xref: /openbmc/qemu/qapi/migration.json (revision ef7d1adf)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4
5##
6# = Migration
7##
8
9{ 'include': 'common.json' }
10{ 'include': 'sockets.json' }
11
12##
13# @MigrationStats:
14#
15# Detailed migration status.
16#
17# @transferred: amount of bytes already transferred to the target VM
18#
19# @remaining: amount of bytes remaining to be transferred to the
20#     target VM
21#
22# @total: total amount of bytes involved in the migration process
23#
24# @duplicate: number of duplicate (zero) pages (since 1.2)
25#
26# @normal: number of normal pages (since 1.2)
27#
28# @normal-bytes: number of normal bytes sent (since 1.2)
29#
30# @dirty-pages-rate: number of pages dirtied by second by the guest
31#     (since 1.3)
32#
33# @mbps: throughput in megabits/sec.  (since 1.6)
34#
35# @dirty-sync-count: number of times that dirty ram was synchronized
36#     (since 2.1)
37#
38# @postcopy-requests: The number of page requests received from the
39#     destination (since 2.7)
40#
41# @page-size: The number of bytes per page for the various page-based
42#     statistics (since 2.10)
43#
44# @multifd-bytes: The number of bytes sent through multifd (since 3.0)
45#
46# @pages-per-second: the number of memory pages transferred per second
47#     (Since 4.0)
48#
49# @precopy-bytes: The number of bytes sent in the pre-copy phase
50#     (since 7.0).
51#
52# @downtime-bytes: The number of bytes sent while the guest is paused
53#     (since 7.0).
54#
55# @postcopy-bytes: The number of bytes sent during the post-copy phase
56#     (since 7.0).
57#
58# @dirty-sync-missed-zero-copy: Number of times dirty RAM
59#     synchronization could not avoid copying dirty pages.  This is
60#     between 0 and @dirty-sync-count * @multifd-channels.  (since
61#     7.1)
62#
63# Since: 0.14
64##
65{ 'struct': 'MigrationStats',
66  'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
67           'duplicate': 'int',
68           'normal': 'int',
69           'normal-bytes': 'int', 'dirty-pages-rate': 'int',
70           'mbps': 'number', 'dirty-sync-count': 'int',
71           'postcopy-requests': 'int', 'page-size': 'int',
72           'multifd-bytes': 'uint64', 'pages-per-second': 'uint64',
73           'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64',
74           'postcopy-bytes': 'uint64',
75           'dirty-sync-missed-zero-copy': 'uint64' } }
76
77##
78# @XBZRLECacheStats:
79#
80# Detailed XBZRLE migration cache statistics
81#
82# @cache-size: XBZRLE cache size
83#
84# @bytes: amount of bytes already transferred to the target VM
85#
86# @pages: amount of pages transferred to the target VM
87#
88# @cache-miss: number of cache miss
89#
90# @cache-miss-rate: rate of cache miss (since 2.1)
91#
92# @encoding-rate: rate of encoded bytes (since 5.1)
93#
94# @overflow: number of overflows
95#
96# Since: 1.2
97##
98{ 'struct': 'XBZRLECacheStats',
99  'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
100           'cache-miss': 'int', 'cache-miss-rate': 'number',
101           'encoding-rate': 'number', 'overflow': 'int' } }
102
103##
104# @CompressionStats:
105#
106# Detailed migration compression statistics
107#
108# @pages: amount of pages compressed and transferred to the target VM
109#
110# @busy: count of times that no free thread was available to compress
111#     data
112#
113# @busy-rate: rate of thread busy
114#
115# @compressed-size: amount of bytes after compression
116#
117# @compression-rate: rate of compressed size
118#
119# Since: 3.1
120##
121{ 'struct': 'CompressionStats',
122  'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
123           'compressed-size': 'int', 'compression-rate': 'number' } }
124
125##
126# @MigrationStatus:
127#
128# An enumeration of migration status.
129#
130# @none: no migration has ever happened.
131#
132# @setup: migration process has been initiated.
133#
134# @cancelling: in the process of cancelling migration.
135#
136# @cancelled: cancelling migration is finished.
137#
138# @active: in the process of doing migration.
139#
140# @postcopy-active: like active, but now in postcopy mode.  (since
141#     2.5)
142#
143# @postcopy-paused: during postcopy but paused.  (since 3.0)
144#
145# @postcopy-recover-setup: setup phase for a postcopy recovery process,
146#     preparing for a recovery phase to start.  (since 9.1)
147#
148# @postcopy-recover: trying to recover from a paused postcopy.  (since
149#     3.0)
150#
151# @completed: migration is finished.
152#
153# @failed: some error occurred during migration process.
154#
155# @colo: VM is in the process of fault tolerance, VM can not get into
156#     this state unless colo capability is enabled for migration.
157#     (since 2.8)
158#
159# @pre-switchover: Paused before device serialisation.  (since 2.11)
160#
161# @device: During device serialisation when pause-before-switchover is
162#     enabled (since 2.11)
163#
164# @wait-unplug: wait for device unplug request by guest OS to be
165#     completed.  (since 4.2)
166#
167# Since: 2.3
168##
169{ 'enum': 'MigrationStatus',
170  'data': [ 'none', 'setup', 'cancelling', 'cancelled',
171            'active', 'postcopy-active', 'postcopy-paused',
172            'postcopy-recover-setup',
173            'postcopy-recover', 'completed', 'failed', 'colo',
174            'pre-switchover', 'device', 'wait-unplug' ] }
175##
176# @VfioStats:
177#
178# Detailed VFIO devices migration statistics
179#
180# @transferred: amount of bytes transferred to the target VM by VFIO
181#     devices
182#
183# Since: 5.2
184##
185{ 'struct': 'VfioStats',
186  'data': {'transferred': 'int' } }
187
188##
189# @MigrationInfo:
190#
191# Information about current migration process.
192#
193# @status: @MigrationStatus describing the current migration status.
194#     If this field is not returned, no migration process has been
195#     initiated
196#
197# @ram: @MigrationStats containing detailed migration status, only
198#     returned if status is 'active' or 'completed'(since 1.2)
199#
200# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
201#     migration statistics, only returned if XBZRLE feature is on and
202#     status is 'active' or 'completed' (since 1.2)
203#
204# @total-time: total amount of milliseconds since migration started.
205#     If migration has ended, it returns the total migration time.
206#     (since 1.2)
207#
208# @downtime: only present when migration finishes correctly total
209#     downtime in milliseconds for the guest.  (since 1.3)
210#
211# @expected-downtime: only present while migration is active expected
212#     downtime in milliseconds for the guest in last walk of the dirty
213#     bitmap.  (since 1.3)
214#
215# @setup-time: amount of setup time in milliseconds *before* the
216#     iterations begin but *after* the QMP command is issued.  This is
217#     designed to provide an accounting of any activities (such as
218#     RDMA pinning) which may be expensive, but do not actually occur
219#     during the iterative migration rounds themselves.  (since 1.6)
220#
221# @cpu-throttle-percentage: percentage of time guest cpus are being
222#     throttled during auto-converge.  This is only present when
223#     auto-converge has started throttling guest cpus.  (Since 2.7)
224#
225# @error-desc: the human readable error description string.  Clients
226#     should not attempt to parse the error strings.  (Since 2.7)
227#
228# @postcopy-blocktime: total time when all vCPU were blocked during
229#     postcopy live migration.  This is only present when the
230#     postcopy-blocktime migration capability is enabled.  (Since 3.0)
231#
232# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU.
233#     This is only present when the postcopy-blocktime migration
234#     capability is enabled.  (Since 3.0)
235#
236# @socket-address: Only used for tcp, to know what the real port is
237#     (Since 4.0)
238#
239# @vfio: @VfioStats containing detailed VFIO devices migration
240#     statistics, only returned if VFIO device is present, migration
241#     is supported by all VFIO devices and status is 'active' or
242#     'completed' (since 5.2)
243#
244# @blocked-reasons: A list of reasons an outgoing migration is
245#     blocked.  Present and non-empty when migration is blocked.
246#     (since 6.0)
247#
248# @dirty-limit-throttle-time-per-round: Maximum throttle time
249#     (in microseconds) of virtual CPUs each dirty ring full round,
250#     which shows how MigrationCapability dirty-limit affects the
251#     guest during live migration.  (Since 8.1)
252#
253# @dirty-limit-ring-full-time: Estimated average dirty ring full time
254#     (in microseconds) for each dirty ring full round.  The value
255#     equals the dirty ring memory size divided by the average dirty
256#     page rate of the virtual CPU, which can be used to observe the
257#     average memory load of the virtual CPU indirectly.  Note that
258#     zero means guest doesn't dirty memory.  (Since 8.1)
259#
260# Since: 0.14
261##
262{ 'struct': 'MigrationInfo',
263  'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
264           '*vfio': 'VfioStats',
265           '*xbzrle-cache': 'XBZRLECacheStats',
266           '*total-time': 'int',
267           '*expected-downtime': 'int',
268           '*downtime': 'int',
269           '*setup-time': 'int',
270           '*cpu-throttle-percentage': 'int',
271           '*error-desc': 'str',
272           '*blocked-reasons': ['str'],
273           '*postcopy-blocktime': 'uint32',
274           '*postcopy-vcpu-blocktime': ['uint32'],
275           '*socket-address': ['SocketAddress'],
276           '*dirty-limit-throttle-time-per-round': 'uint64',
277           '*dirty-limit-ring-full-time': 'uint64'} }
278
279##
280# @query-migrate:
281#
282# Returns information about current migration process.  If migration
283# is active there will be another json-object with RAM migration
284# status.
285#
286# Returns: @MigrationInfo
287#
288# Since: 0.14
289#
290# Examples:
291#
292#     1. Before the first migration
293#
294#     -> { "execute": "query-migrate" }
295#     <- { "return": {} }
296#
297#     2. Migration is done and has succeeded
298#
299#     -> { "execute": "query-migrate" }
300#     <- { "return": {
301#             "status": "completed",
302#             "total-time":12345,
303#             "setup-time":12345,
304#             "downtime":12345,
305#             "ram":{
306#               "transferred":123,
307#               "remaining":123,
308#               "total":246,
309#               "duplicate":123,
310#               "normal":123,
311#               "normal-bytes":123456,
312#               "dirty-sync-count":15
313#             }
314#          }
315#        }
316#
317#     3. Migration is done and has failed
318#
319#     -> { "execute": "query-migrate" }
320#     <- { "return": { "status": "failed" } }
321#
322#     4. Migration is being performed:
323#
324#     -> { "execute": "query-migrate" }
325#     <- {
326#           "return":{
327#              "status":"active",
328#              "total-time":12345,
329#              "setup-time":12345,
330#              "expected-downtime":12345,
331#              "ram":{
332#                 "transferred":123,
333#                 "remaining":123,
334#                 "total":246,
335#                 "duplicate":123,
336#                 "normal":123,
337#                 "normal-bytes":123456,
338#                 "dirty-sync-count":15
339#              }
340#           }
341#        }
342#
343#     5. Migration is being performed and XBZRLE is active:
344#
345#     -> { "execute": "query-migrate" }
346#     <- {
347#           "return":{
348#              "status":"active",
349#              "total-time":12345,
350#              "setup-time":12345,
351#              "expected-downtime":12345,
352#              "ram":{
353#                 "total":1057024,
354#                 "remaining":1053304,
355#                 "transferred":3720,
356#                 "duplicate":10,
357#                 "normal":3333,
358#                 "normal-bytes":3412992,
359#                 "dirty-sync-count":15
360#              },
361#              "xbzrle-cache":{
362#                 "cache-size":67108864,
363#                 "bytes":20971520,
364#                 "pages":2444343,
365#                 "cache-miss":2244,
366#                 "cache-miss-rate":0.123,
367#                 "encoding-rate":80.1,
368#                 "overflow":34434
369#              }
370#           }
371#        }
372##
373{ 'command': 'query-migrate', 'returns': 'MigrationInfo' }
374
375##
376# @MigrationCapability:
377#
378# Migration capabilities enumeration
379#
380# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length
381#     Encoding). This feature allows us to minimize migration traffic
382#     for certain work loads, by sending compressed difference of the
383#     pages
384#
385# @rdma-pin-all: Controls whether or not the entire VM memory
386#     footprint is mlock()'d on demand or all at once.  Refer to
387#     docs/rdma.txt for usage.  Disabled by default.  (since 2.0)
388#
389# @zero-blocks: During storage migration encode blocks of zeroes
390#     efficiently.  This essentially saves 1MB of zeroes per block on
391#     the wire.  Enabling requires source and target VM to support
392#     this feature.  To enable it is sufficient to enable the
393#     capability on the source VM. The feature is disabled by default.
394#     (since 1.6)
395#
396# @events: generate events for each migration state change (since 2.4)
397#
398# @auto-converge: If enabled, QEMU will automatically throttle down
399#     the guest to speed up convergence of RAM migration.  (since 1.6)
400#
401# @postcopy-ram: Start executing on the migration target before all of
402#     RAM has been migrated, pulling the remaining pages along as
403#     needed.  The capacity must have the same setting on both source
404#     and target or migration will not even start.  NOTE: If the
405#     migration fails during postcopy the VM will fail.  (since 2.6)
406#
407# @x-colo: If enabled, migration will never end, and the state of the
408#     VM on the primary side will be migrated continuously to the VM
409#     on secondary side, this process is called COarse-Grain LOck
410#     Stepping (COLO) for Non-stop Service.  (since 2.8)
411#
412# @release-ram: if enabled, qemu will free the migrated ram pages on
413#     the source during postcopy-ram migration.  (since 2.9)
414#
415# @return-path: If enabled, migration will use the return path even
416#     for precopy.  (since 2.10)
417#
418# @pause-before-switchover: Pause outgoing migration before
419#     serialising device state and before disabling block IO (since
420#     2.11)
421#
422# @multifd: Use more than one fd for migration (since 4.0)
423#
424# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
425#     (since 2.12)
426#
427# @postcopy-blocktime: Calculate downtime for postcopy live migration
428#     (since 3.0)
429#
430# @late-block-activate: If enabled, the destination will not activate
431#     block devices (and thus take locks) immediately at the end of
432#     migration.  (since 3.0)
433#
434# @x-ignore-shared: If enabled, QEMU will not migrate shared memory
435#     that is accessible on the destination machine.  (since 4.0)
436#
437# @validate-uuid: Send the UUID of the source to allow the destination
438#     to ensure it is the same.  (since 4.2)
439#
440# @background-snapshot: If enabled, the migration stream will be a
441#     snapshot of the VM exactly at the point when the migration
442#     procedure starts.  The VM RAM is saved with running VM.
443#     (since 6.0)
444#
445# @zero-copy-send: Controls behavior on sending memory pages on
446#     migration.  When true, enables a zero-copy mechanism for sending
447#     memory pages, if host supports it.  Requires that QEMU be
448#     permitted to use locked memory for guest RAM pages.  (since 7.1)
449#
450# @postcopy-preempt: If enabled, the migration process will allow
451#     postcopy requests to preempt precopy stream, so postcopy
452#     requests will be handled faster.  This is a performance feature
453#     and should not affect the correctness of postcopy migration.
454#     (since 7.1)
455#
456# @switchover-ack: If enabled, migration will not stop the source VM
457#     and complete the migration until an ACK is received from the
458#     destination that it's OK to do so.  Exactly when this ACK is
459#     sent depends on the migrated devices that use this feature.  For
460#     example, a device can use it to make sure some of its data is
461#     sent and loaded in the destination before doing switchover.
462#     This can reduce downtime if devices that support this capability
463#     are present.  'return-path' capability must be enabled to use
464#     it.  (since 8.1)
465#
466# @dirty-limit: If enabled, migration will throttle vCPUs as needed to
467#     keep their dirty page rate within @vcpu-dirty-limit.  This can
468#     improve responsiveness of large guests during live migration,
469#     and can result in more stable read performance.  Requires KVM
470#     with accelerator property "dirty-ring-size" set.  (Since 8.1)
471#
472# @mapped-ram: Migrate using fixed offsets in the migration file for
473#     each RAM page.  Requires a migration URI that supports seeking,
474#     such as a file.  (since 9.0)
475#
476# Features:
477#
478# @unstable: Members @x-colo and @x-ignore-shared are experimental.
479#
480# Since: 1.2
481##
482{ 'enum': 'MigrationCapability',
483  'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
484           'events', 'postcopy-ram',
485           { 'name': 'x-colo', 'features': [ 'unstable' ] },
486           'release-ram',
487           'return-path', 'pause-before-switchover', 'multifd',
488           'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
489           { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
490           'validate-uuid', 'background-snapshot',
491           'zero-copy-send', 'postcopy-preempt', 'switchover-ack',
492           'dirty-limit', 'mapped-ram'] }
493
494##
495# @MigrationCapabilityStatus:
496#
497# Migration capability information
498#
499# @capability: capability enum
500#
501# @state: capability state bool
502#
503# Since: 1.2
504##
505{ 'struct': 'MigrationCapabilityStatus',
506  'data': { 'capability': 'MigrationCapability', 'state': 'bool' } }
507
508##
509# @migrate-set-capabilities:
510#
511# Enable/Disable the following migration capabilities (like xbzrle)
512#
513# @capabilities: json array of capability modifications to make
514#
515# Since: 1.2
516#
517# Example:
518#
519#     -> { "execute": "migrate-set-capabilities" , "arguments":
520#          { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
521#     <- { "return": {} }
522##
523{ 'command': 'migrate-set-capabilities',
524  'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
525
526##
527# @query-migrate-capabilities:
528#
529# Returns information about the current migration capabilities status
530#
531# Returns: @MigrationCapabilityStatus
532#
533# Since: 1.2
534#
535# Example:
536#
537#     -> { "execute": "query-migrate-capabilities" }
538#     <- { "return": [
539#           {"state": false, "capability": "xbzrle"},
540#           {"state": false, "capability": "rdma-pin-all"},
541#           {"state": false, "capability": "auto-converge"},
542#           {"state": false, "capability": "zero-blocks"},
543#           {"state": true, "capability": "events"},
544#           {"state": false, "capability": "postcopy-ram"},
545#           {"state": false, "capability": "x-colo"}
546#        ]}
547##
548{ 'command': 'query-migrate-capabilities', 'returns':   ['MigrationCapabilityStatus']}
549
550##
551# @MultiFDCompression:
552#
553# An enumeration of multifd compression methods.
554#
555# @none: no compression.
556#
557# @zlib: use zlib compression method.
558#
559# @zstd: use zstd compression method.
560#
561# @qpl: use qpl compression method.  Query Processing Library(qpl) is
562#       based on the deflate compression algorithm and use the Intel
563#       In-Memory Analytics Accelerator(IAA) accelerated compression
564#       and decompression.  (Since 9.1)
565#
566# @uadk: use UADK library compression method.  (Since 9.1)
567#
568# Since: 5.0
569##
570{ 'enum': 'MultiFDCompression',
571  'data': [ 'none', 'zlib',
572            { 'name': 'zstd', 'if': 'CONFIG_ZSTD' },
573            { 'name': 'qpl', 'if': 'CONFIG_QPL' },
574            { 'name': 'uadk', 'if': 'CONFIG_UADK' } ] }
575
576##
577# @MigMode:
578#
579# @normal: the original form of migration.  (since 8.2)
580#
581# @cpr-reboot: The migrate command stops the VM and saves state to the
582#     URI.  After quitting QEMU, the user resumes by running QEMU
583#     -incoming.
584#
585#     This mode allows the user to quit QEMU, optionally update and
586#     reboot the OS, and restart QEMU.  If the user reboots, the URI
587#     must persist across the reboot, such as by using a file.
588#
589#     Unlike normal mode, the use of certain local storage options
590#     does not block the migration, but the user must not modify the
591#     contents of guest block devices between the quit and restart.
592#
593#     This mode supports VFIO devices provided the user first puts the
594#     guest in the suspended runstate, such as by issuing
595#     guest-suspend-ram to the QEMU guest agent.
596#
597#     Best performance is achieved when the memory backend is shared
598#     and the @x-ignore-shared migration capability is set, but this
599#     is not required.  Further, if the user reboots before restarting
600#     such a configuration, the shared memory must persist across the
601#     reboot, such as by backing it with a dax device.
602#
603#     @cpr-reboot may not be used with postcopy, background-snapshot,
604#     or COLO.
605#
606#     (since 8.2)
607##
608{ 'enum': 'MigMode',
609  'data': [ 'normal', 'cpr-reboot' ] }
610
611##
612# @ZeroPageDetection:
613#
614# @none: Do not perform zero page checking.
615#
616# @legacy: Perform zero page checking in main migration thread.
617#
618# @multifd: Perform zero page checking in multifd sender thread if
619#     multifd migration is enabled, else in the main migration thread
620#     as for @legacy.
621#
622# Since: 9.0
623##
624{ 'enum': 'ZeroPageDetection',
625  'data': [ 'none', 'legacy', 'multifd' ] }
626
627##
628# @BitmapMigrationBitmapAliasTransform:
629#
630# @persistent: If present, the bitmap will be made persistent or
631#     transient depending on this parameter.
632#
633# Since: 6.0
634##
635{ 'struct': 'BitmapMigrationBitmapAliasTransform',
636  'data': {
637      '*persistent': 'bool'
638  } }
639
640##
641# @BitmapMigrationBitmapAlias:
642#
643# @name: The name of the bitmap.
644#
645# @alias: An alias name for migration (for example the bitmap name on
646#     the opposite site).
647#
648# @transform: Allows the modification of the migrated bitmap.  (since
649#     6.0)
650#
651# Since: 5.2
652##
653{ 'struct': 'BitmapMigrationBitmapAlias',
654  'data': {
655      'name': 'str',
656      'alias': 'str',
657      '*transform': 'BitmapMigrationBitmapAliasTransform'
658  } }
659
660##
661# @BitmapMigrationNodeAlias:
662#
663# Maps a block node name and the bitmaps it has to aliases for dirty
664# bitmap migration.
665#
666# @node-name: A block node name.
667#
668# @alias: An alias block node name for migration (for example the node
669#     name on the opposite site).
670#
671# @bitmaps: Mappings for the bitmaps on this node.
672#
673# Since: 5.2
674##
675{ 'struct': 'BitmapMigrationNodeAlias',
676  'data': {
677      'node-name': 'str',
678      'alias': 'str',
679      'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
680  } }
681
682##
683# @MigrationParameter:
684#
685# Migration parameters enumeration
686#
687# @announce-initial: Initial delay (in milliseconds) before sending
688#     the first announce (Since 4.0)
689#
690# @announce-max: Maximum delay (in milliseconds) between packets in
691#     the announcement (Since 4.0)
692#
693# @announce-rounds: Number of self-announce packets sent after
694#     migration (Since 4.0)
695#
696# @announce-step: Increase in delay (in milliseconds) between
697#     subsequent packets in the announcement (Since 4.0)
698#
699# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
700#     bytes_xfer_period to trigger throttling.  It is expressed as
701#     percentage.  The default value is 50.  (Since 5.0)
702#
703# @cpu-throttle-initial: Initial percentage of time guest cpus are
704#     throttled when migration auto-converge is activated.  The
705#     default value is 20.  (Since 2.7)
706#
707# @cpu-throttle-increment: throttle percentage increase each time
708#     auto-converge detects that migration is not making progress.
709#     The default value is 10.  (Since 2.7)
710#
711# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
712#     the tail stage of throttling, the Guest is very sensitive to CPU
713#     percentage while the @cpu-throttle -increment is excessive
714#     usually at tail stage.  If this parameter is true, we will
715#     compute the ideal CPU percentage used by the Guest, which may
716#     exactly make the dirty rate match the dirty rate threshold.
717#     Then we will choose a smaller throttle increment between the one
718#     specified by @cpu-throttle-increment and the one generated by
719#     ideal CPU percentage.  Therefore, it is compatible to
720#     traditional throttling, meanwhile the throttle increment won't
721#     be excessive at tail stage.  The default value is false.  (Since
722#     5.1)
723#
724# @tls-creds: ID of the 'tls-creds' object that provides credentials
725#     for establishing a TLS connection over the migration data
726#     channel.  On the outgoing side of the migration, the credentials
727#     must be for a 'client' endpoint, while for the incoming side the
728#     credentials must be for a 'server' endpoint.  Setting this to a
729#     non-empty string enables TLS for all migrations.  An empty
730#     string means that QEMU will use plain text mode for migration,
731#     rather than TLS.  (Since 2.7)
732#
733# @tls-hostname: migration target's hostname for validating the
734#     server's x509 certificate identity.  If empty, QEMU will use the
735#     hostname from the migration URI, if any.  A non-empty value is
736#     required when using x509 based TLS credentials and the migration
737#     URI does not include a hostname, such as fd: or exec: based
738#     migration.  (Since 2.7)
739#
740#     Note: empty value works only since 2.9.
741#
742# @tls-authz: ID of the 'authz' object subclass that provides access
743#     control checking of the TLS x509 certificate distinguished name.
744#     This object is only resolved at time of use, so can be deleted
745#     and recreated on the fly while the migration server is active.
746#     If missing, it will default to denying access (Since 4.0)
747#
748# @max-bandwidth: maximum speed for migration, in bytes per second.
749#     (Since 2.8)
750#
751# @avail-switchover-bandwidth: to set the available bandwidth that
752#     migration can use during switchover phase.  NOTE!  This does not
753#     limit the bandwidth during switchover, but only for calculations
754#     when making decisions to switchover.  By default, this value is
755#     zero, which means QEMU will estimate the bandwidth
756#     automatically.  This can be set when the estimated value is not
757#     accurate, while the user is able to guarantee such bandwidth is
758#     available when switching over.  When specified correctly, this
759#     can make the switchover decision much more accurate.
760#     (Since 8.2)
761#
762# @downtime-limit: set maximum tolerated downtime for migration.
763#     maximum downtime in milliseconds (Since 2.8)
764#
765# @x-checkpoint-delay: The delay time (in ms) between two COLO
766#     checkpoints in periodic mode.  (Since 2.8)
767#
768# @multifd-channels: Number of channels used to migrate data in
769#     parallel.  This is the same number that the number of sockets
770#     used for migration.  The default value is 2 (since 4.0)
771#
772# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
773#     needs to be a multiple of the target page size and a power of 2
774#     (Since 2.11)
775#
776# @max-postcopy-bandwidth: Background transfer bandwidth during
777#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
778#     (Since 3.0)
779#
780# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
781#     (Since 3.1)
782#
783# @multifd-compression: Which compression method to use.  Defaults to
784#     none.  (Since 5.0)
785#
786# @multifd-zlib-level: Set the compression level to be used in live
787#     migration, the compression level is an integer between 0 and 9,
788#     where 0 means no compression, 1 means the best compression
789#     speed, and 9 means best compression ratio which will consume
790#     more CPU. Defaults to 1.  (Since 5.0)
791#
792# @multifd-zstd-level: Set the compression level to be used in live
793#     migration, the compression level is an integer between 0 and 20,
794#     where 0 means no compression, 1 means the best compression
795#     speed, and 20 means best compression ratio which will consume
796#     more CPU. Defaults to 1.  (Since 5.0)
797#
798# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
799#     aliases for the purpose of dirty bitmap migration.  Such aliases
800#     may for example be the corresponding names on the opposite site.
801#     The mapping must be one-to-one, but not necessarily complete: On
802#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
803#     will be ignored.  On the destination, encountering an unmapped
804#     alias in the incoming migration stream will result in a report,
805#     and all further bitmap migration data will then be discarded.
806#     Note that the destination does not know about bitmaps it does
807#     not receive, so there is no limitation or requirement regarding
808#     the number of bitmaps received, or how they are named, or on
809#     which nodes they are placed.  By default (when this parameter
810#     has never been set), bitmap names are mapped to themselves.
811#     Nodes are mapped to their block device name if there is one, and
812#     to their node name otherwise.  (Since 5.2)
813#
814# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
815#     limit during live migration.  Should be in the range 1 to
816#     1000ms.  Defaults to 1000ms.  (Since 8.1)
817#
818# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
819#     Defaults to 1.  (Since 8.1)
820#
821# @mode: Migration mode.  See description in @MigMode.  Default is
822#     'normal'.  (Since 8.2)
823#
824# @zero-page-detection: Whether and how to detect zero pages.
825#     See description in @ZeroPageDetection.  Default is 'multifd'.
826#     (since 9.0)
827#
828# @direct-io: Open migration files with O_DIRECT when possible.  This
829#     only has effect if the @mapped-ram capability is enabled.
830#     (Since 9.1)
831#
832# Features:
833#
834# @unstable: Members @x-checkpoint-delay and
835#     @x-vcpu-dirty-limit-period are experimental.
836#
837# Since: 2.4
838##
839{ 'enum': 'MigrationParameter',
840  'data': ['announce-initial', 'announce-max',
841           'announce-rounds', 'announce-step',
842           'throttle-trigger-threshold',
843           'cpu-throttle-initial', 'cpu-throttle-increment',
844           'cpu-throttle-tailslow',
845           'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
846           'avail-switchover-bandwidth', 'downtime-limit',
847           { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
848           'multifd-channels',
849           'xbzrle-cache-size', 'max-postcopy-bandwidth',
850           'max-cpu-throttle', 'multifd-compression',
851           'multifd-zlib-level', 'multifd-zstd-level',
852           'block-bitmap-mapping',
853           { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] },
854           'vcpu-dirty-limit',
855           'mode',
856           'zero-page-detection',
857           'direct-io'] }
858
859##
860# @MigrateSetParameters:
861#
862# @announce-initial: Initial delay (in milliseconds) before sending
863#     the first announce (Since 4.0)
864#
865# @announce-max: Maximum delay (in milliseconds) between packets in
866#     the announcement (Since 4.0)
867#
868# @announce-rounds: Number of self-announce packets sent after
869#     migration (Since 4.0)
870#
871# @announce-step: Increase in delay (in milliseconds) between
872#     subsequent packets in the announcement (Since 4.0)
873#
874# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
875#     bytes_xfer_period to trigger throttling.  It is expressed as
876#     percentage.  The default value is 50.  (Since 5.0)
877#
878# @cpu-throttle-initial: Initial percentage of time guest cpus are
879#     throttled when migration auto-converge is activated.  The
880#     default value is 20.  (Since 2.7)
881#
882# @cpu-throttle-increment: throttle percentage increase each time
883#     auto-converge detects that migration is not making progress.
884#     The default value is 10.  (Since 2.7)
885#
886# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
887#     the tail stage of throttling, the Guest is very sensitive to CPU
888#     percentage while the @cpu-throttle -increment is excessive
889#     usually at tail stage.  If this parameter is true, we will
890#     compute the ideal CPU percentage used by the Guest, which may
891#     exactly make the dirty rate match the dirty rate threshold.
892#     Then we will choose a smaller throttle increment between the one
893#     specified by @cpu-throttle-increment and the one generated by
894#     ideal CPU percentage.  Therefore, it is compatible to
895#     traditional throttling, meanwhile the throttle increment won't
896#     be excessive at tail stage.  The default value is false.  (Since
897#     5.1)
898#
899# @tls-creds: ID of the 'tls-creds' object that provides credentials
900#     for establishing a TLS connection over the migration data
901#     channel.  On the outgoing side of the migration, the credentials
902#     must be for a 'client' endpoint, while for the incoming side the
903#     credentials must be for a 'server' endpoint.  Setting this to a
904#     non-empty string enables TLS for all migrations.  An empty
905#     string means that QEMU will use plain text mode for migration,
906#     rather than TLS.  This is the default.  (Since 2.7)
907#
908# @tls-hostname: migration target's hostname for validating the
909#     server's x509 certificate identity.  If empty, QEMU will use the
910#     hostname from the migration URI, if any.  A non-empty value is
911#     required when using x509 based TLS credentials and the migration
912#     URI does not include a hostname, such as fd: or exec: based
913#     migration.  (Since 2.7)
914#
915#     Note: empty value works only since 2.9.
916#
917# @tls-authz: ID of the 'authz' object subclass that provides access
918#     control checking of the TLS x509 certificate distinguished name.
919#     This object is only resolved at time of use, so can be deleted
920#     and recreated on the fly while the migration server is active.
921#     If missing, it will default to denying access (Since 4.0)
922#
923# @max-bandwidth: maximum speed for migration, in bytes per second.
924#     (Since 2.8)
925#
926# @avail-switchover-bandwidth: to set the available bandwidth that
927#     migration can use during switchover phase.  NOTE!  This does not
928#     limit the bandwidth during switchover, but only for calculations
929#     when making decisions to switchover.  By default, this value is
930#     zero, which means QEMU will estimate the bandwidth
931#     automatically.  This can be set when the estimated value is not
932#     accurate, while the user is able to guarantee such bandwidth is
933#     available when switching over.  When specified correctly, this
934#     can make the switchover decision much more accurate.
935#     (Since 8.2)
936#
937# @downtime-limit: set maximum tolerated downtime for migration.
938#     maximum downtime in milliseconds (Since 2.8)
939#
940# @x-checkpoint-delay: The delay time (in ms) between two COLO
941#     checkpoints in periodic mode.  (Since 2.8)
942#
943# @multifd-channels: Number of channels used to migrate data in
944#     parallel.  This is the same number that the number of sockets
945#     used for migration.  The default value is 2 (since 4.0)
946#
947# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
948#     needs to be a multiple of the target page size and a power of 2
949#     (Since 2.11)
950#
951# @max-postcopy-bandwidth: Background transfer bandwidth during
952#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
953#     (Since 3.0)
954#
955# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
956#     (Since 3.1)
957#
958# @multifd-compression: Which compression method to use.  Defaults to
959#     none.  (Since 5.0)
960#
961# @multifd-zlib-level: Set the compression level to be used in live
962#     migration, the compression level is an integer between 0 and 9,
963#     where 0 means no compression, 1 means the best compression
964#     speed, and 9 means best compression ratio which will consume
965#     more CPU. Defaults to 1.  (Since 5.0)
966#
967# @multifd-zstd-level: Set the compression level to be used in live
968#     migration, the compression level is an integer between 0 and 20,
969#     where 0 means no compression, 1 means the best compression
970#     speed, and 20 means best compression ratio which will consume
971#     more CPU. Defaults to 1.  (Since 5.0)
972#
973# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
974#     aliases for the purpose of dirty bitmap migration.  Such aliases
975#     may for example be the corresponding names on the opposite site.
976#     The mapping must be one-to-one, but not necessarily complete: On
977#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
978#     will be ignored.  On the destination, encountering an unmapped
979#     alias in the incoming migration stream will result in a report,
980#     and all further bitmap migration data will then be discarded.
981#     Note that the destination does not know about bitmaps it does
982#     not receive, so there is no limitation or requirement regarding
983#     the number of bitmaps received, or how they are named, or on
984#     which nodes they are placed.  By default (when this parameter
985#     has never been set), bitmap names are mapped to themselves.
986#     Nodes are mapped to their block device name if there is one, and
987#     to their node name otherwise.  (Since 5.2)
988#
989# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
990#     limit during live migration.  Should be in the range 1 to
991#     1000ms.  Defaults to 1000ms.  (Since 8.1)
992#
993# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
994#     Defaults to 1.  (Since 8.1)
995#
996# @mode: Migration mode.  See description in @MigMode.  Default is
997#     'normal'.  (Since 8.2)
998#
999# @zero-page-detection: Whether and how to detect zero pages.
1000#     See description in @ZeroPageDetection.  Default is 'multifd'.
1001#     (since 9.0)
1002#
1003# @direct-io: Open migration files with O_DIRECT when possible.  This
1004#     only has effect if the @mapped-ram capability is enabled.
1005#     (Since 9.1)
1006#
1007# Features:
1008#
1009# @unstable: Members @x-checkpoint-delay and
1010#     @x-vcpu-dirty-limit-period are experimental.
1011#
1012# TODO: either fuse back into MigrationParameters, or make
1013#     MigrationParameters members mandatory
1014#
1015# Since: 2.4
1016##
1017{ 'struct': 'MigrateSetParameters',
1018  'data': { '*announce-initial': 'size',
1019            '*announce-max': 'size',
1020            '*announce-rounds': 'size',
1021            '*announce-step': 'size',
1022            '*throttle-trigger-threshold': 'uint8',
1023            '*cpu-throttle-initial': 'uint8',
1024            '*cpu-throttle-increment': 'uint8',
1025            '*cpu-throttle-tailslow': 'bool',
1026            '*tls-creds': 'StrOrNull',
1027            '*tls-hostname': 'StrOrNull',
1028            '*tls-authz': 'StrOrNull',
1029            '*max-bandwidth': 'size',
1030            '*avail-switchover-bandwidth': 'size',
1031            '*downtime-limit': 'uint64',
1032            '*x-checkpoint-delay': { 'type': 'uint32',
1033                                     'features': [ 'unstable' ] },
1034            '*multifd-channels': 'uint8',
1035            '*xbzrle-cache-size': 'size',
1036            '*max-postcopy-bandwidth': 'size',
1037            '*max-cpu-throttle': 'uint8',
1038            '*multifd-compression': 'MultiFDCompression',
1039            '*multifd-zlib-level': 'uint8',
1040            '*multifd-zstd-level': 'uint8',
1041            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1042            '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1043                                            'features': [ 'unstable' ] },
1044            '*vcpu-dirty-limit': 'uint64',
1045            '*mode': 'MigMode',
1046            '*zero-page-detection': 'ZeroPageDetection',
1047            '*direct-io': 'bool' } }
1048
1049##
1050# @migrate-set-parameters:
1051#
1052# Set various migration parameters.
1053#
1054# Since: 2.4
1055#
1056# Example:
1057#
1058#     -> { "execute": "migrate-set-parameters" ,
1059#          "arguments": { "multifd-channels": 5 } }
1060#     <- { "return": {} }
1061##
1062{ 'command': 'migrate-set-parameters', 'boxed': true,
1063  'data': 'MigrateSetParameters' }
1064
1065##
1066# @MigrationParameters:
1067#
1068# The optional members aren't actually optional.
1069#
1070# @announce-initial: Initial delay (in milliseconds) before sending
1071#     the first announce (Since 4.0)
1072#
1073# @announce-max: Maximum delay (in milliseconds) between packets in
1074#     the announcement (Since 4.0)
1075#
1076# @announce-rounds: Number of self-announce packets sent after
1077#     migration (Since 4.0)
1078#
1079# @announce-step: Increase in delay (in milliseconds) between
1080#     subsequent packets in the announcement (Since 4.0)
1081#
1082# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
1083#     bytes_xfer_period to trigger throttling.  It is expressed as
1084#     percentage.  The default value is 50.  (Since 5.0)
1085#
1086# @cpu-throttle-initial: Initial percentage of time guest cpus are
1087#     throttled when migration auto-converge is activated.  (Since
1088#     2.7)
1089#
1090# @cpu-throttle-increment: throttle percentage increase each time
1091#     auto-converge detects that migration is not making progress.
1092#     (Since 2.7)
1093#
1094# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
1095#     the tail stage of throttling, the Guest is very sensitive to CPU
1096#     percentage while the @cpu-throttle -increment is excessive
1097#     usually at tail stage.  If this parameter is true, we will
1098#     compute the ideal CPU percentage used by the Guest, which may
1099#     exactly make the dirty rate match the dirty rate threshold.
1100#     Then we will choose a smaller throttle increment between the one
1101#     specified by @cpu-throttle-increment and the one generated by
1102#     ideal CPU percentage.  Therefore, it is compatible to
1103#     traditional throttling, meanwhile the throttle increment won't
1104#     be excessive at tail stage.  The default value is false.  (Since
1105#     5.1)
1106#
1107# @tls-creds: ID of the 'tls-creds' object that provides credentials
1108#     for establishing a TLS connection over the migration data
1109#     channel.  On the outgoing side of the migration, the credentials
1110#     must be for a 'client' endpoint, while for the incoming side the
1111#     credentials must be for a 'server' endpoint.  An empty string
1112#     means that QEMU will use plain text mode for migration, rather
1113#     than TLS.  (Since 2.7)
1114#
1115#     Note: 2.8 omits empty @tls-creds instead.
1116#
1117# @tls-hostname: migration target's hostname for validating the
1118#     server's x509 certificate identity.  If empty, QEMU will use the
1119#     hostname from the migration URI, if any.  (Since 2.7)
1120#
1121#     Note: 2.8 omits empty @tls-hostname instead.
1122#
1123# @tls-authz: ID of the 'authz' object subclass that provides access
1124#     control checking of the TLS x509 certificate distinguished name.
1125#     (Since 4.0)
1126#
1127# @max-bandwidth: maximum speed for migration, in bytes per second.
1128#     (Since 2.8)
1129#
1130# @avail-switchover-bandwidth: to set the available bandwidth that
1131#     migration can use during switchover phase.  NOTE!  This does not
1132#     limit the bandwidth during switchover, but only for calculations
1133#     when making decisions to switchover.  By default, this value is
1134#     zero, which means QEMU will estimate the bandwidth
1135#     automatically.  This can be set when the estimated value is not
1136#     accurate, while the user is able to guarantee such bandwidth is
1137#     available when switching over.  When specified correctly, this
1138#     can make the switchover decision much more accurate.
1139#     (Since 8.2)
1140#
1141# @downtime-limit: set maximum tolerated downtime for migration.
1142#     maximum downtime in milliseconds (Since 2.8)
1143#
1144# @x-checkpoint-delay: the delay time between two COLO checkpoints.
1145#     (Since 2.8)
1146#
1147# @multifd-channels: Number of channels used to migrate data in
1148#     parallel.  This is the same number that the number of sockets
1149#     used for migration.  The default value is 2 (since 4.0)
1150#
1151# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
1152#     needs to be a multiple of the target page size and a power of 2
1153#     (Since 2.11)
1154#
1155# @max-postcopy-bandwidth: Background transfer bandwidth during
1156#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
1157#     (Since 3.0)
1158#
1159# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
1160#     (Since 3.1)
1161#
1162# @multifd-compression: Which compression method to use.  Defaults to
1163#     none.  (Since 5.0)
1164#
1165# @multifd-zlib-level: Set the compression level to be used in live
1166#     migration, the compression level is an integer between 0 and 9,
1167#     where 0 means no compression, 1 means the best compression
1168#     speed, and 9 means best compression ratio which will consume
1169#     more CPU. Defaults to 1.  (Since 5.0)
1170#
1171# @multifd-zstd-level: Set the compression level to be used in live
1172#     migration, the compression level is an integer between 0 and 20,
1173#     where 0 means no compression, 1 means the best compression
1174#     speed, and 20 means best compression ratio which will consume
1175#     more CPU. Defaults to 1.  (Since 5.0)
1176#
1177# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1178#     aliases for the purpose of dirty bitmap migration.  Such aliases
1179#     may for example be the corresponding names on the opposite site.
1180#     The mapping must be one-to-one, but not necessarily complete: On
1181#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
1182#     will be ignored.  On the destination, encountering an unmapped
1183#     alias in the incoming migration stream will result in a report,
1184#     and all further bitmap migration data will then be discarded.
1185#     Note that the destination does not know about bitmaps it does
1186#     not receive, so there is no limitation or requirement regarding
1187#     the number of bitmaps received, or how they are named, or on
1188#     which nodes they are placed.  By default (when this parameter
1189#     has never been set), bitmap names are mapped to themselves.
1190#     Nodes are mapped to their block device name if there is one, and
1191#     to their node name otherwise.  (Since 5.2)
1192#
1193# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1194#     limit during live migration.  Should be in the range 1 to
1195#     1000ms.  Defaults to 1000ms.  (Since 8.1)
1196#
1197# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1198#     Defaults to 1.  (Since 8.1)
1199#
1200# @mode: Migration mode.  See description in @MigMode.  Default is
1201#        'normal'.  (Since 8.2)
1202#
1203# @zero-page-detection: Whether and how to detect zero pages.
1204#     See description in @ZeroPageDetection.  Default is 'multifd'.
1205#     (since 9.0)
1206#
1207# @direct-io: Open migration files with O_DIRECT when possible.  This
1208#     only has effect if the @mapped-ram capability is enabled.
1209#     (Since 9.1)
1210#
1211# Features:
1212#
1213# @unstable: Members @x-checkpoint-delay and
1214#     @x-vcpu-dirty-limit-period are experimental.
1215#
1216# Since: 2.4
1217##
1218{ 'struct': 'MigrationParameters',
1219  'data': { '*announce-initial': 'size',
1220            '*announce-max': 'size',
1221            '*announce-rounds': 'size',
1222            '*announce-step': 'size',
1223            '*throttle-trigger-threshold': 'uint8',
1224            '*cpu-throttle-initial': 'uint8',
1225            '*cpu-throttle-increment': 'uint8',
1226            '*cpu-throttle-tailslow': 'bool',
1227            '*tls-creds': 'str',
1228            '*tls-hostname': 'str',
1229            '*tls-authz': 'str',
1230            '*max-bandwidth': 'size',
1231            '*avail-switchover-bandwidth': 'size',
1232            '*downtime-limit': 'uint64',
1233            '*x-checkpoint-delay': { 'type': 'uint32',
1234                                     'features': [ 'unstable' ] },
1235            '*multifd-channels': 'uint8',
1236            '*xbzrle-cache-size': 'size',
1237            '*max-postcopy-bandwidth': 'size',
1238            '*max-cpu-throttle': 'uint8',
1239            '*multifd-compression': 'MultiFDCompression',
1240            '*multifd-zlib-level': 'uint8',
1241            '*multifd-zstd-level': 'uint8',
1242            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1243            '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1244                                            'features': [ 'unstable' ] },
1245            '*vcpu-dirty-limit': 'uint64',
1246            '*mode': 'MigMode',
1247            '*zero-page-detection': 'ZeroPageDetection',
1248            '*direct-io': 'bool' } }
1249
1250##
1251# @query-migrate-parameters:
1252#
1253# Returns information about the current migration parameters
1254#
1255# Returns: @MigrationParameters
1256#
1257# Since: 2.4
1258#
1259# Example:
1260#
1261#     -> { "execute": "query-migrate-parameters" }
1262#     <- { "return": {
1263#              "multifd-channels": 2,
1264#              "cpu-throttle-increment": 10,
1265#              "cpu-throttle-initial": 20,
1266#              "max-bandwidth": 33554432,
1267#              "downtime-limit": 300
1268#           }
1269#        }
1270##
1271{ 'command': 'query-migrate-parameters',
1272  'returns': 'MigrationParameters' }
1273
1274##
1275# @migrate-start-postcopy:
1276#
1277# Followup to a migration command to switch the migration to postcopy
1278# mode.  The postcopy-ram capability must be set on both source and
1279# destination before the original migration command.
1280#
1281# Since: 2.5
1282#
1283# Example:
1284#
1285#     -> { "execute": "migrate-start-postcopy" }
1286#     <- { "return": {} }
1287##
1288{ 'command': 'migrate-start-postcopy' }
1289
1290##
1291# @MIGRATION:
1292#
1293# Emitted when a migration event happens
1294#
1295# @status: @MigrationStatus describing the current migration status.
1296#
1297# Since: 2.4
1298#
1299# Example:
1300#
1301#     <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1302#         "event": "MIGRATION",
1303#         "data": {"status": "completed"} }
1304##
1305{ 'event': 'MIGRATION',
1306  'data': {'status': 'MigrationStatus'}}
1307
1308##
1309# @MIGRATION_PASS:
1310#
1311# Emitted from the source side of a migration at the start of each
1312# pass (when it syncs the dirty bitmap)
1313#
1314# @pass: An incrementing count (starting at 1 on the first pass)
1315#
1316# Since: 2.6
1317#
1318# Example:
1319#
1320#     <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1321#           "event": "MIGRATION_PASS", "data": {"pass": 2} }
1322##
1323{ 'event': 'MIGRATION_PASS',
1324  'data': { 'pass': 'int' } }
1325
1326##
1327# @COLOMessage:
1328#
1329# The message transmission between Primary side and Secondary side.
1330#
1331# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1332#
1333# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for
1334#     checkpointing
1335#
1336# @checkpoint-reply: SVM gets PVM's checkpoint request
1337#
1338# @vmstate-send: VM's state will be sent by PVM.
1339#
1340# @vmstate-size: The total size of VMstate.
1341#
1342# @vmstate-received: VM's state has been received by SVM.
1343#
1344# @vmstate-loaded: VM's state has been loaded by SVM.
1345#
1346# Since: 2.8
1347##
1348{ 'enum': 'COLOMessage',
1349  'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1350            'vmstate-send', 'vmstate-size', 'vmstate-received',
1351            'vmstate-loaded' ] }
1352
1353##
1354# @COLOMode:
1355#
1356# The COLO current mode.
1357#
1358# @none: COLO is disabled.
1359#
1360# @primary: COLO node in primary side.
1361#
1362# @secondary: COLO node in slave side.
1363#
1364# Since: 2.8
1365##
1366{ 'enum': 'COLOMode',
1367  'data': [ 'none', 'primary', 'secondary'] }
1368
1369##
1370# @FailoverStatus:
1371#
1372# An enumeration of COLO failover status
1373#
1374# @none: no failover has ever happened
1375#
1376# @require: got failover requirement but not handled
1377#
1378# @active: in the process of doing failover
1379#
1380# @completed: finish the process of failover
1381#
1382# @relaunch: restart the failover process, from 'none' -> 'completed'
1383#     (Since 2.9)
1384#
1385# Since: 2.8
1386##
1387{ 'enum': 'FailoverStatus',
1388  'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1389
1390##
1391# @COLO_EXIT:
1392#
1393# Emitted when VM finishes COLO mode due to some errors happening or
1394# at the request of users.
1395#
1396# @mode: report COLO mode when COLO exited.
1397#
1398# @reason: describes the reason for the COLO exit.
1399#
1400# Since: 3.1
1401#
1402# Example:
1403#
1404#     <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1405#          "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1406##
1407{ 'event': 'COLO_EXIT',
1408  'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1409
1410##
1411# @COLOExitReason:
1412#
1413# The reason for a COLO exit.
1414#
1415# @none: failover has never happened.  This state does not occur in
1416#     the COLO_EXIT event, and is only visible in the result of
1417#     query-colo-status.
1418#
1419# @request: COLO exit is due to an external request.
1420#
1421# @error: COLO exit is due to an internal error.
1422#
1423# @processing: COLO is currently handling a failover (since 4.0).
1424#
1425# Since: 3.1
1426##
1427{ 'enum': 'COLOExitReason',
1428  'data': [ 'none', 'request', 'error' , 'processing' ] }
1429
1430##
1431# @x-colo-lost-heartbeat:
1432#
1433# Tell qemu that heartbeat is lost, request it to do takeover
1434# procedures.  If this command is sent to the PVM, the Primary side
1435# will exit COLO mode.  If sent to the Secondary, the Secondary side
1436# will run failover work, then takes over server operation to become
1437# the service VM.
1438#
1439# Features:
1440#
1441# @unstable: This command is experimental.
1442#
1443# Since: 2.8
1444#
1445# Example:
1446#
1447#     -> { "execute": "x-colo-lost-heartbeat" }
1448#     <- { "return": {} }
1449##
1450{ 'command': 'x-colo-lost-heartbeat',
1451  'features': [ 'unstable' ],
1452  'if': 'CONFIG_REPLICATION' }
1453
1454##
1455# @migrate_cancel:
1456#
1457# Cancel the current executing migration process.
1458#
1459# Notes: This command succeeds even if there is no migration process
1460#     running.
1461#
1462# Since: 0.14
1463#
1464# Example:
1465#
1466#     -> { "execute": "migrate_cancel" }
1467#     <- { "return": {} }
1468##
1469{ 'command': 'migrate_cancel' }
1470
1471##
1472# @migrate-continue:
1473#
1474# Continue migration when it's in a paused state.
1475#
1476# @state: The state the migration is currently expected to be in
1477#
1478# Since: 2.11
1479#
1480# Example:
1481#
1482#     -> { "execute": "migrate-continue" , "arguments":
1483#          { "state": "pre-switchover" } }
1484#     <- { "return": {} }
1485##
1486{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1487
1488##
1489# @MigrationAddressType:
1490#
1491# The migration stream transport mechanisms.
1492#
1493# @socket: Migrate via socket.
1494#
1495# @exec: Direct the migration stream to another process.
1496#
1497# @rdma: Migrate via RDMA.
1498#
1499# @file: Direct the migration stream to a file.
1500#
1501# Since: 8.2
1502##
1503{ 'enum': 'MigrationAddressType',
1504  'data': [ 'socket', 'exec', 'rdma', 'file' ] }
1505
1506##
1507# @FileMigrationArgs:
1508#
1509# @filename: The file to receive the migration stream
1510#
1511# @offset: The file offset where the migration stream will start
1512#
1513# Since: 8.2
1514##
1515{ 'struct': 'FileMigrationArgs',
1516  'data': { 'filename': 'str',
1517            'offset': 'uint64' } }
1518
1519##
1520# @MigrationExecCommand:
1521#
1522# @args: command (list head) and arguments to execute.
1523#
1524# Since: 8.2
1525##
1526{ 'struct': 'MigrationExecCommand',
1527  'data': {'args': [ 'str' ] } }
1528
1529##
1530# @MigrationAddress:
1531#
1532# Migration endpoint configuration.
1533#
1534# @transport: The migration stream transport mechanism
1535#
1536# Since: 8.2
1537##
1538{ 'union': 'MigrationAddress',
1539  'base': { 'transport' : 'MigrationAddressType'},
1540  'discriminator': 'transport',
1541  'data': {
1542    'socket': 'SocketAddress',
1543    'exec': 'MigrationExecCommand',
1544    'rdma': 'InetSocketAddress',
1545    'file': 'FileMigrationArgs' } }
1546
1547##
1548# @MigrationChannelType:
1549#
1550# The migration channel-type request options.
1551#
1552# @main: Main outbound migration channel.
1553#
1554# Since: 8.1
1555##
1556{ 'enum': 'MigrationChannelType',
1557  'data': [ 'main' ] }
1558
1559##
1560# @MigrationChannel:
1561#
1562# Migration stream channel parameters.
1563#
1564# @channel-type: Channel type for transferring packet information.
1565#
1566# @addr: Migration endpoint configuration on destination interface.
1567#
1568# Since: 8.1
1569##
1570{ 'struct': 'MigrationChannel',
1571  'data': {
1572      'channel-type': 'MigrationChannelType',
1573      'addr': 'MigrationAddress' } }
1574
1575##
1576# @migrate:
1577#
1578# Migrates the current running guest to another Virtual Machine.
1579#
1580# @uri: the Uniform Resource Identifier of the destination VM
1581#
1582# @channels: list of migration stream channels with each stream in the
1583#     list connected to a destination interface endpoint.
1584#
1585# @detach: this argument exists only for compatibility reasons and is
1586#     ignored by QEMU
1587#
1588# @resume: resume one paused migration, default "off".  (since 3.0)
1589#
1590# Since: 0.14
1591#
1592# Notes:
1593#
1594#     1. The 'query-migrate' command should be used to check
1595#        migration's progress and final result (this information is
1596#        provided by the 'status' member)
1597#
1598#     2. All boolean arguments default to false
1599#
1600#     3. The user Monitor's "detach" argument is invalid in QMP and
1601#        should not be used
1602#
1603#     4. The uri argument should have the Uniform Resource Identifier
1604#        of default destination VM. This connection will be bound to
1605#        default network.
1606#
1607#     5. For now, number of migration streams is restricted to one,
1608#        i.e. number of items in 'channels' list is just 1.
1609#
1610#     6. The 'uri' and 'channels' arguments are mutually exclusive;
1611#        exactly one of the two should be present.
1612#
1613# Example:
1614#
1615#     -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1616#     <- { "return": {} }
1617#
1618#     -> { "execute": "migrate",
1619#          "arguments": {
1620#              "channels": [ { "channel-type": "main",
1621#                              "addr": { "transport": "socket",
1622#                                        "type": "inet",
1623#                                        "host": "10.12.34.9",
1624#                                        "port": "1050" } } ] } }
1625#     <- { "return": {} }
1626#
1627#     -> { "execute": "migrate",
1628#          "arguments": {
1629#              "channels": [ { "channel-type": "main",
1630#                              "addr": { "transport": "exec",
1631#                                        "args": [ "/bin/nc", "-p", "6000",
1632#                                                  "/some/sock" ] } } ] } }
1633#     <- { "return": {} }
1634#
1635#     -> { "execute": "migrate",
1636#          "arguments": {
1637#              "channels": [ { "channel-type": "main",
1638#                              "addr": { "transport": "rdma",
1639#                                        "host": "10.12.34.9",
1640#                                        "port": "1050" } } ] } }
1641#     <- { "return": {} }
1642#
1643#     -> { "execute": "migrate",
1644#          "arguments": {
1645#              "channels": [ { "channel-type": "main",
1646#                              "addr": { "transport": "file",
1647#                                        "filename": "/tmp/migfile",
1648#                                        "offset": "0x1000" } } ] } }
1649#     <- { "return": {} }
1650#
1651##
1652{ 'command': 'migrate',
1653  'data': {'*uri': 'str',
1654           '*channels': [ 'MigrationChannel' ],
1655           '*detach': 'bool', '*resume': 'bool' } }
1656
1657##
1658# @migrate-incoming:
1659#
1660# Start an incoming migration, the qemu must have been started with
1661# -incoming defer
1662#
1663# @uri: The Uniform Resource Identifier identifying the source or
1664#     address to listen on
1665#
1666# @channels: list of migration stream channels with each stream in the
1667#     list connected to a destination interface endpoint.
1668#
1669# @exit-on-error: Exit on incoming migration failure.  Default true.
1670#     When set to false, the failure triggers a MIGRATION event, and
1671#     error details could be retrieved with query-migrate.  (since 9.1)
1672#
1673# Since: 2.3
1674#
1675# Notes:
1676#
1677#     1. It's a bad idea to use a string for the uri, but it needs to
1678#        stay compatible with -incoming and the format of the uri is
1679#        already exposed above libvirt.
1680#
1681#     2. QEMU must be started with -incoming defer to allow
1682#        migrate-incoming to be used.
1683#
1684#     3. The uri format is the same as for -incoming
1685#
1686#     4. For now, number of migration streams is restricted to one,
1687#        i.e. number of items in 'channels' list is just 1.
1688#
1689#     5. The 'uri' and 'channels' arguments are mutually exclusive;
1690#        exactly one of the two should be present.
1691#
1692# Example:
1693#
1694#     -> { "execute": "migrate-incoming",
1695#          "arguments": { "uri": "tcp:0:4446" } }
1696#     <- { "return": {} }
1697#
1698#     -> { "execute": "migrate-incoming",
1699#          "arguments": {
1700#              "channels": [ { "channel-type": "main",
1701#                              "addr": { "transport": "socket",
1702#                                        "type": "inet",
1703#                                        "host": "10.12.34.9",
1704#                                        "port": "1050" } } ] } }
1705#     <- { "return": {} }
1706#
1707#     -> { "execute": "migrate-incoming",
1708#          "arguments": {
1709#              "channels": [ { "channel-type": "main",
1710#                              "addr": { "transport": "exec",
1711#                                        "args": [ "/bin/nc", "-p", "6000",
1712#                                                  "/some/sock" ] } } ] } }
1713#     <- { "return": {} }
1714#
1715#     -> { "execute": "migrate-incoming",
1716#          "arguments": {
1717#              "channels": [ { "channel-type": "main",
1718#                              "addr": { "transport": "rdma",
1719#                                        "host": "10.12.34.9",
1720#                                        "port": "1050" } } ] } }
1721#     <- { "return": {} }
1722##
1723{ 'command': 'migrate-incoming',
1724             'data': {'*uri': 'str',
1725                      '*channels': [ 'MigrationChannel' ],
1726                      '*exit-on-error': 'bool' } }
1727
1728##
1729# @xen-save-devices-state:
1730#
1731# Save the state of all devices to file.  The RAM and the block
1732# devices of the VM are not saved by this command.
1733#
1734# @filename: the file to save the state of the devices to as binary
1735#     data.  See xen-save-devices-state.txt for a description of the
1736#     binary format.
1737#
1738# @live: Optional argument to ask QEMU to treat this command as part
1739#     of a live migration.  Default to true.  (since 2.11)
1740#
1741# Since: 1.1
1742#
1743# Example:
1744#
1745#     -> { "execute": "xen-save-devices-state",
1746#          "arguments": { "filename": "/tmp/save" } }
1747#     <- { "return": {} }
1748##
1749{ 'command': 'xen-save-devices-state',
1750  'data': {'filename': 'str', '*live':'bool' } }
1751
1752##
1753# @xen-set-global-dirty-log:
1754#
1755# Enable or disable the global dirty log mode.
1756#
1757# @enable: true to enable, false to disable.
1758#
1759# Since: 1.3
1760#
1761# Example:
1762#
1763#     -> { "execute": "xen-set-global-dirty-log",
1764#          "arguments": { "enable": true } }
1765#     <- { "return": {} }
1766##
1767{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1768
1769##
1770# @xen-load-devices-state:
1771#
1772# Load the state of all devices from file.  The RAM and the block
1773# devices of the VM are not loaded by this command.
1774#
1775# @filename: the file to load the state of the devices from as binary
1776#     data.  See xen-save-devices-state.txt for a description of the
1777#     binary format.
1778#
1779# Since: 2.7
1780#
1781# Example:
1782#
1783#     -> { "execute": "xen-load-devices-state",
1784#          "arguments": { "filename": "/tmp/resume" } }
1785#     <- { "return": {} }
1786##
1787{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1788
1789##
1790# @xen-set-replication:
1791#
1792# Enable or disable replication.
1793#
1794# @enable: true to enable, false to disable.
1795#
1796# @primary: true for primary or false for secondary.
1797#
1798# @failover: true to do failover, false to stop.  Cannot be specified
1799#     if 'enable' is true.  Default value is false.
1800#
1801# Example:
1802#
1803#     -> { "execute": "xen-set-replication",
1804#          "arguments": {"enable": true, "primary": false} }
1805#     <- { "return": {} }
1806#
1807# Since: 2.9
1808##
1809{ 'command': 'xen-set-replication',
1810  'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' },
1811  'if': 'CONFIG_REPLICATION' }
1812
1813##
1814# @ReplicationStatus:
1815#
1816# The result format for 'query-xen-replication-status'.
1817#
1818# @error: true if an error happened, false if replication is normal.
1819#
1820# @desc: the human readable error description string, when @error is
1821#     'true'.
1822#
1823# Since: 2.9
1824##
1825{ 'struct': 'ReplicationStatus',
1826  'data': { 'error': 'bool', '*desc': 'str' },
1827  'if': 'CONFIG_REPLICATION' }
1828
1829##
1830# @query-xen-replication-status:
1831#
1832# Query replication status while the vm is running.
1833#
1834# Returns: A @ReplicationStatus object showing the status.
1835#
1836# Example:
1837#
1838#     -> { "execute": "query-xen-replication-status" }
1839#     <- { "return": { "error": false } }
1840#
1841# Since: 2.9
1842##
1843{ 'command': 'query-xen-replication-status',
1844  'returns': 'ReplicationStatus',
1845  'if': 'CONFIG_REPLICATION' }
1846
1847##
1848# @xen-colo-do-checkpoint:
1849#
1850# Xen uses this command to notify replication to trigger a checkpoint.
1851#
1852# Example:
1853#
1854#     -> { "execute": "xen-colo-do-checkpoint" }
1855#     <- { "return": {} }
1856#
1857# Since: 2.9
1858##
1859{ 'command': 'xen-colo-do-checkpoint',
1860  'if': 'CONFIG_REPLICATION' }
1861
1862##
1863# @COLOStatus:
1864#
1865# The result format for 'query-colo-status'.
1866#
1867# @mode: COLO running mode.  If COLO is running, this field will
1868#     return 'primary' or 'secondary'.
1869#
1870# @last-mode: COLO last running mode.  If COLO is running, this field
1871#     will return same like mode field, after failover we can use this
1872#     field to get last colo mode.  (since 4.0)
1873#
1874# @reason: describes the reason for the COLO exit.
1875#
1876# Since: 3.1
1877##
1878{ 'struct': 'COLOStatus',
1879  'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
1880            'reason': 'COLOExitReason' },
1881  'if': 'CONFIG_REPLICATION' }
1882
1883##
1884# @query-colo-status:
1885#
1886# Query COLO status while the vm is running.
1887#
1888# Returns: A @COLOStatus object showing the status.
1889#
1890# Example:
1891#
1892#     -> { "execute": "query-colo-status" }
1893#     <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
1894#
1895# Since: 3.1
1896##
1897{ 'command': 'query-colo-status',
1898  'returns': 'COLOStatus',
1899  'if': 'CONFIG_REPLICATION' }
1900
1901##
1902# @migrate-recover:
1903#
1904# Provide a recovery migration stream URI.
1905#
1906# @uri: the URI to be used for the recovery of migration stream.
1907#
1908# Example:
1909#
1910#     -> { "execute": "migrate-recover",
1911#          "arguments": { "uri": "tcp:192.168.1.200:12345" } }
1912#     <- { "return": {} }
1913#
1914# Since: 3.0
1915##
1916{ 'command': 'migrate-recover',
1917  'data': { 'uri': 'str' },
1918  'allow-oob': true }
1919
1920##
1921# @migrate-pause:
1922#
1923# Pause a migration.  Currently it only supports postcopy.
1924#
1925# Example:
1926#
1927#     -> { "execute": "migrate-pause" }
1928#     <- { "return": {} }
1929#
1930# Since: 3.0
1931##
1932{ 'command': 'migrate-pause', 'allow-oob': true }
1933
1934##
1935# @UNPLUG_PRIMARY:
1936#
1937# Emitted from source side of a migration when migration state is
1938# WAIT_UNPLUG. Device was unplugged by guest operating system.  Device
1939# resources in QEMU are kept on standby to be able to re-plug it in
1940# case of migration failure.
1941#
1942# @device-id: QEMU device id of the unplugged device
1943#
1944# Since: 4.2
1945#
1946# Example:
1947#
1948#     <- { "event": "UNPLUG_PRIMARY",
1949#          "data": { "device-id": "hostdev0" },
1950#          "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1951##
1952{ 'event': 'UNPLUG_PRIMARY',
1953  'data': { 'device-id': 'str' } }
1954
1955##
1956# @DirtyRateVcpu:
1957#
1958# Dirty rate of vcpu.
1959#
1960# @id: vcpu index.
1961#
1962# @dirty-rate: dirty rate.
1963#
1964# Since: 6.2
1965##
1966{ 'struct': 'DirtyRateVcpu',
1967  'data': { 'id': 'int', 'dirty-rate': 'int64' } }
1968
1969##
1970# @DirtyRateStatus:
1971#
1972# Dirty page rate measurement status.
1973#
1974# @unstarted: measuring thread has not been started yet
1975#
1976# @measuring: measuring thread is running
1977#
1978# @measured: dirty page rate is measured and the results are available
1979#
1980# Since: 5.2
1981##
1982{ 'enum': 'DirtyRateStatus',
1983  'data': [ 'unstarted', 'measuring', 'measured'] }
1984
1985##
1986# @DirtyRateMeasureMode:
1987#
1988# Method used to measure dirty page rate.  Differences between
1989# available methods are explained in @calc-dirty-rate.
1990#
1991# @page-sampling: use page sampling
1992#
1993# @dirty-ring: use dirty ring
1994#
1995# @dirty-bitmap: use dirty bitmap
1996#
1997# Since: 6.2
1998##
1999{ 'enum': 'DirtyRateMeasureMode',
2000  'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
2001
2002##
2003# @TimeUnit:
2004#
2005# Specifies unit in which time-related value is specified.
2006#
2007# @second: value is in seconds
2008#
2009# @millisecond: value is in milliseconds
2010#
2011# Since: 8.2
2012##
2013{ 'enum': 'TimeUnit',
2014  'data': ['second', 'millisecond'] }
2015
2016##
2017# @DirtyRateInfo:
2018#
2019# Information about measured dirty page rate.
2020#
2021# @dirty-rate: an estimate of the dirty page rate of the VM in units
2022#     of MiB/s.  Value is present only when @status is 'measured'.
2023#
2024# @status: current status of dirty page rate measurements
2025#
2026# @start-time: start time in units of second for calculation
2027#
2028# @calc-time: time period for which dirty page rate was measured,
2029#     expressed and rounded down to @calc-time-unit.
2030#
2031# @calc-time-unit: time unit of @calc-time  (Since 8.2)
2032#
2033# @sample-pages: number of sampled pages per GiB of guest memory.
2034#     Valid only in page-sampling mode (Since 6.1)
2035#
2036# @mode: mode that was used to measure dirty page rate (Since 6.2)
2037#
2038# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was
2039#     specified (Since 6.2)
2040#
2041# Since: 5.2
2042##
2043{ 'struct': 'DirtyRateInfo',
2044  'data': {'*dirty-rate': 'int64',
2045           'status': 'DirtyRateStatus',
2046           'start-time': 'int64',
2047           'calc-time': 'int64',
2048           'calc-time-unit': 'TimeUnit',
2049           'sample-pages': 'uint64',
2050           'mode': 'DirtyRateMeasureMode',
2051           '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
2052
2053##
2054# @calc-dirty-rate:
2055#
2056# Start measuring dirty page rate of the VM.  Results can be retrieved
2057# with @query-dirty-rate after measurements are completed.
2058#
2059# Dirty page rate is the number of pages changed in a given time
2060# period expressed in MiB/s.  The following methods of calculation are
2061# available:
2062#
2063# 1. In page sampling mode, a random subset of pages are selected and
2064#    hashed twice: once at the beginning of measurement time period,
2065#    and once again at the end.  If two hashes for some page are
2066#    different, the page is counted as changed.  Since this method
2067#    relies on sampling and hashing, calculated dirty page rate is
2068#    only an estimate of its true value.  Increasing @sample-pages
2069#    improves estimation quality at the cost of higher computational
2070#    overhead.
2071#
2072# 2. Dirty bitmap mode captures writes to memory (for example by
2073#    temporarily revoking write access to all pages) and counting page
2074#    faults.  Information about modified pages is collected into a
2075#    bitmap, where each bit corresponds to one guest page.  This mode
2076#    requires that KVM accelerator property "dirty-ring-size" is *not*
2077#    set.
2078#
2079# 3. Dirty ring mode is similar to dirty bitmap mode, but the
2080#    information about modified pages is collected into ring buffer.
2081#    This mode tracks page modification per each vCPU separately.  It
2082#    requires that KVM accelerator property "dirty-ring-size" is set.
2083#
2084# @calc-time: time period for which dirty page rate is calculated.
2085#     By default it is specified in seconds, but the unit can be set
2086#     explicitly with @calc-time-unit.  Note that larger @calc-time
2087#     values will typically result in smaller dirty page rates because
2088#     page dirtying is a one-time event.  Once some page is counted
2089#     as dirty during @calc-time period, further writes to this page
2090#     will not increase dirty page rate anymore.
2091#
2092# @calc-time-unit: time unit in which @calc-time is specified.
2093#     By default it is seconds.  (Since 8.2)
2094#
2095# @sample-pages: number of sampled pages per each GiB of guest memory.
2096#     Default value is 512.  For 4KiB guest pages this corresponds to
2097#     sampling ratio of 0.2%.  This argument is used only in page
2098#     sampling mode.  (Since 6.1)
2099#
2100# @mode: mechanism for tracking dirty pages.  Default value is
2101#     'page-sampling'.  Others are 'dirty-bitmap' and 'dirty-ring'.
2102#     (Since 6.1)
2103#
2104# Since: 5.2
2105#
2106# Example:
2107#
2108#     -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
2109#                                                     'sample-pages': 512} }
2110#     <- { "return": {} }
2111#
2112#     Measure dirty rate using dirty bitmap for 500 milliseconds:
2113#
2114#     -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500,
2115#         "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} }
2116#
2117#     <- { "return": {} }
2118##
2119{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
2120                                         '*calc-time-unit': 'TimeUnit',
2121                                         '*sample-pages': 'int',
2122                                         '*mode': 'DirtyRateMeasureMode'} }
2123
2124##
2125# @query-dirty-rate:
2126#
2127# Query results of the most recent invocation of @calc-dirty-rate.
2128#
2129# @calc-time-unit: time unit in which to report calculation time.
2130#     By default it is reported in seconds.  (Since 8.2)
2131#
2132# Since: 5.2
2133#
2134# Examples:
2135#
2136#     1. Measurement is in progress:
2137#
2138#     <- {"status": "measuring", "sample-pages": 512,
2139#         "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
2140#         "calc-time-unit": "second"}
2141#
2142#     2. Measurement has been completed:
2143#
2144#     <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108,
2145#         "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
2146#         "calc-time-unit": "second"}
2147##
2148{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' },
2149                                 'returns': 'DirtyRateInfo' }
2150
2151##
2152# @DirtyLimitInfo:
2153#
2154# Dirty page rate limit information of a virtual CPU.
2155#
2156# @cpu-index: index of a virtual CPU.
2157#
2158# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
2159#     CPU, 0 means unlimited.
2160#
2161# @current-rate: current dirty page rate (MB/s) for a virtual CPU.
2162#
2163# Since: 7.1
2164##
2165{ 'struct': 'DirtyLimitInfo',
2166  'data': { 'cpu-index': 'int',
2167            'limit-rate': 'uint64',
2168            'current-rate': 'uint64' } }
2169
2170##
2171# @set-vcpu-dirty-limit:
2172#
2173# Set the upper limit of dirty page rate for virtual CPUs.
2174#
2175# Requires KVM with accelerator property "dirty-ring-size" set.  A
2176# virtual CPU's dirty page rate is a measure of its memory load.  To
2177# observe dirty page rates, use @calc-dirty-rate.
2178#
2179# @cpu-index: index of a virtual CPU, default is all.
2180#
2181# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
2182#
2183# Since: 7.1
2184#
2185# Example:
2186#
2187#     -> {"execute": "set-vcpu-dirty-limit"}
2188#         "arguments": { "dirty-rate": 200,
2189#                        "cpu-index": 1 } }
2190#     <- { "return": {} }
2191##
2192{ 'command': 'set-vcpu-dirty-limit',
2193  'data': { '*cpu-index': 'int',
2194            'dirty-rate': 'uint64' } }
2195
2196##
2197# @cancel-vcpu-dirty-limit:
2198#
2199# Cancel the upper limit of dirty page rate for virtual CPUs.
2200#
2201# Cancel the dirty page limit for the vCPU which has been set with
2202# set-vcpu-dirty-limit command.  Note that this command requires
2203# support from dirty ring, same as the "set-vcpu-dirty-limit".
2204#
2205# @cpu-index: index of a virtual CPU, default is all.
2206#
2207# Since: 7.1
2208#
2209# Example:
2210#
2211#     -> {"execute": "cancel-vcpu-dirty-limit"},
2212#         "arguments": { "cpu-index": 1 } }
2213#     <- { "return": {} }
2214##
2215{ 'command': 'cancel-vcpu-dirty-limit',
2216  'data': { '*cpu-index': 'int'} }
2217
2218##
2219# @query-vcpu-dirty-limit:
2220#
2221# Returns information about virtual CPU dirty page rate limits, if
2222# any.
2223#
2224# Since: 7.1
2225#
2226# Example:
2227#
2228#     -> {"execute": "query-vcpu-dirty-limit"}
2229#     <- {"return": [
2230#            { "limit-rate": 60, "current-rate": 3, "cpu-index": 0},
2231#            { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]}
2232##
2233{ 'command': 'query-vcpu-dirty-limit',
2234  'returns': [ 'DirtyLimitInfo' ] }
2235
2236##
2237# @MigrationThreadInfo:
2238#
2239# Information about migrationthreads
2240#
2241# @name: the name of migration thread
2242#
2243# @thread-id: ID of the underlying host thread
2244#
2245# Since: 7.2
2246##
2247{ 'struct': 'MigrationThreadInfo',
2248  'data': {'name': 'str',
2249           'thread-id': 'int'} }
2250
2251##
2252# @query-migrationthreads:
2253#
2254# Returns information of migration threads
2255#
2256# Returns: @MigrationThreadInfo
2257#
2258# Since: 7.2
2259##
2260{ 'command': 'query-migrationthreads',
2261  'returns': ['MigrationThreadInfo'] }
2262
2263##
2264# @snapshot-save:
2265#
2266# Save a VM snapshot
2267#
2268# @job-id: identifier for the newly created job
2269#
2270# @tag: name of the snapshot to create
2271#
2272# @vmstate: block device node name to save vmstate to
2273#
2274# @devices: list of block device node names to save a snapshot to
2275#
2276# Applications should not assume that the snapshot save is complete
2277# when this command returns.  The job commands / events must be used
2278# to determine completion and to fetch details of any errors that
2279# arise.
2280#
2281# Note that execution of the guest CPUs may be stopped during the time
2282# it takes to save the snapshot.  A future version of QEMU may ensure
2283# CPUs are executing continuously.
2284#
2285# It is strongly recommended that @devices contain all writable block
2286# device nodes if a consistent snapshot is required.
2287#
2288# If @tag already exists, an error will be reported
2289#
2290# Example:
2291#
2292#     -> { "execute": "snapshot-save",
2293#          "arguments": {
2294#             "job-id": "snapsave0",
2295#             "tag": "my-snap",
2296#             "vmstate": "disk0",
2297#             "devices": ["disk0", "disk1"]
2298#          }
2299#        }
2300#     <- { "return": { } }
2301#     <- {"event": "JOB_STATUS_CHANGE",
2302#         "timestamp": {"seconds": 1432121972, "microseconds": 744001},
2303#         "data": {"status": "created", "id": "snapsave0"}}
2304#     <- {"event": "JOB_STATUS_CHANGE",
2305#         "timestamp": {"seconds": 1432122172, "microseconds": 744001},
2306#         "data": {"status": "running", "id": "snapsave0"}}
2307#     <- {"event": "STOP",
2308#         "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2309#     <- {"event": "RESUME",
2310#         "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
2311#     <- {"event": "JOB_STATUS_CHANGE",
2312#         "timestamp": {"seconds": 1432122772, "microseconds": 744001},
2313#         "data": {"status": "waiting", "id": "snapsave0"}}
2314#     <- {"event": "JOB_STATUS_CHANGE",
2315#         "timestamp": {"seconds": 1432122972, "microseconds": 744001},
2316#         "data": {"status": "pending", "id": "snapsave0"}}
2317#     <- {"event": "JOB_STATUS_CHANGE",
2318#         "timestamp": {"seconds": 1432123172, "microseconds": 744001},
2319#         "data": {"status": "concluded", "id": "snapsave0"}}
2320#     -> {"execute": "query-jobs"}
2321#     <- {"return": [{"current-progress": 1,
2322#                     "status": "concluded",
2323#                     "total-progress": 1,
2324#                     "type": "snapshot-save",
2325#                     "id": "snapsave0"}]}
2326#
2327# Since: 6.0
2328##
2329{ 'command': 'snapshot-save',
2330  'data': { 'job-id': 'str',
2331            'tag': 'str',
2332            'vmstate': 'str',
2333            'devices': ['str'] } }
2334
2335##
2336# @snapshot-load:
2337#
2338# Load a VM snapshot
2339#
2340# @job-id: identifier for the newly created job
2341#
2342# @tag: name of the snapshot to load.
2343#
2344# @vmstate: block device node name to load vmstate from
2345#
2346# @devices: list of block device node names to load a snapshot from
2347#
2348# Applications should not assume that the snapshot load is complete
2349# when this command returns.  The job commands / events must be used
2350# to determine completion and to fetch details of any errors that
2351# arise.
2352#
2353# Note that execution of the guest CPUs will be stopped during the
2354# time it takes to load the snapshot.
2355#
2356# It is strongly recommended that @devices contain all writable block
2357# device nodes that can have changed since the original @snapshot-save
2358# command execution.
2359#
2360# Example:
2361#
2362#     -> { "execute": "snapshot-load",
2363#          "arguments": {
2364#             "job-id": "snapload0",
2365#             "tag": "my-snap",
2366#             "vmstate": "disk0",
2367#             "devices": ["disk0", "disk1"]
2368#          }
2369#        }
2370#     <- { "return": { } }
2371#     <- {"event": "JOB_STATUS_CHANGE",
2372#         "timestamp": {"seconds": 1472124172, "microseconds": 744001},
2373#         "data": {"status": "created", "id": "snapload0"}}
2374#     <- {"event": "JOB_STATUS_CHANGE",
2375#         "timestamp": {"seconds": 1472125172, "microseconds": 744001},
2376#         "data": {"status": "running", "id": "snapload0"}}
2377#     <- {"event": "STOP",
2378#         "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2379#     <- {"event": "RESUME",
2380#         "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
2381#     <- {"event": "JOB_STATUS_CHANGE",
2382#         "timestamp": {"seconds": 1472126172, "microseconds": 744001},
2383#         "data": {"status": "waiting", "id": "snapload0"}}
2384#     <- {"event": "JOB_STATUS_CHANGE",
2385#         "timestamp": {"seconds": 1472127172, "microseconds": 744001},
2386#         "data": {"status": "pending", "id": "snapload0"}}
2387#     <- {"event": "JOB_STATUS_CHANGE",
2388#         "timestamp": {"seconds": 1472128172, "microseconds": 744001},
2389#         "data": {"status": "concluded", "id": "snapload0"}}
2390#     -> {"execute": "query-jobs"}
2391#     <- {"return": [{"current-progress": 1,
2392#                     "status": "concluded",
2393#                     "total-progress": 1,
2394#                     "type": "snapshot-load",
2395#                     "id": "snapload0"}]}
2396#
2397# Since: 6.0
2398##
2399{ 'command': 'snapshot-load',
2400  'data': { 'job-id': 'str',
2401            'tag': 'str',
2402            'vmstate': 'str',
2403            'devices': ['str'] } }
2404
2405##
2406# @snapshot-delete:
2407#
2408# Delete a VM snapshot
2409#
2410# @job-id: identifier for the newly created job
2411#
2412# @tag: name of the snapshot to delete.
2413#
2414# @devices: list of block device node names to delete a snapshot from
2415#
2416# Applications should not assume that the snapshot delete is complete
2417# when this command returns.  The job commands / events must be used
2418# to determine completion and to fetch details of any errors that
2419# arise.
2420#
2421# Example:
2422#
2423#     -> { "execute": "snapshot-delete",
2424#          "arguments": {
2425#             "job-id": "snapdelete0",
2426#             "tag": "my-snap",
2427#             "devices": ["disk0", "disk1"]
2428#          }
2429#        }
2430#     <- { "return": { } }
2431#     <- {"event": "JOB_STATUS_CHANGE",
2432#         "timestamp": {"seconds": 1442124172, "microseconds": 744001},
2433#         "data": {"status": "created", "id": "snapdelete0"}}
2434#     <- {"event": "JOB_STATUS_CHANGE",
2435#         "timestamp": {"seconds": 1442125172, "microseconds": 744001},
2436#         "data": {"status": "running", "id": "snapdelete0"}}
2437#     <- {"event": "JOB_STATUS_CHANGE",
2438#         "timestamp": {"seconds": 1442126172, "microseconds": 744001},
2439#         "data": {"status": "waiting", "id": "snapdelete0"}}
2440#     <- {"event": "JOB_STATUS_CHANGE",
2441#         "timestamp": {"seconds": 1442127172, "microseconds": 744001},
2442#         "data": {"status": "pending", "id": "snapdelete0"}}
2443#     <- {"event": "JOB_STATUS_CHANGE",
2444#         "timestamp": {"seconds": 1442128172, "microseconds": 744001},
2445#         "data": {"status": "concluded", "id": "snapdelete0"}}
2446#     -> {"execute": "query-jobs"}
2447#     <- {"return": [{"current-progress": 1,
2448#                     "status": "concluded",
2449#                     "total-progress": 1,
2450#                     "type": "snapshot-delete",
2451#                     "id": "snapdelete0"}]}
2452#
2453# Since: 6.0
2454##
2455{ 'command': 'snapshot-delete',
2456  'data': { 'job-id': 'str',
2457            'tag': 'str',
2458            'devices': ['str'] } }
2459