1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4 5## 6# = Migration 7## 8 9{ 'include': 'common.json' } 10{ 'include': 'sockets.json' } 11 12## 13# @MigrationStats: 14# 15# Detailed migration status. 16# 17# @transferred: amount of bytes already transferred to the target VM 18# 19# @remaining: amount of bytes remaining to be transferred to the target VM 20# 21# @total: total amount of bytes involved in the migration process 22# 23# @duplicate: number of duplicate (zero) pages (since 1.2) 24# 25# @skipped: number of skipped zero pages (since 1.5) 26# 27# @normal: number of normal pages (since 1.2) 28# 29# @normal-bytes: number of normal bytes sent (since 1.2) 30# 31# @dirty-pages-rate: number of pages dirtied by second by the 32# guest (since 1.3) 33# 34# @mbps: throughput in megabits/sec. (since 1.6) 35# 36# @dirty-sync-count: number of times that dirty ram was synchronized (since 2.1) 37# 38# @postcopy-requests: The number of page requests received from the destination 39# (since 2.7) 40# 41# @page-size: The number of bytes per page for the various page-based 42# statistics (since 2.10) 43# 44# @multifd-bytes: The number of bytes sent through multifd (since 3.0) 45# 46# @pages-per-second: the number of memory pages transferred per second 47# (Since 4.0) 48# 49# Since: 0.14.0 50## 51{ 'struct': 'MigrationStats', 52 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' , 53 'duplicate': 'int', 'skipped': 'int', 'normal': 'int', 54 'normal-bytes': 'int', 'dirty-pages-rate' : 'int', 55 'mbps' : 'number', 'dirty-sync-count' : 'int', 56 'postcopy-requests' : 'int', 'page-size' : 'int', 57 'multifd-bytes' : 'uint64', 'pages-per-second' : 'uint64' } } 58 59## 60# @XBZRLECacheStats: 61# 62# Detailed XBZRLE migration cache statistics 63# 64# @cache-size: XBZRLE cache size 65# 66# @bytes: amount of bytes already transferred to the target VM 67# 68# @pages: amount of pages transferred to the target VM 69# 70# @cache-miss: number of cache miss 71# 72# @cache-miss-rate: rate of cache miss (since 2.1) 73# 74# @encoding-rate: rate of encoded bytes (since 5.1) 75# 76# @overflow: number of overflows 77# 78# Since: 1.2 79## 80{ 'struct': 'XBZRLECacheStats', 81 'data': {'cache-size': 'int', 'bytes': 'int', 'pages': 'int', 82 'cache-miss': 'int', 'cache-miss-rate': 'number', 83 'encoding-rate': 'number', 'overflow': 'int' } } 84 85## 86# @CompressionStats: 87# 88# Detailed migration compression statistics 89# 90# @pages: amount of pages compressed and transferred to the target VM 91# 92# @busy: count of times that no free thread was available to compress data 93# 94# @busy-rate: rate of thread busy 95# 96# @compressed-size: amount of bytes after compression 97# 98# @compression-rate: rate of compressed size 99# 100# Since: 3.1 101## 102{ 'struct': 'CompressionStats', 103 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number', 104 'compressed-size': 'int', 'compression-rate': 'number' } } 105 106## 107# @MigrationStatus: 108# 109# An enumeration of migration status. 110# 111# @none: no migration has ever happened. 112# 113# @setup: migration process has been initiated. 114# 115# @cancelling: in the process of cancelling migration. 116# 117# @cancelled: cancelling migration is finished. 118# 119# @active: in the process of doing migration. 120# 121# @postcopy-active: like active, but now in postcopy mode. (since 2.5) 122# 123# @postcopy-paused: during postcopy but paused. (since 3.0) 124# 125# @postcopy-recover: trying to recover from a paused postcopy. (since 3.0) 126# 127# @completed: migration is finished. 128# 129# @failed: some error occurred during migration process. 130# 131# @colo: VM is in the process of fault tolerance, VM can not get into this 132# state unless colo capability is enabled for migration. (since 2.8) 133# 134# @pre-switchover: Paused before device serialisation. (since 2.11) 135# 136# @device: During device serialisation when pause-before-switchover is enabled 137# (since 2.11) 138# 139# @wait-unplug: wait for device unplug request by guest OS to be completed. 140# (since 4.2) 141# 142# Since: 2.3 143# 144## 145{ 'enum': 'MigrationStatus', 146 'data': [ 'none', 'setup', 'cancelling', 'cancelled', 147 'active', 'postcopy-active', 'postcopy-paused', 148 'postcopy-recover', 'completed', 'failed', 'colo', 149 'pre-switchover', 'device', 'wait-unplug' ] } 150 151## 152# @MigrationInfo: 153# 154# Information about current migration process. 155# 156# @status: @MigrationStatus describing the current migration status. 157# If this field is not returned, no migration process 158# has been initiated 159# 160# @ram: @MigrationStats containing detailed migration 161# status, only returned if status is 'active' or 162# 'completed'(since 1.2) 163# 164# @disk: @MigrationStats containing detailed disk migration 165# status, only returned if status is 'active' and it is a block 166# migration 167# 168# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE 169# migration statistics, only returned if XBZRLE feature is on and 170# status is 'active' or 'completed' (since 1.2) 171# 172# @total-time: total amount of milliseconds since migration started. 173# If migration has ended, it returns the total migration 174# time. (since 1.2) 175# 176# @downtime: only present when migration finishes correctly 177# total downtime in milliseconds for the guest. 178# (since 1.3) 179# 180# @expected-downtime: only present while migration is active 181# expected downtime in milliseconds for the guest in last walk 182# of the dirty bitmap. (since 1.3) 183# 184# @setup-time: amount of setup time in milliseconds *before* the 185# iterations begin but *after* the QMP command is issued. This is designed 186# to provide an accounting of any activities (such as RDMA pinning) which 187# may be expensive, but do not actually occur during the iterative 188# migration rounds themselves. (since 1.6) 189# 190# @cpu-throttle-percentage: percentage of time guest cpus are being 191# throttled during auto-converge. This is only present when auto-converge 192# has started throttling guest cpus. (Since 2.7) 193# 194# @error-desc: the human readable error description string, when 195# @status is 'failed'. Clients should not attempt to parse the 196# error strings. (Since 2.7) 197# 198# @postcopy-blocktime: total time when all vCPU were blocked during postcopy 199# live migration. This is only present when the postcopy-blocktime 200# migration capability is enabled. (Since 3.0) 201# 202# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. This is 203# only present when the postcopy-blocktime migration capability 204# is enabled. (Since 3.0) 205# 206# @compression: migration compression statistics, only returned if compression 207# feature is on and status is 'active' or 'completed' (Since 3.1) 208# 209# @socket-address: Only used for tcp, to know what the real port is (Since 4.0) 210# 211# Since: 0.14.0 212## 213{ 'struct': 'MigrationInfo', 214 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats', 215 '*disk': 'MigrationStats', 216 '*xbzrle-cache': 'XBZRLECacheStats', 217 '*total-time': 'int', 218 '*expected-downtime': 'int', 219 '*downtime': 'int', 220 '*setup-time': 'int', 221 '*cpu-throttle-percentage': 'int', 222 '*error-desc': 'str', 223 '*postcopy-blocktime' : 'uint32', 224 '*postcopy-vcpu-blocktime': ['uint32'], 225 '*compression': 'CompressionStats', 226 '*socket-address': ['SocketAddress'] } } 227 228## 229# @query-migrate: 230# 231# Returns information about current migration process. If migration 232# is active there will be another json-object with RAM migration 233# status and if block migration is active another one with block 234# migration status. 235# 236# Returns: @MigrationInfo 237# 238# Since: 0.14.0 239# 240# Example: 241# 242# 1. Before the first migration 243# 244# -> { "execute": "query-migrate" } 245# <- { "return": {} } 246# 247# 2. Migration is done and has succeeded 248# 249# -> { "execute": "query-migrate" } 250# <- { "return": { 251# "status": "completed", 252# "total-time":12345, 253# "setup-time":12345, 254# "downtime":12345, 255# "ram":{ 256# "transferred":123, 257# "remaining":123, 258# "total":246, 259# "duplicate":123, 260# "normal":123, 261# "normal-bytes":123456, 262# "dirty-sync-count":15 263# } 264# } 265# } 266# 267# 3. Migration is done and has failed 268# 269# -> { "execute": "query-migrate" } 270# <- { "return": { "status": "failed" } } 271# 272# 4. Migration is being performed and is not a block migration: 273# 274# -> { "execute": "query-migrate" } 275# <- { 276# "return":{ 277# "status":"active", 278# "total-time":12345, 279# "setup-time":12345, 280# "expected-downtime":12345, 281# "ram":{ 282# "transferred":123, 283# "remaining":123, 284# "total":246, 285# "duplicate":123, 286# "normal":123, 287# "normal-bytes":123456, 288# "dirty-sync-count":15 289# } 290# } 291# } 292# 293# 5. Migration is being performed and is a block migration: 294# 295# -> { "execute": "query-migrate" } 296# <- { 297# "return":{ 298# "status":"active", 299# "total-time":12345, 300# "setup-time":12345, 301# "expected-downtime":12345, 302# "ram":{ 303# "total":1057024, 304# "remaining":1053304, 305# "transferred":3720, 306# "duplicate":123, 307# "normal":123, 308# "normal-bytes":123456, 309# "dirty-sync-count":15 310# }, 311# "disk":{ 312# "total":20971520, 313# "remaining":20880384, 314# "transferred":91136 315# } 316# } 317# } 318# 319# 6. Migration is being performed and XBZRLE is active: 320# 321# -> { "execute": "query-migrate" } 322# <- { 323# "return":{ 324# "status":"active", 325# "total-time":12345, 326# "setup-time":12345, 327# "expected-downtime":12345, 328# "ram":{ 329# "total":1057024, 330# "remaining":1053304, 331# "transferred":3720, 332# "duplicate":10, 333# "normal":3333, 334# "normal-bytes":3412992, 335# "dirty-sync-count":15 336# }, 337# "xbzrle-cache":{ 338# "cache-size":67108864, 339# "bytes":20971520, 340# "pages":2444343, 341# "cache-miss":2244, 342# "cache-miss-rate":0.123, 343# "encoding-rate":80.1, 344# "overflow":34434 345# } 346# } 347# } 348# 349## 350{ 'command': 'query-migrate', 'returns': 'MigrationInfo' } 351 352## 353# @MigrationCapability: 354# 355# Migration capabilities enumeration 356# 357# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length Encoding). 358# This feature allows us to minimize migration traffic for certain work 359# loads, by sending compressed difference of the pages 360# 361# @rdma-pin-all: Controls whether or not the entire VM memory footprint is 362# mlock()'d on demand or all at once. Refer to docs/rdma.txt for usage. 363# Disabled by default. (since 2.0) 364# 365# @zero-blocks: During storage migration encode blocks of zeroes efficiently. This 366# essentially saves 1MB of zeroes per block on the wire. Enabling requires 367# source and target VM to support this feature. To enable it is sufficient 368# to enable the capability on the source VM. The feature is disabled by 369# default. (since 1.6) 370# 371# @compress: Use multiple compression threads to accelerate live migration. 372# This feature can help to reduce the migration traffic, by sending 373# compressed pages. Please note that if compress and xbzrle are both 374# on, compress only takes effect in the ram bulk stage, after that, 375# it will be disabled and only xbzrle takes effect, this can help to 376# minimize migration traffic. The feature is disabled by default. 377# (since 2.4 ) 378# 379# @events: generate events for each migration state change 380# (since 2.4 ) 381# 382# @auto-converge: If enabled, QEMU will automatically throttle down the guest 383# to speed up convergence of RAM migration. (since 1.6) 384# 385# @postcopy-ram: Start executing on the migration target before all of RAM has 386# been migrated, pulling the remaining pages along as needed. The 387# capacity must have the same setting on both source and target 388# or migration will not even start. NOTE: If the migration fails during 389# postcopy the VM will fail. (since 2.6) 390# 391# @x-colo: If enabled, migration will never end, and the state of the VM on the 392# primary side will be migrated continuously to the VM on secondary 393# side, this process is called COarse-Grain LOck Stepping (COLO) for 394# Non-stop Service. (since 2.8) 395# 396# @release-ram: if enabled, qemu will free the migrated ram pages on the source 397# during postcopy-ram migration. (since 2.9) 398# 399# @block: If enabled, QEMU will also migrate the contents of all block 400# devices. Default is disabled. A possible alternative uses 401# mirror jobs to a builtin NBD server on the destination, which 402# offers more flexibility. 403# (Since 2.10) 404# 405# @return-path: If enabled, migration will use the return path even 406# for precopy. (since 2.10) 407# 408# @pause-before-switchover: Pause outgoing migration before serialising device 409# state and before disabling block IO (since 2.11) 410# 411# @multifd: Use more than one fd for migration (since 4.0) 412# 413# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps. 414# (since 2.12) 415# 416# @postcopy-blocktime: Calculate downtime for postcopy live migration 417# (since 3.0) 418# 419# @late-block-activate: If enabled, the destination will not activate block 420# devices (and thus take locks) immediately at the end of migration. 421# (since 3.0) 422# 423# @x-ignore-shared: If enabled, QEMU will not migrate shared memory (since 4.0) 424# 425# @validate-uuid: Send the UUID of the source to allow the destination 426# to ensure it is the same. (since 4.2) 427# 428# Since: 1.2 429## 430{ 'enum': 'MigrationCapability', 431 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks', 432 'compress', 'events', 'postcopy-ram', 'x-colo', 'release-ram', 433 'block', 'return-path', 'pause-before-switchover', 'multifd', 434 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate', 435 'x-ignore-shared', 'validate-uuid' ] } 436 437## 438# @MigrationCapabilityStatus: 439# 440# Migration capability information 441# 442# @capability: capability enum 443# 444# @state: capability state bool 445# 446# Since: 1.2 447## 448{ 'struct': 'MigrationCapabilityStatus', 449 'data': { 'capability' : 'MigrationCapability', 'state' : 'bool' } } 450 451## 452# @migrate-set-capabilities: 453# 454# Enable/Disable the following migration capabilities (like xbzrle) 455# 456# @capabilities: json array of capability modifications to make 457# 458# Since: 1.2 459# 460# Example: 461# 462# -> { "execute": "migrate-set-capabilities" , "arguments": 463# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } } 464# 465## 466{ 'command': 'migrate-set-capabilities', 467 'data': { 'capabilities': ['MigrationCapabilityStatus'] } } 468 469## 470# @query-migrate-capabilities: 471# 472# Returns information about the current migration capabilities status 473# 474# Returns: @MigrationCapabilitiesStatus 475# 476# Since: 1.2 477# 478# Example: 479# 480# -> { "execute": "query-migrate-capabilities" } 481# <- { "return": [ 482# {"state": false, "capability": "xbzrle"}, 483# {"state": false, "capability": "rdma-pin-all"}, 484# {"state": false, "capability": "auto-converge"}, 485# {"state": false, "capability": "zero-blocks"}, 486# {"state": false, "capability": "compress"}, 487# {"state": true, "capability": "events"}, 488# {"state": false, "capability": "postcopy-ram"}, 489# {"state": false, "capability": "x-colo"} 490# ]} 491# 492## 493{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']} 494 495## 496# @MultiFDCompression: 497# 498# An enumeration of multifd compression methods. 499# 500# @none: no compression. 501# @zlib: use zlib compression method. 502# @zstd: use zstd compression method. 503# 504# Since: 5.0 505# 506## 507{ 'enum': 'MultiFDCompression', 508 'data': [ 'none', 'zlib', 509 { 'name': 'zstd', 'if': 'defined(CONFIG_ZSTD)' } ] } 510 511## 512# @BitmapMigrationBitmapAlias: 513# 514# @name: The name of the bitmap. 515# 516# @alias: An alias name for migration (for example the bitmap name on 517# the opposite site). 518# 519# Since: 5.2 520## 521{ 'struct': 'BitmapMigrationBitmapAlias', 522 'data': { 523 'name': 'str', 524 'alias': 'str' 525 } } 526 527## 528# @BitmapMigrationNodeAlias: 529# 530# Maps a block node name and the bitmaps it has to aliases for dirty 531# bitmap migration. 532# 533# @node-name: A block node name. 534# 535# @alias: An alias block node name for migration (for example the 536# node name on the opposite site). 537# 538# @bitmaps: Mappings for the bitmaps on this node. 539# 540# Since: 5.2 541## 542{ 'struct': 'BitmapMigrationNodeAlias', 543 'data': { 544 'node-name': 'str', 545 'alias': 'str', 546 'bitmaps': [ 'BitmapMigrationBitmapAlias' ] 547 } } 548 549## 550# @MigrationParameter: 551# 552# Migration parameters enumeration 553# 554# @announce-initial: Initial delay (in milliseconds) before sending the first 555# announce (Since 4.0) 556# 557# @announce-max: Maximum delay (in milliseconds) between packets in the 558# announcement (Since 4.0) 559# 560# @announce-rounds: Number of self-announce packets sent after migration 561# (Since 4.0) 562# 563# @announce-step: Increase in delay (in milliseconds) between subsequent 564# packets in the announcement (Since 4.0) 565# 566# @compress-level: Set the compression level to be used in live migration, 567# the compression level is an integer between 0 and 9, where 0 means 568# no compression, 1 means the best compression speed, and 9 means best 569# compression ratio which will consume more CPU. 570# 571# @compress-threads: Set compression thread count to be used in live migration, 572# the compression thread count is an integer between 1 and 255. 573# 574# @compress-wait-thread: Controls behavior when all compression threads are 575# currently busy. If true (default), wait for a free 576# compression thread to become available; otherwise, 577# send the page uncompressed. (Since 3.1) 578# 579# @decompress-threads: Set decompression thread count to be used in live 580# migration, the decompression thread count is an integer between 1 581# and 255. Usually, decompression is at least 4 times as fast as 582# compression, so set the decompress-threads to the number about 1/4 583# of compress-threads is adequate. 584# 585# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period 586# to trigger throttling. It is expressed as percentage. 587# The default value is 50. (Since 5.0) 588# 589# @cpu-throttle-initial: Initial percentage of time guest cpus are throttled 590# when migration auto-converge is activated. The 591# default value is 20. (Since 2.7) 592# 593# @cpu-throttle-increment: throttle percentage increase each time 594# auto-converge detects that migration is not making 595# progress. The default value is 10. (Since 2.7) 596# 597# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage 598# At the tail stage of throttling, the Guest is very 599# sensitive to CPU percentage while the @cpu-throttle 600# -increment is excessive usually at tail stage. 601# If this parameter is true, we will compute the ideal 602# CPU percentage used by the Guest, which may exactly make 603# the dirty rate match the dirty rate threshold. Then we 604# will choose a smaller throttle increment between the 605# one specified by @cpu-throttle-increment and the one 606# generated by ideal CPU percentage. 607# Therefore, it is compatible to traditional throttling, 608# meanwhile the throttle increment won't be excessive 609# at tail stage. 610# The default value is false. (Since 5.1) 611# 612# @tls-creds: ID of the 'tls-creds' object that provides credentials for 613# establishing a TLS connection over the migration data channel. 614# On the outgoing side of the migration, the credentials must 615# be for a 'client' endpoint, while for the incoming side the 616# credentials must be for a 'server' endpoint. Setting this 617# will enable TLS for all migrations. The default is unset, 618# resulting in unsecured migration at the QEMU level. (Since 2.7) 619# 620# @tls-hostname: hostname of the target host for the migration. This is 621# required when using x509 based TLS credentials and the 622# migration URI does not already include a hostname. For 623# example if using fd: or exec: based migration, the 624# hostname must be provided so that the server's x509 625# certificate identity can be validated. (Since 2.7) 626# 627# @tls-authz: ID of the 'authz' object subclass that provides access control 628# checking of the TLS x509 certificate distinguished name. 629# This object is only resolved at time of use, so can be deleted 630# and recreated on the fly while the migration server is active. 631# If missing, it will default to denying access (Since 4.0) 632# 633# @max-bandwidth: to set maximum speed for migration. maximum speed in 634# bytes per second. (Since 2.8) 635# 636# @downtime-limit: set maximum tolerated downtime for migration. maximum 637# downtime in milliseconds (Since 2.8) 638# 639# @x-checkpoint-delay: The delay time (in ms) between two COLO checkpoints in 640# periodic mode. (Since 2.8) 641# 642# @block-incremental: Affects how much storage is migrated when the 643# block migration capability is enabled. When false, the entire 644# storage backing chain is migrated into a flattened image at 645# the destination; when true, only the active qcow2 layer is 646# migrated and the destination must already have access to the 647# same backing chain as was used on the source. (since 2.10) 648# 649# @multifd-channels: Number of channels used to migrate data in 650# parallel. This is the same number that the 651# number of sockets used for migration. The 652# default value is 2 (since 4.0) 653# 654# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 655# needs to be a multiple of the target page size 656# and a power of 2 657# (Since 2.11) 658# 659# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy. 660# Defaults to 0 (unlimited). In bytes per second. 661# (Since 3.0) 662# 663# @max-cpu-throttle: maximum cpu throttle percentage. 664# Defaults to 99. (Since 3.1) 665# 666# @multifd-compression: Which compression method to use. 667# Defaults to none. (Since 5.0) 668# 669# @multifd-zlib-level: Set the compression level to be used in live 670# migration, the compression level is an integer between 0 671# and 9, where 0 means no compression, 1 means the best 672# compression speed, and 9 means best compression ratio which 673# will consume more CPU. 674# Defaults to 1. (Since 5.0) 675# 676# @multifd-zstd-level: Set the compression level to be used in live 677# migration, the compression level is an integer between 0 678# and 20, where 0 means no compression, 1 means the best 679# compression speed, and 20 means best compression ratio which 680# will consume more CPU. 681# Defaults to 1. (Since 5.0) 682# 683# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 684# aliases for the purpose of dirty bitmap migration. Such 685# aliases may for example be the corresponding names on the 686# opposite site. 687# The mapping must be one-to-one, but not necessarily 688# complete: On the source, unmapped bitmaps and all bitmaps 689# on unmapped nodes will be ignored. On the destination, 690# encountering an unmapped alias in the incoming migration 691# stream will result in a report, and all further bitmap 692# migration data will then be discarded. 693# Note that the destination does not know about bitmaps it 694# does not receive, so there is no limitation or requirement 695# regarding the number of bitmaps received, or how they are 696# named, or on which nodes they are placed. 697# By default (when this parameter has never been set), bitmap 698# names are mapped to themselves. Nodes are mapped to their 699# block device name if there is one, and to their node name 700# otherwise. (Since 5.2) 701# 702# Since: 2.4 703## 704{ 'enum': 'MigrationParameter', 705 'data': ['announce-initial', 'announce-max', 706 'announce-rounds', 'announce-step', 707 'compress-level', 'compress-threads', 'decompress-threads', 708 'compress-wait-thread', 'throttle-trigger-threshold', 709 'cpu-throttle-initial', 'cpu-throttle-increment', 710 'cpu-throttle-tailslow', 711 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth', 712 'downtime-limit', 'x-checkpoint-delay', 'block-incremental', 713 'multifd-channels', 714 'xbzrle-cache-size', 'max-postcopy-bandwidth', 715 'max-cpu-throttle', 'multifd-compression', 716 'multifd-zlib-level' ,'multifd-zstd-level', 717 'block-bitmap-mapping' ] } 718 719## 720# @MigrateSetParameters: 721# 722# @announce-initial: Initial delay (in milliseconds) before sending the first 723# announce (Since 4.0) 724# 725# @announce-max: Maximum delay (in milliseconds) between packets in the 726# announcement (Since 4.0) 727# 728# @announce-rounds: Number of self-announce packets sent after migration 729# (Since 4.0) 730# 731# @announce-step: Increase in delay (in milliseconds) between subsequent 732# packets in the announcement (Since 4.0) 733# 734# @compress-level: compression level 735# 736# @compress-threads: compression thread count 737# 738# @compress-wait-thread: Controls behavior when all compression threads are 739# currently busy. If true (default), wait for a free 740# compression thread to become available; otherwise, 741# send the page uncompressed. (Since 3.1) 742# 743# @decompress-threads: decompression thread count 744# 745# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period 746# to trigger throttling. It is expressed as percentage. 747# The default value is 50. (Since 5.0) 748# 749# @cpu-throttle-initial: Initial percentage of time guest cpus are 750# throttled when migration auto-converge is activated. 751# The default value is 20. (Since 2.7) 752# 753# @cpu-throttle-increment: throttle percentage increase each time 754# auto-converge detects that migration is not making 755# progress. The default value is 10. (Since 2.7) 756# 757# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage 758# At the tail stage of throttling, the Guest is very 759# sensitive to CPU percentage while the @cpu-throttle 760# -increment is excessive usually at tail stage. 761# If this parameter is true, we will compute the ideal 762# CPU percentage used by the Guest, which may exactly make 763# the dirty rate match the dirty rate threshold. Then we 764# will choose a smaller throttle increment between the 765# one specified by @cpu-throttle-increment and the one 766# generated by ideal CPU percentage. 767# Therefore, it is compatible to traditional throttling, 768# meanwhile the throttle increment won't be excessive 769# at tail stage. 770# The default value is false. (Since 5.1) 771# 772# @tls-creds: ID of the 'tls-creds' object that provides credentials 773# for establishing a TLS connection over the migration data 774# channel. On the outgoing side of the migration, the credentials 775# must be for a 'client' endpoint, while for the incoming side the 776# credentials must be for a 'server' endpoint. Setting this 777# to a non-empty string enables TLS for all migrations. 778# An empty string means that QEMU will use plain text mode for 779# migration, rather than TLS (Since 2.9) 780# Previously (since 2.7), this was reported by omitting 781# tls-creds instead. 782# 783# @tls-hostname: hostname of the target host for the migration. This 784# is required when using x509 based TLS credentials and the 785# migration URI does not already include a hostname. For 786# example if using fd: or exec: based migration, the 787# hostname must be provided so that the server's x509 788# certificate identity can be validated. (Since 2.7) 789# An empty string means that QEMU will use the hostname 790# associated with the migration URI, if any. (Since 2.9) 791# Previously (since 2.7), this was reported by omitting 792# tls-hostname instead. 793# 794# @max-bandwidth: to set maximum speed for migration. maximum speed in 795# bytes per second. (Since 2.8) 796# 797# @downtime-limit: set maximum tolerated downtime for migration. maximum 798# downtime in milliseconds (Since 2.8) 799# 800# @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8) 801# 802# @block-incremental: Affects how much storage is migrated when the 803# block migration capability is enabled. When false, the entire 804# storage backing chain is migrated into a flattened image at 805# the destination; when true, only the active qcow2 layer is 806# migrated and the destination must already have access to the 807# same backing chain as was used on the source. (since 2.10) 808# 809# @multifd-channels: Number of channels used to migrate data in 810# parallel. This is the same number that the 811# number of sockets used for migration. The 812# default value is 2 (since 4.0) 813# 814# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 815# needs to be a multiple of the target page size 816# and a power of 2 817# (Since 2.11) 818# 819# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy. 820# Defaults to 0 (unlimited). In bytes per second. 821# (Since 3.0) 822# 823# @max-cpu-throttle: maximum cpu throttle percentage. 824# The default value is 99. (Since 3.1) 825# 826# @multifd-compression: Which compression method to use. 827# Defaults to none. (Since 5.0) 828# 829# @multifd-zlib-level: Set the compression level to be used in live 830# migration, the compression level is an integer between 0 831# and 9, where 0 means no compression, 1 means the best 832# compression speed, and 9 means best compression ratio which 833# will consume more CPU. 834# Defaults to 1. (Since 5.0) 835# 836# @multifd-zstd-level: Set the compression level to be used in live 837# migration, the compression level is an integer between 0 838# and 20, where 0 means no compression, 1 means the best 839# compression speed, and 20 means best compression ratio which 840# will consume more CPU. 841# Defaults to 1. (Since 5.0) 842# 843# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 844# aliases for the purpose of dirty bitmap migration. Such 845# aliases may for example be the corresponding names on the 846# opposite site. 847# The mapping must be one-to-one, but not necessarily 848# complete: On the source, unmapped bitmaps and all bitmaps 849# on unmapped nodes will be ignored. On the destination, 850# encountering an unmapped alias in the incoming migration 851# stream will result in a report, and all further bitmap 852# migration data will then be discarded. 853# Note that the destination does not know about bitmaps it 854# does not receive, so there is no limitation or requirement 855# regarding the number of bitmaps received, or how they are 856# named, or on which nodes they are placed. 857# By default (when this parameter has never been set), bitmap 858# names are mapped to themselves. Nodes are mapped to their 859# block device name if there is one, and to their node name 860# otherwise. (Since 5.2) 861# 862# Since: 2.4 863## 864# TODO either fuse back into MigrationParameters, or make 865# MigrationParameters members mandatory 866{ 'struct': 'MigrateSetParameters', 867 'data': { '*announce-initial': 'size', 868 '*announce-max': 'size', 869 '*announce-rounds': 'size', 870 '*announce-step': 'size', 871 '*compress-level': 'int', 872 '*compress-threads': 'int', 873 '*compress-wait-thread': 'bool', 874 '*decompress-threads': 'int', 875 '*throttle-trigger-threshold': 'int', 876 '*cpu-throttle-initial': 'int', 877 '*cpu-throttle-increment': 'int', 878 '*cpu-throttle-tailslow': 'bool', 879 '*tls-creds': 'StrOrNull', 880 '*tls-hostname': 'StrOrNull', 881 '*tls-authz': 'StrOrNull', 882 '*max-bandwidth': 'int', 883 '*downtime-limit': 'int', 884 '*x-checkpoint-delay': 'int', 885 '*block-incremental': 'bool', 886 '*multifd-channels': 'int', 887 '*xbzrle-cache-size': 'size', 888 '*max-postcopy-bandwidth': 'size', 889 '*max-cpu-throttle': 'int', 890 '*multifd-compression': 'MultiFDCompression', 891 '*multifd-zlib-level': 'int', 892 '*multifd-zstd-level': 'int', 893 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } } 894 895## 896# @migrate-set-parameters: 897# 898# Set various migration parameters. 899# 900# Since: 2.4 901# 902# Example: 903# 904# -> { "execute": "migrate-set-parameters" , 905# "arguments": { "compress-level": 1 } } 906# 907## 908{ 'command': 'migrate-set-parameters', 'boxed': true, 909 'data': 'MigrateSetParameters' } 910 911## 912# @MigrationParameters: 913# 914# The optional members aren't actually optional. 915# 916# @announce-initial: Initial delay (in milliseconds) before sending the 917# first announce (Since 4.0) 918# 919# @announce-max: Maximum delay (in milliseconds) between packets in the 920# announcement (Since 4.0) 921# 922# @announce-rounds: Number of self-announce packets sent after migration 923# (Since 4.0) 924# 925# @announce-step: Increase in delay (in milliseconds) between subsequent 926# packets in the announcement (Since 4.0) 927# 928# @compress-level: compression level 929# 930# @compress-threads: compression thread count 931# 932# @compress-wait-thread: Controls behavior when all compression threads are 933# currently busy. If true (default), wait for a free 934# compression thread to become available; otherwise, 935# send the page uncompressed. (Since 3.1) 936# 937# @decompress-threads: decompression thread count 938# 939# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period 940# to trigger throttling. It is expressed as percentage. 941# The default value is 50. (Since 5.0) 942# 943# @cpu-throttle-initial: Initial percentage of time guest cpus are 944# throttled when migration auto-converge is activated. 945# (Since 2.7) 946# 947# @cpu-throttle-increment: throttle percentage increase each time 948# auto-converge detects that migration is not making 949# progress. (Since 2.7) 950# 951# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage 952# At the tail stage of throttling, the Guest is very 953# sensitive to CPU percentage while the @cpu-throttle 954# -increment is excessive usually at tail stage. 955# If this parameter is true, we will compute the ideal 956# CPU percentage used by the Guest, which may exactly make 957# the dirty rate match the dirty rate threshold. Then we 958# will choose a smaller throttle increment between the 959# one specified by @cpu-throttle-increment and the one 960# generated by ideal CPU percentage. 961# Therefore, it is compatible to traditional throttling, 962# meanwhile the throttle increment won't be excessive 963# at tail stage. 964# The default value is false. (Since 5.1) 965# 966# @tls-creds: ID of the 'tls-creds' object that provides credentials 967# for establishing a TLS connection over the migration data 968# channel. On the outgoing side of the migration, the credentials 969# must be for a 'client' endpoint, while for the incoming side the 970# credentials must be for a 'server' endpoint. 971# An empty string means that QEMU will use plain text mode for 972# migration, rather than TLS (Since 2.7) 973# Note: 2.8 reports this by omitting tls-creds instead. 974# 975# @tls-hostname: hostname of the target host for the migration. This 976# is required when using x509 based TLS credentials and the 977# migration URI does not already include a hostname. For 978# example if using fd: or exec: based migration, the 979# hostname must be provided so that the server's x509 980# certificate identity can be validated. (Since 2.7) 981# An empty string means that QEMU will use the hostname 982# associated with the migration URI, if any. (Since 2.9) 983# Note: 2.8 reports this by omitting tls-hostname instead. 984# 985# @tls-authz: ID of the 'authz' object subclass that provides access control 986# checking of the TLS x509 certificate distinguished name. (Since 987# 4.0) 988# 989# @max-bandwidth: to set maximum speed for migration. maximum speed in 990# bytes per second. (Since 2.8) 991# 992# @downtime-limit: set maximum tolerated downtime for migration. maximum 993# downtime in milliseconds (Since 2.8) 994# 995# @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8) 996# 997# @block-incremental: Affects how much storage is migrated when the 998# block migration capability is enabled. When false, the entire 999# storage backing chain is migrated into a flattened image at 1000# the destination; when true, only the active qcow2 layer is 1001# migrated and the destination must already have access to the 1002# same backing chain as was used on the source. (since 2.10) 1003# 1004# @multifd-channels: Number of channels used to migrate data in 1005# parallel. This is the same number that the 1006# number of sockets used for migration. 1007# The default value is 2 (since 4.0) 1008# 1009# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1010# needs to be a multiple of the target page size 1011# and a power of 2 1012# (Since 2.11) 1013# 1014# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy. 1015# Defaults to 0 (unlimited). In bytes per second. 1016# (Since 3.0) 1017# 1018# @max-cpu-throttle: maximum cpu throttle percentage. 1019# Defaults to 99. 1020# (Since 3.1) 1021# 1022# @multifd-compression: Which compression method to use. 1023# Defaults to none. (Since 5.0) 1024# 1025# @multifd-zlib-level: Set the compression level to be used in live 1026# migration, the compression level is an integer between 0 1027# and 9, where 0 means no compression, 1 means the best 1028# compression speed, and 9 means best compression ratio which 1029# will consume more CPU. 1030# Defaults to 1. (Since 5.0) 1031# 1032# @multifd-zstd-level: Set the compression level to be used in live 1033# migration, the compression level is an integer between 0 1034# and 20, where 0 means no compression, 1 means the best 1035# compression speed, and 20 means best compression ratio which 1036# will consume more CPU. 1037# Defaults to 1. (Since 5.0) 1038# 1039# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1040# aliases for the purpose of dirty bitmap migration. Such 1041# aliases may for example be the corresponding names on the 1042# opposite site. 1043# The mapping must be one-to-one, but not necessarily 1044# complete: On the source, unmapped bitmaps and all bitmaps 1045# on unmapped nodes will be ignored. On the destination, 1046# encountering an unmapped alias in the incoming migration 1047# stream will result in a report, and all further bitmap 1048# migration data will then be discarded. 1049# Note that the destination does not know about bitmaps it 1050# does not receive, so there is no limitation or requirement 1051# regarding the number of bitmaps received, or how they are 1052# named, or on which nodes they are placed. 1053# By default (when this parameter has never been set), bitmap 1054# names are mapped to themselves. Nodes are mapped to their 1055# block device name if there is one, and to their node name 1056# otherwise. (Since 5.2) 1057# 1058# Since: 2.4 1059## 1060{ 'struct': 'MigrationParameters', 1061 'data': { '*announce-initial': 'size', 1062 '*announce-max': 'size', 1063 '*announce-rounds': 'size', 1064 '*announce-step': 'size', 1065 '*compress-level': 'uint8', 1066 '*compress-threads': 'uint8', 1067 '*compress-wait-thread': 'bool', 1068 '*decompress-threads': 'uint8', 1069 '*throttle-trigger-threshold': 'uint8', 1070 '*cpu-throttle-initial': 'uint8', 1071 '*cpu-throttle-increment': 'uint8', 1072 '*cpu-throttle-tailslow': 'bool', 1073 '*tls-creds': 'str', 1074 '*tls-hostname': 'str', 1075 '*tls-authz': 'str', 1076 '*max-bandwidth': 'size', 1077 '*downtime-limit': 'uint64', 1078 '*x-checkpoint-delay': 'uint32', 1079 '*block-incremental': 'bool' , 1080 '*multifd-channels': 'uint8', 1081 '*xbzrle-cache-size': 'size', 1082 '*max-postcopy-bandwidth': 'size', 1083 '*max-cpu-throttle': 'uint8', 1084 '*multifd-compression': 'MultiFDCompression', 1085 '*multifd-zlib-level': 'uint8', 1086 '*multifd-zstd-level': 'uint8', 1087 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } } 1088 1089## 1090# @query-migrate-parameters: 1091# 1092# Returns information about the current migration parameters 1093# 1094# Returns: @MigrationParameters 1095# 1096# Since: 2.4 1097# 1098# Example: 1099# 1100# -> { "execute": "query-migrate-parameters" } 1101# <- { "return": { 1102# "decompress-threads": 2, 1103# "cpu-throttle-increment": 10, 1104# "compress-threads": 8, 1105# "compress-level": 1, 1106# "cpu-throttle-initial": 20, 1107# "max-bandwidth": 33554432, 1108# "downtime-limit": 300 1109# } 1110# } 1111# 1112## 1113{ 'command': 'query-migrate-parameters', 1114 'returns': 'MigrationParameters' } 1115 1116## 1117# @client_migrate_info: 1118# 1119# Set migration information for remote display. This makes the server 1120# ask the client to automatically reconnect using the new parameters 1121# once migration finished successfully. Only implemented for SPICE. 1122# 1123# @protocol: must be "spice" 1124# @hostname: migration target hostname 1125# @port: spice tcp port for plaintext channels 1126# @tls-port: spice tcp port for tls-secured channels 1127# @cert-subject: server certificate subject 1128# 1129# Since: 0.14.0 1130# 1131# Example: 1132# 1133# -> { "execute": "client_migrate_info", 1134# "arguments": { "protocol": "spice", 1135# "hostname": "virt42.lab.kraxel.org", 1136# "port": 1234 } } 1137# <- { "return": {} } 1138# 1139## 1140{ 'command': 'client_migrate_info', 1141 'data': { 'protocol': 'str', 'hostname': 'str', '*port': 'int', 1142 '*tls-port': 'int', '*cert-subject': 'str' } } 1143 1144## 1145# @migrate-start-postcopy: 1146# 1147# Followup to a migration command to switch the migration to postcopy mode. 1148# The postcopy-ram capability must be set on both source and destination 1149# before the original migration command. 1150# 1151# Since: 2.5 1152# 1153# Example: 1154# 1155# -> { "execute": "migrate-start-postcopy" } 1156# <- { "return": {} } 1157# 1158## 1159{ 'command': 'migrate-start-postcopy' } 1160 1161## 1162# @MIGRATION: 1163# 1164# Emitted when a migration event happens 1165# 1166# @status: @MigrationStatus describing the current migration status. 1167# 1168# Since: 2.4 1169# 1170# Example: 1171# 1172# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001}, 1173# "event": "MIGRATION", 1174# "data": {"status": "completed"} } 1175# 1176## 1177{ 'event': 'MIGRATION', 1178 'data': {'status': 'MigrationStatus'}} 1179 1180## 1181# @MIGRATION_PASS: 1182# 1183# Emitted from the source side of a migration at the start of each pass 1184# (when it syncs the dirty bitmap) 1185# 1186# @pass: An incrementing count (starting at 1 on the first pass) 1187# 1188# Since: 2.6 1189# 1190# Example: 1191# 1192# { "timestamp": {"seconds": 1449669631, "microseconds": 239225}, 1193# "event": "MIGRATION_PASS", "data": {"pass": 2} } 1194# 1195## 1196{ 'event': 'MIGRATION_PASS', 1197 'data': { 'pass': 'int' } } 1198 1199## 1200# @COLOMessage: 1201# 1202# The message transmission between Primary side and Secondary side. 1203# 1204# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing 1205# 1206# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for checkpointing 1207# 1208# @checkpoint-reply: SVM gets PVM's checkpoint request 1209# 1210# @vmstate-send: VM's state will be sent by PVM. 1211# 1212# @vmstate-size: The total size of VMstate. 1213# 1214# @vmstate-received: VM's state has been received by SVM. 1215# 1216# @vmstate-loaded: VM's state has been loaded by SVM. 1217# 1218# Since: 2.8 1219## 1220{ 'enum': 'COLOMessage', 1221 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply', 1222 'vmstate-send', 'vmstate-size', 'vmstate-received', 1223 'vmstate-loaded' ] } 1224 1225## 1226# @COLOMode: 1227# 1228# The COLO current mode. 1229# 1230# @none: COLO is disabled. 1231# 1232# @primary: COLO node in primary side. 1233# 1234# @secondary: COLO node in slave side. 1235# 1236# Since: 2.8 1237## 1238{ 'enum': 'COLOMode', 1239 'data': [ 'none', 'primary', 'secondary'] } 1240 1241## 1242# @FailoverStatus: 1243# 1244# An enumeration of COLO failover status 1245# 1246# @none: no failover has ever happened 1247# 1248# @require: got failover requirement but not handled 1249# 1250# @active: in the process of doing failover 1251# 1252# @completed: finish the process of failover 1253# 1254# @relaunch: restart the failover process, from 'none' -> 'completed' (Since 2.9) 1255# 1256# Since: 2.8 1257## 1258{ 'enum': 'FailoverStatus', 1259 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] } 1260 1261## 1262# @COLO_EXIT: 1263# 1264# Emitted when VM finishes COLO mode due to some errors happening or 1265# at the request of users. 1266# 1267# @mode: report COLO mode when COLO exited. 1268# 1269# @reason: describes the reason for the COLO exit. 1270# 1271# Since: 3.1 1272# 1273# Example: 1274# 1275# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172}, 1276# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } } 1277# 1278## 1279{ 'event': 'COLO_EXIT', 1280 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } } 1281 1282## 1283# @COLOExitReason: 1284# 1285# The reason for a COLO exit. 1286# 1287# @none: failover has never happened. This state does not occur 1288# in the COLO_EXIT event, and is only visible in the result of 1289# query-colo-status. 1290# 1291# @request: COLO exit is due to an external request. 1292# 1293# @error: COLO exit is due to an internal error. 1294# 1295# @processing: COLO is currently handling a failover (since 4.0). 1296# 1297# Since: 3.1 1298## 1299{ 'enum': 'COLOExitReason', 1300 'data': [ 'none', 'request', 'error' , 'processing' ] } 1301 1302## 1303# @x-colo-lost-heartbeat: 1304# 1305# Tell qemu that heartbeat is lost, request it to do takeover procedures. 1306# If this command is sent to the PVM, the Primary side will exit COLO mode. 1307# If sent to the Secondary, the Secondary side will run failover work, 1308# then takes over server operation to become the service VM. 1309# 1310# Since: 2.8 1311# 1312# Example: 1313# 1314# -> { "execute": "x-colo-lost-heartbeat" } 1315# <- { "return": {} } 1316# 1317## 1318{ 'command': 'x-colo-lost-heartbeat' } 1319 1320## 1321# @migrate_cancel: 1322# 1323# Cancel the current executing migration process. 1324# 1325# Returns: nothing on success 1326# 1327# Notes: This command succeeds even if there is no migration process running. 1328# 1329# Since: 0.14.0 1330# 1331# Example: 1332# 1333# -> { "execute": "migrate_cancel" } 1334# <- { "return": {} } 1335# 1336## 1337{ 'command': 'migrate_cancel' } 1338 1339## 1340# @migrate-continue: 1341# 1342# Continue migration when it's in a paused state. 1343# 1344# @state: The state the migration is currently expected to be in 1345# 1346# Returns: nothing on success 1347# Since: 2.11 1348# Example: 1349# 1350# -> { "execute": "migrate-continue" , "arguments": 1351# { "state": "pre-switchover" } } 1352# <- { "return": {} } 1353## 1354{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} } 1355 1356## 1357# @migrate_set_downtime: 1358# 1359# Set maximum tolerated downtime for migration. 1360# 1361# @value: maximum downtime in seconds 1362# 1363# Features: 1364# @deprecated: This command is deprecated. Use 1365# 'migrate-set-parameters' instead. 1366# 1367# Returns: nothing on success 1368# 1369# Since: 0.14.0 1370# 1371# Example: 1372# 1373# -> { "execute": "migrate_set_downtime", "arguments": { "value": 0.1 } } 1374# <- { "return": {} } 1375# 1376## 1377{ 'command': 'migrate_set_downtime', 'data': {'value': 'number'}, 1378 'features': [ 'deprecated' ] } 1379 1380## 1381# @migrate_set_speed: 1382# 1383# Set maximum speed for migration. 1384# 1385# @value: maximum speed in bytes per second. 1386# 1387# Features: 1388# @deprecated: This command is deprecated. Use 1389# 'migrate-set-parameters' instead. 1390# 1391# Returns: nothing on success 1392# 1393# Since: 0.14.0 1394# 1395# Example: 1396# 1397# -> { "execute": "migrate_set_speed", "arguments": { "value": 1024 } } 1398# <- { "return": {} } 1399# 1400## 1401{ 'command': 'migrate_set_speed', 'data': {'value': 'int'}, 1402 'features': [ 'deprecated' ] } 1403 1404## 1405# @migrate-set-cache-size: 1406# 1407# Set cache size to be used by XBZRLE migration 1408# 1409# @value: cache size in bytes 1410# 1411# Features: 1412# @deprecated: This command is deprecated. Use 1413# 'migrate-set-parameters' instead. 1414# 1415# The size will be rounded down to the nearest power of 2. 1416# The cache size can be modified before and during ongoing migration 1417# 1418# Returns: nothing on success 1419# 1420# Since: 1.2 1421# 1422# Example: 1423# 1424# -> { "execute": "migrate-set-cache-size", 1425# "arguments": { "value": 536870912 } } 1426# <- { "return": {} } 1427# 1428## 1429{ 'command': 'migrate-set-cache-size', 'data': {'value': 'int'}, 1430 'features': [ 'deprecated' ] } 1431 1432## 1433# @query-migrate-cache-size: 1434# 1435# Query migration XBZRLE cache size 1436# 1437# Features: 1438# @deprecated: This command is deprecated. Use 1439# 'query-migrate-parameters' instead. 1440# 1441# Returns: XBZRLE cache size in bytes 1442# 1443# Since: 1.2 1444# 1445# Example: 1446# 1447# -> { "execute": "query-migrate-cache-size" } 1448# <- { "return": 67108864 } 1449# 1450## 1451{ 'command': 'query-migrate-cache-size', 'returns': 'int', 1452 'features': [ 'deprecated' ] } 1453 1454## 1455# @migrate: 1456# 1457# Migrates the current running guest to another Virtual Machine. 1458# 1459# @uri: the Uniform Resource Identifier of the destination VM 1460# 1461# @blk: do block migration (full disk copy) 1462# 1463# @inc: incremental disk copy migration 1464# 1465# @detach: this argument exists only for compatibility reasons and 1466# is ignored by QEMU 1467# 1468# @resume: resume one paused migration, default "off". (since 3.0) 1469# 1470# Returns: nothing on success 1471# 1472# Since: 0.14.0 1473# 1474# Notes: 1475# 1476# 1. The 'query-migrate' command should be used to check migration's progress 1477# and final result (this information is provided by the 'status' member) 1478# 1479# 2. All boolean arguments default to false 1480# 1481# 3. The user Monitor's "detach" argument is invalid in QMP and should not 1482# be used 1483# 1484# Example: 1485# 1486# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } } 1487# <- { "return": {} } 1488# 1489## 1490{ 'command': 'migrate', 1491 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool', 1492 '*detach': 'bool', '*resume': 'bool' } } 1493 1494## 1495# @migrate-incoming: 1496# 1497# Start an incoming migration, the qemu must have been started 1498# with -incoming defer 1499# 1500# @uri: The Uniform Resource Identifier identifying the source or 1501# address to listen on 1502# 1503# Returns: nothing on success 1504# 1505# Since: 2.3 1506# 1507# Notes: 1508# 1509# 1. It's a bad idea to use a string for the uri, but it needs to stay 1510# compatible with -incoming and the format of the uri is already exposed 1511# above libvirt. 1512# 1513# 2. QEMU must be started with -incoming defer to allow migrate-incoming to 1514# be used. 1515# 1516# 3. The uri format is the same as for -incoming 1517# 1518# Example: 1519# 1520# -> { "execute": "migrate-incoming", 1521# "arguments": { "uri": "tcp::4446" } } 1522# <- { "return": {} } 1523# 1524## 1525{ 'command': 'migrate-incoming', 'data': {'uri': 'str' } } 1526 1527## 1528# @xen-save-devices-state: 1529# 1530# Save the state of all devices to file. The RAM and the block devices 1531# of the VM are not saved by this command. 1532# 1533# @filename: the file to save the state of the devices to as binary 1534# data. See xen-save-devices-state.txt for a description of the binary 1535# format. 1536# 1537# @live: Optional argument to ask QEMU to treat this command as part of a live 1538# migration. Default to true. (since 2.11) 1539# 1540# Returns: Nothing on success 1541# 1542# Since: 1.1 1543# 1544# Example: 1545# 1546# -> { "execute": "xen-save-devices-state", 1547# "arguments": { "filename": "/tmp/save" } } 1548# <- { "return": {} } 1549# 1550## 1551{ 'command': 'xen-save-devices-state', 1552 'data': {'filename': 'str', '*live':'bool' } } 1553 1554## 1555# @xen-set-replication: 1556# 1557# Enable or disable replication. 1558# 1559# @enable: true to enable, false to disable. 1560# 1561# @primary: true for primary or false for secondary. 1562# 1563# @failover: true to do failover, false to stop. but cannot be 1564# specified if 'enable' is true. default value is false. 1565# 1566# Returns: nothing. 1567# 1568# Example: 1569# 1570# -> { "execute": "xen-set-replication", 1571# "arguments": {"enable": true, "primary": false} } 1572# <- { "return": {} } 1573# 1574# Since: 2.9 1575## 1576{ 'command': 'xen-set-replication', 1577 'data': { 'enable': 'bool', 'primary': 'bool', '*failover' : 'bool' }, 1578 'if': 'defined(CONFIG_REPLICATION)' } 1579 1580## 1581# @ReplicationStatus: 1582# 1583# The result format for 'query-xen-replication-status'. 1584# 1585# @error: true if an error happened, false if replication is normal. 1586# 1587# @desc: the human readable error description string, when 1588# @error is 'true'. 1589# 1590# Since: 2.9 1591## 1592{ 'struct': 'ReplicationStatus', 1593 'data': { 'error': 'bool', '*desc': 'str' }, 1594 'if': 'defined(CONFIG_REPLICATION)' } 1595 1596## 1597# @query-xen-replication-status: 1598# 1599# Query replication status while the vm is running. 1600# 1601# Returns: A @ReplicationResult object showing the status. 1602# 1603# Example: 1604# 1605# -> { "execute": "query-xen-replication-status" } 1606# <- { "return": { "error": false } } 1607# 1608# Since: 2.9 1609## 1610{ 'command': 'query-xen-replication-status', 1611 'returns': 'ReplicationStatus', 1612 'if': 'defined(CONFIG_REPLICATION)' } 1613 1614## 1615# @xen-colo-do-checkpoint: 1616# 1617# Xen uses this command to notify replication to trigger a checkpoint. 1618# 1619# Returns: nothing. 1620# 1621# Example: 1622# 1623# -> { "execute": "xen-colo-do-checkpoint" } 1624# <- { "return": {} } 1625# 1626# Since: 2.9 1627## 1628{ 'command': 'xen-colo-do-checkpoint', 1629 'if': 'defined(CONFIG_REPLICATION)' } 1630 1631## 1632# @COLOStatus: 1633# 1634# The result format for 'query-colo-status'. 1635# 1636# @mode: COLO running mode. If COLO is running, this field will return 1637# 'primary' or 'secondary'. 1638# 1639# @last-mode: COLO last running mode. If COLO is running, this field 1640# will return same like mode field, after failover we can 1641# use this field to get last colo mode. (since 4.0) 1642# 1643# @reason: describes the reason for the COLO exit. 1644# 1645# Since: 3.1 1646## 1647{ 'struct': 'COLOStatus', 1648 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode', 1649 'reason': 'COLOExitReason' } } 1650 1651## 1652# @query-colo-status: 1653# 1654# Query COLO status while the vm is running. 1655# 1656# Returns: A @COLOStatus object showing the status. 1657# 1658# Example: 1659# 1660# -> { "execute": "query-colo-status" } 1661# <- { "return": { "mode": "primary", "reason": "request" } } 1662# 1663# Since: 3.1 1664## 1665{ 'command': 'query-colo-status', 1666 'returns': 'COLOStatus' } 1667 1668## 1669# @migrate-recover: 1670# 1671# Provide a recovery migration stream URI. 1672# 1673# @uri: the URI to be used for the recovery of migration stream. 1674# 1675# Returns: nothing. 1676# 1677# Example: 1678# 1679# -> { "execute": "migrate-recover", 1680# "arguments": { "uri": "tcp:192.168.1.200:12345" } } 1681# <- { "return": {} } 1682# 1683# Since: 3.0 1684## 1685{ 'command': 'migrate-recover', 1686 'data': { 'uri': 'str' }, 1687 'allow-oob': true } 1688 1689## 1690# @migrate-pause: 1691# 1692# Pause a migration. Currently it only supports postcopy. 1693# 1694# Returns: nothing. 1695# 1696# Example: 1697# 1698# -> { "execute": "migrate-pause" } 1699# <- { "return": {} } 1700# 1701# Since: 3.0 1702## 1703{ 'command': 'migrate-pause', 'allow-oob': true } 1704 1705## 1706# @UNPLUG_PRIMARY: 1707# 1708# Emitted from source side of a migration when migration state is 1709# WAIT_UNPLUG. Device was unplugged by guest operating system. 1710# Device resources in QEMU are kept on standby to be able to re-plug it in case 1711# of migration failure. 1712# 1713# @device-id: QEMU device id of the unplugged device 1714# 1715# Since: 4.2 1716# 1717# Example: 1718# {"event": "UNPLUG_PRIMARY", "data": {"device-id": "hostdev0"} } 1719# 1720## 1721{ 'event': 'UNPLUG_PRIMARY', 1722 'data': { 'device-id': 'str' } } 1723 1724## 1725# @DirtyRateStatus: 1726# 1727# An enumeration of dirtyrate status. 1728# 1729# @unstarted: the dirtyrate thread has not been started. 1730# 1731# @measuring: the dirtyrate thread is measuring. 1732# 1733# @measured: the dirtyrate thread has measured and results are available. 1734# 1735# Since: 5.2 1736# 1737## 1738{ 'enum': 'DirtyRateStatus', 1739 'data': [ 'unstarted', 'measuring', 'measured'] } 1740 1741## 1742# @DirtyRateInfo: 1743# 1744# Information about current dirty page rate of vm. 1745# 1746# @dirty-rate: an estimate of the dirty page rate of the VM in units of 1747# MB/s, present only when estimating the rate has completed. 1748# 1749# @status: status containing dirtyrate query status includes 1750# 'unstarted' or 'measuring' or 'measured' 1751# 1752# @start-time: start time in units of second for calculation 1753# 1754# @calc-time: time in units of second for sample dirty pages 1755# 1756# Since: 5.2 1757# 1758## 1759{ 'struct': 'DirtyRateInfo', 1760 'data': {'*dirty-rate': 'int64', 1761 'status': 'DirtyRateStatus', 1762 'start-time': 'int64', 1763 'calc-time': 'int64'} } 1764 1765## 1766# @calc-dirty-rate: 1767# 1768# start calculating dirty page rate for vm 1769# 1770# @calc-time: time in units of second for sample dirty pages 1771# 1772# Since: 5.2 1773# 1774# Example: 1775# {"command": "calc-dirty-rate", "data": {"calc-time": 1} } 1776# 1777## 1778{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64'} } 1779 1780## 1781# @query-dirty-rate: 1782# 1783# query dirty page rate in units of MB/s for vm 1784# 1785# Since: 5.2 1786## 1787{ 'command': 'query-dirty-rate', 'returns': 'DirtyRateInfo' } 1788