1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4 5## 6# = Migration 7## 8 9{ 'include': 'common.json' } 10{ 'include': 'sockets.json' } 11 12## 13# @MigrationStats: 14# 15# Detailed migration status. 16# 17# @transferred: amount of bytes already transferred to the target VM 18# 19# @remaining: amount of bytes remaining to be transferred to the 20# target VM 21# 22# @total: total amount of bytes involved in the migration process 23# 24# @duplicate: number of duplicate (zero) pages (since 1.2) 25# 26# @skipped: number of skipped zero pages. Always zero, only provided for 27# compatibility (since 1.5) 28# 29# @normal: number of normal pages (since 1.2) 30# 31# @normal-bytes: number of normal bytes sent (since 1.2) 32# 33# @dirty-pages-rate: number of pages dirtied by second by the guest 34# (since 1.3) 35# 36# @mbps: throughput in megabits/sec. (since 1.6) 37# 38# @dirty-sync-count: number of times that dirty ram was synchronized 39# (since 2.1) 40# 41# @postcopy-requests: The number of page requests received from the 42# destination (since 2.7) 43# 44# @page-size: The number of bytes per page for the various page-based 45# statistics (since 2.10) 46# 47# @multifd-bytes: The number of bytes sent through multifd (since 3.0) 48# 49# @pages-per-second: the number of memory pages transferred per second 50# (Since 4.0) 51# 52# @precopy-bytes: The number of bytes sent in the pre-copy phase 53# (since 7.0). 54# 55# @downtime-bytes: The number of bytes sent while the guest is paused 56# (since 7.0). 57# 58# @postcopy-bytes: The number of bytes sent during the post-copy phase 59# (since 7.0). 60# 61# @dirty-sync-missed-zero-copy: Number of times dirty RAM 62# synchronization could not avoid copying dirty pages. This is 63# between 0 and @dirty-sync-count * @multifd-channels. (since 64# 7.1) 65# 66# Features: 67# 68# @deprecated: Member @skipped is always zero since 1.5.3 69# 70# Since: 0.14 71# 72## 73{ 'struct': 'MigrationStats', 74 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' , 75 'duplicate': 'int', 76 'skipped': { 'type': 'int', 'features': [ 'deprecated' ] }, 77 'normal': 'int', 78 'normal-bytes': 'int', 'dirty-pages-rate': 'int', 79 'mbps': 'number', 'dirty-sync-count': 'int', 80 'postcopy-requests': 'int', 'page-size': 'int', 81 'multifd-bytes': 'uint64', 'pages-per-second': 'uint64', 82 'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64', 83 'postcopy-bytes': 'uint64', 84 'dirty-sync-missed-zero-copy': 'uint64' } } 85 86## 87# @XBZRLECacheStats: 88# 89# Detailed XBZRLE migration cache statistics 90# 91# @cache-size: XBZRLE cache size 92# 93# @bytes: amount of bytes already transferred to the target VM 94# 95# @pages: amount of pages transferred to the target VM 96# 97# @cache-miss: number of cache miss 98# 99# @cache-miss-rate: rate of cache miss (since 2.1) 100# 101# @encoding-rate: rate of encoded bytes (since 5.1) 102# 103# @overflow: number of overflows 104# 105# Since: 1.2 106## 107{ 'struct': 'XBZRLECacheStats', 108 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int', 109 'cache-miss': 'int', 'cache-miss-rate': 'number', 110 'encoding-rate': 'number', 'overflow': 'int' } } 111 112## 113# @CompressionStats: 114# 115# Detailed migration compression statistics 116# 117# @pages: amount of pages compressed and transferred to the target VM 118# 119# @busy: count of times that no free thread was available to compress 120# data 121# 122# @busy-rate: rate of thread busy 123# 124# @compressed-size: amount of bytes after compression 125# 126# @compression-rate: rate of compressed size 127# 128# Since: 3.1 129## 130{ 'struct': 'CompressionStats', 131 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number', 132 'compressed-size': 'int', 'compression-rate': 'number' } } 133 134## 135# @MigrationStatus: 136# 137# An enumeration of migration status. 138# 139# @none: no migration has ever happened. 140# 141# @setup: migration process has been initiated. 142# 143# @cancelling: in the process of cancelling migration. 144# 145# @cancelled: cancelling migration is finished. 146# 147# @active: in the process of doing migration. 148# 149# @postcopy-active: like active, but now in postcopy mode. (since 150# 2.5) 151# 152# @postcopy-paused: during postcopy but paused. (since 3.0) 153# 154# @postcopy-recover: trying to recover from a paused postcopy. (since 155# 3.0) 156# 157# @completed: migration is finished. 158# 159# @failed: some error occurred during migration process. 160# 161# @colo: VM is in the process of fault tolerance, VM can not get into 162# this state unless colo capability is enabled for migration. 163# (since 2.8) 164# 165# @pre-switchover: Paused before device serialisation. (since 2.11) 166# 167# @device: During device serialisation when pause-before-switchover is 168# enabled (since 2.11) 169# 170# @wait-unplug: wait for device unplug request by guest OS to be 171# completed. (since 4.2) 172# 173# Since: 2.3 174## 175{ 'enum': 'MigrationStatus', 176 'data': [ 'none', 'setup', 'cancelling', 'cancelled', 177 'active', 'postcopy-active', 'postcopy-paused', 178 'postcopy-recover', 'completed', 'failed', 'colo', 179 'pre-switchover', 'device', 'wait-unplug' ] } 180## 181# @VfioStats: 182# 183# Detailed VFIO devices migration statistics 184# 185# @transferred: amount of bytes transferred to the target VM by VFIO 186# devices 187# 188# Since: 5.2 189## 190{ 'struct': 'VfioStats', 191 'data': {'transferred': 'int' } } 192 193## 194# @MigrationInfo: 195# 196# Information about current migration process. 197# 198# @status: @MigrationStatus describing the current migration status. 199# If this field is not returned, no migration process has been 200# initiated 201# 202# @ram: @MigrationStats containing detailed migration status, only 203# returned if status is 'active' or 'completed'(since 1.2) 204# 205# @disk: @MigrationStats containing detailed disk migration status, 206# only returned if status is 'active' and it is a block migration 207# 208# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE 209# migration statistics, only returned if XBZRLE feature is on and 210# status is 'active' or 'completed' (since 1.2) 211# 212# @total-time: total amount of milliseconds since migration started. 213# If migration has ended, it returns the total migration time. 214# (since 1.2) 215# 216# @downtime: only present when migration finishes correctly total 217# downtime in milliseconds for the guest. (since 1.3) 218# 219# @expected-downtime: only present while migration is active expected 220# downtime in milliseconds for the guest in last walk of the dirty 221# bitmap. (since 1.3) 222# 223# @setup-time: amount of setup time in milliseconds *before* the 224# iterations begin but *after* the QMP command is issued. This is 225# designed to provide an accounting of any activities (such as 226# RDMA pinning) which may be expensive, but do not actually occur 227# during the iterative migration rounds themselves. (since 1.6) 228# 229# @cpu-throttle-percentage: percentage of time guest cpus are being 230# throttled during auto-converge. This is only present when 231# auto-converge has started throttling guest cpus. (Since 2.7) 232# 233# @error-desc: the human readable error description string. Clients 234# should not attempt to parse the error strings. (Since 2.7) 235# 236# @postcopy-blocktime: total time when all vCPU were blocked during 237# postcopy live migration. This is only present when the 238# postcopy-blocktime migration capability is enabled. (Since 3.0) 239# 240# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. 241# This is only present when the postcopy-blocktime migration 242# capability is enabled. (Since 3.0) 243# 244# @compression: migration compression statistics, only returned if 245# compression feature is on and status is 'active' or 'completed' 246# (Since 3.1) 247# 248# @socket-address: Only used for tcp, to know what the real port is 249# (Since 4.0) 250# 251# @vfio: @VfioStats containing detailed VFIO devices migration 252# statistics, only returned if VFIO device is present, migration 253# is supported by all VFIO devices and status is 'active' or 254# 'completed' (since 5.2) 255# 256# @blocked-reasons: A list of reasons an outgoing migration is 257# blocked. Present and non-empty when migration is blocked. 258# (since 6.0) 259# 260# @dirty-limit-throttle-time-per-round: Maximum throttle time 261# (in microseconds) of virtual CPUs each dirty ring full round, 262# which shows how MigrationCapability dirty-limit affects the 263# guest during live migration. (Since 8.1) 264# 265# @dirty-limit-ring-full-time: Estimated average dirty ring full time 266# (in microseconds) for each dirty ring full round. The value 267# equals the dirty ring memory size divided by the average dirty 268# page rate of the virtual CPU, which can be used to observe the 269# average memory load of the virtual CPU indirectly. Note that 270# zero means guest doesn't dirty memory. (Since 8.1) 271# 272# Features: 273# 274# @deprecated: Member @disk is deprecated because block migration is. 275# Member @compression is deprecated because it is unreliable and 276# untested. It is recommended to use multifd migration, which 277# offers an alternative compression implementation that is 278# reliable and tested. 279# 280# Since: 0.14 281## 282{ 'struct': 'MigrationInfo', 283 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats', 284 '*disk': { 'type': 'MigrationStats', 'features': [ 'deprecated' ] }, 285 '*vfio': 'VfioStats', 286 '*xbzrle-cache': 'XBZRLECacheStats', 287 '*total-time': 'int', 288 '*expected-downtime': 'int', 289 '*downtime': 'int', 290 '*setup-time': 'int', 291 '*cpu-throttle-percentage': 'int', 292 '*error-desc': 'str', 293 '*blocked-reasons': ['str'], 294 '*postcopy-blocktime': 'uint32', 295 '*postcopy-vcpu-blocktime': ['uint32'], 296 '*compression': { 'type': 'CompressionStats', 'features': [ 'deprecated' ] }, 297 '*socket-address': ['SocketAddress'], 298 '*dirty-limit-throttle-time-per-round': 'uint64', 299 '*dirty-limit-ring-full-time': 'uint64'} } 300 301## 302# @query-migrate: 303# 304# Returns information about current migration process. If migration 305# is active there will be another json-object with RAM migration 306# status and if block migration is active another one with block 307# migration status. 308# 309# Returns: @MigrationInfo 310# 311# Since: 0.14 312# 313# Examples: 314# 315# 1. Before the first migration 316# 317# -> { "execute": "query-migrate" } 318# <- { "return": {} } 319# 320# 2. Migration is done and has succeeded 321# 322# -> { "execute": "query-migrate" } 323# <- { "return": { 324# "status": "completed", 325# "total-time":12345, 326# "setup-time":12345, 327# "downtime":12345, 328# "ram":{ 329# "transferred":123, 330# "remaining":123, 331# "total":246, 332# "duplicate":123, 333# "normal":123, 334# "normal-bytes":123456, 335# "dirty-sync-count":15 336# } 337# } 338# } 339# 340# 3. Migration is done and has failed 341# 342# -> { "execute": "query-migrate" } 343# <- { "return": { "status": "failed" } } 344# 345# 4. Migration is being performed and is not a block migration: 346# 347# -> { "execute": "query-migrate" } 348# <- { 349# "return":{ 350# "status":"active", 351# "total-time":12345, 352# "setup-time":12345, 353# "expected-downtime":12345, 354# "ram":{ 355# "transferred":123, 356# "remaining":123, 357# "total":246, 358# "duplicate":123, 359# "normal":123, 360# "normal-bytes":123456, 361# "dirty-sync-count":15 362# } 363# } 364# } 365# 366# 5. Migration is being performed and is a block migration: 367# 368# -> { "execute": "query-migrate" } 369# <- { 370# "return":{ 371# "status":"active", 372# "total-time":12345, 373# "setup-time":12345, 374# "expected-downtime":12345, 375# "ram":{ 376# "total":1057024, 377# "remaining":1053304, 378# "transferred":3720, 379# "duplicate":123, 380# "normal":123, 381# "normal-bytes":123456, 382# "dirty-sync-count":15 383# }, 384# "disk":{ 385# "total":20971520, 386# "remaining":20880384, 387# "transferred":91136 388# } 389# } 390# } 391# 392# 6. Migration is being performed and XBZRLE is active: 393# 394# -> { "execute": "query-migrate" } 395# <- { 396# "return":{ 397# "status":"active", 398# "total-time":12345, 399# "setup-time":12345, 400# "expected-downtime":12345, 401# "ram":{ 402# "total":1057024, 403# "remaining":1053304, 404# "transferred":3720, 405# "duplicate":10, 406# "normal":3333, 407# "normal-bytes":3412992, 408# "dirty-sync-count":15 409# }, 410# "xbzrle-cache":{ 411# "cache-size":67108864, 412# "bytes":20971520, 413# "pages":2444343, 414# "cache-miss":2244, 415# "cache-miss-rate":0.123, 416# "encoding-rate":80.1, 417# "overflow":34434 418# } 419# } 420# } 421## 422{ 'command': 'query-migrate', 'returns': 'MigrationInfo' } 423 424## 425# @MigrationCapability: 426# 427# Migration capabilities enumeration 428# 429# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length 430# Encoding). This feature allows us to minimize migration traffic 431# for certain work loads, by sending compressed difference of the 432# pages 433# 434# @rdma-pin-all: Controls whether or not the entire VM memory 435# footprint is mlock()'d on demand or all at once. Refer to 436# docs/rdma.txt for usage. Disabled by default. (since 2.0) 437# 438# @zero-blocks: During storage migration encode blocks of zeroes 439# efficiently. This essentially saves 1MB of zeroes per block on 440# the wire. Enabling requires source and target VM to support 441# this feature. To enable it is sufficient to enable the 442# capability on the source VM. The feature is disabled by default. 443# (since 1.6) 444# 445# @compress: Use multiple compression threads to accelerate live 446# migration. This feature can help to reduce the migration 447# traffic, by sending compressed pages. Please note that if 448# compress and xbzrle are both on, compress only takes effect in 449# the ram bulk stage, after that, it will be disabled and only 450# xbzrle takes effect, this can help to minimize migration 451# traffic. The feature is disabled by default. (since 2.4) 452# 453# @events: generate events for each migration state change (since 2.4) 454# 455# @auto-converge: If enabled, QEMU will automatically throttle down 456# the guest to speed up convergence of RAM migration. (since 1.6) 457# 458# @postcopy-ram: Start executing on the migration target before all of 459# RAM has been migrated, pulling the remaining pages along as 460# needed. The capacity must have the same setting on both source 461# and target or migration will not even start. NOTE: If the 462# migration fails during postcopy the VM will fail. (since 2.6) 463# 464# @x-colo: If enabled, migration will never end, and the state of the 465# VM on the primary side will be migrated continuously to the VM 466# on secondary side, this process is called COarse-Grain LOck 467# Stepping (COLO) for Non-stop Service. (since 2.8) 468# 469# @release-ram: if enabled, qemu will free the migrated ram pages on 470# the source during postcopy-ram migration. (since 2.9) 471# 472# @block: If enabled, QEMU will also migrate the contents of all block 473# devices. Default is disabled. A possible alternative uses 474# mirror jobs to a builtin NBD server on the destination, which 475# offers more flexibility. (Since 2.10) 476# 477# @return-path: If enabled, migration will use the return path even 478# for precopy. (since 2.10) 479# 480# @pause-before-switchover: Pause outgoing migration before 481# serialising device state and before disabling block IO (since 482# 2.11) 483# 484# @multifd: Use more than one fd for migration (since 4.0) 485# 486# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps. 487# (since 2.12) 488# 489# @postcopy-blocktime: Calculate downtime for postcopy live migration 490# (since 3.0) 491# 492# @late-block-activate: If enabled, the destination will not activate 493# block devices (and thus take locks) immediately at the end of 494# migration. (since 3.0) 495# 496# @x-ignore-shared: If enabled, QEMU will not migrate shared memory 497# that is accessible on the destination machine. (since 4.0) 498# 499# @validate-uuid: Send the UUID of the source to allow the destination 500# to ensure it is the same. (since 4.2) 501# 502# @background-snapshot: If enabled, the migration stream will be a 503# snapshot of the VM exactly at the point when the migration 504# procedure starts. The VM RAM is saved with running VM. (since 505# 6.0) 506# 507# @zero-copy-send: Controls behavior on sending memory pages on 508# migration. When true, enables a zero-copy mechanism for sending 509# memory pages, if host supports it. Requires that QEMU be 510# permitted to use locked memory for guest RAM pages. (since 7.1) 511# 512# @postcopy-preempt: If enabled, the migration process will allow 513# postcopy requests to preempt precopy stream, so postcopy 514# requests will be handled faster. This is a performance feature 515# and should not affect the correctness of postcopy migration. 516# (since 7.1) 517# 518# @switchover-ack: If enabled, migration will not stop the source VM 519# and complete the migration until an ACK is received from the 520# destination that it's OK to do so. Exactly when this ACK is 521# sent depends on the migrated devices that use this feature. For 522# example, a device can use it to make sure some of its data is 523# sent and loaded in the destination before doing switchover. 524# This can reduce downtime if devices that support this capability 525# are present. 'return-path' capability must be enabled to use 526# it. (since 8.1) 527# 528# @dirty-limit: If enabled, migration will throttle vCPUs as needed to 529# keep their dirty page rate within @vcpu-dirty-limit. This can 530# improve responsiveness of large guests during live migration, 531# and can result in more stable read performance. Requires KVM 532# with accelerator property "dirty-ring-size" set. (Since 8.1) 533# 534# Features: 535# 536# @deprecated: Member @block is deprecated. Use blockdev-mirror with 537# NBD instead. Member @compress is deprecated because it is 538# unreliable and untested. It is recommended to use multifd 539# migration, which offers an alternative compression 540# implementation that is reliable and tested. 541# 542# @unstable: Members @x-colo and @x-ignore-shared are experimental. 543# 544# Since: 1.2 545## 546{ 'enum': 'MigrationCapability', 547 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks', 548 { 'name': 'compress', 'features': [ 'deprecated' ] }, 549 'events', 'postcopy-ram', 550 { 'name': 'x-colo', 'features': [ 'unstable' ] }, 551 'release-ram', 552 { 'name': 'block', 'features': [ 'deprecated' ] }, 553 'return-path', 'pause-before-switchover', 'multifd', 554 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate', 555 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] }, 556 'validate-uuid', 'background-snapshot', 557 'zero-copy-send', 'postcopy-preempt', 'switchover-ack', 558 'dirty-limit'] } 559 560## 561# @MigrationCapabilityStatus: 562# 563# Migration capability information 564# 565# @capability: capability enum 566# 567# @state: capability state bool 568# 569# Since: 1.2 570## 571{ 'struct': 'MigrationCapabilityStatus', 572 'data': { 'capability': 'MigrationCapability', 'state': 'bool' } } 573 574## 575# @migrate-set-capabilities: 576# 577# Enable/Disable the following migration capabilities (like xbzrle) 578# 579# @capabilities: json array of capability modifications to make 580# 581# Since: 1.2 582# 583# Example: 584# 585# -> { "execute": "migrate-set-capabilities" , "arguments": 586# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } } 587# <- { "return": {} } 588## 589{ 'command': 'migrate-set-capabilities', 590 'data': { 'capabilities': ['MigrationCapabilityStatus'] } } 591 592## 593# @query-migrate-capabilities: 594# 595# Returns information about the current migration capabilities status 596# 597# Returns: @MigrationCapabilityStatus 598# 599# Since: 1.2 600# 601# Example: 602# 603# -> { "execute": "query-migrate-capabilities" } 604# <- { "return": [ 605# {"state": false, "capability": "xbzrle"}, 606# {"state": false, "capability": "rdma-pin-all"}, 607# {"state": false, "capability": "auto-converge"}, 608# {"state": false, "capability": "zero-blocks"}, 609# {"state": false, "capability": "compress"}, 610# {"state": true, "capability": "events"}, 611# {"state": false, "capability": "postcopy-ram"}, 612# {"state": false, "capability": "x-colo"} 613# ]} 614## 615{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']} 616 617## 618# @MultiFDCompression: 619# 620# An enumeration of multifd compression methods. 621# 622# @none: no compression. 623# 624# @zlib: use zlib compression method. 625# 626# @zstd: use zstd compression method. 627# 628# Since: 5.0 629## 630{ 'enum': 'MultiFDCompression', 631 'data': [ 'none', 'zlib', 632 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] } 633 634## 635# @MigMode: 636# 637# @normal: the original form of migration. (since 8.2) 638# 639# @cpr-reboot: The migrate command stops the VM and saves state to the URI. 640# After quitting qemu, the user resumes by running qemu -incoming. 641# 642# This mode allows the user to quit qemu, and restart an updated version 643# of qemu. The user may even update and reboot the OS before restarting, 644# as long as the URI persists across a reboot. 645# 646# Unlike normal mode, the use of certain local storage options does not 647# block the migration, but the user must not modify guest block devices 648# between the quit and restart. 649# 650# This mode supports vfio devices provided the user first puts the guest 651# in the suspended runstate, such as by issuing guest-suspend-ram to the 652# qemu guest agent. 653# 654# Best performance is achieved when the memory backend is shared and the 655# @x-ignore-shared migration capability is set, but this is not required. 656# Further, if the user reboots before restarting such a configuration, the 657# shared backend must be be non-volatile across reboot, such as by backing 658# it with a dax device. 659# 660# cpr-reboot may not be used with postcopy, colo, or background-snapshot. 661# 662# (since 8.2) 663## 664{ 'enum': 'MigMode', 665 'data': [ 'normal', 'cpr-reboot' ] } 666 667## 668# @BitmapMigrationBitmapAliasTransform: 669# 670# @persistent: If present, the bitmap will be made persistent or 671# transient depending on this parameter. 672# 673# Since: 6.0 674## 675{ 'struct': 'BitmapMigrationBitmapAliasTransform', 676 'data': { 677 '*persistent': 'bool' 678 } } 679 680## 681# @BitmapMigrationBitmapAlias: 682# 683# @name: The name of the bitmap. 684# 685# @alias: An alias name for migration (for example the bitmap name on 686# the opposite site). 687# 688# @transform: Allows the modification of the migrated bitmap. (since 689# 6.0) 690# 691# Since: 5.2 692## 693{ 'struct': 'BitmapMigrationBitmapAlias', 694 'data': { 695 'name': 'str', 696 'alias': 'str', 697 '*transform': 'BitmapMigrationBitmapAliasTransform' 698 } } 699 700## 701# @BitmapMigrationNodeAlias: 702# 703# Maps a block node name and the bitmaps it has to aliases for dirty 704# bitmap migration. 705# 706# @node-name: A block node name. 707# 708# @alias: An alias block node name for migration (for example the node 709# name on the opposite site). 710# 711# @bitmaps: Mappings for the bitmaps on this node. 712# 713# Since: 5.2 714## 715{ 'struct': 'BitmapMigrationNodeAlias', 716 'data': { 717 'node-name': 'str', 718 'alias': 'str', 719 'bitmaps': [ 'BitmapMigrationBitmapAlias' ] 720 } } 721 722## 723# @MigrationParameter: 724# 725# Migration parameters enumeration 726# 727# @announce-initial: Initial delay (in milliseconds) before sending 728# the first announce (Since 4.0) 729# 730# @announce-max: Maximum delay (in milliseconds) between packets in 731# the announcement (Since 4.0) 732# 733# @announce-rounds: Number of self-announce packets sent after 734# migration (Since 4.0) 735# 736# @announce-step: Increase in delay (in milliseconds) between 737# subsequent packets in the announcement (Since 4.0) 738# 739# @compress-level: Set the compression level to be used in live 740# migration, the compression level is an integer between 0 and 9, 741# where 0 means no compression, 1 means the best compression 742# speed, and 9 means best compression ratio which will consume 743# more CPU. 744# 745# @compress-threads: Set compression thread count to be used in live 746# migration, the compression thread count is an integer between 1 747# and 255. 748# 749# @compress-wait-thread: Controls behavior when all compression 750# threads are currently busy. If true (default), wait for a free 751# compression thread to become available; otherwise, send the page 752# uncompressed. (Since 3.1) 753# 754# @decompress-threads: Set decompression thread count to be used in 755# live migration, the decompression thread count is an integer 756# between 1 and 255. Usually, decompression is at least 4 times as 757# fast as compression, so set the decompress-threads to the number 758# about 1/4 of compress-threads is adequate. 759# 760# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 761# bytes_xfer_period to trigger throttling. It is expressed as 762# percentage. The default value is 50. (Since 5.0) 763# 764# @cpu-throttle-initial: Initial percentage of time guest cpus are 765# throttled when migration auto-converge is activated. The 766# default value is 20. (Since 2.7) 767# 768# @cpu-throttle-increment: throttle percentage increase each time 769# auto-converge detects that migration is not making progress. 770# The default value is 10. (Since 2.7) 771# 772# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 773# the tail stage of throttling, the Guest is very sensitive to CPU 774# percentage while the @cpu-throttle -increment is excessive 775# usually at tail stage. If this parameter is true, we will 776# compute the ideal CPU percentage used by the Guest, which may 777# exactly make the dirty rate match the dirty rate threshold. 778# Then we will choose a smaller throttle increment between the one 779# specified by @cpu-throttle-increment and the one generated by 780# ideal CPU percentage. Therefore, it is compatible to 781# traditional throttling, meanwhile the throttle increment won't 782# be excessive at tail stage. The default value is false. (Since 783# 5.1) 784# 785# @tls-creds: ID of the 'tls-creds' object that provides credentials 786# for establishing a TLS connection over the migration data 787# channel. On the outgoing side of the migration, the credentials 788# must be for a 'client' endpoint, while for the incoming side the 789# credentials must be for a 'server' endpoint. Setting this will 790# enable TLS for all migrations. The default is unset, resulting 791# in unsecured migration at the QEMU level. (Since 2.7) 792# 793# @tls-hostname: hostname of the target host for the migration. This 794# is required when using x509 based TLS credentials and the 795# migration URI does not already include a hostname. For example 796# if using fd: or exec: based migration, the hostname must be 797# provided so that the server's x509 certificate identity can be 798# validated. (Since 2.7) 799# 800# @tls-authz: ID of the 'authz' object subclass that provides access 801# control checking of the TLS x509 certificate distinguished name. 802# This object is only resolved at time of use, so can be deleted 803# and recreated on the fly while the migration server is active. 804# If missing, it will default to denying access (Since 4.0) 805# 806# @max-bandwidth: to set maximum speed for migration. maximum speed 807# in bytes per second. (Since 2.8) 808# 809# @avail-switchover-bandwidth: to set the available bandwidth that 810# migration can use during switchover phase. NOTE! This does not 811# limit the bandwidth during switchover, but only for calculations when 812# making decisions to switchover. By default, this value is zero, 813# which means QEMU will estimate the bandwidth automatically. This can 814# be set when the estimated value is not accurate, while the user is 815# able to guarantee such bandwidth is available when switching over. 816# When specified correctly, this can make the switchover decision much 817# more accurate. (Since 8.2) 818# 819# @downtime-limit: set maximum tolerated downtime for migration. 820# maximum downtime in milliseconds (Since 2.8) 821# 822# @x-checkpoint-delay: The delay time (in ms) between two COLO 823# checkpoints in periodic mode. (Since 2.8) 824# 825# @block-incremental: Affects how much storage is migrated when the 826# block migration capability is enabled. When false, the entire 827# storage backing chain is migrated into a flattened image at the 828# destination; when true, only the active qcow2 layer is migrated 829# and the destination must already have access to the same backing 830# chain as was used on the source. (since 2.10) 831# 832# @multifd-channels: Number of channels used to migrate data in 833# parallel. This is the same number that the number of sockets 834# used for migration. The default value is 2 (since 4.0) 835# 836# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 837# needs to be a multiple of the target page size and a power of 2 838# (Since 2.11) 839# 840# @max-postcopy-bandwidth: Background transfer bandwidth during 841# postcopy. Defaults to 0 (unlimited). In bytes per second. 842# (Since 3.0) 843# 844# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 845# (Since 3.1) 846# 847# @multifd-compression: Which compression method to use. Defaults to 848# none. (Since 5.0) 849# 850# @multifd-zlib-level: Set the compression level to be used in live 851# migration, the compression level is an integer between 0 and 9, 852# where 0 means no compression, 1 means the best compression 853# speed, and 9 means best compression ratio which will consume 854# more CPU. Defaults to 1. (Since 5.0) 855# 856# @multifd-zstd-level: Set the compression level to be used in live 857# migration, the compression level is an integer between 0 and 20, 858# where 0 means no compression, 1 means the best compression 859# speed, and 20 means best compression ratio which will consume 860# more CPU. Defaults to 1. (Since 5.0) 861# 862# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 863# aliases for the purpose of dirty bitmap migration. Such aliases 864# may for example be the corresponding names on the opposite site. 865# The mapping must be one-to-one, but not necessarily complete: On 866# the source, unmapped bitmaps and all bitmaps on unmapped nodes 867# will be ignored. On the destination, encountering an unmapped 868# alias in the incoming migration stream will result in a report, 869# and all further bitmap migration data will then be discarded. 870# Note that the destination does not know about bitmaps it does 871# not receive, so there is no limitation or requirement regarding 872# the number of bitmaps received, or how they are named, or on 873# which nodes they are placed. By default (when this parameter 874# has never been set), bitmap names are mapped to themselves. 875# Nodes are mapped to their block device name if there is one, and 876# to their node name otherwise. (Since 5.2) 877# 878# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 879# limit during live migration. Should be in the range 1 to 1000ms. 880# Defaults to 1000ms. (Since 8.1) 881# 882# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 883# Defaults to 1. (Since 8.1) 884# 885# @mode: Migration mode. See description in @MigMode. Default is 'normal'. 886# (Since 8.2) 887# 888# Features: 889# 890# @deprecated: Member @block-incremental is deprecated. Use 891# blockdev-mirror with NBD instead. Members @compress-level, 892# @compress-threads, @decompress-threads and @compress-wait-thread 893# are deprecated because @compression is deprecated. 894# 895# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period 896# are experimental. 897# 898# Since: 2.4 899## 900{ 'enum': 'MigrationParameter', 901 'data': ['announce-initial', 'announce-max', 902 'announce-rounds', 'announce-step', 903 { 'name': 'compress-level', 'features': [ 'deprecated' ] }, 904 { 'name': 'compress-threads', 'features': [ 'deprecated' ] }, 905 { 'name': 'decompress-threads', 'features': [ 'deprecated' ] }, 906 { 'name': 'compress-wait-thread', 'features': [ 'deprecated' ] }, 907 'throttle-trigger-threshold', 908 'cpu-throttle-initial', 'cpu-throttle-increment', 909 'cpu-throttle-tailslow', 910 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth', 911 'avail-switchover-bandwidth', 'downtime-limit', 912 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] }, 913 { 'name': 'block-incremental', 'features': [ 'deprecated' ] }, 914 'multifd-channels', 915 'xbzrle-cache-size', 'max-postcopy-bandwidth', 916 'max-cpu-throttle', 'multifd-compression', 917 'multifd-zlib-level', 'multifd-zstd-level', 918 'block-bitmap-mapping', 919 { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] }, 920 'vcpu-dirty-limit', 921 'mode'] } 922 923## 924# @MigrateSetParameters: 925# 926# @announce-initial: Initial delay (in milliseconds) before sending 927# the first announce (Since 4.0) 928# 929# @announce-max: Maximum delay (in milliseconds) between packets in 930# the announcement (Since 4.0) 931# 932# @announce-rounds: Number of self-announce packets sent after 933# migration (Since 4.0) 934# 935# @announce-step: Increase in delay (in milliseconds) between 936# subsequent packets in the announcement (Since 4.0) 937# 938# @compress-level: compression level 939# 940# @compress-threads: compression thread count 941# 942# @compress-wait-thread: Controls behavior when all compression 943# threads are currently busy. If true (default), wait for a free 944# compression thread to become available; otherwise, send the page 945# uncompressed. (Since 3.1) 946# 947# @decompress-threads: decompression thread count 948# 949# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 950# bytes_xfer_period to trigger throttling. It is expressed as 951# percentage. The default value is 50. (Since 5.0) 952# 953# @cpu-throttle-initial: Initial percentage of time guest cpus are 954# throttled when migration auto-converge is activated. The 955# default value is 20. (Since 2.7) 956# 957# @cpu-throttle-increment: throttle percentage increase each time 958# auto-converge detects that migration is not making progress. 959# The default value is 10. (Since 2.7) 960# 961# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 962# the tail stage of throttling, the Guest is very sensitive to CPU 963# percentage while the @cpu-throttle -increment is excessive 964# usually at tail stage. If this parameter is true, we will 965# compute the ideal CPU percentage used by the Guest, which may 966# exactly make the dirty rate match the dirty rate threshold. 967# Then we will choose a smaller throttle increment between the one 968# specified by @cpu-throttle-increment and the one generated by 969# ideal CPU percentage. Therefore, it is compatible to 970# traditional throttling, meanwhile the throttle increment won't 971# be excessive at tail stage. The default value is false. (Since 972# 5.1) 973# 974# @tls-creds: ID of the 'tls-creds' object that provides credentials 975# for establishing a TLS connection over the migration data 976# channel. On the outgoing side of the migration, the credentials 977# must be for a 'client' endpoint, while for the incoming side the 978# credentials must be for a 'server' endpoint. Setting this to a 979# non-empty string enables TLS for all migrations. An empty 980# string means that QEMU will use plain text mode for migration, 981# rather than TLS (Since 2.9) Previously (since 2.7), this was 982# reported by omitting tls-creds instead. 983# 984# @tls-hostname: hostname of the target host for the migration. This 985# is required when using x509 based TLS credentials and the 986# migration URI does not already include a hostname. For example 987# if using fd: or exec: based migration, the hostname must be 988# provided so that the server's x509 certificate identity can be 989# validated. (Since 2.7) An empty string means that QEMU will use 990# the hostname associated with the migration URI, if any. (Since 991# 2.9) Previously (since 2.7), this was reported by omitting 992# tls-hostname instead. 993# 994# @tls-authz: ID of the 'authz' object subclass that provides access 995# control checking of the TLS x509 certificate distinguished name. 996# (Since 4.0) 997# 998# @max-bandwidth: to set maximum speed for migration. maximum speed 999# in bytes per second. (Since 2.8) 1000# 1001# @avail-switchover-bandwidth: to set the available bandwidth that 1002# migration can use during switchover phase. NOTE! This does not 1003# limit the bandwidth during switchover, but only for calculations when 1004# making decisions to switchover. By default, this value is zero, 1005# which means QEMU will estimate the bandwidth automatically. This can 1006# be set when the estimated value is not accurate, while the user is 1007# able to guarantee such bandwidth is available when switching over. 1008# When specified correctly, this can make the switchover decision much 1009# more accurate. (Since 8.2) 1010# 1011# @downtime-limit: set maximum tolerated downtime for migration. 1012# maximum downtime in milliseconds (Since 2.8) 1013# 1014# @x-checkpoint-delay: the delay time between two COLO checkpoints. 1015# (Since 2.8) 1016# 1017# @block-incremental: Affects how much storage is migrated when the 1018# block migration capability is enabled. When false, the entire 1019# storage backing chain is migrated into a flattened image at the 1020# destination; when true, only the active qcow2 layer is migrated 1021# and the destination must already have access to the same backing 1022# chain as was used on the source. (since 2.10) 1023# 1024# @multifd-channels: Number of channels used to migrate data in 1025# parallel. This is the same number that the number of sockets 1026# used for migration. The default value is 2 (since 4.0) 1027# 1028# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1029# needs to be a multiple of the target page size and a power of 2 1030# (Since 2.11) 1031# 1032# @max-postcopy-bandwidth: Background transfer bandwidth during 1033# postcopy. Defaults to 0 (unlimited). In bytes per second. 1034# (Since 3.0) 1035# 1036# @max-cpu-throttle: maximum cpu throttle percentage. The default 1037# value is 99. (Since 3.1) 1038# 1039# @multifd-compression: Which compression method to use. Defaults to 1040# none. (Since 5.0) 1041# 1042# @multifd-zlib-level: Set the compression level to be used in live 1043# migration, the compression level is an integer between 0 and 9, 1044# where 0 means no compression, 1 means the best compression 1045# speed, and 9 means best compression ratio which will consume 1046# more CPU. Defaults to 1. (Since 5.0) 1047# 1048# @multifd-zstd-level: Set the compression level to be used in live 1049# migration, the compression level is an integer between 0 and 20, 1050# where 0 means no compression, 1 means the best compression 1051# speed, and 20 means best compression ratio which will consume 1052# more CPU. Defaults to 1. (Since 5.0) 1053# 1054# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1055# aliases for the purpose of dirty bitmap migration. Such aliases 1056# may for example be the corresponding names on the opposite site. 1057# The mapping must be one-to-one, but not necessarily complete: On 1058# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1059# will be ignored. On the destination, encountering an unmapped 1060# alias in the incoming migration stream will result in a report, 1061# and all further bitmap migration data will then be discarded. 1062# Note that the destination does not know about bitmaps it does 1063# not receive, so there is no limitation or requirement regarding 1064# the number of bitmaps received, or how they are named, or on 1065# which nodes they are placed. By default (when this parameter 1066# has never been set), bitmap names are mapped to themselves. 1067# Nodes are mapped to their block device name if there is one, and 1068# to their node name otherwise. (Since 5.2) 1069# 1070# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 1071# limit during live migration. Should be in the range 1 to 1000ms. 1072# Defaults to 1000ms. (Since 8.1) 1073# 1074# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1075# Defaults to 1. (Since 8.1) 1076# 1077# @mode: Migration mode. See description in @MigMode. Default is 'normal'. 1078# (Since 8.2) 1079# 1080# Features: 1081# 1082# @deprecated: Member @block-incremental is deprecated. Use 1083# blockdev-mirror with NBD instead. Members @compress-level, 1084# @compress-threads, @decompress-threads and @compress-wait-thread 1085# are deprecated because @compression is deprecated. 1086# 1087# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period 1088# are experimental. 1089# 1090# TODO: either fuse back into MigrationParameters, or make 1091# MigrationParameters members mandatory 1092# 1093# Since: 2.4 1094## 1095{ 'struct': 'MigrateSetParameters', 1096 'data': { '*announce-initial': 'size', 1097 '*announce-max': 'size', 1098 '*announce-rounds': 'size', 1099 '*announce-step': 'size', 1100 '*compress-level': { 'type': 'uint8', 1101 'features': [ 'deprecated' ] }, 1102 '*compress-threads': { 'type': 'uint8', 1103 'features': [ 'deprecated' ] }, 1104 '*compress-wait-thread': { 'type': 'bool', 1105 'features': [ 'deprecated' ] }, 1106 '*decompress-threads': { 'type': 'uint8', 1107 'features': [ 'deprecated' ] }, 1108 '*throttle-trigger-threshold': 'uint8', 1109 '*cpu-throttle-initial': 'uint8', 1110 '*cpu-throttle-increment': 'uint8', 1111 '*cpu-throttle-tailslow': 'bool', 1112 '*tls-creds': 'StrOrNull', 1113 '*tls-hostname': 'StrOrNull', 1114 '*tls-authz': 'StrOrNull', 1115 '*max-bandwidth': 'size', 1116 '*avail-switchover-bandwidth': 'size', 1117 '*downtime-limit': 'uint64', 1118 '*x-checkpoint-delay': { 'type': 'uint32', 1119 'features': [ 'unstable' ] }, 1120 '*block-incremental': { 'type': 'bool', 1121 'features': [ 'deprecated' ] }, 1122 '*multifd-channels': 'uint8', 1123 '*xbzrle-cache-size': 'size', 1124 '*max-postcopy-bandwidth': 'size', 1125 '*max-cpu-throttle': 'uint8', 1126 '*multifd-compression': 'MultiFDCompression', 1127 '*multifd-zlib-level': 'uint8', 1128 '*multifd-zstd-level': 'uint8', 1129 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1130 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1131 'features': [ 'unstable' ] }, 1132 '*vcpu-dirty-limit': 'uint64', 1133 '*mode': 'MigMode'} } 1134 1135## 1136# @migrate-set-parameters: 1137# 1138# Set various migration parameters. 1139# 1140# Since: 2.4 1141# 1142# Example: 1143# 1144# -> { "execute": "migrate-set-parameters" , 1145# "arguments": { "multifd-channels": 5 } } 1146# <- { "return": {} } 1147## 1148{ 'command': 'migrate-set-parameters', 'boxed': true, 1149 'data': 'MigrateSetParameters' } 1150 1151## 1152# @MigrationParameters: 1153# 1154# The optional members aren't actually optional. 1155# 1156# @announce-initial: Initial delay (in milliseconds) before sending 1157# the first announce (Since 4.0) 1158# 1159# @announce-max: Maximum delay (in milliseconds) between packets in 1160# the announcement (Since 4.0) 1161# 1162# @announce-rounds: Number of self-announce packets sent after 1163# migration (Since 4.0) 1164# 1165# @announce-step: Increase in delay (in milliseconds) between 1166# subsequent packets in the announcement (Since 4.0) 1167# 1168# @compress-level: compression level 1169# 1170# @compress-threads: compression thread count 1171# 1172# @compress-wait-thread: Controls behavior when all compression 1173# threads are currently busy. If true (default), wait for a free 1174# compression thread to become available; otherwise, send the page 1175# uncompressed. (Since 3.1) 1176# 1177# @decompress-threads: decompression thread count 1178# 1179# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 1180# bytes_xfer_period to trigger throttling. It is expressed as 1181# percentage. The default value is 50. (Since 5.0) 1182# 1183# @cpu-throttle-initial: Initial percentage of time guest cpus are 1184# throttled when migration auto-converge is activated. (Since 1185# 2.7) 1186# 1187# @cpu-throttle-increment: throttle percentage increase each time 1188# auto-converge detects that migration is not making progress. 1189# (Since 2.7) 1190# 1191# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 1192# the tail stage of throttling, the Guest is very sensitive to CPU 1193# percentage while the @cpu-throttle -increment is excessive 1194# usually at tail stage. If this parameter is true, we will 1195# compute the ideal CPU percentage used by the Guest, which may 1196# exactly make the dirty rate match the dirty rate threshold. 1197# Then we will choose a smaller throttle increment between the one 1198# specified by @cpu-throttle-increment and the one generated by 1199# ideal CPU percentage. Therefore, it is compatible to 1200# traditional throttling, meanwhile the throttle increment won't 1201# be excessive at tail stage. The default value is false. (Since 1202# 5.1) 1203# 1204# @tls-creds: ID of the 'tls-creds' object that provides credentials 1205# for establishing a TLS connection over the migration data 1206# channel. On the outgoing side of the migration, the credentials 1207# must be for a 'client' endpoint, while for the incoming side the 1208# credentials must be for a 'server' endpoint. An empty string 1209# means that QEMU will use plain text mode for migration, rather 1210# than TLS (Since 2.7) Note: 2.8 reports this by omitting 1211# tls-creds instead. 1212# 1213# @tls-hostname: hostname of the target host for the migration. This 1214# is required when using x509 based TLS credentials and the 1215# migration URI does not already include a hostname. For example 1216# if using fd: or exec: based migration, the hostname must be 1217# provided so that the server's x509 certificate identity can be 1218# validated. (Since 2.7) An empty string means that QEMU will use 1219# the hostname associated with the migration URI, if any. (Since 1220# 2.9) Note: 2.8 reports this by omitting tls-hostname instead. 1221# 1222# @tls-authz: ID of the 'authz' object subclass that provides access 1223# control checking of the TLS x509 certificate distinguished name. 1224# (Since 4.0) 1225# 1226# @max-bandwidth: to set maximum speed for migration. maximum speed 1227# in bytes per second. (Since 2.8) 1228# 1229# @avail-switchover-bandwidth: to set the available bandwidth that 1230# migration can use during switchover phase. NOTE! This does not 1231# limit the bandwidth during switchover, but only for calculations when 1232# making decisions to switchover. By default, this value is zero, 1233# which means QEMU will estimate the bandwidth automatically. This can 1234# be set when the estimated value is not accurate, while the user is 1235# able to guarantee such bandwidth is available when switching over. 1236# When specified correctly, this can make the switchover decision much 1237# more accurate. (Since 8.2) 1238# 1239# @downtime-limit: set maximum tolerated downtime for migration. 1240# maximum downtime in milliseconds (Since 2.8) 1241# 1242# @x-checkpoint-delay: the delay time between two COLO checkpoints. 1243# (Since 2.8) 1244# 1245# @block-incremental: Affects how much storage is migrated when the 1246# block migration capability is enabled. When false, the entire 1247# storage backing chain is migrated into a flattened image at the 1248# destination; when true, only the active qcow2 layer is migrated 1249# and the destination must already have access to the same backing 1250# chain as was used on the source. (since 2.10) 1251# 1252# @multifd-channels: Number of channels used to migrate data in 1253# parallel. This is the same number that the number of sockets 1254# used for migration. The default value is 2 (since 4.0) 1255# 1256# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1257# needs to be a multiple of the target page size and a power of 2 1258# (Since 2.11) 1259# 1260# @max-postcopy-bandwidth: Background transfer bandwidth during 1261# postcopy. Defaults to 0 (unlimited). In bytes per second. 1262# (Since 3.0) 1263# 1264# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 1265# (Since 3.1) 1266# 1267# @multifd-compression: Which compression method to use. Defaults to 1268# none. (Since 5.0) 1269# 1270# @multifd-zlib-level: Set the compression level to be used in live 1271# migration, the compression level is an integer between 0 and 9, 1272# where 0 means no compression, 1 means the best compression 1273# speed, and 9 means best compression ratio which will consume 1274# more CPU. Defaults to 1. (Since 5.0) 1275# 1276# @multifd-zstd-level: Set the compression level to be used in live 1277# migration, the compression level is an integer between 0 and 20, 1278# where 0 means no compression, 1 means the best compression 1279# speed, and 20 means best compression ratio which will consume 1280# more CPU. Defaults to 1. (Since 5.0) 1281# 1282# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1283# aliases for the purpose of dirty bitmap migration. Such aliases 1284# may for example be the corresponding names on the opposite site. 1285# The mapping must be one-to-one, but not necessarily complete: On 1286# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1287# will be ignored. On the destination, encountering an unmapped 1288# alias in the incoming migration stream will result in a report, 1289# and all further bitmap migration data will then be discarded. 1290# Note that the destination does not know about bitmaps it does 1291# not receive, so there is no limitation or requirement regarding 1292# the number of bitmaps received, or how they are named, or on 1293# which nodes they are placed. By default (when this parameter 1294# has never been set), bitmap names are mapped to themselves. 1295# Nodes are mapped to their block device name if there is one, and 1296# to their node name otherwise. (Since 5.2) 1297# 1298# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 1299# limit during live migration. Should be in the range 1 to 1000ms. 1300# Defaults to 1000ms. (Since 8.1) 1301# 1302# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1303# Defaults to 1. (Since 8.1) 1304# 1305# @mode: Migration mode. See description in @MigMode. Default is 'normal'. 1306# (Since 8.2) 1307# 1308# Features: 1309# 1310# @deprecated: Member @block-incremental is deprecated. Use 1311# blockdev-mirror with NBD instead. Members @compress-level, 1312# @compress-threads, @decompress-threads and @compress-wait-thread 1313# are deprecated because @compression is deprecated. 1314# 1315# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period 1316# are experimental. 1317# 1318# Since: 2.4 1319## 1320{ 'struct': 'MigrationParameters', 1321 'data': { '*announce-initial': 'size', 1322 '*announce-max': 'size', 1323 '*announce-rounds': 'size', 1324 '*announce-step': 'size', 1325 '*compress-level': { 'type': 'uint8', 1326 'features': [ 'deprecated' ] }, 1327 '*compress-threads': { 'type': 'uint8', 1328 'features': [ 'deprecated' ] }, 1329 '*compress-wait-thread': { 'type': 'bool', 1330 'features': [ 'deprecated' ] }, 1331 '*decompress-threads': { 'type': 'uint8', 1332 'features': [ 'deprecated' ] }, 1333 '*throttle-trigger-threshold': 'uint8', 1334 '*cpu-throttle-initial': 'uint8', 1335 '*cpu-throttle-increment': 'uint8', 1336 '*cpu-throttle-tailslow': 'bool', 1337 '*tls-creds': 'str', 1338 '*tls-hostname': 'str', 1339 '*tls-authz': 'str', 1340 '*max-bandwidth': 'size', 1341 '*avail-switchover-bandwidth': 'size', 1342 '*downtime-limit': 'uint64', 1343 '*x-checkpoint-delay': { 'type': 'uint32', 1344 'features': [ 'unstable' ] }, 1345 '*block-incremental': { 'type': 'bool', 1346 'features': [ 'deprecated' ] }, 1347 '*multifd-channels': 'uint8', 1348 '*xbzrle-cache-size': 'size', 1349 '*max-postcopy-bandwidth': 'size', 1350 '*max-cpu-throttle': 'uint8', 1351 '*multifd-compression': 'MultiFDCompression', 1352 '*multifd-zlib-level': 'uint8', 1353 '*multifd-zstd-level': 'uint8', 1354 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1355 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1356 'features': [ 'unstable' ] }, 1357 '*vcpu-dirty-limit': 'uint64', 1358 '*mode': 'MigMode'} } 1359 1360## 1361# @query-migrate-parameters: 1362# 1363# Returns information about the current migration parameters 1364# 1365# Returns: @MigrationParameters 1366# 1367# Since: 2.4 1368# 1369# Example: 1370# 1371# -> { "execute": "query-migrate-parameters" } 1372# <- { "return": { 1373# "multifd-channels": 2, 1374# "cpu-throttle-increment": 10, 1375# "cpu-throttle-initial": 20, 1376# "max-bandwidth": 33554432, 1377# "downtime-limit": 300 1378# } 1379# } 1380## 1381{ 'command': 'query-migrate-parameters', 1382 'returns': 'MigrationParameters' } 1383 1384## 1385# @migrate-start-postcopy: 1386# 1387# Followup to a migration command to switch the migration to postcopy 1388# mode. The postcopy-ram capability must be set on both source and 1389# destination before the original migration command. 1390# 1391# Since: 2.5 1392# 1393# Example: 1394# 1395# -> { "execute": "migrate-start-postcopy" } 1396# <- { "return": {} } 1397## 1398{ 'command': 'migrate-start-postcopy' } 1399 1400## 1401# @MIGRATION: 1402# 1403# Emitted when a migration event happens 1404# 1405# @status: @MigrationStatus describing the current migration status. 1406# 1407# Since: 2.4 1408# 1409# Example: 1410# 1411# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001}, 1412# "event": "MIGRATION", 1413# "data": {"status": "completed"} } 1414## 1415{ 'event': 'MIGRATION', 1416 'data': {'status': 'MigrationStatus'}} 1417 1418## 1419# @MIGRATION_PASS: 1420# 1421# Emitted from the source side of a migration at the start of each 1422# pass (when it syncs the dirty bitmap) 1423# 1424# @pass: An incrementing count (starting at 1 on the first pass) 1425# 1426# Since: 2.6 1427# 1428# Example: 1429# 1430# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225}, 1431# "event": "MIGRATION_PASS", "data": {"pass": 2} } 1432## 1433{ 'event': 'MIGRATION_PASS', 1434 'data': { 'pass': 'int' } } 1435 1436## 1437# @COLOMessage: 1438# 1439# The message transmission between Primary side and Secondary side. 1440# 1441# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing 1442# 1443# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for 1444# checkpointing 1445# 1446# @checkpoint-reply: SVM gets PVM's checkpoint request 1447# 1448# @vmstate-send: VM's state will be sent by PVM. 1449# 1450# @vmstate-size: The total size of VMstate. 1451# 1452# @vmstate-received: VM's state has been received by SVM. 1453# 1454# @vmstate-loaded: VM's state has been loaded by SVM. 1455# 1456# Since: 2.8 1457## 1458{ 'enum': 'COLOMessage', 1459 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply', 1460 'vmstate-send', 'vmstate-size', 'vmstate-received', 1461 'vmstate-loaded' ] } 1462 1463## 1464# @COLOMode: 1465# 1466# The COLO current mode. 1467# 1468# @none: COLO is disabled. 1469# 1470# @primary: COLO node in primary side. 1471# 1472# @secondary: COLO node in slave side. 1473# 1474# Since: 2.8 1475## 1476{ 'enum': 'COLOMode', 1477 'data': [ 'none', 'primary', 'secondary'] } 1478 1479## 1480# @FailoverStatus: 1481# 1482# An enumeration of COLO failover status 1483# 1484# @none: no failover has ever happened 1485# 1486# @require: got failover requirement but not handled 1487# 1488# @active: in the process of doing failover 1489# 1490# @completed: finish the process of failover 1491# 1492# @relaunch: restart the failover process, from 'none' -> 'completed' 1493# (Since 2.9) 1494# 1495# Since: 2.8 1496## 1497{ 'enum': 'FailoverStatus', 1498 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] } 1499 1500## 1501# @COLO_EXIT: 1502# 1503# Emitted when VM finishes COLO mode due to some errors happening or 1504# at the request of users. 1505# 1506# @mode: report COLO mode when COLO exited. 1507# 1508# @reason: describes the reason for the COLO exit. 1509# 1510# Since: 3.1 1511# 1512# Example: 1513# 1514# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172}, 1515# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } } 1516## 1517{ 'event': 'COLO_EXIT', 1518 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } } 1519 1520## 1521# @COLOExitReason: 1522# 1523# The reason for a COLO exit. 1524# 1525# @none: failover has never happened. This state does not occur in 1526# the COLO_EXIT event, and is only visible in the result of 1527# query-colo-status. 1528# 1529# @request: COLO exit is due to an external request. 1530# 1531# @error: COLO exit is due to an internal error. 1532# 1533# @processing: COLO is currently handling a failover (since 4.0). 1534# 1535# Since: 3.1 1536## 1537{ 'enum': 'COLOExitReason', 1538 'data': [ 'none', 'request', 'error' , 'processing' ] } 1539 1540## 1541# @x-colo-lost-heartbeat: 1542# 1543# Tell qemu that heartbeat is lost, request it to do takeover 1544# procedures. If this command is sent to the PVM, the Primary side 1545# will exit COLO mode. If sent to the Secondary, the Secondary side 1546# will run failover work, then takes over server operation to become 1547# the service VM. 1548# 1549# Features: 1550# 1551# @unstable: This command is experimental. 1552# 1553# Since: 2.8 1554# 1555# Example: 1556# 1557# -> { "execute": "x-colo-lost-heartbeat" } 1558# <- { "return": {} } 1559## 1560{ 'command': 'x-colo-lost-heartbeat', 1561 'features': [ 'unstable' ], 1562 'if': 'CONFIG_REPLICATION' } 1563 1564## 1565# @migrate_cancel: 1566# 1567# Cancel the current executing migration process. 1568# 1569# Notes: This command succeeds even if there is no migration process 1570# running. 1571# 1572# Since: 0.14 1573# 1574# Example: 1575# 1576# -> { "execute": "migrate_cancel" } 1577# <- { "return": {} } 1578## 1579{ 'command': 'migrate_cancel' } 1580 1581## 1582# @migrate-continue: 1583# 1584# Continue migration when it's in a paused state. 1585# 1586# @state: The state the migration is currently expected to be in 1587# 1588# Since: 2.11 1589# 1590# Example: 1591# 1592# -> { "execute": "migrate-continue" , "arguments": 1593# { "state": "pre-switchover" } } 1594# <- { "return": {} } 1595## 1596{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} } 1597 1598## 1599# @MigrationAddressType: 1600# 1601# The migration stream transport mechanisms. 1602# 1603# @socket: Migrate via socket. 1604# 1605# @exec: Direct the migration stream to another process. 1606# 1607# @rdma: Migrate via RDMA. 1608# 1609# @file: Direct the migration stream to a file. 1610# 1611# Since: 8.2 1612## 1613{ 'enum': 'MigrationAddressType', 1614 'data': [ 'socket', 'exec', 'rdma', 'file' ] } 1615 1616## 1617# @FileMigrationArgs: 1618# 1619# @filename: The file to receive the migration stream 1620# 1621# @offset: The file offset where the migration stream will start 1622# 1623# Since: 8.2 1624## 1625{ 'struct': 'FileMigrationArgs', 1626 'data': { 'filename': 'str', 1627 'offset': 'uint64' } } 1628 1629## 1630# @MigrationExecCommand: 1631# 1632# @args: command (list head) and arguments to execute. 1633# 1634# Since: 8.2 1635## 1636{ 'struct': 'MigrationExecCommand', 1637 'data': {'args': [ 'str' ] } } 1638 1639## 1640# @MigrationAddress: 1641# 1642# Migration endpoint configuration. 1643# 1644# @transport: The migration stream transport mechanism 1645# 1646# Since: 8.2 1647## 1648{ 'union': 'MigrationAddress', 1649 'base': { 'transport' : 'MigrationAddressType'}, 1650 'discriminator': 'transport', 1651 'data': { 1652 'socket': 'SocketAddress', 1653 'exec': 'MigrationExecCommand', 1654 'rdma': 'InetSocketAddress', 1655 'file': 'FileMigrationArgs' } } 1656 1657## 1658# @MigrationChannelType: 1659# 1660# The migration channel-type request options. 1661# 1662# @main: Main outbound migration channel. 1663# 1664# Since: 8.1 1665## 1666{ 'enum': 'MigrationChannelType', 1667 'data': [ 'main' ] } 1668 1669## 1670# @MigrationChannel: 1671# 1672# Migration stream channel parameters. 1673# 1674# @channel-type: Channel type for transferring packet information. 1675# 1676# @addr: Migration endpoint configuration on destination interface. 1677# 1678# Since: 8.1 1679## 1680{ 'struct': 'MigrationChannel', 1681 'data': { 1682 'channel-type': 'MigrationChannelType', 1683 'addr': 'MigrationAddress' } } 1684 1685## 1686# @migrate: 1687# 1688# Migrates the current running guest to another Virtual Machine. 1689# 1690# @uri: the Uniform Resource Identifier of the destination VM 1691# 1692# @channels: list of migration stream channels with each stream in the 1693# list connected to a destination interface endpoint. 1694# 1695# @blk: do block migration (full disk copy) 1696# 1697# @inc: incremental disk copy migration 1698# 1699# @detach: this argument exists only for compatibility reasons and is 1700# ignored by QEMU 1701# 1702# @resume: resume one paused migration, default "off". (since 3.0) 1703# 1704# Features: 1705# 1706# @deprecated: Members @inc and @blk are deprecated. Use 1707# blockdev-mirror with NBD instead. 1708# 1709# Since: 0.14 1710# 1711# Notes: 1712# 1713# 1. The 'query-migrate' command should be used to check 1714# migration's progress and final result (this information is 1715# provided by the 'status' member) 1716# 1717# 2. All boolean arguments default to false 1718# 1719# 3. The user Monitor's "detach" argument is invalid in QMP and 1720# should not be used 1721# 1722# 4. The uri argument should have the Uniform Resource Identifier 1723# of default destination VM. This connection will be bound to 1724# default network. 1725# 1726# 5. For now, number of migration streams is restricted to one, 1727# i.e number of items in 'channels' list is just 1. 1728# 1729# 6. The 'uri' and 'channels' arguments are mutually exclusive; 1730# exactly one of the two should be present. 1731# 1732# Example: 1733# 1734# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } } 1735# <- { "return": {} } 1736# 1737# -> { "execute": "migrate", 1738# "arguments": { 1739# "channels": [ { "channel-type": "main", 1740# "addr": { "transport": "socket", 1741# "type": "inet", 1742# "host": "10.12.34.9", 1743# "port": "1050" } } ] } } 1744# <- { "return": {} } 1745# 1746# -> { "execute": "migrate", 1747# "arguments": { 1748# "channels": [ { "channel-type": "main", 1749# "addr": { "transport": "exec", 1750# "args": [ "/bin/nc", "-p", "6000", 1751# "/some/sock" ] } } ] } } 1752# <- { "return": {} } 1753# 1754# -> { "execute": "migrate", 1755# "arguments": { 1756# "channels": [ { "channel-type": "main", 1757# "addr": { "transport": "rdma", 1758# "host": "10.12.34.9", 1759# "port": "1050" } } ] } } 1760# <- { "return": {} } 1761# 1762# -> { "execute": "migrate", 1763# "arguments": { 1764# "channels": [ { "channel-type": "main", 1765# "addr": { "transport": "file", 1766# "filename": "/tmp/migfile", 1767# "offset": "0x1000" } } ] } } 1768# <- { "return": {} } 1769# 1770## 1771{ 'command': 'migrate', 1772 'data': {'*uri': 'str', 1773 '*channels': [ 'MigrationChannel' ], 1774 '*blk': { 'type': 'bool', 'features': [ 'deprecated' ] }, 1775 '*inc': { 'type': 'bool', 'features': [ 'deprecated' ] }, 1776 '*detach': 'bool', '*resume': 'bool' } } 1777 1778## 1779# @migrate-incoming: 1780# 1781# Start an incoming migration, the qemu must have been started with 1782# -incoming defer 1783# 1784# @uri: The Uniform Resource Identifier identifying the source or 1785# address to listen on 1786# 1787# @channels: list of migration stream channels with each stream in the 1788# list connected to a destination interface endpoint. 1789# 1790# Since: 2.3 1791# 1792# Notes: 1793# 1794# 1. It's a bad idea to use a string for the uri, but it needs to 1795# stay compatible with -incoming and the format of the uri is 1796# already exposed above libvirt. 1797# 1798# 2. QEMU must be started with -incoming defer to allow 1799# migrate-incoming to be used. 1800# 1801# 3. The uri format is the same as for -incoming 1802# 1803# 4. For now, number of migration streams is restricted to one, 1804# i.e number of items in 'channels' list is just 1. 1805# 1806# 5. The 'uri' and 'channels' arguments are mutually exclusive; 1807# exactly one of the two should be present. 1808# 1809# Example: 1810# 1811# -> { "execute": "migrate-incoming", 1812# "arguments": { "uri": "tcp:0:4446" } } 1813# <- { "return": {} } 1814# 1815# -> { "execute": "migrate-incoming", 1816# "arguments": { 1817# "channels": [ { "channel-type": "main", 1818# "addr": { "transport": "socket", 1819# "type": "inet", 1820# "host": "10.12.34.9", 1821# "port": "1050" } } ] } } 1822# <- { "return": {} } 1823# 1824# -> { "execute": "migrate-incoming", 1825# "arguments": { 1826# "channels": [ { "channel-type": "main", 1827# "addr": { "transport": "exec", 1828# "args": [ "/bin/nc", "-p", "6000", 1829# "/some/sock" ] } } ] } } 1830# <- { "return": {} } 1831# 1832# -> { "execute": "migrate-incoming", 1833# "arguments": { 1834# "channels": [ { "channel-type": "main", 1835# "addr": { "transport": "rdma", 1836# "host": "10.12.34.9", 1837# "port": "1050" } } ] } } 1838# <- { "return": {} } 1839## 1840{ 'command': 'migrate-incoming', 1841 'data': {'*uri': 'str', 1842 '*channels': [ 'MigrationChannel' ] } } 1843 1844## 1845# @xen-save-devices-state: 1846# 1847# Save the state of all devices to file. The RAM and the block 1848# devices of the VM are not saved by this command. 1849# 1850# @filename: the file to save the state of the devices to as binary 1851# data. See xen-save-devices-state.txt for a description of the 1852# binary format. 1853# 1854# @live: Optional argument to ask QEMU to treat this command as part 1855# of a live migration. Default to true. (since 2.11) 1856# 1857# Since: 1.1 1858# 1859# Example: 1860# 1861# -> { "execute": "xen-save-devices-state", 1862# "arguments": { "filename": "/tmp/save" } } 1863# <- { "return": {} } 1864## 1865{ 'command': 'xen-save-devices-state', 1866 'data': {'filename': 'str', '*live':'bool' } } 1867 1868## 1869# @xen-set-global-dirty-log: 1870# 1871# Enable or disable the global dirty log mode. 1872# 1873# @enable: true to enable, false to disable. 1874# 1875# Since: 1.3 1876# 1877# Example: 1878# 1879# -> { "execute": "xen-set-global-dirty-log", 1880# "arguments": { "enable": true } } 1881# <- { "return": {} } 1882## 1883{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1884 1885## 1886# @xen-load-devices-state: 1887# 1888# Load the state of all devices from file. The RAM and the block 1889# devices of the VM are not loaded by this command. 1890# 1891# @filename: the file to load the state of the devices from as binary 1892# data. See xen-save-devices-state.txt for a description of the 1893# binary format. 1894# 1895# Since: 2.7 1896# 1897# Example: 1898# 1899# -> { "execute": "xen-load-devices-state", 1900# "arguments": { "filename": "/tmp/resume" } } 1901# <- { "return": {} } 1902## 1903{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 1904 1905## 1906# @xen-set-replication: 1907# 1908# Enable or disable replication. 1909# 1910# @enable: true to enable, false to disable. 1911# 1912# @primary: true for primary or false for secondary. 1913# 1914# @failover: true to do failover, false to stop. but cannot be 1915# specified if 'enable' is true. default value is false. 1916# 1917# Example: 1918# 1919# -> { "execute": "xen-set-replication", 1920# "arguments": {"enable": true, "primary": false} } 1921# <- { "return": {} } 1922# 1923# Since: 2.9 1924## 1925{ 'command': 'xen-set-replication', 1926 'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' }, 1927 'if': 'CONFIG_REPLICATION' } 1928 1929## 1930# @ReplicationStatus: 1931# 1932# The result format for 'query-xen-replication-status'. 1933# 1934# @error: true if an error happened, false if replication is normal. 1935# 1936# @desc: the human readable error description string, when @error is 1937# 'true'. 1938# 1939# Since: 2.9 1940## 1941{ 'struct': 'ReplicationStatus', 1942 'data': { 'error': 'bool', '*desc': 'str' }, 1943 'if': 'CONFIG_REPLICATION' } 1944 1945## 1946# @query-xen-replication-status: 1947# 1948# Query replication status while the vm is running. 1949# 1950# Returns: A @ReplicationStatus object showing the status. 1951# 1952# Example: 1953# 1954# -> { "execute": "query-xen-replication-status" } 1955# <- { "return": { "error": false } } 1956# 1957# Since: 2.9 1958## 1959{ 'command': 'query-xen-replication-status', 1960 'returns': 'ReplicationStatus', 1961 'if': 'CONFIG_REPLICATION' } 1962 1963## 1964# @xen-colo-do-checkpoint: 1965# 1966# Xen uses this command to notify replication to trigger a checkpoint. 1967# 1968# Example: 1969# 1970# -> { "execute": "xen-colo-do-checkpoint" } 1971# <- { "return": {} } 1972# 1973# Since: 2.9 1974## 1975{ 'command': 'xen-colo-do-checkpoint', 1976 'if': 'CONFIG_REPLICATION' } 1977 1978## 1979# @COLOStatus: 1980# 1981# The result format for 'query-colo-status'. 1982# 1983# @mode: COLO running mode. If COLO is running, this field will 1984# return 'primary' or 'secondary'. 1985# 1986# @last-mode: COLO last running mode. If COLO is running, this field 1987# will return same like mode field, after failover we can use this 1988# field to get last colo mode. (since 4.0) 1989# 1990# @reason: describes the reason for the COLO exit. 1991# 1992# Since: 3.1 1993## 1994{ 'struct': 'COLOStatus', 1995 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode', 1996 'reason': 'COLOExitReason' }, 1997 'if': 'CONFIG_REPLICATION' } 1998 1999## 2000# @query-colo-status: 2001# 2002# Query COLO status while the vm is running. 2003# 2004# Returns: A @COLOStatus object showing the status. 2005# 2006# Example: 2007# 2008# -> { "execute": "query-colo-status" } 2009# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } } 2010# 2011# Since: 3.1 2012## 2013{ 'command': 'query-colo-status', 2014 'returns': 'COLOStatus', 2015 'if': 'CONFIG_REPLICATION' } 2016 2017## 2018# @migrate-recover: 2019# 2020# Provide a recovery migration stream URI. 2021# 2022# @uri: the URI to be used for the recovery of migration stream. 2023# 2024# Example: 2025# 2026# -> { "execute": "migrate-recover", 2027# "arguments": { "uri": "tcp:192.168.1.200:12345" } } 2028# <- { "return": {} } 2029# 2030# Since: 3.0 2031## 2032{ 'command': 'migrate-recover', 2033 'data': { 'uri': 'str' }, 2034 'allow-oob': true } 2035 2036## 2037# @migrate-pause: 2038# 2039# Pause a migration. Currently it only supports postcopy. 2040# 2041# Example: 2042# 2043# -> { "execute": "migrate-pause" } 2044# <- { "return": {} } 2045# 2046# Since: 3.0 2047## 2048{ 'command': 'migrate-pause', 'allow-oob': true } 2049 2050## 2051# @UNPLUG_PRIMARY: 2052# 2053# Emitted from source side of a migration when migration state is 2054# WAIT_UNPLUG. Device was unplugged by guest operating system. Device 2055# resources in QEMU are kept on standby to be able to re-plug it in 2056# case of migration failure. 2057# 2058# @device-id: QEMU device id of the unplugged device 2059# 2060# Since: 4.2 2061# 2062# Example: 2063# 2064# <- { "event": "UNPLUG_PRIMARY", 2065# "data": { "device-id": "hostdev0" }, 2066# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 2067## 2068{ 'event': 'UNPLUG_PRIMARY', 2069 'data': { 'device-id': 'str' } } 2070 2071## 2072# @DirtyRateVcpu: 2073# 2074# Dirty rate of vcpu. 2075# 2076# @id: vcpu index. 2077# 2078# @dirty-rate: dirty rate. 2079# 2080# Since: 6.2 2081## 2082{ 'struct': 'DirtyRateVcpu', 2083 'data': { 'id': 'int', 'dirty-rate': 'int64' } } 2084 2085## 2086# @DirtyRateStatus: 2087# 2088# Dirty page rate measurement status. 2089# 2090# @unstarted: measuring thread has not been started yet 2091# 2092# @measuring: measuring thread is running 2093# 2094# @measured: dirty page rate is measured and the results are available 2095# 2096# Since: 5.2 2097## 2098{ 'enum': 'DirtyRateStatus', 2099 'data': [ 'unstarted', 'measuring', 'measured'] } 2100 2101## 2102# @DirtyRateMeasureMode: 2103# 2104# Method used to measure dirty page rate. Differences between 2105# available methods are explained in @calc-dirty-rate. 2106# 2107# @page-sampling: use page sampling 2108# 2109# @dirty-ring: use dirty ring 2110# 2111# @dirty-bitmap: use dirty bitmap 2112# 2113# Since: 6.2 2114## 2115{ 'enum': 'DirtyRateMeasureMode', 2116 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] } 2117 2118## 2119# @TimeUnit: 2120# 2121# Specifies unit in which time-related value is specified. 2122# 2123# @second: value is in seconds 2124# 2125# @millisecond: value is in milliseconds 2126# 2127# Since: 8.2 2128# 2129## 2130{ 'enum': 'TimeUnit', 2131 'data': ['second', 'millisecond'] } 2132 2133## 2134# @DirtyRateInfo: 2135# 2136# Information about measured dirty page rate. 2137# 2138# @dirty-rate: an estimate of the dirty page rate of the VM in units 2139# of MiB/s. Value is present only when @status is 'measured'. 2140# 2141# @status: current status of dirty page rate measurements 2142# 2143# @start-time: start time in units of second for calculation 2144# 2145# @calc-time: time period for which dirty page rate was measured, 2146# expressed and rounded down to @calc-time-unit. 2147# 2148# @calc-time-unit: time unit of @calc-time (Since 8.2) 2149# 2150# @sample-pages: number of sampled pages per GiB of guest memory. 2151# Valid only in page-sampling mode (Since 6.1) 2152# 2153# @mode: mode that was used to measure dirty page rate (Since 6.2) 2154# 2155# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was 2156# specified (Since 6.2) 2157# 2158# Since: 5.2 2159## 2160{ 'struct': 'DirtyRateInfo', 2161 'data': {'*dirty-rate': 'int64', 2162 'status': 'DirtyRateStatus', 2163 'start-time': 'int64', 2164 'calc-time': 'int64', 2165 'calc-time-unit': 'TimeUnit', 2166 'sample-pages': 'uint64', 2167 'mode': 'DirtyRateMeasureMode', 2168 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } } 2169 2170## 2171# @calc-dirty-rate: 2172# 2173# Start measuring dirty page rate of the VM. Results can be retrieved 2174# with @query-dirty-rate after measurements are completed. 2175# 2176# Dirty page rate is the number of pages changed in a given time 2177# period expressed in MiB/s. The following methods of calculation are 2178# available: 2179# 2180# 1. In page sampling mode, a random subset of pages are selected and 2181# hashed twice: once at the beginning of measurement time period, 2182# and once again at the end. If two hashes for some page are 2183# different, the page is counted as changed. Since this method 2184# relies on sampling and hashing, calculated dirty page rate is 2185# only an estimate of its true value. Increasing @sample-pages 2186# improves estimation quality at the cost of higher computational 2187# overhead. 2188# 2189# 2. Dirty bitmap mode captures writes to memory (for example by 2190# temporarily revoking write access to all pages) and counting page 2191# faults. Information about modified pages is collected into a 2192# bitmap, where each bit corresponds to one guest page. This mode 2193# requires that KVM accelerator property "dirty-ring-size" is *not* 2194# set. 2195# 2196# 3. Dirty ring mode is similar to dirty bitmap mode, but the 2197# information about modified pages is collected into ring buffer. 2198# This mode tracks page modification per each vCPU separately. It 2199# requires that KVM accelerator property "dirty-ring-size" is set. 2200# 2201# @calc-time: time period for which dirty page rate is calculated. 2202# By default it is specified in seconds, but the unit can be set 2203# explicitly with @calc-time-unit. Note that larger @calc-time 2204# values will typically result in smaller dirty page rates because 2205# page dirtying is a one-time event. Once some page is counted 2206# as dirty during @calc-time period, further writes to this page 2207# will not increase dirty page rate anymore. 2208# 2209# @calc-time-unit: time unit in which @calc-time is specified. 2210# By default it is seconds. (Since 8.2) 2211# 2212# @sample-pages: number of sampled pages per each GiB of guest memory. 2213# Default value is 512. For 4KiB guest pages this corresponds to 2214# sampling ratio of 0.2%. This argument is used only in page 2215# sampling mode. (Since 6.1) 2216# 2217# @mode: mechanism for tracking dirty pages. Default value is 2218# 'page-sampling'. Others are 'dirty-bitmap' and 'dirty-ring'. 2219# (Since 6.1) 2220# 2221# Since: 5.2 2222# 2223# Example: 2224# 2225# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1, 2226# 'sample-pages': 512} } 2227# <- { "return": {} } 2228# 2229# Measure dirty rate using dirty bitmap for 500 milliseconds: 2230# 2231# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500, 2232# "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} } 2233# 2234# <- { "return": {} } 2235## 2236{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64', 2237 '*calc-time-unit': 'TimeUnit', 2238 '*sample-pages': 'int', 2239 '*mode': 'DirtyRateMeasureMode'} } 2240 2241## 2242# @query-dirty-rate: 2243# 2244# Query results of the most recent invocation of @calc-dirty-rate. 2245# 2246# @calc-time-unit: time unit in which to report calculation time. 2247# By default it is reported in seconds. (Since 8.2) 2248# 2249# Since: 5.2 2250# 2251# Examples: 2252# 2253# 1. Measurement is in progress: 2254# 2255# <- {"status": "measuring", "sample-pages": 512, 2256# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2257# "calc-time-unit": "second"} 2258# 2259# 2. Measurement has been completed: 2260# 2261# <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108, 2262# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2263# "calc-time-unit": "second"} 2264## 2265{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' }, 2266 'returns': 'DirtyRateInfo' } 2267 2268## 2269# @DirtyLimitInfo: 2270# 2271# Dirty page rate limit information of a virtual CPU. 2272# 2273# @cpu-index: index of a virtual CPU. 2274# 2275# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual 2276# CPU, 0 means unlimited. 2277# 2278# @current-rate: current dirty page rate (MB/s) for a virtual CPU. 2279# 2280# Since: 7.1 2281## 2282{ 'struct': 'DirtyLimitInfo', 2283 'data': { 'cpu-index': 'int', 2284 'limit-rate': 'uint64', 2285 'current-rate': 'uint64' } } 2286 2287## 2288# @set-vcpu-dirty-limit: 2289# 2290# Set the upper limit of dirty page rate for virtual CPUs. 2291# 2292# Requires KVM with accelerator property "dirty-ring-size" set. A 2293# virtual CPU's dirty page rate is a measure of its memory load. To 2294# observe dirty page rates, use @calc-dirty-rate. 2295# 2296# @cpu-index: index of a virtual CPU, default is all. 2297# 2298# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs. 2299# 2300# Since: 7.1 2301# 2302# Example: 2303# 2304# -> {"execute": "set-vcpu-dirty-limit"} 2305# "arguments": { "dirty-rate": 200, 2306# "cpu-index": 1 } } 2307# <- { "return": {} } 2308## 2309{ 'command': 'set-vcpu-dirty-limit', 2310 'data': { '*cpu-index': 'int', 2311 'dirty-rate': 'uint64' } } 2312 2313## 2314# @cancel-vcpu-dirty-limit: 2315# 2316# Cancel the upper limit of dirty page rate for virtual CPUs. 2317# 2318# Cancel the dirty page limit for the vCPU which has been set with 2319# set-vcpu-dirty-limit command. Note that this command requires 2320# support from dirty ring, same as the "set-vcpu-dirty-limit". 2321# 2322# @cpu-index: index of a virtual CPU, default is all. 2323# 2324# Since: 7.1 2325# 2326# Example: 2327# 2328# -> {"execute": "cancel-vcpu-dirty-limit"}, 2329# "arguments": { "cpu-index": 1 } } 2330# <- { "return": {} } 2331## 2332{ 'command': 'cancel-vcpu-dirty-limit', 2333 'data': { '*cpu-index': 'int'} } 2334 2335## 2336# @query-vcpu-dirty-limit: 2337# 2338# Returns information about virtual CPU dirty page rate limits, if 2339# any. 2340# 2341# Since: 7.1 2342# 2343# Example: 2344# 2345# -> {"execute": "query-vcpu-dirty-limit"} 2346# <- {"return": [ 2347# { "limit-rate": 60, "current-rate": 3, "cpu-index": 0}, 2348# { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]} 2349## 2350{ 'command': 'query-vcpu-dirty-limit', 2351 'returns': [ 'DirtyLimitInfo' ] } 2352 2353## 2354# @MigrationThreadInfo: 2355# 2356# Information about migrationthreads 2357# 2358# @name: the name of migration thread 2359# 2360# @thread-id: ID of the underlying host thread 2361# 2362# Since: 7.2 2363## 2364{ 'struct': 'MigrationThreadInfo', 2365 'data': {'name': 'str', 2366 'thread-id': 'int'} } 2367 2368## 2369# @query-migrationthreads: 2370# 2371# Returns information of migration threads 2372# 2373# data: migration thread name 2374# 2375# Returns: information about migration threads 2376# 2377# Since: 7.2 2378## 2379{ 'command': 'query-migrationthreads', 2380 'returns': ['MigrationThreadInfo'] } 2381 2382## 2383# @snapshot-save: 2384# 2385# Save a VM snapshot 2386# 2387# @job-id: identifier for the newly created job 2388# 2389# @tag: name of the snapshot to create 2390# 2391# @vmstate: block device node name to save vmstate to 2392# 2393# @devices: list of block device node names to save a snapshot to 2394# 2395# Applications should not assume that the snapshot save is complete 2396# when this command returns. The job commands / events must be used 2397# to determine completion and to fetch details of any errors that 2398# arise. 2399# 2400# Note that execution of the guest CPUs may be stopped during the time 2401# it takes to save the snapshot. A future version of QEMU may ensure 2402# CPUs are executing continuously. 2403# 2404# It is strongly recommended that @devices contain all writable block 2405# device nodes if a consistent snapshot is required. 2406# 2407# If @tag already exists, an error will be reported 2408# 2409# Example: 2410# 2411# -> { "execute": "snapshot-save", 2412# "arguments": { 2413# "job-id": "snapsave0", 2414# "tag": "my-snap", 2415# "vmstate": "disk0", 2416# "devices": ["disk0", "disk1"] 2417# } 2418# } 2419# <- { "return": { } } 2420# <- {"event": "JOB_STATUS_CHANGE", 2421# "timestamp": {"seconds": 1432121972, "microseconds": 744001}, 2422# "data": {"status": "created", "id": "snapsave0"}} 2423# <- {"event": "JOB_STATUS_CHANGE", 2424# "timestamp": {"seconds": 1432122172, "microseconds": 744001}, 2425# "data": {"status": "running", "id": "snapsave0"}} 2426# <- {"event": "STOP", 2427# "timestamp": {"seconds": 1432122372, "microseconds": 744001} } 2428# <- {"event": "RESUME", 2429# "timestamp": {"seconds": 1432122572, "microseconds": 744001} } 2430# <- {"event": "JOB_STATUS_CHANGE", 2431# "timestamp": {"seconds": 1432122772, "microseconds": 744001}, 2432# "data": {"status": "waiting", "id": "snapsave0"}} 2433# <- {"event": "JOB_STATUS_CHANGE", 2434# "timestamp": {"seconds": 1432122972, "microseconds": 744001}, 2435# "data": {"status": "pending", "id": "snapsave0"}} 2436# <- {"event": "JOB_STATUS_CHANGE", 2437# "timestamp": {"seconds": 1432123172, "microseconds": 744001}, 2438# "data": {"status": "concluded", "id": "snapsave0"}} 2439# -> {"execute": "query-jobs"} 2440# <- {"return": [{"current-progress": 1, 2441# "status": "concluded", 2442# "total-progress": 1, 2443# "type": "snapshot-save", 2444# "id": "snapsave0"}]} 2445# 2446# Since: 6.0 2447## 2448{ 'command': 'snapshot-save', 2449 'data': { 'job-id': 'str', 2450 'tag': 'str', 2451 'vmstate': 'str', 2452 'devices': ['str'] } } 2453 2454## 2455# @snapshot-load: 2456# 2457# Load a VM snapshot 2458# 2459# @job-id: identifier for the newly created job 2460# 2461# @tag: name of the snapshot to load. 2462# 2463# @vmstate: block device node name to load vmstate from 2464# 2465# @devices: list of block device node names to load a snapshot from 2466# 2467# Applications should not assume that the snapshot load is complete 2468# when this command returns. The job commands / events must be used 2469# to determine completion and to fetch details of any errors that 2470# arise. 2471# 2472# Note that execution of the guest CPUs will be stopped during the 2473# time it takes to load the snapshot. 2474# 2475# It is strongly recommended that @devices contain all writable block 2476# device nodes that can have changed since the original @snapshot-save 2477# command execution. 2478# 2479# Example: 2480# 2481# -> { "execute": "snapshot-load", 2482# "arguments": { 2483# "job-id": "snapload0", 2484# "tag": "my-snap", 2485# "vmstate": "disk0", 2486# "devices": ["disk0", "disk1"] 2487# } 2488# } 2489# <- { "return": { } } 2490# <- {"event": "JOB_STATUS_CHANGE", 2491# "timestamp": {"seconds": 1472124172, "microseconds": 744001}, 2492# "data": {"status": "created", "id": "snapload0"}} 2493# <- {"event": "JOB_STATUS_CHANGE", 2494# "timestamp": {"seconds": 1472125172, "microseconds": 744001}, 2495# "data": {"status": "running", "id": "snapload0"}} 2496# <- {"event": "STOP", 2497# "timestamp": {"seconds": 1472125472, "microseconds": 744001} } 2498# <- {"event": "RESUME", 2499# "timestamp": {"seconds": 1472125872, "microseconds": 744001} } 2500# <- {"event": "JOB_STATUS_CHANGE", 2501# "timestamp": {"seconds": 1472126172, "microseconds": 744001}, 2502# "data": {"status": "waiting", "id": "snapload0"}} 2503# <- {"event": "JOB_STATUS_CHANGE", 2504# "timestamp": {"seconds": 1472127172, "microseconds": 744001}, 2505# "data": {"status": "pending", "id": "snapload0"}} 2506# <- {"event": "JOB_STATUS_CHANGE", 2507# "timestamp": {"seconds": 1472128172, "microseconds": 744001}, 2508# "data": {"status": "concluded", "id": "snapload0"}} 2509# -> {"execute": "query-jobs"} 2510# <- {"return": [{"current-progress": 1, 2511# "status": "concluded", 2512# "total-progress": 1, 2513# "type": "snapshot-load", 2514# "id": "snapload0"}]} 2515# 2516# Since: 6.0 2517## 2518{ 'command': 'snapshot-load', 2519 'data': { 'job-id': 'str', 2520 'tag': 'str', 2521 'vmstate': 'str', 2522 'devices': ['str'] } } 2523 2524## 2525# @snapshot-delete: 2526# 2527# Delete a VM snapshot 2528# 2529# @job-id: identifier for the newly created job 2530# 2531# @tag: name of the snapshot to delete. 2532# 2533# @devices: list of block device node names to delete a snapshot from 2534# 2535# Applications should not assume that the snapshot delete is complete 2536# when this command returns. The job commands / events must be used 2537# to determine completion and to fetch details of any errors that 2538# arise. 2539# 2540# Example: 2541# 2542# -> { "execute": "snapshot-delete", 2543# "arguments": { 2544# "job-id": "snapdelete0", 2545# "tag": "my-snap", 2546# "devices": ["disk0", "disk1"] 2547# } 2548# } 2549# <- { "return": { } } 2550# <- {"event": "JOB_STATUS_CHANGE", 2551# "timestamp": {"seconds": 1442124172, "microseconds": 744001}, 2552# "data": {"status": "created", "id": "snapdelete0"}} 2553# <- {"event": "JOB_STATUS_CHANGE", 2554# "timestamp": {"seconds": 1442125172, "microseconds": 744001}, 2555# "data": {"status": "running", "id": "snapdelete0"}} 2556# <- {"event": "JOB_STATUS_CHANGE", 2557# "timestamp": {"seconds": 1442126172, "microseconds": 744001}, 2558# "data": {"status": "waiting", "id": "snapdelete0"}} 2559# <- {"event": "JOB_STATUS_CHANGE", 2560# "timestamp": {"seconds": 1442127172, "microseconds": 744001}, 2561# "data": {"status": "pending", "id": "snapdelete0"}} 2562# <- {"event": "JOB_STATUS_CHANGE", 2563# "timestamp": {"seconds": 1442128172, "microseconds": 744001}, 2564# "data": {"status": "concluded", "id": "snapdelete0"}} 2565# -> {"execute": "query-jobs"} 2566# <- {"return": [{"current-progress": 1, 2567# "status": "concluded", 2568# "total-progress": 1, 2569# "type": "snapshot-delete", 2570# "id": "snapdelete0"}]} 2571# 2572# Since: 6.0 2573## 2574{ 'command': 'snapshot-delete', 2575 'data': { 'job-id': 'str', 2576 'tag': 'str', 2577 'devices': ['str'] } } 2578