns': 'COLOStatus',
1661  'if': 'CONFIG_REPLICATION' }
1662
1663##
1664# @migrate-recover:
1665#
1666# Provide a recovery migration stream URI.
1667#
1668# @uri: the URI to be used for the recovery of migration stream.
1669#
1670# Returns: nothing.
1671#
1672# Example:
1673#
1674# -> { "execute": "migrate-recover",
1675#      "arguments": { "uri": "tcp:192.168.1.200:12345" } }
1676# <- { "return": {} }
1677#
1678# Since: 3.0
1679##
1680{ 'command': 'migrate-recover',
1681  'data': { 'uri': 'str' },
1682  'allow-oob': true }
1683
1684##
1685# @migrate-pause:
1686#
1687# Pause a migration.  Currently it only supports postcopy.
1688#
1689# Returns: nothing.
1690#
1691# Example:
1692#
1693# -> { "execute": "migrate-pause" }
1694# <- { "return": {} }
1695#
1696# Since: 3.0
1697##
1698{ 'command': 'migrate-pause', 'allow-oob': true }
1699
1700##
1701# @UNPLUG_PRIMARY:
1702#
1703# Emitted from source side of a migration when migration state is
1704# WAIT_UNPLUG. Device was unplugged by guest operating system.  Device
1705# resources in QEMU are kept on standby to be able to re-plug it in
1706# case of migration failure.
1707#
1708# @device-id: QEMU device id of the unplugged device
1709#
1710# Since: 4.2
1711#
1712# Example:
1713#
1714# <- { "event": "UNPLUG_PRIMARY",
1715#      "data": { "device-id": "hostdev0" },
1716#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1717##
1718{ 'event': 'UNPLUG_PRIMARY',
1719  'data': { 'device-id': 'str' } }
1720
1721##
1722# @DirtyRateVcpu:
1723#
1724# Dirty rate of vcpu.
1725#
1726# @id: vcpu index.
1727#
1728# @dirty-rate: dirty rate.
1729#
1730# Since: 6.2
1731##
1732{ 'struct': 'DirtyRateVcpu',
1733  'data': { 'id': 'int', 'dirty-rate': 'int64' } }
1734
1735##
1736# @DirtyRateStatus:
1737#
1738# An enumeration of dirtyrate status.
1739#
1740# @unstarted: the dirtyrate thread has not been started.
1741#
1742# @measuring: the dirtyrate thread is measuring.
1743#
1744# @measured: the dirtyrate thread has measured and results are
1745#     available.
1746#
1747# Since: 5.2
1748##
1749{ 'enum': 'DirtyRateStatus',
1750  'data': [ 'unstarted', 'measuring', 'measured'] }
1751
1752##
1753# @DirtyRateMeasureMode:
1754#
1755# An enumeration of mode of measuring dirtyrate.
1756#
1757# @page-sampling: calculate dirtyrate by sampling pages.
1758#
1759# @dirty-ring: calculate dirtyrate by dirty ring.
1760#
1761# @dirty-bitmap: calculate dirtyrate by dirty bitmap.
1762#
1763# Since: 6.2
1764##
1765{ 'enum': 'DirtyRateMeasureMode',
1766  'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
1767
1768##
1769# @DirtyRateInfo:
1770#
1771# Information about current dirty page rate of vm.
1772#
1773# @dirty-rate: an estimate of the dirty page rate of the VM in units
1774#     of MB/s, present only when estimating the rate has completed.
1775#
1776# @status: status containing dirtyrate query status includes
1777#     'unstarted' or 'measuring' or 'measured'
1778#
1779# @start-time: start time in units of second for calculation
1780#
1781# @calc-time: time in units of second for sample dirty pages
1782#
1783# @sample-pages: page count per GB for sample dirty pages the default
1784#     value is 512 (since 6.1)
1785#
1786# @mode: mode containing method of calculate dirtyrate includes
1787#     'page-sampling' and 'dirty-ring' (Since 6.2)
1788#
1789# @vcpu-dirty-rate: dirtyrate for each vcpu if dirty-ring mode
1790#     specified (Since 6.2)
1791#
1792# Since: 5.2
1793##
1794{ 'struct': 'DirtyRateInfo',
1795  'data': {'*dirty-rate': 'int64',
1796           'status': 'DirtyRateStatus',
1797           'start-time': 'int64',
1798           'calc-time': 'int64',
1799           'sample-pages': 'uint64',
1800           'mode': 'DirtyRateMeasureMode',
1801           '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
1802
1803##
1804# @calc-dirty-rate:
1805#
1806# start calculating dirty page rate for vm
1807#
1808# @calc-time: time in units of second for sample dirty pages
1809#
1810# @sample-pages: page count per GB for sample dirty pages the default
1811#     value is 512 (since 6.1)
1812#
1813# @mode: mechanism of calculating dirtyrate includes 'page-sampling'
1814#     and 'dirty-ring' (Since 6.1)
1815#
1816# Since: 5.2
1817#
1818# Example:
1819#
1820# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
1821#                                                 'sample-pages': 512} }
1822# <- { "return": {} }
1823##
1824{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
1825                                         '*sample-pages': 'int',
1826                                         '*mode': 'DirtyRateMeasureMode'} }
1827
1828##
1829# @query-dirty-rate:
1830#
1831# query dirty page rate in units of MB/s for vm
1832#
1833# Since: 5.2
1834##
1835{ 'command': 'query-dirty-rate', 'returns': 'DirtyRateInfo' }
1836
1837##
1838# @DirtyLimitInfo:
1839#
1840# Dirty page rate limit information of a virtual CPU.
1841#
1842# @cpu-index: index of a virtual CPU.
1843#
1844# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
1845#     CPU, 0 means unlimited.
1846#
1847# @current-rate: current dirty page rate (MB/s) for a virtual CPU.
1848#
1849# Since: 7.1
1850##
1851{ 'struct': 'DirtyLimitInfo',
1852  'data': { 'cpu-index': 'int',
1853            'limit-rate': 'uint64',
1854            'current-rate': 'uint64' } }
1855
1856##
1857# @set-vcpu-dirty-limit:
1858#
1859# Set the upper limit of dirty page rate for virtual CPUs.
1860#
1861# Requires KVM with accelerator property "dirty-ring-size" set.  A
1862# virtual CPU's dirty page rate is a measure of its memory load.  To
1863# observe dirty page rates, use @calc-dirty-rate.
1864#
1865# @cpu-index: index of a virtual CPU, default is all.
1866#
1867# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
1868#
1869# Since: 7.1
1870#
1871# Example:
1872#
1873# -> {"execute": "set-vcpu-dirty-limit"}
1874#     "arguments": { "dirty-rate": 200,
1875#                    "cpu-index": 1 } }
1876# <- { "return": {} }
1877##
1878{ 'command': 'set-vcpu-dirty-limit',
1879  'data': { '*cpu-index': 'int',
1880            'dirty-rate': 'uint64' } }
1881
1882##
1883# @cancel-vcpu-dirty-limit:
1884#
1885# Cancel the upper limit of dirty page rate for virtual CPUs.
1886#
1887# Cancel the dirty page limit for the vCPU which has been set with
1888# set-vcpu-dirty-limit command.  Note that this command requires
1889# support from dirty ring, same as the "set-vcpu-dirty-limit".
1890#
1891# @cpu-index: index of a virtual CPU, default is all.
1892#
1893# Since: 7.1
1894#
1895# Example:
1896#
1897# -> {"execute": "cancel-vcpu-dirty-limit"},
1898#     "arguments": { "cpu-index": 1 } }
1899# <- { "return": {} }
1900##
1901{ 'command': 'cancel-vcpu-dirty-limit',
1902  'data': { '*cpu-index': 'int'} }
1903
1904##
1905# @query-vcpu-dirty-limit:
1906#
1907# Returns information about virtual CPU dirty page rate limits, if
1908# any.
1909#
1910# Since: 7.1
1911#
1912# Example:
1913#
1914# -> {"execute": "query-vcpu-dirty-limit"}
1915# <- {"return": [
1916#        { "limit-rate": 60, "current-rate": 3, "cpu-index": 0},
1917#        { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]}
1918##
1919{ 'command': 'query-vcpu-dirty-limit',
1920  'returns': [ 'DirtyLimitInfo' ] }
1921
1922##
1923# @MigrationThreadInfo:
1924#
1925# Information about migrationthreads
1926#
1927# @name: the name of migration thread
1928#
1929# @thread-id: ID of the underlying host thread
1930#
1931# Since: 7.2
1932##
1933{ 'struct': 'MigrationThreadInfo',
1934  'data': {'name': 'str',
1935           'thread-id': 'int'} }
1936
1937##
1938# @query-migrationthreads:
1939#
1940# Returns information of migration threads
1941#
1942# data: migration thread name
1943#
1944# Returns: information about migration threads
1945#
1946# Since: 7.2
1947##
1948{ 'command': 'query-migrationthreads',
1949  'returns': ['MigrationThreadInfo'] }
1950
1951##
1952# @snapshot-save:
1953#
1954# Save a VM snapshot
1955#
1956# @job-id: identifier for the newly created job
1957#
1958# @tag: name of the snapshot to create
1959#
1960# @vmstate: block device node name to save vmstate to
1961#
1962# @devices: list of block device node names to save a snapshot to
1963#
1964# Applications should not assume that the snapshot save is complete
1965# when this command returns.  The job commands / events must be used
1966# to determine completion and to fetch details of any errors that
1967# arise.
1968#
1969# Note that execution of the guest CPUs may be stopped during the time
1970# it takes to save the snapshot.  A future version of QEMU may ensure
1971# CPUs are executing continuously.
1972#
1973# It is strongly recommended that @devices contain all writable block
1974# device nodes if a consistent snapshot is required.
1975#
1976# If @tag already exists, an error will be reported
1977#
1978# Returns: nothing
1979#
1980# Example:
1981#
1982# -> { "execute": "snapshot-save",
1983#      "arguments": {
1984#         "job-id": "snapsave0",
1985#         "tag": "my-snap",
1986#         "vmstate": "disk0",
1987#         "devices": ["disk0", "disk1"]
1988#      }
1989#    }
1990# <- { "return": { } }
1991# <- {"event": "JOB_STATUS_CHANGE",
1992#     "timestamp": {"seconds": 1432121972, "microseconds": 744001},
1993#     "data": {"status": "created", "id": "snapsave0"}}
1994# <- {"event": "JOB_STATUS_CHANGE",
1995#     "timestamp": {"seconds": 1432122172, "microseconds": 744001},
1996#     "data": {"status": "running", "id": "snapsave0"}}
1997# <- {"event": "STOP",
1998#     "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
1999# <- {"event": "RESUME",
2000#     "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
2001# <- {"event": "JOB_STATUS_CHANGE",
2002#     "timestamp": {"seconds": 1432122772, "microseconds": 744001},
2003#     "data": {"status": "waiting", "id": "snapsave0"}}
2004# <- {"event": "JOB_STATUS_CHANGE",
2005#     "timestamp": {"seconds": 1432122972, "microseconds": 744001},
2006#     "data": {"status": "pending", "id": "snapsave0"}}
2007# <- {"event": "JOB_STATUS_CHANGE",
2008#     "timestamp": {"seconds": 1432123172, "microseconds": 744001},
2009#     "data": {"status": "concluded", "id": "snapsave0"}}
2010# -> {"execute": "query-jobs"}
2011# <- {"return": [{"current-progress": 1,
2012#                 "status": "concluded",
2013#                 "total-progress": 1,
2014#                 "type": "snapshot-save",
2015#                 "id": "snapsave0"}]}
2016#
2017# Since: 6.0
2018##
2019{ 'command': 'snapshot-save',
2020  'data': { 'job-id': 'str',
2021            'tag': 'str',
2022            'vmstate': 'str',
2023            'devices': ['str'] } }
2024
2025##
2026# @snapshot-load:
2027#
2028# Load a VM snapshot
2029#
2030# @job-id: identifier for the newly created job
2031#
2032# @tag: name of the snapshot to load.
2033#
2034# @vmstate: block device node name to load vmstate from
2035#
2036# @devices: list of block device node names to load a snapshot from
2037#
2038# Applications should not assume that the snapshot load is complete
2039# when this command returns.  The job commands / events must be used
2040# to determine completion and to fetch details of any errors that
2041# arise.
2042#
2043# Note that execution of the guest CPUs will be stopped during the
2044# time it takes to load the snapshot.
2045#
2046# It is strongly recommended that @devices contain all writable block
2047# device nodes that can have changed since the original @snapshot-save
2048# command execution.
2049#
2050# Returns: nothing
2051#
2052# Example:
2053#
2054# -> { "execute": "snapshot-load",
2055#      "arguments": {
2056#         "job-id": "snapload0",
2057#         "tag": "my-snap",
2058#         "vmstate": "disk0",
2059#         "devices": ["disk0", "disk1"]
2060#      }
2061#    }
2062# <- { "return": { } }
2063# <- {"event": "JOB_STATUS_CHANGE",
2064#     "timestamp": {"seconds": 1472124172, "microseconds": 744001},
2065#     "data": {"status": "created", "id": "snapload0"}}
2066# <- {"event": "JOB_STATUS_CHANGE",
2067#     "timestamp": {"seconds": 1472125172, "microseconds": 744001},
2068#     "data": {"status": "running", "id": "snapload0"}}
2069# <- {"event": "STOP",
2070#     "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2071# <- {"event": "RESUME",
2072#     "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
2073# <- {"event": "JOB_STATUS_CHANGE",
2074#     "timestamp": {"seconds": 1472126172, "microseconds": 744001},
2075#     "data": {"status": "waiting", "id": "snapload0"}}
2076# <- {"event": "JOB_STATUS_CHANGE",
2077#     "timestamp": {"seconds": 1472127172, "microseconds": 744001},
2078#     "data": {"status": "pending", "id": "snapload0"}}
2079# <- {"event": "JOB_STATUS_CHANGE",
2080#     "timestamp": {"seconds": 1472128172, "microseconds": 744001},
2081#     "data": {"status": "concluded", "id": "snapload0"}}
2082# -> {"execute": "query-jobs"}
2083# <- {"return": [{"current-progress": 1,
2084#                 "status": "concluded",
2085#                 "total-progress": 1,
2086#                 "type": "snapshot-load",
2087#                 "id": "snapload0"}]}
2088#
2089# Since: 6.0
2090##
2091{ 'command': 'snapshot-load',
2092  'data': { 'job-id': 'str',
2093            'tag': 'str',
2094            'vmstate': 'str',
2095            'devices': ['str'] } }
2096
2097##
2098# @snapshot-delete:
2099#
2100# Delete a VM snapshot
2101#
2102# @job-id: identifier for the newly created job
2103#
2104# @tag: name of the snapshot to delete.
2105#
2106# @devices: list of block device node names to delete a snapshot from
2107#
2108# Applications should not assume that the snapshot delete is complete
2109# when this command returns.  The job commands / events must be used
2110# to determine completion and to fetch details of any errors that
2111# arise.
2112#
2113# Returns: nothing
2114#
2115# Example:
2116#
2117# -> { "execute": "snapshot-delete",
2118#      "arguments": {
2119#         "job-id": "snapdelete0",
2120#         "tag": "my-snap",
2121#         "devices": ["disk0", "disk1"]
2122#      }
2123#    }
2124# <- { "return": { } }
2125# <- {"event": "JOB_STATUS_CHANGE",
2126#     "timestamp": {"seconds": 1442124172, "microseconds": 744001},
2127#     "data": {"status": "created", "id": "snapdelete0"}}
2128# <- {"event": "JOB_STATUS_CHANGE",
2129#     "timestamp": {"seconds": 1442125172, "microseconds": 744001},
2130#     "data": {"status": "running", "id": "snapdelete0"}}
2131# <- {"event": "JOB_STATUS_CHANGE",
2132#     "timestamp": {"seconds": 1442126172, "microseconds": 744001},
2133#     "data": {"status": "waiting", "id": "snapdelete0"}}
2134# <- {"event": "JOB_STATUS_CHANGE",
2135#     "timestamp": {"seconds": 1442127172, "microseconds": 744001},
2136#     "data": {"status": "pending", "id": "snapdelete0"}}
2137# <- {"event": "JOB_STATUS_CHANGE",
2138#     "timestamp": {"seconds": 1442128172, "microseconds": 744001},
2139#     "data": {"status": "concluded", "id": "snapdelete0"}}
2140# -> {"execute": "query-jobs"}
2141# <- {"return": [{"current-progress": 1,
2142#                 "status": "concluded",
2143#                 "total-progress": 1,
2144#                 "type": "snapshot-delete",
2145#                 "id": "snapdelete0"}]}
2146#
2147# Since: 6.0
2148##
2149{ 'command': 'snapshot-delete',
2150  'data': { 'job-id': 'str',
2151            'tag': 'str',
2152            'devices': ['str'] } }
2153