1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4 5## 6# = Migration 7## 8 9{ 'include': 'common.json' } 10{ 'include': 'sockets.json' } 11 12## 13# @MigrationStats: 14# 15# Detailed migration status. 16# 17# @transferred: amount of bytes already transferred to the target VM 18# 19# @remaining: amount of bytes remaining to be transferred to the 20# target VM 21# 22# @total: total amount of bytes involved in the migration process 23# 24# @duplicate: number of duplicate (zero) pages (since 1.2) 25# 26# @normal: number of normal pages (since 1.2) 27# 28# @normal-bytes: number of normal bytes sent (since 1.2) 29# 30# @dirty-pages-rate: number of pages dirtied by second by the guest 31# (since 1.3) 32# 33# @mbps: throughput in megabits/sec. (since 1.6) 34# 35# @dirty-sync-count: number of times that dirty ram was synchronized 36# (since 2.1) 37# 38# @postcopy-requests: The number of page requests received from the 39# destination (since 2.7) 40# 41# @page-size: The number of bytes per page for the various page-based 42# statistics (since 2.10) 43# 44# @multifd-bytes: The number of bytes sent through multifd (since 3.0) 45# 46# @pages-per-second: the number of memory pages transferred per second 47# (Since 4.0) 48# 49# @precopy-bytes: The number of bytes sent in the pre-copy phase 50# (since 7.0). 51# 52# @downtime-bytes: The number of bytes sent while the guest is paused 53# (since 7.0). 54# 55# @postcopy-bytes: The number of bytes sent during the post-copy phase 56# (since 7.0). 57# 58# @dirty-sync-missed-zero-copy: Number of times dirty RAM 59# synchronization could not avoid copying dirty pages. This is 60# between 0 and @dirty-sync-count * @multifd-channels. (since 61# 7.1) 62# 63# Since: 0.14 64## 65{ 'struct': 'MigrationStats', 66 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' , 67 'duplicate': 'int', 68 'normal': 'int', 69 'normal-bytes': 'int', 'dirty-pages-rate': 'int', 70 'mbps': 'number', 'dirty-sync-count': 'int', 71 'postcopy-requests': 'int', 'page-size': 'int', 72 'multifd-bytes': 'uint64', 'pages-per-second': 'uint64', 73 'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64', 74 'postcopy-bytes': 'uint64', 75 'dirty-sync-missed-zero-copy': 'uint64' } } 76 77## 78# @XBZRLECacheStats: 79# 80# Detailed XBZRLE migration cache statistics 81# 82# @cache-size: XBZRLE cache size 83# 84# @bytes: amount of bytes already transferred to the target VM 85# 86# @pages: amount of pages transferred to the target VM 87# 88# @cache-miss: number of cache miss 89# 90# @cache-miss-rate: rate of cache miss (since 2.1) 91# 92# @encoding-rate: rate of encoded bytes (since 5.1) 93# 94# @overflow: number of overflows 95# 96# Since: 1.2 97## 98{ 'struct': 'XBZRLECacheStats', 99 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int', 100 'cache-miss': 'int', 'cache-miss-rate': 'number', 101 'encoding-rate': 'number', 'overflow': 'int' } } 102 103## 104# @CompressionStats: 105# 106# Detailed migration compression statistics 107# 108# @pages: amount of pages compressed and transferred to the target VM 109# 110# @busy: count of times that no free thread was available to compress 111# data 112# 113# @busy-rate: rate of thread busy 114# 115# @compressed-size: amount of bytes after compression 116# 117# @compression-rate: rate of compressed size 118# 119# Since: 3.1 120## 121{ 'struct': 'CompressionStats', 122 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number', 123 'compressed-size': 'int', 'compression-rate': 'number' } } 124 125## 126# @MigrationStatus: 127# 128# An enumeration of migration status. 129# 130# @none: no migration has ever happened. 131# 132# @setup: migration process has been initiated. 133# 134# @cancelling: in the process of cancelling migration. 135# 136# @cancelled: cancelling migration is finished. 137# 138# @active: in the process of doing migration. 139# 140# @postcopy-active: like active, but now in postcopy mode. (since 141# 2.5) 142# 143# @postcopy-paused: during postcopy but paused. (since 3.0) 144# 145# @postcopy-recover-setup: setup phase for a postcopy recovery 146# process, preparing for a recovery phase to start. (since 9.1) 147# 148# @postcopy-recover: trying to recover from a paused postcopy. (since 149# 3.0) 150# 151# @completed: migration is finished. 152# 153# @failed: some error occurred during migration process. 154# 155# @colo: VM is in the process of fault tolerance, VM can not get into 156# this state unless colo capability is enabled for migration. 157# (since 2.8) 158# 159# @pre-switchover: Paused before device serialisation. (since 2.11) 160# 161# @device: During device serialisation when pause-before-switchover is 162# enabled (since 2.11) 163# 164# @wait-unplug: wait for device unplug request by guest OS to be 165# completed. (since 4.2) 166# 167# Since: 2.3 168## 169{ 'enum': 'MigrationStatus', 170 'data': [ 'none', 'setup', 'cancelling', 'cancelled', 171 'active', 'postcopy-active', 'postcopy-paused', 172 'postcopy-recover-setup', 173 'postcopy-recover', 'completed', 'failed', 'colo', 174 'pre-switchover', 'device', 'wait-unplug' ] } 175## 176# @VfioStats: 177# 178# Detailed VFIO devices migration statistics 179# 180# @transferred: amount of bytes transferred to the target VM by VFIO 181# devices 182# 183# Since: 5.2 184## 185{ 'struct': 'VfioStats', 186 'data': {'transferred': 'int' } } 187 188## 189# @MigrationInfo: 190# 191# Information about current migration process. 192# 193# @status: @MigrationStatus describing the current migration status. 194# If this field is not returned, no migration process has been 195# initiated 196# 197# @ram: @MigrationStats containing detailed migration status, only 198# returned if status is 'active' or 'completed'(since 1.2) 199# 200# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE 201# migration statistics, only returned if XBZRLE feature is on and 202# status is 'active' or 'completed' (since 1.2) 203# 204# @total-time: total amount of milliseconds since migration started. 205# If migration has ended, it returns the total migration time. 206# (since 1.2) 207# 208# @downtime: only present when migration finishes correctly total 209# downtime in milliseconds for the guest. (since 1.3) 210# 211# @expected-downtime: only present while migration is active expected 212# downtime in milliseconds for the guest in last walk of the dirty 213# bitmap. (since 1.3) 214# 215# @setup-time: amount of setup time in milliseconds *before* the 216# iterations begin but *after* the QMP command is issued. This is 217# designed to provide an accounting of any activities (such as 218# RDMA pinning) which may be expensive, but do not actually occur 219# during the iterative migration rounds themselves. (since 1.6) 220# 221# @cpu-throttle-percentage: percentage of time guest cpus are being 222# throttled during auto-converge. This is only present when 223# auto-converge has started throttling guest cpus. (Since 2.7) 224# 225# @error-desc: the human readable error description string. Clients 226# should not attempt to parse the error strings. (Since 2.7) 227# 228# @postcopy-blocktime: total time when all vCPU were blocked during 229# postcopy live migration. This is only present when the 230# postcopy-blocktime migration capability is enabled. (Since 3.0) 231# 232# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. 233# This is only present when the postcopy-blocktime migration 234# capability is enabled. (Since 3.0) 235# 236# @socket-address: Only used for tcp, to know what the real port is 237# (Since 4.0) 238# 239# @vfio: @VfioStats containing detailed VFIO devices migration 240# statistics, only returned if VFIO device is present, migration 241# is supported by all VFIO devices and status is 'active' or 242# 'completed' (since 5.2) 243# 244# @blocked-reasons: A list of reasons an outgoing migration is 245# blocked. Present and non-empty when migration is blocked. 246# (since 6.0) 247# 248# @dirty-limit-throttle-time-per-round: Maximum throttle time (in 249# microseconds) of virtual CPUs each dirty ring full round, which 250# shows how MigrationCapability dirty-limit affects the guest 251# during live migration. (Since 8.1) 252# 253# @dirty-limit-ring-full-time: Estimated average dirty ring full time 254# (in microseconds) for each dirty ring full round. The value 255# equals the dirty ring memory size divided by the average dirty 256# page rate of the virtual CPU, which can be used to observe the 257# average memory load of the virtual CPU indirectly. Note that 258# zero means guest doesn't dirty memory. (Since 8.1) 259# 260# Since: 0.14 261## 262{ 'struct': 'MigrationInfo', 263 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats', 264 '*vfio': 'VfioStats', 265 '*xbzrle-cache': 'XBZRLECacheStats', 266 '*total-time': 'int', 267 '*expected-downtime': 'int', 268 '*downtime': 'int', 269 '*setup-time': 'int', 270 '*cpu-throttle-percentage': 'int', 271 '*error-desc': 'str', 272 '*blocked-reasons': ['str'], 273 '*postcopy-blocktime': 'uint32', 274 '*postcopy-vcpu-blocktime': ['uint32'], 275 '*socket-address': ['SocketAddress'], 276 '*dirty-limit-throttle-time-per-round': 'uint64', 277 '*dirty-limit-ring-full-time': 'uint64'} } 278 279## 280# @query-migrate: 281# 282# Returns information about current migration process. If migration 283# is active there will be another json-object with RAM migration 284# status. 285# 286# Returns: @MigrationInfo 287# 288# Since: 0.14 289# 290# .. qmp-example:: 291# :title: Before the first migration 292# 293# -> { "execute": "query-migrate" } 294# <- { "return": {} } 295# 296# .. qmp-example:: 297# :title: Migration is done and has succeeded 298# 299# -> { "execute": "query-migrate" } 300# <- { "return": { 301# "status": "completed", 302# "total-time":12345, 303# "setup-time":12345, 304# "downtime":12345, 305# "ram":{ 306# "transferred":123, 307# "remaining":123, 308# "total":246, 309# "duplicate":123, 310# "normal":123, 311# "normal-bytes":123456, 312# "dirty-sync-count":15 313# } 314# } 315# } 316# 317# .. qmp-example:: 318# :title: Migration is done and has failed 319# 320# -> { "execute": "query-migrate" } 321# <- { "return": { "status": "failed" } } 322# 323# .. qmp-example:: 324# :title: Migration is being performed 325# 326# -> { "execute": "query-migrate" } 327# <- { 328# "return":{ 329# "status":"active", 330# "total-time":12345, 331# "setup-time":12345, 332# "expected-downtime":12345, 333# "ram":{ 334# "transferred":123, 335# "remaining":123, 336# "total":246, 337# "duplicate":123, 338# "normal":123, 339# "normal-bytes":123456, 340# "dirty-sync-count":15 341# } 342# } 343# } 344# 345# .. qmp-example:: 346# :title: Migration is being performed and XBZRLE is active 347# 348# -> { "execute": "query-migrate" } 349# <- { 350# "return":{ 351# "status":"active", 352# "total-time":12345, 353# "setup-time":12345, 354# "expected-downtime":12345, 355# "ram":{ 356# "total":1057024, 357# "remaining":1053304, 358# "transferred":3720, 359# "duplicate":10, 360# "normal":3333, 361# "normal-bytes":3412992, 362# "dirty-sync-count":15 363# }, 364# "xbzrle-cache":{ 365# "cache-size":67108864, 366# "bytes":20971520, 367# "pages":2444343, 368# "cache-miss":2244, 369# "cache-miss-rate":0.123, 370# "encoding-rate":80.1, 371# "overflow":34434 372# } 373# } 374# } 375## 376{ 'command': 'query-migrate', 'returns': 'MigrationInfo' } 377 378## 379# @MigrationCapability: 380# 381# Migration capabilities enumeration 382# 383# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length 384# Encoding). This feature allows us to minimize migration traffic 385# for certain work loads, by sending compressed difference of the 386# pages 387# 388# @rdma-pin-all: Controls whether or not the entire VM memory 389# footprint is mlock()'d on demand or all at once. Refer to 390# docs/rdma.txt for usage. Disabled by default. (since 2.0) 391# 392# @zero-blocks: During storage migration encode blocks of zeroes 393# efficiently. This essentially saves 1MB of zeroes per block on 394# the wire. Enabling requires source and target VM to support 395# this feature. To enable it is sufficient to enable the 396# capability on the source VM. The feature is disabled by 397# default. (since 1.6) 398# 399# @events: generate events for each migration state change (since 2.4) 400# 401# @auto-converge: If enabled, QEMU will automatically throttle down 402# the guest to speed up convergence of RAM migration. (since 1.6) 403# 404# @postcopy-ram: Start executing on the migration target before all of 405# RAM has been migrated, pulling the remaining pages along as 406# needed. The capacity must have the same setting on both source 407# and target or migration will not even start. NOTE: If the 408# migration fails during postcopy the VM will fail. (since 2.6) 409# 410# @x-colo: If enabled, migration will never end, and the state of the 411# VM on the primary side will be migrated continuously to the VM 412# on secondary side, this process is called COarse-Grain LOck 413# Stepping (COLO) for Non-stop Service. (since 2.8) 414# 415# @release-ram: if enabled, qemu will free the migrated ram pages on 416# the source during postcopy-ram migration. (since 2.9) 417# 418# @return-path: If enabled, migration will use the return path even 419# for precopy. (since 2.10) 420# 421# @pause-before-switchover: Pause outgoing migration before 422# serialising device state and before disabling block IO (since 423# 2.11) 424# 425# @multifd: Use more than one fd for migration (since 4.0) 426# 427# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps. 428# (since 2.12) 429# 430# @postcopy-blocktime: Calculate downtime for postcopy live migration 431# (since 3.0) 432# 433# @late-block-activate: If enabled, the destination will not activate 434# block devices (and thus take locks) immediately at the end of 435# migration. (since 3.0) 436# 437# @x-ignore-shared: If enabled, QEMU will not migrate shared memory 438# that is accessible on the destination machine. (since 4.0) 439# 440# @validate-uuid: Send the UUID of the source to allow the destination 441# to ensure it is the same. (since 4.2) 442# 443# @background-snapshot: If enabled, the migration stream will be a 444# snapshot of the VM exactly at the point when the migration 445# procedure starts. The VM RAM is saved with running VM. 446# (since 6.0) 447# 448# @zero-copy-send: Controls behavior on sending memory pages on 449# migration. When true, enables a zero-copy mechanism for sending 450# memory pages, if host supports it. Requires that QEMU be 451# permitted to use locked memory for guest RAM pages. (since 7.1) 452# 453# @postcopy-preempt: If enabled, the migration process will allow 454# postcopy requests to preempt precopy stream, so postcopy 455# requests will be handled faster. This is a performance feature 456# and should not affect the correctness of postcopy migration. 457# (since 7.1) 458# 459# @switchover-ack: If enabled, migration will not stop the source VM 460# and complete the migration until an ACK is received from the 461# destination that it's OK to do so. Exactly when this ACK is 462# sent depends on the migrated devices that use this feature. For 463# example, a device can use it to make sure some of its data is 464# sent and loaded in the destination before doing switchover. 465# This can reduce downtime if devices that support this capability 466# are present. 'return-path' capability must be enabled to use 467# it. (since 8.1) 468# 469# @dirty-limit: If enabled, migration will throttle vCPUs as needed to 470# keep their dirty page rate within @vcpu-dirty-limit. This can 471# improve responsiveness of large guests during live migration, 472# and can result in more stable read performance. Requires KVM 473# with accelerator property "dirty-ring-size" set. (Since 8.1) 474# 475# @mapped-ram: Migrate using fixed offsets in the migration file for 476# each RAM page. Requires a migration URI that supports seeking, 477# such as a file. (since 9.0) 478# 479# Features: 480# 481# @unstable: Members @x-colo and @x-ignore-shared are experimental. 482# 483# Since: 1.2 484## 485{ 'enum': 'MigrationCapability', 486 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks', 487 'events', 'postcopy-ram', 488 { 'name': 'x-colo', 'features': [ 'unstable' ] }, 489 'release-ram', 490 'return-path', 'pause-before-switchover', 'multifd', 491 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate', 492 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] }, 493 'validate-uuid', 'background-snapshot', 494 'zero-copy-send', 'postcopy-preempt', 'switchover-ack', 495 'dirty-limit', 'mapped-ram'] } 496 497## 498# @MigrationCapabilityStatus: 499# 500# Migration capability information 501# 502# @capability: capability enum 503# 504# @state: capability state bool 505# 506# Since: 1.2 507## 508{ 'struct': 'MigrationCapabilityStatus', 509 'data': { 'capability': 'MigrationCapability', 'state': 'bool' } } 510 511## 512# @migrate-set-capabilities: 513# 514# Enable/Disable the following migration capabilities (like xbzrle) 515# 516# @capabilities: json array of capability modifications to make 517# 518# Since: 1.2 519# 520# .. qmp-example:: 521# 522# -> { "execute": "migrate-set-capabilities" , "arguments": 523# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } } 524# <- { "return": {} } 525## 526{ 'command': 'migrate-set-capabilities', 527 'data': { 'capabilities': ['MigrationCapabilityStatus'] } } 528 529## 530# @query-migrate-capabilities: 531# 532# Returns information about the current migration capabilities status 533# 534# Returns: @MigrationCapabilityStatus 535# 536# Since: 1.2 537# 538# .. qmp-example:: 539# 540# -> { "execute": "query-migrate-capabilities" } 541# <- { "return": [ 542# {"state": false, "capability": "xbzrle"}, 543# {"state": false, "capability": "rdma-pin-all"}, 544# {"state": false, "capability": "auto-converge"}, 545# {"state": false, "capability": "zero-blocks"}, 546# {"state": true, "capability": "events"}, 547# {"state": false, "capability": "postcopy-ram"}, 548# {"state": false, "capability": "x-colo"} 549# ]} 550## 551{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']} 552 553## 554# @MultiFDCompression: 555# 556# An enumeration of multifd compression methods. 557# 558# @none: no compression. 559# 560# @zlib: use zlib compression method. 561# 562# @zstd: use zstd compression method. 563# 564# @qatzip: use qatzip compression method. (Since 9.2) 565# 566# @qpl: use qpl compression method. Query Processing Library(qpl) is 567# based on the deflate compression algorithm and use the Intel 568# In-Memory Analytics Accelerator(IAA) accelerated compression and 569# decompression. (Since 9.1) 570# 571# @uadk: use UADK library compression method. (Since 9.1) 572# 573# Since: 5.0 574## 575{ 'enum': 'MultiFDCompression', 576 'prefix': 'MULTIFD_COMPRESSION', 577 'data': [ 'none', 'zlib', 578 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' }, 579 { 'name': 'qatzip', 'if': 'CONFIG_QATZIP'}, 580 { 'name': 'qpl', 'if': 'CONFIG_QPL' }, 581 { 'name': 'uadk', 'if': 'CONFIG_UADK' } ] } 582 583## 584# @MigMode: 585# 586# @normal: the original form of migration. (since 8.2) 587# 588# @cpr-reboot: The migrate command stops the VM and saves state to the 589# URI. After quitting QEMU, the user resumes by running QEMU 590# -incoming. 591# 592# This mode allows the user to quit QEMU, optionally update and 593# reboot the OS, and restart QEMU. If the user reboots, the URI 594# must persist across the reboot, such as by using a file. 595# 596# Unlike normal mode, the use of certain local storage options 597# does not block the migration, but the user must not modify the 598# contents of guest block devices between the quit and restart. 599# 600# This mode supports VFIO devices provided the user first puts the 601# guest in the suspended runstate, such as by issuing 602# guest-suspend-ram to the QEMU guest agent. 603# 604# Best performance is achieved when the memory backend is shared 605# and the @x-ignore-shared migration capability is set, but this 606# is not required. Further, if the user reboots before restarting 607# such a configuration, the shared memory must persist across the 608# reboot, such as by backing it with a dax device. 609# 610# @cpr-reboot may not be used with postcopy, background-snapshot, 611# or COLO. 612# 613# (since 8.2) 614## 615{ 'enum': 'MigMode', 616 'data': [ 'normal', 'cpr-reboot' ] } 617 618## 619# @ZeroPageDetection: 620# 621# @none: Do not perform zero page checking. 622# 623# @legacy: Perform zero page checking in main migration thread. 624# 625# @multifd: Perform zero page checking in multifd sender thread if 626# multifd migration is enabled, else in the main migration thread 627# as for @legacy. 628# 629# Since: 9.0 630## 631{ 'enum': 'ZeroPageDetection', 632 'data': [ 'none', 'legacy', 'multifd' ] } 633 634## 635# @BitmapMigrationBitmapAliasTransform: 636# 637# @persistent: If present, the bitmap will be made persistent or 638# transient depending on this parameter. 639# 640# Since: 6.0 641## 642{ 'struct': 'BitmapMigrationBitmapAliasTransform', 643 'data': { 644 '*persistent': 'bool' 645 } } 646 647## 648# @BitmapMigrationBitmapAlias: 649# 650# @name: The name of the bitmap. 651# 652# @alias: An alias name for migration (for example the bitmap name on 653# the opposite site). 654# 655# @transform: Allows the modification of the migrated bitmap. (since 656# 6.0) 657# 658# Since: 5.2 659## 660{ 'struct': 'BitmapMigrationBitmapAlias', 661 'data': { 662 'name': 'str', 663 'alias': 'str', 664 '*transform': 'BitmapMigrationBitmapAliasTransform' 665 } } 666 667## 668# @BitmapMigrationNodeAlias: 669# 670# Maps a block node name and the bitmaps it has to aliases for dirty 671# bitmap migration. 672# 673# @node-name: A block node name. 674# 675# @alias: An alias block node name for migration (for example the node 676# name on the opposite site). 677# 678# @bitmaps: Mappings for the bitmaps on this node. 679# 680# Since: 5.2 681## 682{ 'struct': 'BitmapMigrationNodeAlias', 683 'data': { 684 'node-name': 'str', 685 'alias': 'str', 686 'bitmaps': [ 'BitmapMigrationBitmapAlias' ] 687 } } 688 689## 690# @MigrationParameter: 691# 692# Migration parameters enumeration 693# 694# @announce-initial: Initial delay (in milliseconds) before sending 695# the first announce (Since 4.0) 696# 697# @announce-max: Maximum delay (in milliseconds) between packets in 698# the announcement (Since 4.0) 699# 700# @announce-rounds: Number of self-announce packets sent after 701# migration (Since 4.0) 702# 703# @announce-step: Increase in delay (in milliseconds) between 704# subsequent packets in the announcement (Since 4.0) 705# 706# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 707# bytes_xfer_period to trigger throttling. It is expressed as 708# percentage. The default value is 50. (Since 5.0) 709# 710# @cpu-throttle-initial: Initial percentage of time guest cpus are 711# throttled when migration auto-converge is activated. The 712# default value is 20. (Since 2.7) 713# 714# @cpu-throttle-increment: throttle percentage increase each time 715# auto-converge detects that migration is not making progress. 716# The default value is 10. (Since 2.7) 717# 718# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 719# the tail stage of throttling, the Guest is very sensitive to CPU 720# percentage while the @cpu-throttle -increment is excessive 721# usually at tail stage. If this parameter is true, we will 722# compute the ideal CPU percentage used by the Guest, which may 723# exactly make the dirty rate match the dirty rate threshold. 724# Then we will choose a smaller throttle increment between the one 725# specified by @cpu-throttle-increment and the one generated by 726# ideal CPU percentage. Therefore, it is compatible to 727# traditional throttling, meanwhile the throttle increment won't 728# be excessive at tail stage. The default value is false. (Since 729# 5.1) 730# 731# @tls-creds: ID of the 'tls-creds' object that provides credentials 732# for establishing a TLS connection over the migration data 733# channel. On the outgoing side of the migration, the credentials 734# must be for a 'client' endpoint, while for the incoming side the 735# credentials must be for a 'server' endpoint. Setting this to a 736# non-empty string enables TLS for all migrations. An empty 737# string means that QEMU will use plain text mode for migration, 738# rather than TLS. (Since 2.7) 739# 740# @tls-hostname: migration target's hostname for validating the 741# server's x509 certificate identity. If empty, QEMU will use the 742# hostname from the migration URI, if any. A non-empty value is 743# required when using x509 based TLS credentials and the migration 744# URI does not include a hostname, such as fd: or exec: based 745# migration. (Since 2.7) 746# 747# Note: empty value works only since 2.9. 748# 749# @tls-authz: ID of the 'authz' object subclass that provides access 750# control checking of the TLS x509 certificate distinguished name. 751# This object is only resolved at time of use, so can be deleted 752# and recreated on the fly while the migration server is active. 753# If missing, it will default to denying access (Since 4.0) 754# 755# @max-bandwidth: maximum speed for migration, in bytes per second. 756# (Since 2.8) 757# 758# @avail-switchover-bandwidth: to set the available bandwidth that 759# migration can use during switchover phase. NOTE! This does not 760# limit the bandwidth during switchover, but only for calculations 761# when making decisions to switchover. By default, this value is 762# zero, which means QEMU will estimate the bandwidth 763# automatically. This can be set when the estimated value is not 764# accurate, while the user is able to guarantee such bandwidth is 765# available when switching over. When specified correctly, this 766# can make the switchover decision much more accurate. 767# (Since 8.2) 768# 769# @downtime-limit: set maximum tolerated downtime for migration. 770# maximum downtime in milliseconds (Since 2.8) 771# 772# @x-checkpoint-delay: The delay time (in ms) between two COLO 773# checkpoints in periodic mode. (Since 2.8) 774# 775# @multifd-channels: Number of channels used to migrate data in 776# parallel. This is the same number that the number of sockets 777# used for migration. The default value is 2 (since 4.0) 778# 779# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 780# needs to be a multiple of the target page size and a power of 2 781# (Since 2.11) 782# 783# @max-postcopy-bandwidth: Background transfer bandwidth during 784# postcopy. Defaults to 0 (unlimited). In bytes per second. 785# (Since 3.0) 786# 787# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 788# (Since 3.1) 789# 790# @multifd-compression: Which compression method to use. Defaults to 791# none. (Since 5.0) 792# 793# @multifd-zlib-level: Set the compression level to be used in live 794# migration, the compression level is an integer between 0 and 9, 795# where 0 means no compression, 1 means the best compression 796# speed, and 9 means best compression ratio which will consume 797# more CPU. Defaults to 1. (Since 5.0) 798# 799# @multifd-qatzip-level: Set the compression level to be used in live 800# migration. The level is an integer between 1 and 9, where 1 means 801# the best compression speed, and 9 means the best compression 802# ratio which will consume more CPU. Defaults to 1. (Since 9.2) 803# 804# @multifd-zstd-level: Set the compression level to be used in live 805# migration, the compression level is an integer between 0 and 20, 806# where 0 means no compression, 1 means the best compression 807# speed, and 20 means best compression ratio which will consume 808# more CPU. Defaults to 1. (Since 5.0) 809# 810# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 811# aliases for the purpose of dirty bitmap migration. Such aliases 812# may for example be the corresponding names on the opposite site. 813# The mapping must be one-to-one, but not necessarily complete: On 814# the source, unmapped bitmaps and all bitmaps on unmapped nodes 815# will be ignored. On the destination, encountering an unmapped 816# alias in the incoming migration stream will result in a report, 817# and all further bitmap migration data will then be discarded. 818# Note that the destination does not know about bitmaps it does 819# not receive, so there is no limitation or requirement regarding 820# the number of bitmaps received, or how they are named, or on 821# which nodes they are placed. By default (when this parameter 822# has never been set), bitmap names are mapped to themselves. 823# Nodes are mapped to their block device name if there is one, and 824# to their node name otherwise. (Since 5.2) 825# 826# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 827# limit during live migration. Should be in the range 1 to 828# 1000ms. Defaults to 1000ms. (Since 8.1) 829# 830# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 831# Defaults to 1. (Since 8.1) 832# 833# @mode: Migration mode. See description in @MigMode. Default is 834# 'normal'. (Since 8.2) 835# 836# @zero-page-detection: Whether and how to detect zero pages. 837# See description in @ZeroPageDetection. Default is 'multifd'. 838# (since 9.0) 839# 840# @direct-io: Open migration files with O_DIRECT when possible. This 841# only has effect if the @mapped-ram capability is enabled. 842# (Since 9.1) 843# 844# Features: 845# 846# @unstable: Members @x-checkpoint-delay and 847# @x-vcpu-dirty-limit-period are experimental. 848# 849# Since: 2.4 850## 851{ 'enum': 'MigrationParameter', 852 'data': ['announce-initial', 'announce-max', 853 'announce-rounds', 'announce-step', 854 'throttle-trigger-threshold', 855 'cpu-throttle-initial', 'cpu-throttle-increment', 856 'cpu-throttle-tailslow', 857 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth', 858 'avail-switchover-bandwidth', 'downtime-limit', 859 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] }, 860 'multifd-channels', 861 'xbzrle-cache-size', 'max-postcopy-bandwidth', 862 'max-cpu-throttle', 'multifd-compression', 863 'multifd-zlib-level', 'multifd-zstd-level', 864 'multifd-qatzip-level', 865 'block-bitmap-mapping', 866 { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] }, 867 'vcpu-dirty-limit', 868 'mode', 869 'zero-page-detection', 870 'direct-io'] } 871 872## 873# @MigrateSetParameters: 874# 875# @announce-initial: Initial delay (in milliseconds) before sending 876# the first announce (Since 4.0) 877# 878# @announce-max: Maximum delay (in milliseconds) between packets in 879# the announcement (Since 4.0) 880# 881# @announce-rounds: Number of self-announce packets sent after 882# migration (Since 4.0) 883# 884# @announce-step: Increase in delay (in milliseconds) between 885# subsequent packets in the announcement (Since 4.0) 886# 887# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 888# bytes_xfer_period to trigger throttling. It is expressed as 889# percentage. The default value is 50. (Since 5.0) 890# 891# @cpu-throttle-initial: Initial percentage of time guest cpus are 892# throttled when migration auto-converge is activated. The 893# default value is 20. (Since 2.7) 894# 895# @cpu-throttle-increment: throttle percentage increase each time 896# auto-converge detects that migration is not making progress. 897# The default value is 10. (Since 2.7) 898# 899# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 900# the tail stage of throttling, the Guest is very sensitive to CPU 901# percentage while the @cpu-throttle -increment is excessive 902# usually at tail stage. If this parameter is true, we will 903# compute the ideal CPU percentage used by the Guest, which may 904# exactly make the dirty rate match the dirty rate threshold. 905# Then we will choose a smaller throttle increment between the one 906# specified by @cpu-throttle-increment and the one generated by 907# ideal CPU percentage. Therefore, it is compatible to 908# traditional throttling, meanwhile the throttle increment won't 909# be excessive at tail stage. The default value is false. (Since 910# 5.1) 911# 912# @tls-creds: ID of the 'tls-creds' object that provides credentials 913# for establishing a TLS connection over the migration data 914# channel. On the outgoing side of the migration, the credentials 915# must be for a 'client' endpoint, while for the incoming side the 916# credentials must be for a 'server' endpoint. Setting this to a 917# non-empty string enables TLS for all migrations. An empty 918# string means that QEMU will use plain text mode for migration, 919# rather than TLS. This is the default. (Since 2.7) 920# 921# @tls-hostname: migration target's hostname for validating the 922# server's x509 certificate identity. If empty, QEMU will use the 923# hostname from the migration URI, if any. A non-empty value is 924# required when using x509 based TLS credentials and the migration 925# URI does not include a hostname, such as fd: or exec: based 926# migration. (Since 2.7) 927# 928# Note: empty value works only since 2.9. 929# 930# @tls-authz: ID of the 'authz' object subclass that provides access 931# control checking of the TLS x509 certificate distinguished name. 932# This object is only resolved at time of use, so can be deleted 933# and recreated on the fly while the migration server is active. 934# If missing, it will default to denying access (Since 4.0) 935# 936# @max-bandwidth: maximum speed for migration, in bytes per second. 937# (Since 2.8) 938# 939# @avail-switchover-bandwidth: to set the available bandwidth that 940# migration can use during switchover phase. NOTE! This does not 941# limit the bandwidth during switchover, but only for calculations 942# when making decisions to switchover. By default, this value is 943# zero, which means QEMU will estimate the bandwidth 944# automatically. This can be set when the estimated value is not 945# accurate, while the user is able to guarantee such bandwidth is 946# available when switching over. When specified correctly, this 947# can make the switchover decision much more accurate. 948# (Since 8.2) 949# 950# @downtime-limit: set maximum tolerated downtime for migration. 951# maximum downtime in milliseconds (Since 2.8) 952# 953# @x-checkpoint-delay: The delay time (in ms) between two COLO 954# checkpoints in periodic mode. (Since 2.8) 955# 956# @multifd-channels: Number of channels used to migrate data in 957# parallel. This is the same number that the number of sockets 958# used for migration. The default value is 2 (since 4.0) 959# 960# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 961# needs to be a multiple of the target page size and a power of 2 962# (Since 2.11) 963# 964# @max-postcopy-bandwidth: Background transfer bandwidth during 965# postcopy. Defaults to 0 (unlimited). In bytes per second. 966# (Since 3.0) 967# 968# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 969# (Since 3.1) 970# 971# @multifd-compression: Which compression method to use. Defaults to 972# none. (Since 5.0) 973# 974# @multifd-zlib-level: Set the compression level to be used in live 975# migration, the compression level is an integer between 0 and 9, 976# where 0 means no compression, 1 means the best compression 977# speed, and 9 means best compression ratio which will consume 978# more CPU. Defaults to 1. (Since 5.0) 979# 980# @multifd-qatzip-level: Set the compression level to be used in live 981# migration. The level is an integer between 1 and 9, where 1 means 982# the best compression speed, and 9 means the best compression 983# ratio which will consume more CPU. Defaults to 1. (Since 9.2) 984# 985# @multifd-zstd-level: Set the compression level to be used in live 986# migration, the compression level is an integer between 0 and 20, 987# where 0 means no compression, 1 means the best compression 988# speed, and 20 means best compression ratio which will consume 989# more CPU. Defaults to 1. (Since 5.0) 990# 991# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 992# aliases for the purpose of dirty bitmap migration. Such aliases 993# may for example be the corresponding names on the opposite site. 994# The mapping must be one-to-one, but not necessarily complete: On 995# the source, unmapped bitmaps and all bitmaps on unmapped nodes 996# will be ignored. On the destination, encountering an unmapped 997# alias in the incoming migration stream will result in a report, 998# and all further bitmap migration data will then be discarded. 999# Note that the destination does not know about bitmaps it does 1000# not receive, so there is no limitation or requirement regarding 1001# the number of bitmaps received, or how they are named, or on 1002# which nodes they are placed. By default (when this parameter 1003# has never been set), bitmap names are mapped to themselves. 1004# Nodes are mapped to their block device name if there is one, and 1005# to their node name otherwise. (Since 5.2) 1006# 1007# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 1008# limit during live migration. Should be in the range 1 to 1009# 1000ms. Defaults to 1000ms. (Since 8.1) 1010# 1011# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1012# Defaults to 1. (Since 8.1) 1013# 1014# @mode: Migration mode. See description in @MigMode. Default is 1015# 'normal'. (Since 8.2) 1016# 1017# @zero-page-detection: Whether and how to detect zero pages. 1018# See description in @ZeroPageDetection. Default is 'multifd'. 1019# (since 9.0) 1020# 1021# @direct-io: Open migration files with O_DIRECT when possible. This 1022# only has effect if the @mapped-ram capability is enabled. 1023# (Since 9.1) 1024# 1025# Features: 1026# 1027# @unstable: Members @x-checkpoint-delay and 1028# @x-vcpu-dirty-limit-period are experimental. 1029# 1030# TODO: either fuse back into MigrationParameters, or make 1031# MigrationParameters members mandatory 1032# 1033# Since: 2.4 1034## 1035{ 'struct': 'MigrateSetParameters', 1036 'data': { '*announce-initial': 'size', 1037 '*announce-max': 'size', 1038 '*announce-rounds': 'size', 1039 '*announce-step': 'size', 1040 '*throttle-trigger-threshold': 'uint8', 1041 '*cpu-throttle-initial': 'uint8', 1042 '*cpu-throttle-increment': 'uint8', 1043 '*cpu-throttle-tailslow': 'bool', 1044 '*tls-creds': 'StrOrNull', 1045 '*tls-hostname': 'StrOrNull', 1046 '*tls-authz': 'StrOrNull', 1047 '*max-bandwidth': 'size', 1048 '*avail-switchover-bandwidth': 'size', 1049 '*downtime-limit': 'uint64', 1050 '*x-checkpoint-delay': { 'type': 'uint32', 1051 'features': [ 'unstable' ] }, 1052 '*multifd-channels': 'uint8', 1053 '*xbzrle-cache-size': 'size', 1054 '*max-postcopy-bandwidth': 'size', 1055 '*max-cpu-throttle': 'uint8', 1056 '*multifd-compression': 'MultiFDCompression', 1057 '*multifd-zlib-level': 'uint8', 1058 '*multifd-qatzip-level': 'uint8', 1059 '*multifd-zstd-level': 'uint8', 1060 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1061 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1062 'features': [ 'unstable' ] }, 1063 '*vcpu-dirty-limit': 'uint64', 1064 '*mode': 'MigMode', 1065 '*zero-page-detection': 'ZeroPageDetection', 1066 '*direct-io': 'bool' } } 1067 1068## 1069# @migrate-set-parameters: 1070# 1071# Set various migration parameters. 1072# 1073# Since: 2.4 1074# 1075# .. qmp-example:: 1076# 1077# -> { "execute": "migrate-set-parameters" , 1078# "arguments": { "multifd-channels": 5 } } 1079# <- { "return": {} } 1080## 1081{ 'command': 'migrate-set-parameters', 'boxed': true, 1082 'data': 'MigrateSetParameters' } 1083 1084## 1085# @MigrationParameters: 1086# 1087# The optional members aren't actually optional. 1088# 1089# @announce-initial: Initial delay (in milliseconds) before sending 1090# the first announce (Since 4.0) 1091# 1092# @announce-max: Maximum delay (in milliseconds) between packets in 1093# the announcement (Since 4.0) 1094# 1095# @announce-rounds: Number of self-announce packets sent after 1096# migration (Since 4.0) 1097# 1098# @announce-step: Increase in delay (in milliseconds) between 1099# subsequent packets in the announcement (Since 4.0) 1100# 1101# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 1102# bytes_xfer_period to trigger throttling. It is expressed as 1103# percentage. The default value is 50. (Since 5.0) 1104# 1105# @cpu-throttle-initial: Initial percentage of time guest cpus are 1106# throttled when migration auto-converge is activated. (Since 1107# 2.7) 1108# 1109# @cpu-throttle-increment: throttle percentage increase each time 1110# auto-converge detects that migration is not making progress. 1111# (Since 2.7) 1112# 1113# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 1114# the tail stage of throttling, the Guest is very sensitive to CPU 1115# percentage while the @cpu-throttle -increment is excessive 1116# usually at tail stage. If this parameter is true, we will 1117# compute the ideal CPU percentage used by the Guest, which may 1118# exactly make the dirty rate match the dirty rate threshold. 1119# Then we will choose a smaller throttle increment between the one 1120# specified by @cpu-throttle-increment and the one generated by 1121# ideal CPU percentage. Therefore, it is compatible to 1122# traditional throttling, meanwhile the throttle increment won't 1123# be excessive at tail stage. The default value is false. (Since 1124# 5.1) 1125# 1126# @tls-creds: ID of the 'tls-creds' object that provides credentials 1127# for establishing a TLS connection over the migration data 1128# channel. On the outgoing side of the migration, the credentials 1129# must be for a 'client' endpoint, while for the incoming side the 1130# credentials must be for a 'server' endpoint. An empty string 1131# means that QEMU will use plain text mode for migration, rather 1132# than TLS. (Since 2.7) 1133# 1134# Note: 2.8 omits empty @tls-creds instead. 1135# 1136# @tls-hostname: migration target's hostname for validating the 1137# server's x509 certificate identity. If empty, QEMU will use the 1138# hostname from the migration URI, if any. (Since 2.7) 1139# 1140# Note: 2.8 omits empty @tls-hostname instead. 1141# 1142# @tls-authz: ID of the 'authz' object subclass that provides access 1143# control checking of the TLS x509 certificate distinguished name. 1144# (Since 4.0) 1145# 1146# @max-bandwidth: maximum speed for migration, in bytes per second. 1147# (Since 2.8) 1148# 1149# @avail-switchover-bandwidth: to set the available bandwidth that 1150# migration can use during switchover phase. NOTE! This does not 1151# limit the bandwidth during switchover, but only for calculations 1152# when making decisions to switchover. By default, this value is 1153# zero, which means QEMU will estimate the bandwidth 1154# automatically. This can be set when the estimated value is not 1155# accurate, while the user is able to guarantee such bandwidth is 1156# available when switching over. When specified correctly, this 1157# can make the switchover decision much more accurate. 1158# (Since 8.2) 1159# 1160# @downtime-limit: set maximum tolerated downtime for migration. 1161# maximum downtime in milliseconds (Since 2.8) 1162# 1163# @x-checkpoint-delay: the delay time between two COLO checkpoints. 1164# (Since 2.8) 1165# 1166# @multifd-channels: Number of channels used to migrate data in 1167# parallel. This is the same number that the number of sockets 1168# used for migration. The default value is 2 (since 4.0) 1169# 1170# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1171# needs to be a multiple of the target page size and a power of 2 1172# (Since 2.11) 1173# 1174# @max-postcopy-bandwidth: Background transfer bandwidth during 1175# postcopy. Defaults to 0 (unlimited). In bytes per second. 1176# (Since 3.0) 1177# 1178# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 1179# (Since 3.1) 1180# 1181# @multifd-compression: Which compression method to use. Defaults to 1182# none. (Since 5.0) 1183# 1184# @multifd-zlib-level: Set the compression level to be used in live 1185# migration, the compression level is an integer between 0 and 9, 1186# where 0 means no compression, 1 means the best compression 1187# speed, and 9 means best compression ratio which will consume 1188# more CPU. Defaults to 1. (Since 5.0) 1189# 1190# @multifd-qatzip-level: Set the compression level to be used in live 1191# migration. The level is an integer between 1 and 9, where 1 means 1192# the best compression speed, and 9 means the best compression 1193# ratio which will consume more CPU. Defaults to 1. (Since 9.2) 1194# 1195# @multifd-zstd-level: Set the compression level to be used in live 1196# migration, the compression level is an integer between 0 and 20, 1197# where 0 means no compression, 1 means the best compression 1198# speed, and 20 means best compression ratio which will consume 1199# more CPU. Defaults to 1. (Since 5.0) 1200# 1201# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1202# aliases for the purpose of dirty bitmap migration. Such aliases 1203# may for example be the corresponding names on the opposite site. 1204# The mapping must be one-to-one, but not necessarily complete: On 1205# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1206# will be ignored. On the destination, encountering an unmapped 1207# alias in the incoming migration stream will result in a report, 1208# and all further bitmap migration data will then be discarded. 1209# Note that the destination does not know about bitmaps it does 1210# not receive, so there is no limitation or requirement regarding 1211# the number of bitmaps received, or how they are named, or on 1212# which nodes they are placed. By default (when this parameter 1213# has never been set), bitmap names are mapped to themselves. 1214# Nodes are mapped to their block device name if there is one, and 1215# to their node name otherwise. (Since 5.2) 1216# 1217# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 1218# limit during live migration. Should be in the range 1 to 1219# 1000ms. Defaults to 1000ms. (Since 8.1) 1220# 1221# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1222# Defaults to 1. (Since 8.1) 1223# 1224# @mode: Migration mode. See description in @MigMode. Default is 1225# 'normal'. (Since 8.2) 1226# 1227# @zero-page-detection: Whether and how to detect zero pages. 1228# See description in @ZeroPageDetection. Default is 'multifd'. 1229# (since 9.0) 1230# 1231# @direct-io: Open migration files with O_DIRECT when possible. This 1232# only has effect if the @mapped-ram capability is enabled. 1233# (Since 9.1) 1234# 1235# Features: 1236# 1237# @unstable: Members @x-checkpoint-delay and 1238# @x-vcpu-dirty-limit-period are experimental. 1239# 1240# Since: 2.4 1241## 1242{ 'struct': 'MigrationParameters', 1243 'data': { '*announce-initial': 'size', 1244 '*announce-max': 'size', 1245 '*announce-rounds': 'size', 1246 '*announce-step': 'size', 1247 '*throttle-trigger-threshold': 'uint8', 1248 '*cpu-throttle-initial': 'uint8', 1249 '*cpu-throttle-increment': 'uint8', 1250 '*cpu-throttle-tailslow': 'bool', 1251 '*tls-creds': 'str', 1252 '*tls-hostname': 'str', 1253 '*tls-authz': 'str', 1254 '*max-bandwidth': 'size', 1255 '*avail-switchover-bandwidth': 'size', 1256 '*downtime-limit': 'uint64', 1257 '*x-checkpoint-delay': { 'type': 'uint32', 1258 'features': [ 'unstable' ] }, 1259 '*multifd-channels': 'uint8', 1260 '*xbzrle-cache-size': 'size', 1261 '*max-postcopy-bandwidth': 'size', 1262 '*max-cpu-throttle': 'uint8', 1263 '*multifd-compression': 'MultiFDCompression', 1264 '*multifd-zlib-level': 'uint8', 1265 '*multifd-qatzip-level': 'uint8', 1266 '*multifd-zstd-level': 'uint8', 1267 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1268 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1269 'features': [ 'unstable' ] }, 1270 '*vcpu-dirty-limit': 'uint64', 1271 '*mode': 'MigMode', 1272 '*zero-page-detection': 'ZeroPageDetection', 1273 '*direct-io': 'bool' } } 1274 1275## 1276# @query-migrate-parameters: 1277# 1278# Returns information about the current migration parameters 1279# 1280# Returns: @MigrationParameters 1281# 1282# Since: 2.4 1283# 1284# .. qmp-example:: 1285# 1286# -> { "execute": "query-migrate-parameters" } 1287# <- { "return": { 1288# "multifd-channels": 2, 1289# "cpu-throttle-increment": 10, 1290# "cpu-throttle-initial": 20, 1291# "max-bandwidth": 33554432, 1292# "downtime-limit": 300 1293# } 1294# } 1295## 1296{ 'command': 'query-migrate-parameters', 1297 'returns': 'MigrationParameters' } 1298 1299## 1300# @migrate-start-postcopy: 1301# 1302# Followup to a migration command to switch the migration to postcopy 1303# mode. The postcopy-ram capability must be set on both source and 1304# destination before the original migration command. 1305# 1306# Since: 2.5 1307# 1308# .. qmp-example:: 1309# 1310# -> { "execute": "migrate-start-postcopy" } 1311# <- { "return": {} } 1312## 1313{ 'command': 'migrate-start-postcopy' } 1314 1315## 1316# @MIGRATION: 1317# 1318# Emitted when a migration event happens 1319# 1320# @status: @MigrationStatus describing the current migration status. 1321# 1322# Since: 2.4 1323# 1324# .. qmp-example:: 1325# 1326# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001}, 1327# "event": "MIGRATION", 1328# "data": {"status": "completed"} } 1329## 1330{ 'event': 'MIGRATION', 1331 'data': {'status': 'MigrationStatus'}} 1332 1333## 1334# @MIGRATION_PASS: 1335# 1336# Emitted from the source side of a migration at the start of each 1337# pass (when it syncs the dirty bitmap) 1338# 1339# @pass: An incrementing count (starting at 1 on the first pass) 1340# 1341# Since: 2.6 1342# 1343# .. qmp-example:: 1344# 1345# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225}, 1346# "event": "MIGRATION_PASS", "data": {"pass": 2} } 1347## 1348{ 'event': 'MIGRATION_PASS', 1349 'data': { 'pass': 'int' } } 1350 1351## 1352# @COLOMessage: 1353# 1354# The message transmission between Primary side and Secondary side. 1355# 1356# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing 1357# 1358# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for 1359# checkpointing 1360# 1361# @checkpoint-reply: SVM gets PVM's checkpoint request 1362# 1363# @vmstate-send: VM's state will be sent by PVM. 1364# 1365# @vmstate-size: The total size of VMstate. 1366# 1367# @vmstate-received: VM's state has been received by SVM. 1368# 1369# @vmstate-loaded: VM's state has been loaded by SVM. 1370# 1371# Since: 2.8 1372## 1373{ 'enum': 'COLOMessage', 1374 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply', 1375 'vmstate-send', 'vmstate-size', 'vmstate-received', 1376 'vmstate-loaded' ] } 1377 1378## 1379# @COLOMode: 1380# 1381# The COLO current mode. 1382# 1383# @none: COLO is disabled. 1384# 1385# @primary: COLO node in primary side. 1386# 1387# @secondary: COLO node in slave side. 1388# 1389# Since: 2.8 1390## 1391{ 'enum': 'COLOMode', 1392 'data': [ 'none', 'primary', 'secondary'] } 1393 1394## 1395# @FailoverStatus: 1396# 1397# An enumeration of COLO failover status 1398# 1399# @none: no failover has ever happened 1400# 1401# @require: got failover requirement but not handled 1402# 1403# @active: in the process of doing failover 1404# 1405# @completed: finish the process of failover 1406# 1407# @relaunch: restart the failover process, from 'none' -> 'completed' 1408# (Since 2.9) 1409# 1410# Since: 2.8 1411## 1412{ 'enum': 'FailoverStatus', 1413 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] } 1414 1415## 1416# @COLO_EXIT: 1417# 1418# Emitted when VM finishes COLO mode due to some errors happening or 1419# at the request of users. 1420# 1421# @mode: report COLO mode when COLO exited. 1422# 1423# @reason: describes the reason for the COLO exit. 1424# 1425# Since: 3.1 1426# 1427# .. qmp-example:: 1428# 1429# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172}, 1430# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } } 1431## 1432{ 'event': 'COLO_EXIT', 1433 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } } 1434 1435## 1436# @COLOExitReason: 1437# 1438# The reason for a COLO exit. 1439# 1440# @none: failover has never happened. This state does not occur in 1441# the COLO_EXIT event, and is only visible in the result of 1442# query-colo-status. 1443# 1444# @request: COLO exit is due to an external request. 1445# 1446# @error: COLO exit is due to an internal error. 1447# 1448# @processing: COLO is currently handling a failover (since 4.0). 1449# 1450# Since: 3.1 1451## 1452{ 'enum': 'COLOExitReason', 1453 'data': [ 'none', 'request', 'error' , 'processing' ] } 1454 1455## 1456# @x-colo-lost-heartbeat: 1457# 1458# Tell qemu that heartbeat is lost, request it to do takeover 1459# procedures. If this command is sent to the PVM, the Primary side 1460# will exit COLO mode. If sent to the Secondary, the Secondary side 1461# will run failover work, then takes over server operation to become 1462# the service VM. 1463# 1464# Features: 1465# 1466# @unstable: This command is experimental. 1467# 1468# Since: 2.8 1469# 1470# .. qmp-example:: 1471# 1472# -> { "execute": "x-colo-lost-heartbeat" } 1473# <- { "return": {} } 1474## 1475{ 'command': 'x-colo-lost-heartbeat', 1476 'features': [ 'unstable' ], 1477 'if': 'CONFIG_REPLICATION' } 1478 1479## 1480# @migrate_cancel: 1481# 1482# Cancel the current executing migration process. 1483# 1484# .. note:: This command succeeds even if there is no migration 1485# process running. 1486# 1487# Since: 0.14 1488# 1489# .. qmp-example:: 1490# 1491# -> { "execute": "migrate_cancel" } 1492# <- { "return": {} } 1493## 1494{ 'command': 'migrate_cancel' } 1495 1496## 1497# @migrate-continue: 1498# 1499# Continue migration when it's in a paused state. 1500# 1501# @state: The state the migration is currently expected to be in 1502# 1503# Since: 2.11 1504# 1505# .. qmp-example:: 1506# 1507# -> { "execute": "migrate-continue" , "arguments": 1508# { "state": "pre-switchover" } } 1509# <- { "return": {} } 1510## 1511{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} } 1512 1513## 1514# @MigrationAddressType: 1515# 1516# The migration stream transport mechanisms. 1517# 1518# @socket: Migrate via socket. 1519# 1520# @exec: Direct the migration stream to another process. 1521# 1522# @rdma: Migrate via RDMA. 1523# 1524# @file: Direct the migration stream to a file. 1525# 1526# Since: 8.2 1527## 1528{ 'enum': 'MigrationAddressType', 1529 'data': [ 'socket', 'exec', 'rdma', 'file' ] } 1530 1531## 1532# @FileMigrationArgs: 1533# 1534# @filename: The file to receive the migration stream 1535# 1536# @offset: The file offset where the migration stream will start 1537# 1538# Since: 8.2 1539## 1540{ 'struct': 'FileMigrationArgs', 1541 'data': { 'filename': 'str', 1542 'offset': 'uint64' } } 1543 1544## 1545# @MigrationExecCommand: 1546# 1547# @args: command (list head) and arguments to execute. 1548# 1549# Since: 8.2 1550## 1551{ 'struct': 'MigrationExecCommand', 1552 'data': {'args': [ 'str' ] } } 1553 1554## 1555# @MigrationAddress: 1556# 1557# Migration endpoint configuration. 1558# 1559# @transport: The migration stream transport mechanism 1560# 1561# Since: 8.2 1562## 1563{ 'union': 'MigrationAddress', 1564 'base': { 'transport' : 'MigrationAddressType'}, 1565 'discriminator': 'transport', 1566 'data': { 1567 'socket': 'SocketAddress', 1568 'exec': 'MigrationExecCommand', 1569 'rdma': 'InetSocketAddress', 1570 'file': 'FileMigrationArgs' } } 1571 1572## 1573# @MigrationChannelType: 1574# 1575# The migration channel-type request options. 1576# 1577# @main: Main outbound migration channel. 1578# 1579# Since: 8.1 1580## 1581{ 'enum': 'MigrationChannelType', 1582 'data': [ 'main' ] } 1583 1584## 1585# @MigrationChannel: 1586# 1587# Migration stream channel parameters. 1588# 1589# @channel-type: Channel type for transferring packet information. 1590# 1591# @addr: Migration endpoint configuration on destination interface. 1592# 1593# Since: 8.1 1594## 1595{ 'struct': 'MigrationChannel', 1596 'data': { 1597 'channel-type': 'MigrationChannelType', 1598 'addr': 'MigrationAddress' } } 1599 1600## 1601# @migrate: 1602# 1603# Migrates the current running guest to another Virtual Machine. 1604# 1605# @uri: the Uniform Resource Identifier of the destination VM 1606# 1607# @channels: list of migration stream channels with each stream in the 1608# list connected to a destination interface endpoint. 1609# 1610# @detach: this argument exists only for compatibility reasons and is 1611# ignored by QEMU 1612# 1613# @resume: resume one paused migration, default "off". (since 3.0) 1614# 1615# Since: 0.14 1616# 1617# .. admonition:: Notes 1618# 1619# 1. The 'query-migrate' command should be used to check 1620# migration's progress and final result (this information is 1621# provided by the 'status' member). 1622# 1623# 2. All boolean arguments default to false. 1624# 1625# 3. The user Monitor's "detach" argument is invalid in QMP and 1626# should not be used. 1627# 1628# 4. The uri argument should have the Uniform Resource Identifier 1629# of default destination VM. This connection will be bound to 1630# default network. 1631# 1632# 5. For now, number of migration streams is restricted to one, 1633# i.e. number of items in 'channels' list is just 1. 1634# 1635# 6. The 'uri' and 'channels' arguments are mutually exclusive; 1636# exactly one of the two should be present. 1637# 1638# .. qmp-example:: 1639# 1640# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } } 1641# <- { "return": {} } 1642# 1643# -> { "execute": "migrate", 1644# "arguments": { 1645# "channels": [ { "channel-type": "main", 1646# "addr": { "transport": "socket", 1647# "type": "inet", 1648# "host": "10.12.34.9", 1649# "port": "1050" } } ] } } 1650# <- { "return": {} } 1651# 1652# -> { "execute": "migrate", 1653# "arguments": { 1654# "channels": [ { "channel-type": "main", 1655# "addr": { "transport": "exec", 1656# "args": [ "/bin/nc", "-p", "6000", 1657# "/some/sock" ] } } ] } } 1658# <- { "return": {} } 1659# 1660# -> { "execute": "migrate", 1661# "arguments": { 1662# "channels": [ { "channel-type": "main", 1663# "addr": { "transport": "rdma", 1664# "host": "10.12.34.9", 1665# "port": "1050" } } ] } } 1666# <- { "return": {} } 1667# 1668# -> { "execute": "migrate", 1669# "arguments": { 1670# "channels": [ { "channel-type": "main", 1671# "addr": { "transport": "file", 1672# "filename": "/tmp/migfile", 1673# "offset": "0x1000" } } ] } } 1674# <- { "return": {} } 1675## 1676{ 'command': 'migrate', 1677 'data': {'*uri': 'str', 1678 '*channels': [ 'MigrationChannel' ], 1679 '*detach': 'bool', '*resume': 'bool' } } 1680 1681## 1682# @migrate-incoming: 1683# 1684# Start an incoming migration, the qemu must have been started with 1685# -incoming defer 1686# 1687# @uri: The Uniform Resource Identifier identifying the source or 1688# address to listen on 1689# 1690# @channels: list of migration stream channels with each stream in the 1691# list connected to a destination interface endpoint. 1692# 1693# @exit-on-error: Exit on incoming migration failure. Default true. 1694# When set to false, the failure triggers a MIGRATION event, and 1695# error details could be retrieved with query-migrate. 1696# (since 9.1) 1697# 1698# Since: 2.3 1699# 1700# .. admonition:: Notes 1701# 1702# 1. It's a bad idea to use a string for the uri, but it needs to 1703# stay compatible with -incoming and the format of the uri is 1704# already exposed above libvirt. 1705# 1706# 2. QEMU must be started with -incoming defer to allow 1707# migrate-incoming to be used. 1708# 1709# 3. The uri format is the same as for -incoming 1710# 1711# 4. For now, number of migration streams is restricted to one, 1712# i.e. number of items in 'channels' list is just 1. 1713# 1714# 5. The 'uri' and 'channels' arguments are mutually exclusive; 1715# exactly one of the two should be present. 1716# 1717# .. qmp-example:: 1718# 1719# -> { "execute": "migrate-incoming", 1720# "arguments": { "uri": "tcp:0:4446" } } 1721# <- { "return": {} } 1722# 1723# -> { "execute": "migrate-incoming", 1724# "arguments": { 1725# "channels": [ { "channel-type": "main", 1726# "addr": { "transport": "socket", 1727# "type": "inet", 1728# "host": "10.12.34.9", 1729# "port": "1050" } } ] } } 1730# <- { "return": {} } 1731# 1732# -> { "execute": "migrate-incoming", 1733# "arguments": { 1734# "channels": [ { "channel-type": "main", 1735# "addr": { "transport": "exec", 1736# "args": [ "/bin/nc", "-p", "6000", 1737# "/some/sock" ] } } ] } } 1738# <- { "return": {} } 1739# 1740# -> { "execute": "migrate-incoming", 1741# "arguments": { 1742# "channels": [ { "channel-type": "main", 1743# "addr": { "transport": "rdma", 1744# "host": "10.12.34.9", 1745# "port": "1050" } } ] } } 1746# <- { "return": {} } 1747## 1748{ 'command': 'migrate-incoming', 1749 'data': {'*uri': 'str', 1750 '*channels': [ 'MigrationChannel' ], 1751 '*exit-on-error': 'bool' } } 1752 1753## 1754# @xen-save-devices-state: 1755# 1756# Save the state of all devices to file. The RAM and the block 1757# devices of the VM are not saved by this command. 1758# 1759# @filename: the file to save the state of the devices to as binary 1760# data. See xen-save-devices-state.txt for a description of the 1761# binary format. 1762# 1763# @live: Optional argument to ask QEMU to treat this command as part 1764# of a live migration. Default to true. (since 2.11) 1765# 1766# Since: 1.1 1767# 1768# .. qmp-example:: 1769# 1770# -> { "execute": "xen-save-devices-state", 1771# "arguments": { "filename": "/tmp/save" } } 1772# <- { "return": {} } 1773## 1774{ 'command': 'xen-save-devices-state', 1775 'data': {'filename': 'str', '*live':'bool' } } 1776 1777## 1778# @xen-set-global-dirty-log: 1779# 1780# Enable or disable the global dirty log mode. 1781# 1782# @enable: true to enable, false to disable. 1783# 1784# Since: 1.3 1785# 1786# .. qmp-example:: 1787# 1788# -> { "execute": "xen-set-global-dirty-log", 1789# "arguments": { "enable": true } } 1790# <- { "return": {} } 1791## 1792{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1793 1794## 1795# @xen-load-devices-state: 1796# 1797# Load the state of all devices from file. The RAM and the block 1798# devices of the VM are not loaded by this command. 1799# 1800# @filename: the file to load the state of the devices from as binary 1801# data. See xen-save-devices-state.txt for a description of the 1802# binary format. 1803# 1804# Since: 2.7 1805# 1806# .. qmp-example:: 1807# 1808# -> { "execute": "xen-load-devices-state", 1809# "arguments": { "filename": "/tmp/resume" } } 1810# <- { "return": {} } 1811## 1812{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 1813 1814## 1815# @xen-set-replication: 1816# 1817# Enable or disable replication. 1818# 1819# @enable: true to enable, false to disable. 1820# 1821# @primary: true for primary or false for secondary. 1822# 1823# @failover: true to do failover, false to stop. Cannot be specified 1824# if 'enable' is true. Default value is false. 1825# 1826# .. qmp-example:: 1827# 1828# -> { "execute": "xen-set-replication", 1829# "arguments": {"enable": true, "primary": false} } 1830# <- { "return": {} } 1831# 1832# Since: 2.9 1833## 1834{ 'command': 'xen-set-replication', 1835 'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' }, 1836 'if': 'CONFIG_REPLICATION' } 1837 1838## 1839# @ReplicationStatus: 1840# 1841# The result format for 'query-xen-replication-status'. 1842# 1843# @error: true if an error happened, false if replication is normal. 1844# 1845# @desc: the human readable error description string, when @error is 1846# 'true'. 1847# 1848# Since: 2.9 1849## 1850{ 'struct': 'ReplicationStatus', 1851 'data': { 'error': 'bool', '*desc': 'str' }, 1852 'if': 'CONFIG_REPLICATION' } 1853 1854## 1855# @query-xen-replication-status: 1856# 1857# Query replication status while the vm is running. 1858# 1859# Returns: A @ReplicationStatus object showing the status. 1860# 1861# .. qmp-example:: 1862# 1863# -> { "execute": "query-xen-replication-status" } 1864# <- { "return": { "error": false } } 1865# 1866# Since: 2.9 1867## 1868{ 'command': 'query-xen-replication-status', 1869 'returns': 'ReplicationStatus', 1870 'if': 'CONFIG_REPLICATION' } 1871 1872## 1873# @xen-colo-do-checkpoint: 1874# 1875# Xen uses this command to notify replication to trigger a checkpoint. 1876# 1877# .. qmp-example:: 1878# 1879# -> { "execute": "xen-colo-do-checkpoint" } 1880# <- { "return": {} } 1881# 1882# Since: 2.9 1883## 1884{ 'command': 'xen-colo-do-checkpoint', 1885 'if': 'CONFIG_REPLICATION' } 1886 1887## 1888# @COLOStatus: 1889# 1890# The result format for 'query-colo-status'. 1891# 1892# @mode: COLO running mode. If COLO is running, this field will 1893# return 'primary' or 'secondary'. 1894# 1895# @last-mode: COLO last running mode. If COLO is running, this field 1896# will return same like mode field, after failover we can use this 1897# field to get last colo mode. (since 4.0) 1898# 1899# @reason: describes the reason for the COLO exit. 1900# 1901# Since: 3.1 1902## 1903{ 'struct': 'COLOStatus', 1904 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode', 1905 'reason': 'COLOExitReason' }, 1906 'if': 'CONFIG_REPLICATION' } 1907 1908## 1909# @query-colo-status: 1910# 1911# Query COLO status while the vm is running. 1912# 1913# Returns: A @COLOStatus object showing the status. 1914# 1915# .. qmp-example:: 1916# 1917# -> { "execute": "query-colo-status" } 1918# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } } 1919# 1920# Since: 3.1 1921## 1922{ 'command': 'query-colo-status', 1923 'returns': 'COLOStatus', 1924 'if': 'CONFIG_REPLICATION' } 1925 1926## 1927# @migrate-recover: 1928# 1929# Provide a recovery migration stream URI. 1930# 1931# @uri: the URI to be used for the recovery of migration stream. 1932# 1933# .. qmp-example:: 1934# 1935# -> { "execute": "migrate-recover", 1936# "arguments": { "uri": "tcp:192.168.1.200:12345" } } 1937# <- { "return": {} } 1938# 1939# Since: 3.0 1940## 1941{ 'command': 'migrate-recover', 1942 'data': { 'uri': 'str' }, 1943 'allow-oob': true } 1944 1945## 1946# @migrate-pause: 1947# 1948# Pause a migration. Currently it only supports postcopy. 1949# 1950# .. qmp-example:: 1951# 1952# -> { "execute": "migrate-pause" } 1953# <- { "return": {} } 1954# 1955# Since: 3.0 1956## 1957{ 'command': 'migrate-pause', 'allow-oob': true } 1958 1959## 1960# @UNPLUG_PRIMARY: 1961# 1962# Emitted from source side of a migration when migration state is 1963# WAIT_UNPLUG. Device was unplugged by guest operating system. 1964# Device resources in QEMU are kept on standby to be able to re-plug 1965# it in case of migration failure. 1966# 1967# @device-id: QEMU device id of the unplugged device 1968# 1969# Since: 4.2 1970# 1971# .. qmp-example:: 1972# 1973# <- { "event": "UNPLUG_PRIMARY", 1974# "data": { "device-id": "hostdev0" }, 1975# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 1976## 1977{ 'event': 'UNPLUG_PRIMARY', 1978 'data': { 'device-id': 'str' } } 1979 1980## 1981# @DirtyRateVcpu: 1982# 1983# Dirty rate of vcpu. 1984# 1985# @id: vcpu index. 1986# 1987# @dirty-rate: dirty rate. 1988# 1989# Since: 6.2 1990## 1991{ 'struct': 'DirtyRateVcpu', 1992 'data': { 'id': 'int', 'dirty-rate': 'int64' } } 1993 1994## 1995# @DirtyRateStatus: 1996# 1997# Dirty page rate measurement status. 1998# 1999# @unstarted: measuring thread has not been started yet 2000# 2001# @measuring: measuring thread is running 2002# 2003# @measured: dirty page rate is measured and the results are available 2004# 2005# Since: 5.2 2006## 2007{ 'enum': 'DirtyRateStatus', 2008 'data': [ 'unstarted', 'measuring', 'measured'] } 2009 2010## 2011# @DirtyRateMeasureMode: 2012# 2013# Method used to measure dirty page rate. Differences between 2014# available methods are explained in @calc-dirty-rate. 2015# 2016# @page-sampling: use page sampling 2017# 2018# @dirty-ring: use dirty ring 2019# 2020# @dirty-bitmap: use dirty bitmap 2021# 2022# Since: 6.2 2023## 2024{ 'enum': 'DirtyRateMeasureMode', 2025 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] } 2026 2027## 2028# @TimeUnit: 2029# 2030# Specifies unit in which time-related value is specified. 2031# 2032# @second: value is in seconds 2033# 2034# @millisecond: value is in milliseconds 2035# 2036# Since: 8.2 2037## 2038{ 'enum': 'TimeUnit', 2039 'data': ['second', 'millisecond'] } 2040 2041## 2042# @DirtyRateInfo: 2043# 2044# Information about measured dirty page rate. 2045# 2046# @dirty-rate: an estimate of the dirty page rate of the VM in units 2047# of MiB/s. Value is present only when @status is 'measured'. 2048# 2049# @status: current status of dirty page rate measurements 2050# 2051# @start-time: start time in units of second for calculation 2052# 2053# @calc-time: time period for which dirty page rate was measured, 2054# expressed and rounded down to @calc-time-unit. 2055# 2056# @calc-time-unit: time unit of @calc-time (Since 8.2) 2057# 2058# @sample-pages: number of sampled pages per GiB of guest memory. 2059# Valid only in page-sampling mode (Since 6.1) 2060# 2061# @mode: mode that was used to measure dirty page rate (Since 6.2) 2062# 2063# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was 2064# specified (Since 6.2) 2065# 2066# Since: 5.2 2067## 2068{ 'struct': 'DirtyRateInfo', 2069 'data': {'*dirty-rate': 'int64', 2070 'status': 'DirtyRateStatus', 2071 'start-time': 'int64', 2072 'calc-time': 'int64', 2073 'calc-time-unit': 'TimeUnit', 2074 'sample-pages': 'uint64', 2075 'mode': 'DirtyRateMeasureMode', 2076 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } } 2077 2078## 2079# @calc-dirty-rate: 2080# 2081# Start measuring dirty page rate of the VM. Results can be retrieved 2082# with @query-dirty-rate after measurements are completed. 2083# 2084# Dirty page rate is the number of pages changed in a given time 2085# period expressed in MiB/s. The following methods of calculation are 2086# available: 2087# 2088# 1. In page sampling mode, a random subset of pages are selected and 2089# hashed twice: once at the beginning of measurement time period, 2090# and once again at the end. If two hashes for some page are 2091# different, the page is counted as changed. Since this method 2092# relies on sampling and hashing, calculated dirty page rate is 2093# only an estimate of its true value. Increasing @sample-pages 2094# improves estimation quality at the cost of higher computational 2095# overhead. 2096# 2097# 2. Dirty bitmap mode captures writes to memory (for example by 2098# temporarily revoking write access to all pages) and counting page 2099# faults. Information about modified pages is collected into a 2100# bitmap, where each bit corresponds to one guest page. This mode 2101# requires that KVM accelerator property "dirty-ring-size" is *not* 2102# set. 2103# 2104# 3. Dirty ring mode is similar to dirty bitmap mode, but the 2105# information about modified pages is collected into ring buffer. 2106# This mode tracks page modification per each vCPU separately. It 2107# requires that KVM accelerator property "dirty-ring-size" is set. 2108# 2109# @calc-time: time period for which dirty page rate is calculated. By 2110# default it is specified in seconds, but the unit can be set 2111# explicitly with @calc-time-unit. Note that larger @calc-time 2112# values will typically result in smaller dirty page rates because 2113# page dirtying is a one-time event. Once some page is counted as 2114# dirty during @calc-time period, further writes to this page will 2115# not increase dirty page rate anymore. 2116# 2117# @calc-time-unit: time unit in which @calc-time is specified. By 2118# default it is seconds. (Since 8.2) 2119# 2120# @sample-pages: number of sampled pages per each GiB of guest memory. 2121# Default value is 512. For 4KiB guest pages this corresponds to 2122# sampling ratio of 0.2%. This argument is used only in page 2123# sampling mode. (Since 6.1) 2124# 2125# @mode: mechanism for tracking dirty pages. Default value is 2126# 'page-sampling'. Others are 'dirty-bitmap' and 'dirty-ring'. 2127# (Since 6.1) 2128# 2129# Since: 5.2 2130# 2131# .. qmp-example:: 2132# 2133# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1, 2134# "sample-pages": 512} } 2135# <- { "return": {} } 2136# 2137# .. qmp-example:: 2138# :annotated: 2139# 2140# Measure dirty rate using dirty bitmap for 500 milliseconds:: 2141# 2142# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500, 2143# "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} } 2144# 2145# <- { "return": {} } 2146## 2147{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64', 2148 '*calc-time-unit': 'TimeUnit', 2149 '*sample-pages': 'int', 2150 '*mode': 'DirtyRateMeasureMode'} } 2151 2152## 2153# @query-dirty-rate: 2154# 2155# Query results of the most recent invocation of @calc-dirty-rate. 2156# 2157# @calc-time-unit: time unit in which to report calculation time. 2158# By default it is reported in seconds. (Since 8.2) 2159# 2160# Since: 5.2 2161# 2162# .. qmp-example:: 2163# :title: Measurement is in progress 2164# 2165# <- {"status": "measuring", "sample-pages": 512, 2166# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2167# "calc-time-unit": "second"} 2168# 2169# .. qmp-example:: 2170# :title: Measurement has been completed 2171# 2172# <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108, 2173# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2174# "calc-time-unit": "second"} 2175## 2176{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' }, 2177 'returns': 'DirtyRateInfo' } 2178 2179## 2180# @DirtyLimitInfo: 2181# 2182# Dirty page rate limit information of a virtual CPU. 2183# 2184# @cpu-index: index of a virtual CPU. 2185# 2186# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual 2187# CPU, 0 means unlimited. 2188# 2189# @current-rate: current dirty page rate (MB/s) for a virtual CPU. 2190# 2191# Since: 7.1 2192## 2193{ 'struct': 'DirtyLimitInfo', 2194 'data': { 'cpu-index': 'int', 2195 'limit-rate': 'uint64', 2196 'current-rate': 'uint64' } } 2197 2198## 2199# @set-vcpu-dirty-limit: 2200# 2201# Set the upper limit of dirty page rate for virtual CPUs. 2202# 2203# Requires KVM with accelerator property "dirty-ring-size" set. A 2204# virtual CPU's dirty page rate is a measure of its memory load. To 2205# observe dirty page rates, use @calc-dirty-rate. 2206# 2207# @cpu-index: index of a virtual CPU, default is all. 2208# 2209# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs. 2210# 2211# Since: 7.1 2212# 2213# .. qmp-example:: 2214# 2215# -> {"execute": "set-vcpu-dirty-limit"} 2216# "arguments": { "dirty-rate": 200, 2217# "cpu-index": 1 } } 2218# <- { "return": {} } 2219## 2220{ 'command': 'set-vcpu-dirty-limit', 2221 'data': { '*cpu-index': 'int', 2222 'dirty-rate': 'uint64' } } 2223 2224## 2225# @cancel-vcpu-dirty-limit: 2226# 2227# Cancel the upper limit of dirty page rate for virtual CPUs. 2228# 2229# Cancel the dirty page limit for the vCPU which has been set with 2230# set-vcpu-dirty-limit command. Note that this command requires 2231# support from dirty ring, same as the "set-vcpu-dirty-limit". 2232# 2233# @cpu-index: index of a virtual CPU, default is all. 2234# 2235# Since: 7.1 2236# 2237# .. qmp-example:: 2238# 2239# -> {"execute": "cancel-vcpu-dirty-limit"}, 2240# "arguments": { "cpu-index": 1 } } 2241# <- { "return": {} } 2242## 2243{ 'command': 'cancel-vcpu-dirty-limit', 2244 'data': { '*cpu-index': 'int'} } 2245 2246## 2247# @query-vcpu-dirty-limit: 2248# 2249# Returns information about virtual CPU dirty page rate limits, if 2250# any. 2251# 2252# Since: 7.1 2253# 2254# .. qmp-example:: 2255# 2256# -> {"execute": "query-vcpu-dirty-limit"} 2257# <- {"return": [ 2258# { "limit-rate": 60, "current-rate": 3, "cpu-index": 0}, 2259# { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]} 2260## 2261{ 'command': 'query-vcpu-dirty-limit', 2262 'returns': [ 'DirtyLimitInfo' ] } 2263 2264## 2265# @MigrationThreadInfo: 2266# 2267# Information about migrationthreads 2268# 2269# @name: the name of migration thread 2270# 2271# @thread-id: ID of the underlying host thread 2272# 2273# Since: 7.2 2274## 2275{ 'struct': 'MigrationThreadInfo', 2276 'data': {'name': 'str', 2277 'thread-id': 'int'} } 2278 2279## 2280# @query-migrationthreads: 2281# 2282# Returns information of migration threads 2283# 2284# Returns: @MigrationThreadInfo 2285# 2286# Since: 7.2 2287## 2288{ 'command': 'query-migrationthreads', 2289 'returns': ['MigrationThreadInfo'] } 2290 2291## 2292# @snapshot-save: 2293# 2294# Save a VM snapshot 2295# 2296# @job-id: identifier for the newly created job 2297# 2298# @tag: name of the snapshot to create 2299# 2300# @vmstate: block device node name to save vmstate to 2301# 2302# @devices: list of block device node names to save a snapshot to 2303# 2304# Applications should not assume that the snapshot save is complete 2305# when this command returns. The job commands / events must be used 2306# to determine completion and to fetch details of any errors that 2307# arise. 2308# 2309# Note that execution of the guest CPUs may be stopped during the time 2310# it takes to save the snapshot. A future version of QEMU may ensure 2311# CPUs are executing continuously. 2312# 2313# It is strongly recommended that @devices contain all writable block 2314# device nodes if a consistent snapshot is required. 2315# 2316# If @tag already exists, an error will be reported 2317# 2318# .. qmp-example:: 2319# 2320# -> { "execute": "snapshot-save", 2321# "arguments": { 2322# "job-id": "snapsave0", 2323# "tag": "my-snap", 2324# "vmstate": "disk0", 2325# "devices": ["disk0", "disk1"] 2326# } 2327# } 2328# <- { "return": { } } 2329# <- {"event": "JOB_STATUS_CHANGE", 2330# "timestamp": {"seconds": 1432121972, "microseconds": 744001}, 2331# "data": {"status": "created", "id": "snapsave0"}} 2332# <- {"event": "JOB_STATUS_CHANGE", 2333# "timestamp": {"seconds": 1432122172, "microseconds": 744001}, 2334# "data": {"status": "running", "id": "snapsave0"}} 2335# <- {"event": "STOP", 2336# "timestamp": {"seconds": 1432122372, "microseconds": 744001} } 2337# <- {"event": "RESUME", 2338# "timestamp": {"seconds": 1432122572, "microseconds": 744001} } 2339# <- {"event": "JOB_STATUS_CHANGE", 2340# "timestamp": {"seconds": 1432122772, "microseconds": 744001}, 2341# "data": {"status": "waiting", "id": "snapsave0"}} 2342# <- {"event": "JOB_STATUS_CHANGE", 2343# "timestamp": {"seconds": 1432122972, "microseconds": 744001}, 2344# "data": {"status": "pending", "id": "snapsave0"}} 2345# <- {"event": "JOB_STATUS_CHANGE", 2346# "timestamp": {"seconds": 1432123172, "microseconds": 744001}, 2347# "data": {"status": "concluded", "id": "snapsave0"}} 2348# -> {"execute": "query-jobs"} 2349# <- {"return": [{"current-progress": 1, 2350# "status": "concluded", 2351# "total-progress": 1, 2352# "type": "snapshot-save", 2353# "id": "snapsave0"}]} 2354# 2355# Since: 6.0 2356## 2357{ 'command': 'snapshot-save', 2358 'data': { 'job-id': 'str', 2359 'tag': 'str', 2360 'vmstate': 'str', 2361 'devices': ['str'] } } 2362 2363## 2364# @snapshot-load: 2365# 2366# Load a VM snapshot 2367# 2368# @job-id: identifier for the newly created job 2369# 2370# @tag: name of the snapshot to load. 2371# 2372# @vmstate: block device node name to load vmstate from 2373# 2374# @devices: list of block device node names to load a snapshot from 2375# 2376# Applications should not assume that the snapshot load is complete 2377# when this command returns. The job commands / events must be used 2378# to determine completion and to fetch details of any errors that 2379# arise. 2380# 2381# Note that execution of the guest CPUs will be stopped during the 2382# time it takes to load the snapshot. 2383# 2384# It is strongly recommended that @devices contain all writable block 2385# device nodes that can have changed since the original @snapshot-save 2386# command execution. 2387# 2388# .. qmp-example:: 2389# 2390# -> { "execute": "snapshot-load", 2391# "arguments": { 2392# "job-id": "snapload0", 2393# "tag": "my-snap", 2394# "vmstate": "disk0", 2395# "devices": ["disk0", "disk1"] 2396# } 2397# } 2398# <- { "return": { } } 2399# <- {"event": "JOB_STATUS_CHANGE", 2400# "timestamp": {"seconds": 1472124172, "microseconds": 744001}, 2401# "data": {"status": "created", "id": "snapload0"}} 2402# <- {"event": "JOB_STATUS_CHANGE", 2403# "timestamp": {"seconds": 1472125172, "microseconds": 744001}, 2404# "data": {"status": "running", "id": "snapload0"}} 2405# <- {"event": "STOP", 2406# "timestamp": {"seconds": 1472125472, "microseconds": 744001} } 2407# <- {"event": "RESUME", 2408# "timestamp": {"seconds": 1472125872, "microseconds": 744001} } 2409# <- {"event": "JOB_STATUS_CHANGE", 2410# "timestamp": {"seconds": 1472126172, "microseconds": 744001}, 2411# "data": {"status": "waiting", "id": "snapload0"}} 2412# <- {"event": "JOB_STATUS_CHANGE", 2413# "timestamp": {"seconds": 1472127172, "microseconds": 744001}, 2414# "data": {"status": "pending", "id": "snapload0"}} 2415# <- {"event": "JOB_STATUS_CHANGE", 2416# "timestamp": {"seconds": 1472128172, "microseconds": 744001}, 2417# "data": {"status": "concluded", "id": "snapload0"}} 2418# -> {"execute": "query-jobs"} 2419# <- {"return": [{"current-progress": 1, 2420# "status": "concluded", 2421# "total-progress": 1, 2422# "type": "snapshot-load", 2423# "id": "snapload0"}]} 2424# 2425# Since: 6.0 2426## 2427{ 'command': 'snapshot-load', 2428 'data': { 'job-id': 'str', 2429 'tag': 'str', 2430 'vmstate': 'str', 2431 'devices': ['str'] } } 2432 2433## 2434# @snapshot-delete: 2435# 2436# Delete a VM snapshot 2437# 2438# @job-id: identifier for the newly created job 2439# 2440# @tag: name of the snapshot to delete. 2441# 2442# @devices: list of block device node names to delete a snapshot from 2443# 2444# Applications should not assume that the snapshot delete is complete 2445# when this command returns. The job commands / events must be used 2446# to determine completion and to fetch details of any errors that 2447# arise. 2448# 2449# .. qmp-example:: 2450# 2451# -> { "execute": "snapshot-delete", 2452# "arguments": { 2453# "job-id": "snapdelete0", 2454# "tag": "my-snap", 2455# "devices": ["disk0", "disk1"] 2456# } 2457# } 2458# <- { "return": { } } 2459# <- {"event": "JOB_STATUS_CHANGE", 2460# "timestamp": {"seconds": 1442124172, "microseconds": 744001}, 2461# "data": {"status": "created", "id": "snapdelete0"}} 2462# <- {"event": "JOB_STATUS_CHANGE", 2463# "timestamp": {"seconds": 1442125172, "microseconds": 744001}, 2464# "data": {"status": "running", "id": "snapdelete0"}} 2465# <- {"event": "JOB_STATUS_CHANGE", 2466# "timestamp": {"seconds": 1442126172, "microseconds": 744001}, 2467# "data": {"status": "waiting", "id": "snapdelete0"}} 2468# <- {"event": "JOB_STATUS_CHANGE", 2469# "timestamp": {"seconds": 1442127172, "microseconds": 744001}, 2470# "data": {"status": "pending", "id": "snapdelete0"}} 2471# <- {"event": "JOB_STATUS_CHANGE", 2472# "timestamp": {"seconds": 1442128172, "microseconds": 744001}, 2473# "data": {"status": "concluded", "id": "snapdelete0"}} 2474# -> {"execute": "query-jobs"} 2475# <- {"return": [{"current-progress": 1, 2476# "status": "concluded", 2477# "total-progress": 1, 2478# "type": "snapshot-delete", 2479# "id": "snapdelete0"}]} 2480# 2481# Since: 6.0 2482## 2483{ 'command': 'snapshot-delete', 2484 'data': { 'job-id': 'str', 2485 'tag': 'str', 2486 'devices': ['str'] } } 2487