1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4 5## 6# = Migration 7## 8 9{ 'include': 'common.json' } 10{ 'include': 'sockets.json' } 11 12## 13# @MigrationStats: 14# 15# Detailed migration status. 16# 17# @transferred: amount of bytes already transferred to the target VM 18# 19# @remaining: amount of bytes remaining to be transferred to the target VM 20# 21# @total: total amount of bytes involved in the migration process 22# 23# @duplicate: number of duplicate (zero) pages (since 1.2) 24# 25# @skipped: number of skipped zero pages (since 1.5) 26# 27# @normal: number of normal pages (since 1.2) 28# 29# @normal-bytes: number of normal bytes sent (since 1.2) 30# 31# @dirty-pages-rate: number of pages dirtied by second by the 32# guest (since 1.3) 33# 34# @mbps: throughput in megabits/sec. (since 1.6) 35# 36# @dirty-sync-count: number of times that dirty ram was synchronized (since 2.1) 37# 38# @postcopy-requests: The number of page requests received from the destination 39# (since 2.7) 40# 41# @page-size: The number of bytes per page for the various page-based 42# statistics (since 2.10) 43# 44# @multifd-bytes: The number of bytes sent through multifd (since 3.0) 45# 46# @pages-per-second: the number of memory pages transferred per second 47# (Since 4.0) 48# 49# @precopy-bytes: The number of bytes sent in the pre-copy phase 50# (since 7.0). 51# 52# @downtime-bytes: The number of bytes sent while the guest is paused 53# (since 7.0). 54# 55# @postcopy-bytes: The number of bytes sent during the post-copy phase 56# (since 7.0). 57# 58# Since: 0.14 59## 60{ 'struct': 'MigrationStats', 61 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' , 62 'duplicate': 'int', 'skipped': 'int', 'normal': 'int', 63 'normal-bytes': 'int', 'dirty-pages-rate' : 'int', 64 'mbps' : 'number', 'dirty-sync-count' : 'int', 65 'postcopy-requests' : 'int', 'page-size' : 'int', 66 'multifd-bytes' : 'uint64', 'pages-per-second' : 'uint64', 67 'precopy-bytes' : 'uint64', 'downtime-bytes' : 'uint64', 68 'postcopy-bytes' : 'uint64' } } 69 70## 71# @XBZRLECacheStats: 72# 73# Detailed XBZRLE migration cache statistics 74# 75# @cache-size: XBZRLE cache size 76# 77# @bytes: amount of bytes already transferred to the target VM 78# 79# @pages: amount of pages transferred to the target VM 80# 81# @cache-miss: number of cache miss 82# 83# @cache-miss-rate: rate of cache miss (since 2.1) 84# 85# @encoding-rate: rate of encoded bytes (since 5.1) 86# 87# @overflow: number of overflows 88# 89# Since: 1.2 90## 91{ 'struct': 'XBZRLECacheStats', 92 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int', 93 'cache-miss': 'int', 'cache-miss-rate': 'number', 94 'encoding-rate': 'number', 'overflow': 'int' } } 95 96## 97# @CompressionStats: 98# 99# Detailed migration compression statistics 100# 101# @pages: amount of pages compressed and transferred to the target VM 102# 103# @busy: count of times that no free thread was available to compress data 104# 105# @busy-rate: rate of thread busy 106# 107# @compressed-size: amount of bytes after compression 108# 109# @compression-rate: rate of compressed size 110# 111# Since: 3.1 112## 113{ 'struct': 'CompressionStats', 114 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number', 115 'compressed-size': 'int', 'compression-rate': 'number' } } 116 117## 118# @MigrationStatus: 119# 120# An enumeration of migration status. 121# 122# @none: no migration has ever happened. 123# 124# @setup: migration process has been initiated. 125# 126# @cancelling: in the process of cancelling migration. 127# 128# @cancelled: cancelling migration is finished. 129# 130# @active: in the process of doing migration. 131# 132# @postcopy-active: like active, but now in postcopy mode. (since 2.5) 133# 134# @postcopy-paused: during postcopy but paused. (since 3.0) 135# 136# @postcopy-recover: trying to recover from a paused postcopy. (since 3.0) 137# 138# @completed: migration is finished. 139# 140# @failed: some error occurred during migration process. 141# 142# @colo: VM is in the process of fault tolerance, VM can not get into this 143# state unless colo capability is enabled for migration. (since 2.8) 144# 145# @pre-switchover: Paused before device serialisation. (since 2.11) 146# 147# @device: During device serialisation when pause-before-switchover is enabled 148# (since 2.11) 149# 150# @wait-unplug: wait for device unplug request by guest OS to be completed. 151# (since 4.2) 152# 153# Since: 2.3 154# 155## 156{ 'enum': 'MigrationStatus', 157 'data': [ 'none', 'setup', 'cancelling', 'cancelled', 158 'active', 'postcopy-active', 'postcopy-paused', 159 'postcopy-recover', 'completed', 'failed', 'colo', 160 'pre-switchover', 'device', 'wait-unplug' ] } 161## 162# @VfioStats: 163# 164# Detailed VFIO devices migration statistics 165# 166# @transferred: amount of bytes transferred to the target VM by VFIO devices 167# 168# Since: 5.2 169# 170## 171{ 'struct': 'VfioStats', 172 'data': {'transferred': 'int' } } 173 174## 175# @MigrationInfo: 176# 177# Information about current migration process. 178# 179# @status: @MigrationStatus describing the current migration status. 180# If this field is not returned, no migration process 181# has been initiated 182# 183# @ram: @MigrationStats containing detailed migration 184# status, only returned if status is 'active' or 185# 'completed'(since 1.2) 186# 187# @disk: @MigrationStats containing detailed disk migration 188# status, only returned if status is 'active' and it is a block 189# migration 190# 191# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE 192# migration statistics, only returned if XBZRLE feature is on and 193# status is 'active' or 'completed' (since 1.2) 194# 195# @total-time: total amount of milliseconds since migration started. 196# If migration has ended, it returns the total migration 197# time. (since 1.2) 198# 199# @downtime: only present when migration finishes correctly 200# total downtime in milliseconds for the guest. 201# (since 1.3) 202# 203# @expected-downtime: only present while migration is active 204# expected downtime in milliseconds for the guest in last walk 205# of the dirty bitmap. (since 1.3) 206# 207# @setup-time: amount of setup time in milliseconds *before* the 208# iterations begin but *after* the QMP command is issued. This is designed 209# to provide an accounting of any activities (such as RDMA pinning) which 210# may be expensive, but do not actually occur during the iterative 211# migration rounds themselves. (since 1.6) 212# 213# @cpu-throttle-percentage: percentage of time guest cpus are being 214# throttled during auto-converge. This is only present when auto-converge 215# has started throttling guest cpus. (Since 2.7) 216# 217# @error-desc: the human readable error description string, when 218# @status is 'failed'. Clients should not attempt to parse the 219# error strings. (Since 2.7) 220# 221# @postcopy-blocktime: total time when all vCPU were blocked during postcopy 222# live migration. This is only present when the postcopy-blocktime 223# migration capability is enabled. (Since 3.0) 224# 225# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. This is 226# only present when the postcopy-blocktime migration capability 227# is enabled. (Since 3.0) 228# 229# @compression: migration compression statistics, only returned if compression 230# feature is on and status is 'active' or 'completed' (Since 3.1) 231# 232# @socket-address: Only used for tcp, to know what the real port is (Since 4.0) 233# 234# @vfio: @VfioStats containing detailed VFIO devices migration statistics, 235# only returned if VFIO device is present, migration is supported by all 236# VFIO devices and status is 'active' or 'completed' (since 5.2) 237# 238# @blocked-reasons: A list of reasons an outgoing migration is blocked. 239# Present and non-empty when migration is blocked. 240# (since 6.0) 241# 242# Since: 0.14 243## 244{ 'struct': 'MigrationInfo', 245 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats', 246 '*disk': 'MigrationStats', 247 '*vfio': 'VfioStats', 248 '*xbzrle-cache': 'XBZRLECacheStats', 249 '*total-time': 'int', 250 '*expected-downtime': 'int', 251 '*downtime': 'int', 252 '*setup-time': 'int', 253 '*cpu-throttle-percentage': 'int', 254 '*error-desc': 'str', 255 '*blocked-reasons': ['str'], 256 '*postcopy-blocktime' : 'uint32', 257 '*postcopy-vcpu-blocktime': ['uint32'], 258 '*compression': 'CompressionStats', 259 '*socket-address': ['SocketAddress'] } } 260 261## 262# @query-migrate: 263# 264# Returns information about current migration process. If migration 265# is active there will be another json-object with RAM migration 266# status and if block migration is active another one with block 267# migration status. 268# 269# Returns: @MigrationInfo 270# 271# Since: 0.14 272# 273# Example: 274# 275# 1. Before the first migration 276# 277# -> { "execute": "query-migrate" } 278# <- { "return": {} } 279# 280# 2. Migration is done and has succeeded 281# 282# -> { "execute": "query-migrate" } 283# <- { "return": { 284# "status": "completed", 285# "total-time":12345, 286# "setup-time":12345, 287# "downtime":12345, 288# "ram":{ 289# "transferred":123, 290# "remaining":123, 291# "total":246, 292# "duplicate":123, 293# "normal":123, 294# "normal-bytes":123456, 295# "dirty-sync-count":15 296# } 297# } 298# } 299# 300# 3. Migration is done and has failed 301# 302# -> { "execute": "query-migrate" } 303# <- { "return": { "status": "failed" } } 304# 305# 4. Migration is being performed and is not a block migration: 306# 307# -> { "execute": "query-migrate" } 308# <- { 309# "return":{ 310# "status":"active", 311# "total-time":12345, 312# "setup-time":12345, 313# "expected-downtime":12345, 314# "ram":{ 315# "transferred":123, 316# "remaining":123, 317# "total":246, 318# "duplicate":123, 319# "normal":123, 320# "normal-bytes":123456, 321# "dirty-sync-count":15 322# } 323# } 324# } 325# 326# 5. Migration is being performed and is a block migration: 327# 328# -> { "execute": "query-migrate" } 329# <- { 330# "return":{ 331# "status":"active", 332# "total-time":12345, 333# "setup-time":12345, 334# "expected-downtime":12345, 335# "ram":{ 336# "total":1057024, 337# "remaining":1053304, 338# "transferred":3720, 339# "duplicate":123, 340# "normal":123, 341# "normal-bytes":123456, 342# "dirty-sync-count":15 343# }, 344# "disk":{ 345# "total":20971520, 346# "remaining":20880384, 347# "transferred":91136 348# } 349# } 350# } 351# 352# 6. Migration is being performed and XBZRLE is active: 353# 354# -> { "execute": "query-migrate" } 355# <- { 356# "return":{ 357# "status":"active", 358# "total-time":12345, 359# "setup-time":12345, 360# "expected-downtime":12345, 361# "ram":{ 362# "total":1057024, 363# "remaining":1053304, 364# "transferred":3720, 365# "duplicate":10, 366# "normal":3333, 367# "normal-bytes":3412992, 368# "dirty-sync-count":15 369# }, 370# "xbzrle-cache":{ 371# "cache-size":67108864, 372# "bytes":20971520, 373# "pages":2444343, 374# "cache-miss":2244, 375# "cache-miss-rate":0.123, 376# "encoding-rate":80.1, 377# "overflow":34434 378# } 379# } 380# } 381# 382## 383{ 'command': 'query-migrate', 'returns': 'MigrationInfo' } 384 385## 386# @MigrationCapability: 387# 388# Migration capabilities enumeration 389# 390# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length Encoding). 391# This feature allows us to minimize migration traffic for certain work 392# loads, by sending compressed difference of the pages 393# 394# @rdma-pin-all: Controls whether or not the entire VM memory footprint is 395# mlock()'d on demand or all at once. Refer to docs/rdma.txt for usage. 396# Disabled by default. (since 2.0) 397# 398# @zero-blocks: During storage migration encode blocks of zeroes efficiently. This 399# essentially saves 1MB of zeroes per block on the wire. Enabling requires 400# source and target VM to support this feature. To enable it is sufficient 401# to enable the capability on the source VM. The feature is disabled by 402# default. (since 1.6) 403# 404# @compress: Use multiple compression threads to accelerate live migration. 405# This feature can help to reduce the migration traffic, by sending 406# compressed pages. Please note that if compress and xbzrle are both 407# on, compress only takes effect in the ram bulk stage, after that, 408# it will be disabled and only xbzrle takes effect, this can help to 409# minimize migration traffic. The feature is disabled by default. 410# (since 2.4 ) 411# 412# @events: generate events for each migration state change 413# (since 2.4 ) 414# 415# @auto-converge: If enabled, QEMU will automatically throttle down the guest 416# to speed up convergence of RAM migration. (since 1.6) 417# 418# @postcopy-ram: Start executing on the migration target before all of RAM has 419# been migrated, pulling the remaining pages along as needed. The 420# capacity must have the same setting on both source and target 421# or migration will not even start. NOTE: If the migration fails during 422# postcopy the VM will fail. (since 2.6) 423# 424# @x-colo: If enabled, migration will never end, and the state of the VM on the 425# primary side will be migrated continuously to the VM on secondary 426# side, this process is called COarse-Grain LOck Stepping (COLO) for 427# Non-stop Service. (since 2.8) 428# 429# @release-ram: if enabled, qemu will free the migrated ram pages on the source 430# during postcopy-ram migration. (since 2.9) 431# 432# @block: If enabled, QEMU will also migrate the contents of all block 433# devices. Default is disabled. A possible alternative uses 434# mirror jobs to a builtin NBD server on the destination, which 435# offers more flexibility. 436# (Since 2.10) 437# 438# @return-path: If enabled, migration will use the return path even 439# for precopy. (since 2.10) 440# 441# @pause-before-switchover: Pause outgoing migration before serialising device 442# state and before disabling block IO (since 2.11) 443# 444# @multifd: Use more than one fd for migration (since 4.0) 445# 446# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps. 447# (since 2.12) 448# 449# @postcopy-blocktime: Calculate downtime for postcopy live migration 450# (since 3.0) 451# 452# @late-block-activate: If enabled, the destination will not activate block 453# devices (and thus take locks) immediately at the end of migration. 454# (since 3.0) 455# 456# @x-ignore-shared: If enabled, QEMU will not migrate shared memory (since 4.0) 457# 458# @validate-uuid: Send the UUID of the source to allow the destination 459# to ensure it is the same. (since 4.2) 460# 461# @background-snapshot: If enabled, the migration stream will be a snapshot 462# of the VM exactly at the point when the migration 463# procedure starts. The VM RAM is saved with running VM. 464# (since 6.0) 465# 466# Features: 467# @unstable: Members @x-colo and @x-ignore-shared are experimental. 468# 469# Since: 1.2 470## 471{ 'enum': 'MigrationCapability', 472 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks', 473 'compress', 'events', 'postcopy-ram', 474 { 'name': 'x-colo', 'features': [ 'unstable' ] }, 475 'release-ram', 476 'block', 'return-path', 'pause-before-switchover', 'multifd', 477 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate', 478 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] }, 479 'validate-uuid', 'background-snapshot'] } 480 481## 482# @MigrationCapabilityStatus: 483# 484# Migration capability information 485# 486# @capability: capability enum 487# 488# @state: capability state bool 489# 490# Since: 1.2 491## 492{ 'struct': 'MigrationCapabilityStatus', 493 'data': { 'capability' : 'MigrationCapability', 'state' : 'bool' } } 494 495## 496# @migrate-set-capabilities: 497# 498# Enable/Disable the following migration capabilities (like xbzrle) 499# 500# @capabilities: json array of capability modifications to make 501# 502# Since: 1.2 503# 504# Example: 505# 506# -> { "execute": "migrate-set-capabilities" , "arguments": 507# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } } 508# 509## 510{ 'command': 'migrate-set-capabilities', 511 'data': { 'capabilities': ['MigrationCapabilityStatus'] } } 512 513## 514# @query-migrate-capabilities: 515# 516# Returns information about the current migration capabilities status 517# 518# Returns: @MigrationCapabilitiesStatus 519# 520# Since: 1.2 521# 522# Example: 523# 524# -> { "execute": "query-migrate-capabilities" } 525# <- { "return": [ 526# {"state": false, "capability": "xbzrle"}, 527# {"state": false, "capability": "rdma-pin-all"}, 528# {"state": false, "capability": "auto-converge"}, 529# {"state": false, "capability": "zero-blocks"}, 530# {"state": false, "capability": "compress"}, 531# {"state": true, "capability": "events"}, 532# {"state": false, "capability": "postcopy-ram"}, 533# {"state": false, "capability": "x-colo"} 534# ]} 535# 536## 537{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']} 538 539## 540# @MultiFDCompression: 541# 542# An enumeration of multifd compression methods. 543# 544# @none: no compression. 545# @zlib: use zlib compression method. 546# @zstd: use zstd compression method. 547# 548# Since: 5.0 549# 550## 551{ 'enum': 'MultiFDCompression', 552 'data': [ 'none', 'zlib', 553 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] } 554 555## 556# @BitmapMigrationBitmapAliasTransform: 557# 558# @persistent: If present, the bitmap will be made persistent 559# or transient depending on this parameter. 560# 561# Since: 6.0 562## 563{ 'struct': 'BitmapMigrationBitmapAliasTransform', 564 'data': { 565 '*persistent': 'bool' 566 } } 567 568## 569# @BitmapMigrationBitmapAlias: 570# 571# @name: The name of the bitmap. 572# 573# @alias: An alias name for migration (for example the bitmap name on 574# the opposite site). 575# 576# @transform: Allows the modification of the migrated bitmap. 577# (since 6.0) 578# 579# Since: 5.2 580## 581{ 'struct': 'BitmapMigrationBitmapAlias', 582 'data': { 583 'name': 'str', 584 'alias': 'str', 585 '*transform': 'BitmapMigrationBitmapAliasTransform' 586 } } 587 588## 589# @BitmapMigrationNodeAlias: 590# 591# Maps a block node name and the bitmaps it has to aliases for dirty 592# bitmap migration. 593# 594# @node-name: A block node name. 595# 596# @alias: An alias block node name for migration (for example the 597# node name on the opposite site). 598# 599# @bitmaps: Mappings for the bitmaps on this node. 600# 601# Since: 5.2 602## 603{ 'struct': 'BitmapMigrationNodeAlias', 604 'data': { 605 'node-name': 'str', 606 'alias': 'str', 607 'bitmaps': [ 'BitmapMigrationBitmapAlias' ] 608 } } 609 610## 611# @MigrationParameter: 612# 613# Migration parameters enumeration 614# 615# @announce-initial: Initial delay (in milliseconds) before sending the first 616# announce (Since 4.0) 617# 618# @announce-max: Maximum delay (in milliseconds) between packets in the 619# announcement (Since 4.0) 620# 621# @announce-rounds: Number of self-announce packets sent after migration 622# (Since 4.0) 623# 624# @announce-step: Increase in delay (in milliseconds) between subsequent 625# packets in the announcement (Since 4.0) 626# 627# @compress-level: Set the compression level to be used in live migration, 628# the compression level is an integer between 0 and 9, where 0 means 629# no compression, 1 means the best compression speed, and 9 means best 630# compression ratio which will consume more CPU. 631# 632# @compress-threads: Set compression thread count to be used in live migration, 633# the compression thread count is an integer between 1 and 255. 634# 635# @compress-wait-thread: Controls behavior when all compression threads are 636# currently busy. If true (default), wait for a free 637# compression thread to become available; otherwise, 638# send the page uncompressed. (Since 3.1) 639# 640# @decompress-threads: Set decompression thread count to be used in live 641# migration, the decompression thread count is an integer between 1 642# and 255. Usually, decompression is at least 4 times as fast as 643# compression, so set the decompress-threads to the number about 1/4 644# of compress-threads is adequate. 645# 646# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period 647# to trigger throttling. It is expressed as percentage. 648# The default value is 50. (Since 5.0) 649# 650# @cpu-throttle-initial: Initial percentage of time guest cpus are throttled 651# when migration auto-converge is activated. The 652# default value is 20. (Since 2.7) 653# 654# @cpu-throttle-increment: throttle percentage increase each time 655# auto-converge detects that migration is not making 656# progress. The default value is 10. (Since 2.7) 657# 658# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage 659# At the tail stage of throttling, the Guest is very 660# sensitive to CPU percentage while the @cpu-throttle 661# -increment is excessive usually at tail stage. 662# If this parameter is true, we will compute the ideal 663# CPU percentage used by the Guest, which may exactly make 664# the dirty rate match the dirty rate threshold. Then we 665# will choose a smaller throttle increment between the 666# one specified by @cpu-throttle-increment and the one 667# generated by ideal CPU percentage. 668# Therefore, it is compatible to traditional throttling, 669# meanwhile the throttle increment won't be excessive 670# at tail stage. 671# The default value is false. (Since 5.1) 672# 673# @tls-creds: ID of the 'tls-creds' object that provides credentials for 674# establishing a TLS connection over the migration data channel. 675# On the outgoing side of the migration, the credentials must 676# be for a 'client' endpoint, while for the incoming side the 677# credentials must be for a 'server' endpoint. Setting this 678# will enable TLS for all migrations. The default is unset, 679# resulting in unsecured migration at the QEMU level. (Since 2.7) 680# 681# @tls-hostname: hostname of the target host for the migration. This is 682# required when using x509 based TLS credentials and the 683# migration URI does not already include a hostname. For 684# example if using fd: or exec: based migration, the 685# hostname must be provided so that the server's x509 686# certificate identity can be validated. (Since 2.7) 687# 688# @tls-authz: ID of the 'authz' object subclass that provides access control 689# checking of the TLS x509 certificate distinguished name. 690# This object is only resolved at time of use, so can be deleted 691# and recreated on the fly while the migration server is active. 692# If missing, it will default to denying access (Since 4.0) 693# 694# @max-bandwidth: to set maximum speed for migration. maximum speed in 695# bytes per second. (Since 2.8) 696# 697# @downtime-limit: set maximum tolerated downtime for migration. maximum 698# downtime in milliseconds (Since 2.8) 699# 700# @x-checkpoint-delay: The delay time (in ms) between two COLO checkpoints in 701# periodic mode. (Since 2.8) 702# 703# @block-incremental: Affects how much storage is migrated when the 704# block migration capability is enabled. When false, the entire 705# storage backing chain is migrated into a flattened image at 706# the destination; when true, only the active qcow2 layer is 707# migrated and the destination must already have access to the 708# same backing chain as was used on the source. (since 2.10) 709# 710# @multifd-channels: Number of channels used to migrate data in 711# parallel. This is the same number that the 712# number of sockets used for migration. The 713# default value is 2 (since 4.0) 714# 715# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 716# needs to be a multiple of the target page size 717# and a power of 2 718# (Since 2.11) 719# 720# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy. 721# Defaults to 0 (unlimited). In bytes per second. 722# (Since 3.0) 723# 724# @max-cpu-throttle: maximum cpu throttle percentage. 725# Defaults to 99. (Since 3.1) 726# 727# @multifd-compression: Which compression method to use. 728# Defaults to none. (Since 5.0) 729# 730# @multifd-zlib-level: Set the compression level to be used in live 731# migration, the compression level is an integer between 0 732# and 9, where 0 means no compression, 1 means the best 733# compression speed, and 9 means best compression ratio which 734# will consume more CPU. 735# Defaults to 1. (Since 5.0) 736# 737# @multifd-zstd-level: Set the compression level to be used in live 738# migration, the compression level is an integer between 0 739# and 20, where 0 means no compression, 1 means the best 740# compression speed, and 20 means best compression ratio which 741# will consume more CPU. 742# Defaults to 1. (Since 5.0) 743# 744# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 745# aliases for the purpose of dirty bitmap migration. Such 746# aliases may for example be the corresponding names on the 747# opposite site. 748# The mapping must be one-to-one, but not necessarily 749# complete: On the source, unmapped bitmaps and all bitmaps 750# on unmapped nodes will be ignored. On the destination, 751# encountering an unmapped alias in the incoming migration 752# stream will result in a report, and all further bitmap 753# migration data will then be discarded. 754# Note that the destination does not know about bitmaps it 755# does not receive, so there is no limitation or requirement 756# regarding the number of bitmaps received, or how they are 757# named, or on which nodes they are placed. 758# By default (when this parameter has never been set), bitmap 759# names are mapped to themselves. Nodes are mapped to their 760# block device name if there is one, and to their node name 761# otherwise. (Since 5.2) 762# 763# Features: 764# @unstable: Member @x-checkpoint-delay is experimental. 765# 766# Since: 2.4 767## 768{ 'enum': 'MigrationParameter', 769 'data': ['announce-initial', 'announce-max', 770 'announce-rounds', 'announce-step', 771 'compress-level', 'compress-threads', 'decompress-threads', 772 'compress-wait-thread', 'throttle-trigger-threshold', 773 'cpu-throttle-initial', 'cpu-throttle-increment', 774 'cpu-throttle-tailslow', 775 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth', 776 'downtime-limit', 777 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] }, 778 'block-incremental', 779 'multifd-channels', 780 'xbzrle-cache-size', 'max-postcopy-bandwidth', 781 'max-cpu-throttle', 'multifd-compression', 782 'multifd-zlib-level' ,'multifd-zstd-level', 783 'block-bitmap-mapping' ] } 784 785## 786# @MigrateSetParameters: 787# 788# @announce-initial: Initial delay (in milliseconds) before sending the first 789# announce (Since 4.0) 790# 791# @announce-max: Maximum delay (in milliseconds) between packets in the 792# announcement (Since 4.0) 793# 794# @announce-rounds: Number of self-announce packets sent after migration 795# (Since 4.0) 796# 797# @announce-step: Increase in delay (in milliseconds) between subsequent 798# packets in the announcement (Since 4.0) 799# 800# @compress-level: compression level 801# 802# @compress-threads: compression thread count 803# 804# @compress-wait-thread: Controls behavior when all compression threads are 805# currently busy. If true (default), wait for a free 806# compression thread to become available; otherwise, 807# send the page uncompressed. (Since 3.1) 808# 809# @decompress-threads: decompression thread count 810# 811# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period 812# to trigger throttling. It is expressed as percentage. 813# The default value is 50. (Since 5.0) 814# 815# @cpu-throttle-initial: Initial percentage of time guest cpus are 816# throttled when migration auto-converge is activated. 817# The default value is 20. (Since 2.7) 818# 819# @cpu-throttle-increment: throttle percentage increase each time 820# auto-converge detects that migration is not making 821# progress. The default value is 10. (Since 2.7) 822# 823# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage 824# At the tail stage of throttling, the Guest is very 825# sensitive to CPU percentage while the @cpu-throttle 826# -increment is excessive usually at tail stage. 827# If this parameter is true, we will compute the ideal 828# CPU percentage used by the Guest, which may exactly make 829# the dirty rate match the dirty rate threshold. Then we 830# will choose a smaller throttle increment between the 831# one specified by @cpu-throttle-increment and the one 832# generated by ideal CPU percentage. 833# Therefore, it is compatible to traditional throttling, 834# meanwhile the throttle increment won't be excessive 835# at tail stage. 836# The default value is false. (Since 5.1) 837# 838# @tls-creds: ID of the 'tls-creds' object that provides credentials 839# for establishing a TLS connection over the migration data 840# channel. On the outgoing side of the migration, the credentials 841# must be for a 'client' endpoint, while for the incoming side the 842# credentials must be for a 'server' endpoint. Setting this 843# to a non-empty string enables TLS for all migrations. 844# An empty string means that QEMU will use plain text mode for 845# migration, rather than TLS (Since 2.9) 846# Previously (since 2.7), this was reported by omitting 847# tls-creds instead. 848# 849# @tls-hostname: hostname of the target host for the migration. This 850# is required when using x509 based TLS credentials and the 851# migration URI does not already include a hostname. For 852# example if using fd: or exec: based migration, the 853# hostname must be provided so that the server's x509 854# certificate identity can be validated. (Since 2.7) 855# An empty string means that QEMU will use the hostname 856# associated with the migration URI, if any. (Since 2.9) 857# Previously (since 2.7), this was reported by omitting 858# tls-hostname instead. 859# 860# @max-bandwidth: to set maximum speed for migration. maximum speed in 861# bytes per second. (Since 2.8) 862# 863# @downtime-limit: set maximum tolerated downtime for migration. maximum 864# downtime in milliseconds (Since 2.8) 865# 866# @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8) 867# 868# @block-incremental: Affects how much storage is migrated when the 869# block migration capability is enabled. When false, the entire 870# storage backing chain is migrated into a flattened image at 871# the destination; when true, only the active qcow2 layer is 872# migrated and the destination must already have access to the 873# same backing chain as was used on the source. (since 2.10) 874# 875# @multifd-channels: Number of channels used to migrate data in 876# parallel. This is the same number that the 877# number of sockets used for migration. The 878# default value is 2 (since 4.0) 879# 880# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 881# needs to be a multiple of the target page size 882# and a power of 2 883# (Since 2.11) 884# 885# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy. 886# Defaults to 0 (unlimited). In bytes per second. 887# (Since 3.0) 888# 889# @max-cpu-throttle: maximum cpu throttle percentage. 890# The default value is 99. (Since 3.1) 891# 892# @multifd-compression: Which compression method to use. 893# Defaults to none. (Since 5.0) 894# 895# @multifd-zlib-level: Set the compression level to be used in live 896# migration, the compression level is an integer between 0 897# and 9, where 0 means no compression, 1 means the best 898# compression speed, and 9 means best compression ratio which 899# will consume more CPU. 900# Defaults to 1. (Since 5.0) 901# 902# @multifd-zstd-level: Set the compression level to be used in live 903# migration, the compression level is an integer between 0 904# and 20, where 0 means no compression, 1 means the best 905# compression speed, and 20 means best compression ratio which 906# will consume more CPU. 907# Defaults to 1. (Since 5.0) 908# 909# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 910# aliases for the purpose of dirty bitmap migration. Such 911# aliases may for example be the corresponding names on the 912# opposite site. 913# The mapping must be one-to-one, but not necessarily 914# complete: On the source, unmapped bitmaps and all bitmaps 915# on unmapped nodes will be ignored. On the destination, 916# encountering an unmapped alias in the incoming migration 917# stream will result in a report, and all further bitmap 918# migration data will then be discarded. 919# Note that the destination does not know about bitmaps it 920# does not receive, so there is no limitation or requirement 921# regarding the number of bitmaps received, or how they are 922# named, or on which nodes they are placed. 923# By default (when this parameter has never been set), bitmap 924# names are mapped to themselves. Nodes are mapped to their 925# block device name if there is one, and to their node name 926# otherwise. (Since 5.2) 927# 928# Features: 929# @unstable: Member @x-checkpoint-delay is experimental. 930# 931# Since: 2.4 932## 933# TODO either fuse back into MigrationParameters, or make 934# MigrationParameters members mandatory 935{ 'struct': 'MigrateSetParameters', 936 'data': { '*announce-initial': 'size', 937 '*announce-max': 'size', 938 '*announce-rounds': 'size', 939 '*announce-step': 'size', 940 '*compress-level': 'uint8', 941 '*compress-threads': 'uint8', 942 '*compress-wait-thread': 'bool', 943 '*decompress-threads': 'uint8', 944 '*throttle-trigger-threshold': 'uint8', 945 '*cpu-throttle-initial': 'uint8', 946 '*cpu-throttle-increment': 'uint8', 947 '*cpu-throttle-tailslow': 'bool', 948 '*tls-creds': 'StrOrNull', 949 '*tls-hostname': 'StrOrNull', 950 '*tls-authz': 'StrOrNull', 951 '*max-bandwidth': 'size', 952 '*downtime-limit': 'uint64', 953 '*x-checkpoint-delay': { 'type': 'uint32', 954 'features': [ 'unstable' ] }, 955 '*block-incremental': 'bool', 956 '*multifd-channels': 'uint8', 957 '*xbzrle-cache-size': 'size', 958 '*max-postcopy-bandwidth': 'size', 959 '*max-cpu-throttle': 'uint8', 960 '*multifd-compression': 'MultiFDCompression', 961 '*multifd-zlib-level': 'uint8', 962 '*multifd-zstd-level': 'uint8', 963 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } } 964 965## 966# @migrate-set-parameters: 967# 968# Set various migration parameters. 969# 970# Since: 2.4 971# 972# Example: 973# 974# -> { "execute": "migrate-set-parameters" , 975# "arguments": { "compress-level": 1 } } 976# 977## 978{ 'command': 'migrate-set-parameters', 'boxed': true, 979 'data': 'MigrateSetParameters' } 980 981## 982# @MigrationParameters: 983# 984# The optional members aren't actually optional. 985# 986# @announce-initial: Initial delay (in milliseconds) before sending the 987# first announce (Since 4.0) 988# 989# @announce-max: Maximum delay (in milliseconds) between packets in the 990# announcement (Since 4.0) 991# 992# @announce-rounds: Number of self-announce packets sent after migration 993# (Since 4.0) 994# 995# @announce-step: Increase in delay (in milliseconds) between subsequent 996# packets in the announcement (Since 4.0) 997# 998# @compress-level: compression level 999# 1000# @compress-threads: compression thread count 1001# 1002# @compress-wait-thread: Controls behavior when all compression threads are 1003# currently busy. If true (default), wait for a free 1004# compression thread to become available; otherwise, 1005# send the page uncompressed. (Since 3.1) 1006# 1007# @decompress-threads: decompression thread count 1008# 1009# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period 1010# to trigger throttling. It is expressed as percentage. 1011# The default value is 50. (Since 5.0) 1012# 1013# @cpu-throttle-initial: Initial percentage of time guest cpus are 1014# throttled when migration auto-converge is activated. 1015# (Since 2.7) 1016# 1017# @cpu-throttle-increment: throttle percentage increase each time 1018# auto-converge detects that migration is not making 1019# progress. (Since 2.7) 1020# 1021# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage 1022# At the tail stage of throttling, the Guest is very 1023# sensitive to CPU percentage while the @cpu-throttle 1024# -increment is excessive usually at tail stage. 1025# If this parameter is true, we will compute the ideal 1026# CPU percentage used by the Guest, which may exactly make 1027# the dirty rate match the dirty rate threshold. Then we 1028# will choose a smaller throttle increment between the 1029# one specified by @cpu-throttle-increment and the one 1030# generated by ideal CPU percentage. 1031# Therefore, it is compatible to traditional throttling, 1032# meanwhile the throttle increment won't be excessive 1033# at tail stage. 1034# The default value is false. (Since 5.1) 1035# 1036# @tls-creds: ID of the 'tls-creds' object that provides credentials 1037# for establishing a TLS connection over the migration data 1038# channel. On the outgoing side of the migration, the credentials 1039# must be for a 'client' endpoint, while for the incoming side the 1040# credentials must be for a 'server' endpoint. 1041# An empty string means that QEMU will use plain text mode for 1042# migration, rather than TLS (Since 2.7) 1043# Note: 2.8 reports this by omitting tls-creds instead. 1044# 1045# @tls-hostname: hostname of the target host for the migration. This 1046# is required when using x509 based TLS credentials and the 1047# migration URI does not already include a hostname. For 1048# example if using fd: or exec: based migration, the 1049# hostname must be provided so that the server's x509 1050# certificate identity can be validated. (Since 2.7) 1051# An empty string means that QEMU will use the hostname 1052# associated with the migration URI, if any. (Since 2.9) 1053# Note: 2.8 reports this by omitting tls-hostname instead. 1054# 1055# @tls-authz: ID of the 'authz' object subclass that provides access control 1056# checking of the TLS x509 certificate distinguished name. (Since 1057# 4.0) 1058# 1059# @max-bandwidth: to set maximum speed for migration. maximum speed in 1060# bytes per second. (Since 2.8) 1061# 1062# @downtime-limit: set maximum tolerated downtime for migration. maximum 1063# downtime in milliseconds (Since 2.8) 1064# 1065# @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8) 1066# 1067# @block-incremental: Affects how much storage is migrated when the 1068# block migration capability is enabled. When false, the entire 1069# storage backing chain is migrated into a flattened image at 1070# the destination; when true, only the active qcow2 layer is 1071# migrated and the destination must already have access to the 1072# same backing chain as was used on the source. (since 2.10) 1073# 1074# @multifd-channels: Number of channels used to migrate data in 1075# parallel. This is the same number that the 1076# number of sockets used for migration. 1077# The default value is 2 (since 4.0) 1078# 1079# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1080# needs to be a multiple of the target page size 1081# and a power of 2 1082# (Since 2.11) 1083# 1084# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy. 1085# Defaults to 0 (unlimited). In bytes per second. 1086# (Since 3.0) 1087# 1088# @max-cpu-throttle: maximum cpu throttle percentage. 1089# Defaults to 99. 1090# (Since 3.1) 1091# 1092# @multifd-compression: Which compression method to use. 1093# Defaults to none. (Since 5.0) 1094# 1095# @multifd-zlib-level: Set the compression level to be used in live 1096# migration, the compression level is an integer between 0 1097# and 9, where 0 means no compression, 1 means the best 1098# compression speed, and 9 means best compression ratio which 1099# will consume more CPU. 1100# Defaults to 1. (Since 5.0) 1101# 1102# @multifd-zstd-level: Set the compression level to be used in live 1103# migration, the compression level is an integer between 0 1104# and 20, where 0 means no compression, 1 means the best 1105# compression speed, and 20 means best compression ratio which 1106# will consume more CPU. 1107# Defaults to 1. (Since 5.0) 1108# 1109# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1110# aliases for the purpose of dirty bitmap migration. Such 1111# aliases may for example be the corresponding names on the 1112# opposite site. 1113# The mapping must be one-to-one, but not necessarily 1114# complete: On the source, unmapped bitmaps and all bitmaps 1115# on unmapped nodes will be ignored. On the destination, 1116# encountering an unmapped alias in the incoming migration 1117# stream will result in a report, and all further bitmap 1118# migration data will then be discarded. 1119# Note that the destination does not know about bitmaps it 1120# does not receive, so there is no limitation or requirement 1121# regarding the number of bitmaps received, or how they are 1122# named, or on which nodes they are placed. 1123# By default (when this parameter has never been set), bitmap 1124# names are mapped to themselves. Nodes are mapped to their 1125# block device name if there is one, and to their node name 1126# otherwise. (Since 5.2) 1127# 1128# Features: 1129# @unstable: Member @x-checkpoint-delay is experimental. 1130# 1131# Since: 2.4 1132## 1133{ 'struct': 'MigrationParameters', 1134 'data': { '*announce-initial': 'size', 1135 '*announce-max': 'size', 1136 '*announce-rounds': 'size', 1137 '*announce-step': 'size', 1138 '*compress-level': 'uint8', 1139 '*compress-threads': 'uint8', 1140 '*compress-wait-thread': 'bool', 1141 '*decompress-threads': 'uint8', 1142 '*throttle-trigger-threshold': 'uint8', 1143 '*cpu-throttle-initial': 'uint8', 1144 '*cpu-throttle-increment': 'uint8', 1145 '*cpu-throttle-tailslow': 'bool', 1146 '*tls-creds': 'str', 1147 '*tls-hostname': 'str', 1148 '*tls-authz': 'str', 1149 '*max-bandwidth': 'size', 1150 '*downtime-limit': 'uint64', 1151 '*x-checkpoint-delay': { 'type': 'uint32', 1152 'features': [ 'unstable' ] }, 1153 '*block-incremental': 'bool', 1154 '*multifd-channels': 'uint8', 1155 '*xbzrle-cache-size': 'size', 1156 '*max-postcopy-bandwidth': 'size', 1157 '*max-cpu-throttle': 'uint8', 1158 '*multifd-compression': 'MultiFDCompression', 1159 '*multifd-zlib-level': 'uint8', 1160 '*multifd-zstd-level': 'uint8', 1161 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } } 1162 1163## 1164# @query-migrate-parameters: 1165# 1166# Returns information about the current migration parameters 1167# 1168# Returns: @MigrationParameters 1169# 1170# Since: 2.4 1171# 1172# Example: 1173# 1174# -> { "execute": "query-migrate-parameters" } 1175# <- { "return": { 1176# "decompress-threads": 2, 1177# "cpu-throttle-increment": 10, 1178# "compress-threads": 8, 1179# "compress-level": 1, 1180# "cpu-throttle-initial": 20, 1181# "max-bandwidth": 33554432, 1182# "downtime-limit": 300 1183# } 1184# } 1185# 1186## 1187{ 'command': 'query-migrate-parameters', 1188 'returns': 'MigrationParameters' } 1189 1190## 1191# @client_migrate_info: 1192# 1193# Set migration information for remote display. This makes the server 1194# ask the client to automatically reconnect using the new parameters 1195# once migration finished successfully. Only implemented for SPICE. 1196# 1197# @protocol: must be "spice" 1198# @hostname: migration target hostname 1199# @port: spice tcp port for plaintext channels 1200# @tls-port: spice tcp port for tls-secured channels 1201# @cert-subject: server certificate subject 1202# 1203# Since: 0.14 1204# 1205# Example: 1206# 1207# -> { "execute": "client_migrate_info", 1208# "arguments": { "protocol": "spice", 1209# "hostname": "virt42.lab.kraxel.org", 1210# "port": 1234 } } 1211# <- { "return": {} } 1212# 1213## 1214{ 'command': 'client_migrate_info', 1215 'data': { 'protocol': 'str', 'hostname': 'str', '*port': 'int', 1216 '*tls-port': 'int', '*cert-subject': 'str' } } 1217 1218## 1219# @migrate-start-postcopy: 1220# 1221# Followup to a migration command to switch the migration to postcopy mode. 1222# The postcopy-ram capability must be set on both source and destination 1223# before the original migration command. 1224# 1225# Since: 2.5 1226# 1227# Example: 1228# 1229# -> { "execute": "migrate-start-postcopy" } 1230# <- { "return": {} } 1231# 1232## 1233{ 'command': 'migrate-start-postcopy' } 1234 1235## 1236# @MIGRATION: 1237# 1238# Emitted when a migration event happens 1239# 1240# @status: @MigrationStatus describing the current migration status. 1241# 1242# Since: 2.4 1243# 1244# Example: 1245# 1246# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001}, 1247# "event": "MIGRATION", 1248# "data": {"status": "completed"} } 1249# 1250## 1251{ 'event': 'MIGRATION', 1252 'data': {'status': 'MigrationStatus'}} 1253 1254## 1255# @MIGRATION_PASS: 1256# 1257# Emitted from the source side of a migration at the start of each pass 1258# (when it syncs the dirty bitmap) 1259# 1260# @pass: An incrementing count (starting at 1 on the first pass) 1261# 1262# Since: 2.6 1263# 1264# Example: 1265# 1266# { "timestamp": {"seconds": 1449669631, "microseconds": 239225}, 1267# "event": "MIGRATION_PASS", "data": {"pass": 2} } 1268# 1269## 1270{ 'event': 'MIGRATION_PASS', 1271 'data': { 'pass': 'int' } } 1272 1273## 1274# @COLOMessage: 1275# 1276# The message transmission between Primary side and Secondary side. 1277# 1278# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing 1279# 1280# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for checkpointing 1281# 1282# @checkpoint-reply: SVM gets PVM's checkpoint request 1283# 1284# @vmstate-send: VM's state will be sent by PVM. 1285# 1286# @vmstate-size: The total size of VMstate. 1287# 1288# @vmstate-received: VM's state has been received by SVM. 1289# 1290# @vmstate-loaded: VM's state has been loaded by SVM. 1291# 1292# Since: 2.8 1293## 1294{ 'enum': 'COLOMessage', 1295 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply', 1296 'vmstate-send', 'vmstate-size', 'vmstate-received', 1297 'vmstate-loaded' ] } 1298 1299## 1300# @COLOMode: 1301# 1302# The COLO current mode. 1303# 1304# @none: COLO is disabled. 1305# 1306# @primary: COLO node in primary side. 1307# 1308# @secondary: COLO node in slave side. 1309# 1310# Since: 2.8 1311## 1312{ 'enum': 'COLOMode', 1313 'data': [ 'none', 'primary', 'secondary'] } 1314 1315## 1316# @FailoverStatus: 1317# 1318# An enumeration of COLO failover status 1319# 1320# @none: no failover has ever happened 1321# 1322# @require: got failover requirement but not handled 1323# 1324# @active: in the process of doing failover 1325# 1326# @completed: finish the process of failover 1327# 1328# @relaunch: restart the failover process, from 'none' -> 'completed' (Since 2.9) 1329# 1330# Since: 2.8 1331## 1332{ 'enum': 'FailoverStatus', 1333 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] } 1334 1335## 1336# @COLO_EXIT: 1337# 1338# Emitted when VM finishes COLO mode due to some errors happening or 1339# at the request of users. 1340# 1341# @mode: report COLO mode when COLO exited. 1342# 1343# @reason: describes the reason for the COLO exit. 1344# 1345# Since: 3.1 1346# 1347# Example: 1348# 1349# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172}, 1350# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } } 1351# 1352## 1353{ 'event': 'COLO_EXIT', 1354 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } } 1355 1356## 1357# @COLOExitReason: 1358# 1359# The reason for a COLO exit. 1360# 1361# @none: failover has never happened. This state does not occur 1362# in the COLO_EXIT event, and is only visible in the result of 1363# query-colo-status. 1364# 1365# @request: COLO exit is due to an external request. 1366# 1367# @error: COLO exit is due to an internal error. 1368# 1369# @processing: COLO is currently handling a failover (since 4.0). 1370# 1371# Since: 3.1 1372## 1373{ 'enum': 'COLOExitReason', 1374 'data': [ 'none', 'request', 'error' , 'processing' ] } 1375 1376## 1377# @x-colo-lost-heartbeat: 1378# 1379# Tell qemu that heartbeat is lost, request it to do takeover procedures. 1380# If this command is sent to the PVM, the Primary side will exit COLO mode. 1381# If sent to the Secondary, the Secondary side will run failover work, 1382# then takes over server operation to become the service VM. 1383# 1384# Features: 1385# @unstable: This command is experimental. 1386# 1387# Since: 2.8 1388# 1389# Example: 1390# 1391# -> { "execute": "x-colo-lost-heartbeat" } 1392# <- { "return": {} } 1393# 1394## 1395{ 'command': 'x-colo-lost-heartbeat', 1396 'features': [ 'unstable' ] } 1397 1398## 1399# @migrate_cancel: 1400# 1401# Cancel the current executing migration process. 1402# 1403# Returns: nothing on success 1404# 1405# Notes: This command succeeds even if there is no migration process running. 1406# 1407# Since: 0.14 1408# 1409# Example: 1410# 1411# -> { "execute": "migrate_cancel" } 1412# <- { "return": {} } 1413# 1414## 1415{ 'command': 'migrate_cancel' } 1416 1417## 1418# @migrate-continue: 1419# 1420# Continue migration when it's in a paused state. 1421# 1422# @state: The state the migration is currently expected to be in 1423# 1424# Returns: nothing on success 1425# Since: 2.11 1426# Example: 1427# 1428# -> { "execute": "migrate-continue" , "arguments": 1429# { "state": "pre-switchover" } } 1430# <- { "return": {} } 1431## 1432{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} } 1433 1434## 1435# @migrate: 1436# 1437# Migrates the current running guest to another Virtual Machine. 1438# 1439# @uri: the Uniform Resource Identifier of the destination VM 1440# 1441# @blk: do block migration (full disk copy) 1442# 1443# @inc: incremental disk copy migration 1444# 1445# @detach: this argument exists only for compatibility reasons and 1446# is ignored by QEMU 1447# 1448# @resume: resume one paused migration, default "off". (since 3.0) 1449# 1450# Returns: nothing on success 1451# 1452# Since: 0.14 1453# 1454# Notes: 1455# 1456# 1. The 'query-migrate' command should be used to check migration's progress 1457# and final result (this information is provided by the 'status' member) 1458# 1459# 2. All boolean arguments default to false 1460# 1461# 3. The user Monitor's "detach" argument is invalid in QMP and should not 1462# be used 1463# 1464# Example: 1465# 1466# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } } 1467# <- { "return": {} } 1468# 1469## 1470{ 'command': 'migrate', 1471 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool', 1472 '*detach': 'bool', '*resume': 'bool' } } 1473 1474## 1475# @migrate-incoming: 1476# 1477# Start an incoming migration, the qemu must have been started 1478# with -incoming defer 1479# 1480# @uri: The Uniform Resource Identifier identifying the source or 1481# address to listen on 1482# 1483# Returns: nothing on success 1484# 1485# Since: 2.3 1486# 1487# Notes: 1488# 1489# 1. It's a bad idea to use a string for the uri, but it needs to stay 1490# compatible with -incoming and the format of the uri is already exposed 1491# above libvirt. 1492# 1493# 2. QEMU must be started with -incoming defer to allow migrate-incoming to 1494# be used. 1495# 1496# 3. The uri format is the same as for -incoming 1497# 1498# Example: 1499# 1500# -> { "execute": "migrate-incoming", 1501# "arguments": { "uri": "tcp::4446" } } 1502# <- { "return": {} } 1503# 1504## 1505{ 'command': 'migrate-incoming', 'data': {'uri': 'str' } } 1506 1507## 1508# @xen-save-devices-state: 1509# 1510# Save the state of all devices to file. The RAM and the block devices 1511# of the VM are not saved by this command. 1512# 1513# @filename: the file to save the state of the devices to as binary 1514# data. See xen-save-devices-state.txt for a description of the binary 1515# format. 1516# 1517# @live: Optional argument to ask QEMU to treat this command as part of a live 1518# migration. Default to true. (since 2.11) 1519# 1520# Returns: Nothing on success 1521# 1522# Since: 1.1 1523# 1524# Example: 1525# 1526# -> { "execute": "xen-save-devices-state", 1527# "arguments": { "filename": "/tmp/save" } } 1528# <- { "return": {} } 1529# 1530## 1531{ 'command': 'xen-save-devices-state', 1532 'data': {'filename': 'str', '*live':'bool' } } 1533 1534## 1535# @xen-set-global-dirty-log: 1536# 1537# Enable or disable the global dirty log mode. 1538# 1539# @enable: true to enable, false to disable. 1540# 1541# Returns: nothing 1542# 1543# Since: 1.3 1544# 1545# Example: 1546# 1547# -> { "execute": "xen-set-global-dirty-log", 1548# "arguments": { "enable": true } } 1549# <- { "return": {} } 1550# 1551## 1552{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1553 1554## 1555# @xen-load-devices-state: 1556# 1557# Load the state of all devices from file. The RAM and the block devices 1558# of the VM are not loaded by this command. 1559# 1560# @filename: the file to load the state of the devices from as binary 1561# data. See xen-save-devices-state.txt for a description of the binary 1562# format. 1563# 1564# Since: 2.7 1565# 1566# Example: 1567# 1568# -> { "execute": "xen-load-devices-state", 1569# "arguments": { "filename": "/tmp/resume" } } 1570# <- { "return": {} } 1571# 1572## 1573{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 1574 1575## 1576# @xen-set-replication: 1577# 1578# Enable or disable replication. 1579# 1580# @enable: true to enable, false to disable. 1581# 1582# @primary: true for primary or false for secondary. 1583# 1584# @failover: true to do failover, false to stop. but cannot be 1585# specified if 'enable' is true. default value is false. 1586# 1587# Returns: nothing. 1588# 1589# Example: 1590# 1591# -> { "execute": "xen-set-replication", 1592# "arguments": {"enable": true, "primary": false} } 1593# <- { "return": {} } 1594# 1595# Since: 2.9 1596## 1597{ 'command': 'xen-set-replication', 1598 'data': { 'enable': 'bool', 'primary': 'bool', '*failover' : 'bool' }, 1599 'if': 'CONFIG_REPLICATION' } 1600 1601## 1602# @ReplicationStatus: 1603# 1604# The result format for 'query-xen-replication-status'. 1605# 1606# @error: true if an error happened, false if replication is normal. 1607# 1608# @desc: the human readable error description string, when 1609# @error is 'true'. 1610# 1611# Since: 2.9 1612## 1613{ 'struct': 'ReplicationStatus', 1614 'data': { 'error': 'bool', '*desc': 'str' }, 1615 'if': 'CONFIG_REPLICATION' } 1616 1617## 1618# @query-xen-replication-status: 1619# 1620# Query replication status while the vm is running. 1621# 1622# Returns: A @ReplicationResult object showing the status. 1623# 1624# Example: 1625# 1626# -> { "execute": "query-xen-replication-status" } 1627# <- { "return": { "error": false } } 1628# 1629# Since: 2.9 1630## 1631{ 'command': 'query-xen-replication-status', 1632 'returns': 'ReplicationStatus', 1633 'if': 'CONFIG_REPLICATION' } 1634 1635## 1636# @xen-colo-do-checkpoint: 1637# 1638# Xen uses this command to notify replication to trigger a checkpoint. 1639# 1640# Returns: nothing. 1641# 1642# Example: 1643# 1644# -> { "execute": "xen-colo-do-checkpoint" } 1645# <- { "return": {} } 1646# 1647# Since: 2.9 1648## 1649{ 'command': 'xen-colo-do-checkpoint', 1650 'if': 'CONFIG_REPLICATION' } 1651 1652## 1653# @COLOStatus: 1654# 1655# The result format for 'query-colo-status'. 1656# 1657# @mode: COLO running mode. If COLO is running, this field will return 1658# 'primary' or 'secondary'. 1659# 1660# @last-mode: COLO last running mode. If COLO is running, this field 1661# will return same like mode field, after failover we can 1662# use this field to get last colo mode. (since 4.0) 1663# 1664# @reason: describes the reason for the COLO exit. 1665# 1666# Since: 3.1 1667## 1668{ 'struct': 'COLOStatus', 1669 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode', 1670 'reason': 'COLOExitReason' } } 1671 1672## 1673# @query-colo-status: 1674# 1675# Query COLO status while the vm is running. 1676# 1677# Returns: A @COLOStatus object showing the status. 1678# 1679# Example: 1680# 1681# -> { "execute": "query-colo-status" } 1682# <- { "return": { "mode": "primary", "reason": "request" } } 1683# 1684# Since: 3.1 1685## 1686{ 'command': 'query-colo-status', 1687 'returns': 'COLOStatus' } 1688 1689## 1690# @migrate-recover: 1691# 1692# Provide a recovery migration stream URI. 1693# 1694# @uri: the URI to be used for the recovery of migration stream. 1695# 1696# Returns: nothing. 1697# 1698# Example: 1699# 1700# -> { "execute": "migrate-recover", 1701# "arguments": { "uri": "tcp:192.168.1.200:12345" } } 1702# <- { "return": {} } 1703# 1704# Since: 3.0 1705## 1706{ 'command': 'migrate-recover', 1707 'data': { 'uri': 'str' }, 1708 'allow-oob': true } 1709 1710## 1711# @migrate-pause: 1712# 1713# Pause a migration. Currently it only supports postcopy. 1714# 1715# Returns: nothing. 1716# 1717# Example: 1718# 1719# -> { "execute": "migrate-pause" } 1720# <- { "return": {} } 1721# 1722# Since: 3.0 1723## 1724{ 'command': 'migrate-pause', 'allow-oob': true } 1725 1726## 1727# @UNPLUG_PRIMARY: 1728# 1729# Emitted from source side of a migration when migration state is 1730# WAIT_UNPLUG. Device was unplugged by guest operating system. 1731# Device resources in QEMU are kept on standby to be able to re-plug it in case 1732# of migration failure. 1733# 1734# @device-id: QEMU device id of the unplugged device 1735# 1736# Since: 4.2 1737# 1738# Example: 1739# {"event": "UNPLUG_PRIMARY", "data": {"device-id": "hostdev0"} } 1740# 1741## 1742{ 'event': 'UNPLUG_PRIMARY', 1743 'data': { 'device-id': 'str' } } 1744 1745## 1746# @DirtyRateVcpu: 1747# 1748# Dirty rate of vcpu. 1749# 1750# @id: vcpu index. 1751# 1752# @dirty-rate: dirty rate. 1753# 1754# Since: 6.2 1755# 1756## 1757{ 'struct': 'DirtyRateVcpu', 1758 'data': { 'id': 'int', 'dirty-rate': 'int64' } } 1759 1760## 1761# @DirtyRateStatus: 1762# 1763# An enumeration of dirtyrate status. 1764# 1765# @unstarted: the dirtyrate thread has not been started. 1766# 1767# @measuring: the dirtyrate thread is measuring. 1768# 1769# @measured: the dirtyrate thread has measured and results are available. 1770# 1771# Since: 5.2 1772# 1773## 1774{ 'enum': 'DirtyRateStatus', 1775 'data': [ 'unstarted', 'measuring', 'measured'] } 1776 1777## 1778# @DirtyRateMeasureMode: 1779# 1780# An enumeration of mode of measuring dirtyrate. 1781# 1782# @page-sampling: calculate dirtyrate by sampling pages. 1783# 1784# @dirty-ring: calculate dirtyrate by dirty ring. 1785# 1786# @dirty-bitmap: calculate dirtyrate by dirty bitmap. 1787# 1788# Since: 6.2 1789# 1790## 1791{ 'enum': 'DirtyRateMeasureMode', 1792 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] } 1793 1794## 1795# @DirtyRateInfo: 1796# 1797# Information about current dirty page rate of vm. 1798# 1799# @dirty-rate: an estimate of the dirty page rate of the VM in units of 1800# MB/s, present only when estimating the rate has completed. 1801# 1802# @status: status containing dirtyrate query status includes 1803# 'unstarted' or 'measuring' or 'measured' 1804# 1805# @start-time: start time in units of second for calculation 1806# 1807# @calc-time: time in units of second for sample dirty pages 1808# 1809# @sample-pages: page count per GB for sample dirty pages 1810# the default value is 512 (since 6.1) 1811# 1812# @mode: mode containing method of calculate dirtyrate includes 1813# 'page-sampling' and 'dirty-ring' (Since 6.2) 1814# 1815# @vcpu-dirty-rate: dirtyrate for each vcpu if dirty-ring 1816# mode specified (Since 6.2) 1817# 1818# Since: 5.2 1819# 1820## 1821{ 'struct': 'DirtyRateInfo', 1822 'data': {'*dirty-rate': 'int64', 1823 'status': 'DirtyRateStatus', 1824 'start-time': 'int64', 1825 'calc-time': 'int64', 1826 'sample-pages': 'uint64', 1827 'mode': 'DirtyRateMeasureMode', 1828 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } } 1829 1830## 1831# @calc-dirty-rate: 1832# 1833# start calculating dirty page rate for vm 1834# 1835# @calc-time: time in units of second for sample dirty pages 1836# 1837# @sample-pages: page count per GB for sample dirty pages 1838# the default value is 512 (since 6.1) 1839# 1840# @mode: mechanism of calculating dirtyrate includes 1841# 'page-sampling' and 'dirty-ring' (Since 6.1) 1842# 1843# Since: 5.2 1844# 1845# Example: 1846# {"command": "calc-dirty-rate", "arguments": {"calc-time": 1, 1847# 'sample-pages': 512} } 1848# 1849## 1850{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64', 1851 '*sample-pages': 'int', 1852 '*mode': 'DirtyRateMeasureMode'} } 1853 1854## 1855# @query-dirty-rate: 1856# 1857# query dirty page rate in units of MB/s for vm 1858# 1859# Since: 5.2 1860## 1861{ 'command': 'query-dirty-rate', 'returns': 'DirtyRateInfo' } 1862 1863## 1864# @snapshot-save: 1865# 1866# Save a VM snapshot 1867# 1868# @job-id: identifier for the newly created job 1869# @tag: name of the snapshot to create 1870# @vmstate: block device node name to save vmstate to 1871# @devices: list of block device node names to save a snapshot to 1872# 1873# Applications should not assume that the snapshot save is complete 1874# when this command returns. The job commands / events must be used 1875# to determine completion and to fetch details of any errors that arise. 1876# 1877# Note that execution of the guest CPUs may be stopped during the 1878# time it takes to save the snapshot. A future version of QEMU 1879# may ensure CPUs are executing continuously. 1880# 1881# It is strongly recommended that @devices contain all writable 1882# block device nodes if a consistent snapshot is required. 1883# 1884# If @tag already exists, an error will be reported 1885# 1886# Returns: nothing 1887# 1888# Example: 1889# 1890# -> { "execute": "snapshot-save", 1891# "arguments": { 1892# "job-id": "snapsave0", 1893# "tag": "my-snap", 1894# "vmstate": "disk0", 1895# "devices": ["disk0", "disk1"] 1896# } 1897# } 1898# <- { "return": { } } 1899# <- {"event": "JOB_STATUS_CHANGE", 1900# "data": {"status": "created", "id": "snapsave0"}} 1901# <- {"event": "JOB_STATUS_CHANGE", 1902# "data": {"status": "running", "id": "snapsave0"}} 1903# <- {"event": "STOP"} 1904# <- {"event": "RESUME"} 1905# <- {"event": "JOB_STATUS_CHANGE", 1906# "data": {"status": "waiting", "id": "snapsave0"}} 1907# <- {"event": "JOB_STATUS_CHANGE", 1908# "data": {"status": "pending", "id": "snapsave0"}} 1909# <- {"event": "JOB_STATUS_CHANGE", 1910# "data": {"status": "concluded", "id": "snapsave0"}} 1911# -> {"execute": "query-jobs"} 1912# <- {"return": [{"current-progress": 1, 1913# "status": "concluded", 1914# "total-progress": 1, 1915# "type": "snapshot-save", 1916# "id": "snapsave0"}]} 1917# 1918# Since: 6.0 1919## 1920{ 'command': 'snapshot-save', 1921 'data': { 'job-id': 'str', 1922 'tag': 'str', 1923 'vmstate': 'str', 1924 'devices': ['str'] } } 1925 1926## 1927# @snapshot-load: 1928# 1929# Load a VM snapshot 1930# 1931# @job-id: identifier for the newly created job 1932# @tag: name of the snapshot to load. 1933# @vmstate: block device node name to load vmstate from 1934# @devices: list of block device node names to load a snapshot from 1935# 1936# Applications should not assume that the snapshot load is complete 1937# when this command returns. The job commands / events must be used 1938# to determine completion and to fetch details of any errors that arise. 1939# 1940# Note that execution of the guest CPUs will be stopped during the 1941# time it takes to load the snapshot. 1942# 1943# It is strongly recommended that @devices contain all writable 1944# block device nodes that can have changed since the original 1945# @snapshot-save command execution. 1946# 1947# Returns: nothing 1948# 1949# Example: 1950# 1951# -> { "execute": "snapshot-load", 1952# "arguments": { 1953# "job-id": "snapload0", 1954# "tag": "my-snap", 1955# "vmstate": "disk0", 1956# "devices": ["disk0", "disk1"] 1957# } 1958# } 1959# <- { "return": { } } 1960# <- {"event": "JOB_STATUS_CHANGE", 1961# "data": {"status": "created", "id": "snapload0"}} 1962# <- {"event": "JOB_STATUS_CHANGE", 1963# "data": {"status": "running", "id": "snapload0"}} 1964# <- {"event": "STOP"} 1965# <- {"event": "RESUME"} 1966# <- {"event": "JOB_STATUS_CHANGE", 1967# "data": {"status": "waiting", "id": "snapload0"}} 1968# <- {"event": "JOB_STATUS_CHANGE", 1969# "data": {"status": "pending", "id": "snapload0"}} 1970# <- {"event": "JOB_STATUS_CHANGE", 1971# "data": {"status": "concluded", "id": "snapload0"}} 1972# -> {"execute": "query-jobs"} 1973# <- {"return": [{"current-progress": 1, 1974# "status": "concluded", 1975# "total-progress": 1, 1976# "type": "snapshot-load", 1977# "id": "snapload0"}]} 1978# 1979# Since: 6.0 1980## 1981{ 'command': 'snapshot-load', 1982 'data': { 'job-id': 'str', 1983 'tag': 'str', 1984 'vmstate': 'str', 1985 'devices': ['str'] } } 1986 1987## 1988# @snapshot-delete: 1989# 1990# Delete a VM snapshot 1991# 1992# @job-id: identifier for the newly created job 1993# @tag: name of the snapshot to delete. 1994# @devices: list of block device node names to delete a snapshot from 1995# 1996# Applications should not assume that the snapshot delete is complete 1997# when this command returns. The job commands / events must be used 1998# to determine completion and to fetch details of any errors that arise. 1999# 2000# Returns: nothing 2001# 2002# Example: 2003# 2004# -> { "execute": "snapshot-delete", 2005# "arguments": { 2006# "job-id": "snapdelete0", 2007# "tag": "my-snap", 2008# "devices": ["disk0", "disk1"] 2009# } 2010# } 2011# <- { "return": { } } 2012# <- {"event": "JOB_STATUS_CHANGE", 2013# "data": {"status": "created", "id": "snapdelete0"}} 2014# <- {"event": "JOB_STATUS_CHANGE", 2015# "data": {"status": "running", "id": "snapdelete0"}} 2016# <- {"event": "JOB_STATUS_CHANGE", 2017# "data": {"status": "waiting", "id": "snapdelete0"}} 2018# <- {"event": "JOB_STATUS_CHANGE", 2019# "data": {"status": "pending", "id": "snapdelete0"}} 2020# <- {"event": "JOB_STATUS_CHANGE", 2021# "data": {"status": "concluded", "id": "snapdelete0"}} 2022# -> {"execute": "query-jobs"} 2023# <- {"return": [{"current-progress": 1, 2024# "status": "concluded", 2025# "total-progress": 1, 2026# "type": "snapshot-delete", 2027# "id": "snapdelete0"}]} 2028# 2029# Since: 6.0 2030## 2031{ 'command': 'snapshot-delete', 2032 'data': { 'job-id': 'str', 2033 'tag': 'str', 2034 'devices': ['str'] } } 2035