1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4 5## 6# = Migration 7## 8 9{ 'include': 'common.json' } 10{ 'include': 'sockets.json' } 11 12## 13# @MigrationStats: 14# 15# Detailed migration status. 16# 17# @transferred: amount of bytes already transferred to the target VM 18# 19# @remaining: amount of bytes remaining to be transferred to the target VM 20# 21# @total: total amount of bytes involved in the migration process 22# 23# @duplicate: number of duplicate (zero) pages (since 1.2) 24# 25# @skipped: number of skipped zero pages (since 1.5) 26# 27# @normal: number of normal pages (since 1.2) 28# 29# @normal-bytes: number of normal bytes sent (since 1.2) 30# 31# @dirty-pages-rate: number of pages dirtied by second by the 32# guest (since 1.3) 33# 34# @mbps: throughput in megabits/sec. (since 1.6) 35# 36# @dirty-sync-count: number of times that dirty ram was synchronized (since 2.1) 37# 38# @postcopy-requests: The number of page requests received from the destination 39# (since 2.7) 40# 41# @page-size: The number of bytes per page for the various page-based 42# statistics (since 2.10) 43# 44# @multifd-bytes: The number of bytes sent through multifd (since 3.0) 45# 46# @pages-per-second: the number of memory pages transferred per second 47# (Since 4.0) 48# 49# @precopy-bytes: The number of bytes sent in the pre-copy phase 50# (since 7.0). 51# 52# @downtime-bytes: The number of bytes sent while the guest is paused 53# (since 7.0). 54# 55# @postcopy-bytes: The number of bytes sent during the post-copy phase 56# (since 7.0). 57# 58# @dirty-sync-missed-zero-copy: Number of times dirty RAM synchronization could 59# not avoid copying dirty pages. This is between 60# 0 and @dirty-sync-count * @multifd-channels. 61# (since 7.1) 62# Since: 0.14 63## 64{ 'struct': 'MigrationStats', 65 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' , 66 'duplicate': 'int', 'skipped': 'int', 'normal': 'int', 67 'normal-bytes': 'int', 'dirty-pages-rate' : 'int', 68 'mbps' : 'number', 'dirty-sync-count' : 'int', 69 'postcopy-requests' : 'int', 'page-size' : 'int', 70 'multifd-bytes' : 'uint64', 'pages-per-second' : 'uint64', 71 'precopy-bytes' : 'uint64', 'downtime-bytes' : 'uint64', 72 'postcopy-bytes' : 'uint64', 73 'dirty-sync-missed-zero-copy' : 'uint64' } } 74 75## 76# @XBZRLECacheStats: 77# 78# Detailed XBZRLE migration cache statistics 79# 80# @cache-size: XBZRLE cache size 81# 82# @bytes: amount of bytes already transferred to the target VM 83# 84# @pages: amount of pages transferred to the target VM 85# 86# @cache-miss: number of cache miss 87# 88# @cache-miss-rate: rate of cache miss (since 2.1) 89# 90# @encoding-rate: rate of encoded bytes (since 5.1) 91# 92# @overflow: number of overflows 93# 94# Since: 1.2 95## 96{ 'struct': 'XBZRLECacheStats', 97 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int', 98 'cache-miss': 'int', 'cache-miss-rate': 'number', 99 'encoding-rate': 'number', 'overflow': 'int' } } 100 101## 102# @CompressionStats: 103# 104# Detailed migration compression statistics 105# 106# @pages: amount of pages compressed and transferred to the target VM 107# 108# @busy: count of times that no free thread was available to compress data 109# 110# @busy-rate: rate of thread busy 111# 112# @compressed-size: amount of bytes after compression 113# 114# @compression-rate: rate of compressed size 115# 116# Since: 3.1 117## 118{ 'struct': 'CompressionStats', 119 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number', 120 'compressed-size': 'int', 'compression-rate': 'number' } } 121 122## 123# @MigrationStatus: 124# 125# An enumeration of migration status. 126# 127# @none: no migration has ever happened. 128# 129# @setup: migration process has been initiated. 130# 131# @cancelling: in the process of cancelling migration. 132# 133# @cancelled: cancelling migration is finished. 134# 135# @active: in the process of doing migration. 136# 137# @postcopy-active: like active, but now in postcopy mode. (since 2.5) 138# 139# @postcopy-paused: during postcopy but paused. (since 3.0) 140# 141# @postcopy-recover: trying to recover from a paused postcopy. (since 3.0) 142# 143# @completed: migration is finished. 144# 145# @failed: some error occurred during migration process. 146# 147# @colo: VM is in the process of fault tolerance, VM can not get into this 148# state unless colo capability is enabled for migration. (since 2.8) 149# 150# @pre-switchover: Paused before device serialisation. (since 2.11) 151# 152# @device: During device serialisation when pause-before-switchover is enabled 153# (since 2.11) 154# 155# @wait-unplug: wait for device unplug request by guest OS to be completed. 156# (since 4.2) 157# 158# Since: 2.3 159## 160{ 'enum': 'MigrationStatus', 161 'data': [ 'none', 'setup', 'cancelling', 'cancelled', 162 'active', 'postcopy-active', 'postcopy-paused', 163 'postcopy-recover', 'completed', 'failed', 'colo', 164 'pre-switchover', 'device', 'wait-unplug' ] } 165## 166# @VfioStats: 167# 168# Detailed VFIO devices migration statistics 169# 170# @transferred: amount of bytes transferred to the target VM by VFIO devices 171# 172# Since: 5.2 173## 174{ 'struct': 'VfioStats', 175 'data': {'transferred': 'int' } } 176 177## 178# @MigrationInfo: 179# 180# Information about current migration process. 181# 182# @status: @MigrationStatus describing the current migration status. 183# If this field is not returned, no migration process 184# has been initiated 185# 186# @ram: @MigrationStats containing detailed migration 187# status, only returned if status is 'active' or 188# 'completed'(since 1.2) 189# 190# @disk: @MigrationStats containing detailed disk migration 191# status, only returned if status is 'active' and it is a block 192# migration 193# 194# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE 195# migration statistics, only returned if XBZRLE feature is on and 196# status is 'active' or 'completed' (since 1.2) 197# 198# @total-time: total amount of milliseconds since migration started. 199# If migration has ended, it returns the total migration 200# time. (since 1.2) 201# 202# @downtime: only present when migration finishes correctly 203# total downtime in milliseconds for the guest. 204# (since 1.3) 205# 206# @expected-downtime: only present while migration is active 207# expected downtime in milliseconds for the guest in last walk 208# of the dirty bitmap. (since 1.3) 209# 210# @setup-time: amount of setup time in milliseconds *before* the 211# iterations begin but *after* the QMP command is issued. This is designed 212# to provide an accounting of any activities (such as RDMA pinning) which 213# may be expensive, but do not actually occur during the iterative 214# migration rounds themselves. (since 1.6) 215# 216# @cpu-throttle-percentage: percentage of time guest cpus are being 217# throttled during auto-converge. This is only present when auto-converge 218# has started throttling guest cpus. (Since 2.7) 219# 220# @error-desc: the human readable error description string, when 221# @status is 'failed'. Clients should not attempt to parse the 222# error strings. (Since 2.7) 223# 224# @postcopy-blocktime: total time when all vCPU were blocked during postcopy 225# live migration. This is only present when the postcopy-blocktime 226# migration capability is enabled. (Since 3.0) 227# 228# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. This is 229# only present when the postcopy-blocktime migration capability 230# is enabled. (Since 3.0) 231# 232# @compression: migration compression statistics, only returned if compression 233# feature is on and status is 'active' or 'completed' (Since 3.1) 234# 235# @socket-address: Only used for tcp, to know what the real port is (Since 4.0) 236# 237# @vfio: @VfioStats containing detailed VFIO devices migration statistics, 238# only returned if VFIO device is present, migration is supported by all 239# VFIO devices and status is 'active' or 'completed' (since 5.2) 240# 241# @blocked-reasons: A list of reasons an outgoing migration is blocked. 242# Present and non-empty when migration is blocked. 243# (since 6.0) 244# 245# Since: 0.14 246## 247{ 'struct': 'MigrationInfo', 248 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats', 249 '*disk': 'MigrationStats', 250 '*vfio': 'VfioStats', 251 '*xbzrle-cache': 'XBZRLECacheStats', 252 '*total-time': 'int', 253 '*expected-downtime': 'int', 254 '*downtime': 'int', 255 '*setup-time': 'int', 256 '*cpu-throttle-percentage': 'int', 257 '*error-desc': 'str', 258 '*blocked-reasons': ['str'], 259 '*postcopy-blocktime' : 'uint32', 260 '*postcopy-vcpu-blocktime': ['uint32'], 261 '*compression': 'CompressionStats', 262 '*socket-address': ['SocketAddress'] } } 263 264## 265# @query-migrate: 266# 267# Returns information about current migration process. If migration 268# is active there will be another json-object with RAM migration 269# status and if block migration is active another one with block 270# migration status. 271# 272# Returns: @MigrationInfo 273# 274# Since: 0.14 275# 276# Example: 277# 278# 1. Before the first migration 279# 280# -> { "execute": "query-migrate" } 281# <- { "return": {} } 282# 283# 2. Migration is done and has succeeded 284# 285# -> { "execute": "query-migrate" } 286# <- { "return": { 287# "status": "completed", 288# "total-time":12345, 289# "setup-time":12345, 290# "downtime":12345, 291# "ram":{ 292# "transferred":123, 293# "remaining":123, 294# "total":246, 295# "duplicate":123, 296# "normal":123, 297# "normal-bytes":123456, 298# "dirty-sync-count":15 299# } 300# } 301# } 302# 303# 3. Migration is done and has failed 304# 305# -> { "execute": "query-migrate" } 306# <- { "return": { "status": "failed" } } 307# 308# 4. Migration is being performed and is not a block migration: 309# 310# -> { "execute": "query-migrate" } 311# <- { 312# "return":{ 313# "status":"active", 314# "total-time":12345, 315# "setup-time":12345, 316# "expected-downtime":12345, 317# "ram":{ 318# "transferred":123, 319# "remaining":123, 320# "total":246, 321# "duplicate":123, 322# "normal":123, 323# "normal-bytes":123456, 324# "dirty-sync-count":15 325# } 326# } 327# } 328# 329# 5. Migration is being performed and is a block migration: 330# 331# -> { "execute": "query-migrate" } 332# <- { 333# "return":{ 334# "status":"active", 335# "total-time":12345, 336# "setup-time":12345, 337# "expected-downtime":12345, 338# "ram":{ 339# "total":1057024, 340# "remaining":1053304, 341# "transferred":3720, 342# "duplicate":123, 343# "normal":123, 344# "normal-bytes":123456, 345# "dirty-sync-count":15 346# }, 347# "disk":{ 348# "total":20971520, 349# "remaining":20880384, 350# "transferred":91136 351# } 352# } 353# } 354# 355# 6. Migration is being performed and XBZRLE is active: 356# 357# -> { "execute": "query-migrate" } 358# <- { 359# "return":{ 360# "status":"active", 361# "total-time":12345, 362# "setup-time":12345, 363# "expected-downtime":12345, 364# "ram":{ 365# "total":1057024, 366# "remaining":1053304, 367# "transferred":3720, 368# "duplicate":10, 369# "normal":3333, 370# "normal-bytes":3412992, 371# "dirty-sync-count":15 372# }, 373# "xbzrle-cache":{ 374# "cache-size":67108864, 375# "bytes":20971520, 376# "pages":2444343, 377# "cache-miss":2244, 378# "cache-miss-rate":0.123, 379# "encoding-rate":80.1, 380# "overflow":34434 381# } 382# } 383# } 384# 385## 386{ 'command': 'query-migrate', 'returns': 'MigrationInfo' } 387 388## 389# @MigrationCapability: 390# 391# Migration capabilities enumeration 392# 393# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length Encoding). 394# This feature allows us to minimize migration traffic for certain work 395# loads, by sending compressed difference of the pages 396# 397# @rdma-pin-all: Controls whether or not the entire VM memory footprint is 398# mlock()'d on demand or all at once. Refer to docs/rdma.txt for usage. 399# Disabled by default. (since 2.0) 400# 401# @zero-blocks: During storage migration encode blocks of zeroes efficiently. This 402# essentially saves 1MB of zeroes per block on the wire. Enabling requires 403# source and target VM to support this feature. To enable it is sufficient 404# to enable the capability on the source VM. The feature is disabled by 405# default. (since 1.6) 406# 407# @compress: Use multiple compression threads to accelerate live migration. 408# This feature can help to reduce the migration traffic, by sending 409# compressed pages. Please note that if compress and xbzrle are both 410# on, compress only takes effect in the ram bulk stage, after that, 411# it will be disabled and only xbzrle takes effect, this can help to 412# minimize migration traffic. The feature is disabled by default. 413# (since 2.4 ) 414# 415# @events: generate events for each migration state change 416# (since 2.4 ) 417# 418# @auto-converge: If enabled, QEMU will automatically throttle down the guest 419# to speed up convergence of RAM migration. (since 1.6) 420# 421# @postcopy-ram: Start executing on the migration target before all of RAM has 422# been migrated, pulling the remaining pages along as needed. The 423# capacity must have the same setting on both source and target 424# or migration will not even start. NOTE: If the migration fails during 425# postcopy the VM will fail. (since 2.6) 426# 427# @x-colo: If enabled, migration will never end, and the state of the VM on the 428# primary side will be migrated continuously to the VM on secondary 429# side, this process is called COarse-Grain LOck Stepping (COLO) for 430# Non-stop Service. (since 2.8) 431# 432# @release-ram: if enabled, qemu will free the migrated ram pages on the source 433# during postcopy-ram migration. (since 2.9) 434# 435# @block: If enabled, QEMU will also migrate the contents of all block 436# devices. Default is disabled. A possible alternative uses 437# mirror jobs to a builtin NBD server on the destination, which 438# offers more flexibility. 439# (Since 2.10) 440# 441# @return-path: If enabled, migration will use the return path even 442# for precopy. (since 2.10) 443# 444# @pause-before-switchover: Pause outgoing migration before serialising device 445# state and before disabling block IO (since 2.11) 446# 447# @multifd: Use more than one fd for migration (since 4.0) 448# 449# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps. 450# (since 2.12) 451# 452# @postcopy-blocktime: Calculate downtime for postcopy live migration 453# (since 3.0) 454# 455# @late-block-activate: If enabled, the destination will not activate block 456# devices (and thus take locks) immediately at the end of migration. 457# (since 3.0) 458# 459# @x-ignore-shared: If enabled, QEMU will not migrate shared memory (since 4.0) 460# 461# @validate-uuid: Send the UUID of the source to allow the destination 462# to ensure it is the same. (since 4.2) 463# 464# @background-snapshot: If enabled, the migration stream will be a snapshot 465# of the VM exactly at the point when the migration 466# procedure starts. The VM RAM is saved with running VM. 467# (since 6.0) 468# 469# @zero-copy-send: Controls behavior on sending memory pages on migration. 470# When true, enables a zero-copy mechanism for sending 471# memory pages, if host supports it. 472# Requires that QEMU be permitted to use locked memory 473# for guest RAM pages. 474# (since 7.1) 475# @postcopy-preempt: If enabled, the migration process will allow postcopy 476# requests to preempt precopy stream, so postcopy requests 477# will be handled faster. This is a performance feature and 478# should not affect the correctness of postcopy migration. 479# (since 7.1) 480# 481# Features: 482# @unstable: Members @x-colo and @x-ignore-shared are experimental. 483# 484# Since: 1.2 485## 486{ 'enum': 'MigrationCapability', 487 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks', 488 'compress', 'events', 'postcopy-ram', 489 { 'name': 'x-colo', 'features': [ 'unstable' ] }, 490 'release-ram', 491 'block', 'return-path', 'pause-before-switchover', 'multifd', 492 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate', 493 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] }, 494 'validate-uuid', 'background-snapshot', 495 'zero-copy-send', 'postcopy-preempt'] } 496 497## 498# @MigrationCapabilityStatus: 499# 500# Migration capability information 501# 502# @capability: capability enum 503# 504# @state: capability state bool 505# 506# Since: 1.2 507## 508{ 'struct': 'MigrationCapabilityStatus', 509 'data': { 'capability' : 'MigrationCapability', 'state' : 'bool' } } 510 511## 512# @migrate-set-capabilities: 513# 514# Enable/Disable the following migration capabilities (like xbzrle) 515# 516# @capabilities: json array of capability modifications to make 517# 518# Since: 1.2 519# 520# Example: 521# 522# -> { "execute": "migrate-set-capabilities" , "arguments": 523# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } } 524# 525## 526{ 'command': 'migrate-set-capabilities', 527 'data': { 'capabilities': ['MigrationCapabilityStatus'] } } 528 529## 530# @query-migrate-capabilities: 531# 532# Returns information about the current migration capabilities status 533# 534# Returns: @MigrationCapabilitiesStatus 535# 536# Since: 1.2 537# 538# Example: 539# 540# -> { "execute": "query-migrate-capabilities" } 541# <- { "return": [ 542# {"state": false, "capability": "xbzrle"}, 543# {"state": false, "capability": "rdma-pin-all"}, 544# {"state": false, "capability": "auto-converge"}, 545# {"state": false, "capability": "zero-blocks"}, 546# {"state": false, "capability": "compress"}, 547# {"state": true, "capability": "events"}, 548# {"state": false, "capability": "postcopy-ram"}, 549# {"state": false, "capability": "x-colo"} 550# ]} 551# 552## 553{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']} 554 555## 556# @MultiFDCompression: 557# 558# An enumeration of multifd compression methods. 559# 560# @none: no compression. 561# @zlib: use zlib compression method. 562# @zstd: use zstd compression method. 563# 564# Since: 5.0 565## 566{ 'enum': 'MultiFDCompression', 567 'data': [ 'none', 'zlib', 568 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] } 569 570## 571# @BitmapMigrationBitmapAliasTransform: 572# 573# @persistent: If present, the bitmap will be made persistent 574# or transient depending on this parameter. 575# 576# Since: 6.0 577## 578{ 'struct': 'BitmapMigrationBitmapAliasTransform', 579 'data': { 580 '*persistent': 'bool' 581 } } 582 583## 584# @BitmapMigrationBitmapAlias: 585# 586# @name: The name of the bitmap. 587# 588# @alias: An alias name for migration (for example the bitmap name on 589# the opposite site). 590# 591# @transform: Allows the modification of the migrated bitmap. 592# (since 6.0) 593# 594# Since: 5.2 595## 596{ 'struct': 'BitmapMigrationBitmapAlias', 597 'data': { 598 'name': 'str', 599 'alias': 'str', 600 '*transform': 'BitmapMigrationBitmapAliasTransform' 601 } } 602 603## 604# @BitmapMigrationNodeAlias: 605# 606# Maps a block node name and the bitmaps it has to aliases for dirty 607# bitmap migration. 608# 609# @node-name: A block node name. 610# 611# @alias: An alias block node name for migration (for example the 612# node name on the opposite site). 613# 614# @bitmaps: Mappings for the bitmaps on this node. 615# 616# Since: 5.2 617## 618{ 'struct': 'BitmapMigrationNodeAlias', 619 'data': { 620 'node-name': 'str', 621 'alias': 'str', 622 'bitmaps': [ 'BitmapMigrationBitmapAlias' ] 623 } } 624 625## 626# @MigrationParameter: 627# 628# Migration parameters enumeration 629# 630# @announce-initial: Initial delay (in milliseconds) before sending the first 631# announce (Since 4.0) 632# 633# @announce-max: Maximum delay (in milliseconds) between packets in the 634# announcement (Since 4.0) 635# 636# @announce-rounds: Number of self-announce packets sent after migration 637# (Since 4.0) 638# 639# @announce-step: Increase in delay (in milliseconds) between subsequent 640# packets in the announcement (Since 4.0) 641# 642# @compress-level: Set the compression level to be used in live migration, 643# the compression level is an integer between 0 and 9, where 0 means 644# no compression, 1 means the best compression speed, and 9 means best 645# compression ratio which will consume more CPU. 646# 647# @compress-threads: Set compression thread count to be used in live migration, 648# the compression thread count is an integer between 1 and 255. 649# 650# @compress-wait-thread: Controls behavior when all compression threads are 651# currently busy. If true (default), wait for a free 652# compression thread to become available; otherwise, 653# send the page uncompressed. (Since 3.1) 654# 655# @decompress-threads: Set decompression thread count to be used in live 656# migration, the decompression thread count is an integer between 1 657# and 255. Usually, decompression is at least 4 times as fast as 658# compression, so set the decompress-threads to the number about 1/4 659# of compress-threads is adequate. 660# 661# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period 662# to trigger throttling. It is expressed as percentage. 663# The default value is 50. (Since 5.0) 664# 665# @cpu-throttle-initial: Initial percentage of time guest cpus are throttled 666# when migration auto-converge is activated. The 667# default value is 20. (Since 2.7) 668# 669# @cpu-throttle-increment: throttle percentage increase each time 670# auto-converge detects that migration is not making 671# progress. The default value is 10. (Since 2.7) 672# 673# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage 674# At the tail stage of throttling, the Guest is very 675# sensitive to CPU percentage while the @cpu-throttle 676# -increment is excessive usually at tail stage. 677# If this parameter is true, we will compute the ideal 678# CPU percentage used by the Guest, which may exactly make 679# the dirty rate match the dirty rate threshold. Then we 680# will choose a smaller throttle increment between the 681# one specified by @cpu-throttle-increment and the one 682# generated by ideal CPU percentage. 683# Therefore, it is compatible to traditional throttling, 684# meanwhile the throttle increment won't be excessive 685# at tail stage. 686# The default value is false. (Since 5.1) 687# 688# @tls-creds: ID of the 'tls-creds' object that provides credentials for 689# establishing a TLS connection over the migration data channel. 690# On the outgoing side of the migration, the credentials must 691# be for a 'client' endpoint, while for the incoming side the 692# credentials must be for a 'server' endpoint. Setting this 693# will enable TLS for all migrations. The default is unset, 694# resulting in unsecured migration at the QEMU level. (Since 2.7) 695# 696# @tls-hostname: hostname of the target host for the migration. This is 697# required when using x509 based TLS credentials and the 698# migration URI does not already include a hostname. For 699# example if using fd: or exec: based migration, the 700# hostname must be provided so that the server's x509 701# certificate identity can be validated. (Since 2.7) 702# 703# @tls-authz: ID of the 'authz' object subclass that provides access control 704# checking of the TLS x509 certificate distinguished name. 705# This object is only resolved at time of use, so can be deleted 706# and recreated on the fly while the migration server is active. 707# If missing, it will default to denying access (Since 4.0) 708# 709# @max-bandwidth: to set maximum speed for migration. maximum speed in 710# bytes per second. (Since 2.8) 711# 712# @downtime-limit: set maximum tolerated downtime for migration. maximum 713# downtime in milliseconds (Since 2.8) 714# 715# @x-checkpoint-delay: The delay time (in ms) between two COLO checkpoints in 716# periodic mode. (Since 2.8) 717# 718# @block-incremental: Affects how much storage is migrated when the 719# block migration capability is enabled. When false, the entire 720# storage backing chain is migrated into a flattened image at 721# the destination; when true, only the active qcow2 layer is 722# migrated and the destination must already have access to the 723# same backing chain as was used on the source. (since 2.10) 724# 725# @multifd-channels: Number of channels used to migrate data in 726# parallel. This is the same number that the 727# number of sockets used for migration. The 728# default value is 2 (since 4.0) 729# 730# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 731# needs to be a multiple of the target page size 732# and a power of 2 733# (Since 2.11) 734# 735# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy. 736# Defaults to 0 (unlimited). In bytes per second. 737# (Since 3.0) 738# 739# @max-cpu-throttle: maximum cpu throttle percentage. 740# Defaults to 99. (Since 3.1) 741# 742# @multifd-compression: Which compression method to use. 743# Defaults to none. (Since 5.0) 744# 745# @multifd-zlib-level: Set the compression level to be used in live 746# migration, the compression level is an integer between 0 747# and 9, where 0 means no compression, 1 means the best 748# compression speed, and 9 means best compression ratio which 749# will consume more CPU. 750# Defaults to 1. (Since 5.0) 751# 752# @multifd-zstd-level: Set the compression level to be used in live 753# migration, the compression level is an integer between 0 754# and 20, where 0 means no compression, 1 means the best 755# compression speed, and 20 means best compression ratio which 756# will consume more CPU. 757# Defaults to 1. (Since 5.0) 758# 759# 760# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 761# aliases for the purpose of dirty bitmap migration. Such 762# aliases may for example be the corresponding names on the 763# opposite site. 764# The mapping must be one-to-one, but not necessarily 765# complete: On the source, unmapped bitmaps and all bitmaps 766# on unmapped nodes will be ignored. On the destination, 767# encountering an unmapped alias in the incoming migration 768# stream will result in a report, and all further bitmap 769# migration data will then be discarded. 770# Note that the destination does not know about bitmaps it 771# does not receive, so there is no limitation or requirement 772# regarding the number of bitmaps received, or how they are 773# named, or on which nodes they are placed. 774# By default (when this parameter has never been set), bitmap 775# names are mapped to themselves. Nodes are mapped to their 776# block device name if there is one, and to their node name 777# otherwise. (Since 5.2) 778# 779# Features: 780# @unstable: Member @x-checkpoint-delay is experimental. 781# 782# Since: 2.4 783## 784{ 'enum': 'MigrationParameter', 785 'data': ['announce-initial', 'announce-max', 786 'announce-rounds', 'announce-step', 787 'compress-level', 'compress-threads', 'decompress-threads', 788 'compress-wait-thread', 'throttle-trigger-threshold', 789 'cpu-throttle-initial', 'cpu-throttle-increment', 790 'cpu-throttle-tailslow', 791 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth', 792 'downtime-limit', 793 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] }, 794 'block-incremental', 795 'multifd-channels', 796 'xbzrle-cache-size', 'max-postcopy-bandwidth', 797 'max-cpu-throttle', 'multifd-compression', 798 'multifd-zlib-level' ,'multifd-zstd-level', 799 'block-bitmap-mapping' ] } 800 801## 802# @MigrateSetParameters: 803# 804# @announce-initial: Initial delay (in milliseconds) before sending the first 805# announce (Since 4.0) 806# 807# @announce-max: Maximum delay (in milliseconds) between packets in the 808# announcement (Since 4.0) 809# 810# @announce-rounds: Number of self-announce packets sent after migration 811# (Since 4.0) 812# 813# @announce-step: Increase in delay (in milliseconds) between subsequent 814# packets in the announcement (Since 4.0) 815# 816# @compress-level: compression level 817# 818# @compress-threads: compression thread count 819# 820# @compress-wait-thread: Controls behavior when all compression threads are 821# currently busy. If true (default), wait for a free 822# compression thread to become available; otherwise, 823# send the page uncompressed. (Since 3.1) 824# 825# @decompress-threads: decompression thread count 826# 827# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period 828# to trigger throttling. It is expressed as percentage. 829# The default value is 50. (Since 5.0) 830# 831# @cpu-throttle-initial: Initial percentage of time guest cpus are 832# throttled when migration auto-converge is activated. 833# The default value is 20. (Since 2.7) 834# 835# @cpu-throttle-increment: throttle percentage increase each time 836# auto-converge detects that migration is not making 837# progress. The default value is 10. (Since 2.7) 838# 839# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage 840# At the tail stage of throttling, the Guest is very 841# sensitive to CPU percentage while the @cpu-throttle 842# -increment is excessive usually at tail stage. 843# If this parameter is true, we will compute the ideal 844# CPU percentage used by the Guest, which may exactly make 845# the dirty rate match the dirty rate threshold. Then we 846# will choose a smaller throttle increment between the 847# one specified by @cpu-throttle-increment and the one 848# generated by ideal CPU percentage. 849# Therefore, it is compatible to traditional throttling, 850# meanwhile the throttle increment won't be excessive 851# at tail stage. 852# The default value is false. (Since 5.1) 853# 854# @tls-creds: ID of the 'tls-creds' object that provides credentials 855# for establishing a TLS connection over the migration data 856# channel. On the outgoing side of the migration, the credentials 857# must be for a 'client' endpoint, while for the incoming side the 858# credentials must be for a 'server' endpoint. Setting this 859# to a non-empty string enables TLS for all migrations. 860# An empty string means that QEMU will use plain text mode for 861# migration, rather than TLS (Since 2.9) 862# Previously (since 2.7), this was reported by omitting 863# tls-creds instead. 864# 865# @tls-hostname: hostname of the target host for the migration. This 866# is required when using x509 based TLS credentials and the 867# migration URI does not already include a hostname. For 868# example if using fd: or exec: based migration, the 869# hostname must be provided so that the server's x509 870# certificate identity can be validated. (Since 2.7) 871# An empty string means that QEMU will use the hostname 872# associated with the migration URI, if any. (Since 2.9) 873# Previously (since 2.7), this was reported by omitting 874# tls-hostname instead. 875# 876# @max-bandwidth: to set maximum speed for migration. maximum speed in 877# bytes per second. (Since 2.8) 878# 879# @downtime-limit: set maximum tolerated downtime for migration. maximum 880# downtime in milliseconds (Since 2.8) 881# 882# @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8) 883# 884# @block-incremental: Affects how much storage is migrated when the 885# block migration capability is enabled. When false, the entire 886# storage backing chain is migrated into a flattened image at 887# the destination; when true, only the active qcow2 layer is 888# migrated and the destination must already have access to the 889# same backing chain as was used on the source. (since 2.10) 890# 891# @multifd-channels: Number of channels used to migrate data in 892# parallel. This is the same number that the 893# number of sockets used for migration. The 894# default value is 2 (since 4.0) 895# 896# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 897# needs to be a multiple of the target page size 898# and a power of 2 899# (Since 2.11) 900# 901# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy. 902# Defaults to 0 (unlimited). In bytes per second. 903# (Since 3.0) 904# 905# @max-cpu-throttle: maximum cpu throttle percentage. 906# The default value is 99. (Since 3.1) 907# 908# @multifd-compression: Which compression method to use. 909# Defaults to none. (Since 5.0) 910# 911# @multifd-zlib-level: Set the compression level to be used in live 912# migration, the compression level is an integer between 0 913# and 9, where 0 means no compression, 1 means the best 914# compression speed, and 9 means best compression ratio which 915# will consume more CPU. 916# Defaults to 1. (Since 5.0) 917# 918# @multifd-zstd-level: Set the compression level to be used in live 919# migration, the compression level is an integer between 0 920# and 20, where 0 means no compression, 1 means the best 921# compression speed, and 20 means best compression ratio which 922# will consume more CPU. 923# Defaults to 1. (Since 5.0) 924# 925# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 926# aliases for the purpose of dirty bitmap migration. Such 927# aliases may for example be the corresponding names on the 928# opposite site. 929# The mapping must be one-to-one, but not necessarily 930# complete: On the source, unmapped bitmaps and all bitmaps 931# on unmapped nodes will be ignored. On the destination, 932# encountering an unmapped alias in the incoming migration 933# stream will result in a report, and all further bitmap 934# migration data will then be discarded. 935# Note that the destination does not know about bitmaps it 936# does not receive, so there is no limitation or requirement 937# regarding the number of bitmaps received, or how they are 938# named, or on which nodes they are placed. 939# By default (when this parameter has never been set), bitmap 940# names are mapped to themselves. Nodes are mapped to their 941# block device name if there is one, and to their node name 942# otherwise. (Since 5.2) 943# 944# Features: 945# @unstable: Member @x-checkpoint-delay is experimental. 946# 947# Since: 2.4 948## 949# TODO either fuse back into MigrationParameters, or make 950# MigrationParameters members mandatory 951{ 'struct': 'MigrateSetParameters', 952 'data': { '*announce-initial': 'size', 953 '*announce-max': 'size', 954 '*announce-rounds': 'size', 955 '*announce-step': 'size', 956 '*compress-level': 'uint8', 957 '*compress-threads': 'uint8', 958 '*compress-wait-thread': 'bool', 959 '*decompress-threads': 'uint8', 960 '*throttle-trigger-threshold': 'uint8', 961 '*cpu-throttle-initial': 'uint8', 962 '*cpu-throttle-increment': 'uint8', 963 '*cpu-throttle-tailslow': 'bool', 964 '*tls-creds': 'StrOrNull', 965 '*tls-hostname': 'StrOrNull', 966 '*tls-authz': 'StrOrNull', 967 '*max-bandwidth': 'size', 968 '*downtime-limit': 'uint64', 969 '*x-checkpoint-delay': { 'type': 'uint32', 970 'features': [ 'unstable' ] }, 971 '*block-incremental': 'bool', 972 '*multifd-channels': 'uint8', 973 '*xbzrle-cache-size': 'size', 974 '*max-postcopy-bandwidth': 'size', 975 '*max-cpu-throttle': 'uint8', 976 '*multifd-compression': 'MultiFDCompression', 977 '*multifd-zlib-level': 'uint8', 978 '*multifd-zstd-level': 'uint8', 979 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } } 980 981## 982# @migrate-set-parameters: 983# 984# Set various migration parameters. 985# 986# Since: 2.4 987# 988# Example: 989# 990# -> { "execute": "migrate-set-parameters" , 991# "arguments": { "compress-level": 1 } } 992# 993## 994{ 'command': 'migrate-set-parameters', 'boxed': true, 995 'data': 'MigrateSetParameters' } 996 997## 998# @MigrationParameters: 999# 1000# The optional members aren't actually optional. 1001# 1002# @announce-initial: Initial delay (in milliseconds) before sending the 1003# first announce (Since 4.0) 1004# 1005# @announce-max: Maximum delay (in milliseconds) between packets in the 1006# announcement (Since 4.0) 1007# 1008# @announce-rounds: Number of self-announce packets sent after migration 1009# (Since 4.0) 1010# 1011# @announce-step: Increase in delay (in milliseconds) between subsequent 1012# packets in the announcement (Since 4.0) 1013# 1014# @compress-level: compression level 1015# 1016# @compress-threads: compression thread count 1017# 1018# @compress-wait-thread: Controls behavior when all compression threads are 1019# currently busy. If true (default), wait for a free 1020# compression thread to become available; otherwise, 1021# send the page uncompressed. (Since 3.1) 1022# 1023# @decompress-threads: decompression thread count 1024# 1025# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period 1026# to trigger throttling. It is expressed as percentage. 1027# The default value is 50. (Since 5.0) 1028# 1029# @cpu-throttle-initial: Initial percentage of time guest cpus are 1030# throttled when migration auto-converge is activated. 1031# (Since 2.7) 1032# 1033# @cpu-throttle-increment: throttle percentage increase each time 1034# auto-converge detects that migration is not making 1035# progress. (Since 2.7) 1036# 1037# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage 1038# At the tail stage of throttling, the Guest is very 1039# sensitive to CPU percentage while the @cpu-throttle 1040# -increment is excessive usually at tail stage. 1041# If this parameter is true, we will compute the ideal 1042# CPU percentage used by the Guest, which may exactly make 1043# the dirty rate match the dirty rate threshold. Then we 1044# will choose a smaller throttle increment between the 1045# one specified by @cpu-throttle-increment and the one 1046# generated by ideal CPU percentage. 1047# Therefore, it is compatible to traditional throttling, 1048# meanwhile the throttle increment won't be excessive 1049# at tail stage. 1050# The default value is false. (Since 5.1) 1051# 1052# @tls-creds: ID of the 'tls-creds' object that provides credentials 1053# for establishing a TLS connection over the migration data 1054# channel. On the outgoing side of the migration, the credentials 1055# must be for a 'client' endpoint, while for the incoming side the 1056# credentials must be for a 'server' endpoint. 1057# An empty string means that QEMU will use plain text mode for 1058# migration, rather than TLS (Since 2.7) 1059# Note: 2.8 reports this by omitting tls-creds instead. 1060# 1061# @tls-hostname: hostname of the target host for the migration. This 1062# is required when using x509 based TLS credentials and the 1063# migration URI does not already include a hostname. For 1064# example if using fd: or exec: based migration, the 1065# hostname must be provided so that the server's x509 1066# certificate identity can be validated. (Since 2.7) 1067# An empty string means that QEMU will use the hostname 1068# associated with the migration URI, if any. (Since 2.9) 1069# Note: 2.8 reports this by omitting tls-hostname instead. 1070# 1071# @tls-authz: ID of the 'authz' object subclass that provides access control 1072# checking of the TLS x509 certificate distinguished name. (Since 1073# 4.0) 1074# 1075# @max-bandwidth: to set maximum speed for migration. maximum speed in 1076# bytes per second. (Since 2.8) 1077# 1078# @downtime-limit: set maximum tolerated downtime for migration. maximum 1079# downtime in milliseconds (Since 2.8) 1080# 1081# @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8) 1082# 1083# @block-incremental: Affects how much storage is migrated when the 1084# block migration capability is enabled. When false, the entire 1085# storage backing chain is migrated into a flattened image at 1086# the destination; when true, only the active qcow2 layer is 1087# migrated and the destination must already have access to the 1088# same backing chain as was used on the source. (since 2.10) 1089# 1090# @multifd-channels: Number of channels used to migrate data in 1091# parallel. This is the same number that the 1092# number of sockets used for migration. 1093# The default value is 2 (since 4.0) 1094# 1095# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1096# needs to be a multiple of the target page size 1097# and a power of 2 1098# (Since 2.11) 1099# 1100# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy. 1101# Defaults to 0 (unlimited). In bytes per second. 1102# (Since 3.0) 1103# 1104# @max-cpu-throttle: maximum cpu throttle percentage. 1105# Defaults to 99. 1106# (Since 3.1) 1107# 1108# @multifd-compression: Which compression method to use. 1109# Defaults to none. (Since 5.0) 1110# 1111# @multifd-zlib-level: Set the compression level to be used in live 1112# migration, the compression level is an integer between 0 1113# and 9, where 0 means no compression, 1 means the best 1114# compression speed, and 9 means best compression ratio which 1115# will consume more CPU. 1116# Defaults to 1. (Since 5.0) 1117# 1118# @multifd-zstd-level: Set the compression level to be used in live 1119# migration, the compression level is an integer between 0 1120# and 20, where 0 means no compression, 1 means the best 1121# compression speed, and 20 means best compression ratio which 1122# will consume more CPU. 1123# Defaults to 1. (Since 5.0) 1124# 1125# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1126# aliases for the purpose of dirty bitmap migration. Such 1127# aliases may for example be the corresponding names on the 1128# opposite site. 1129# The mapping must be one-to-one, but not necessarily 1130# complete: On the source, unmapped bitmaps and all bitmaps 1131# on unmapped nodes will be ignored. On the destination, 1132# encountering an unmapped alias in the incoming migration 1133# stream will result in a report, and all further bitmap 1134# migration data will then be discarded. 1135# Note that the destination does not know about bitmaps it 1136# does not receive, so there is no limitation or requirement 1137# regarding the number of bitmaps received, or how they are 1138# named, or on which nodes they are placed. 1139# By default (when this parameter has never been set), bitmap 1140# names are mapped to themselves. Nodes are mapped to their 1141# block device name if there is one, and to their node name 1142# otherwise. (Since 5.2) 1143# 1144# Features: 1145# @unstable: Member @x-checkpoint-delay is experimental. 1146# 1147# Since: 2.4 1148## 1149{ 'struct': 'MigrationParameters', 1150 'data': { '*announce-initial': 'size', 1151 '*announce-max': 'size', 1152 '*announce-rounds': 'size', 1153 '*announce-step': 'size', 1154 '*compress-level': 'uint8', 1155 '*compress-threads': 'uint8', 1156 '*compress-wait-thread': 'bool', 1157 '*decompress-threads': 'uint8', 1158 '*throttle-trigger-threshold': 'uint8', 1159 '*cpu-throttle-initial': 'uint8', 1160 '*cpu-throttle-increment': 'uint8', 1161 '*cpu-throttle-tailslow': 'bool', 1162 '*tls-creds': 'str', 1163 '*tls-hostname': 'str', 1164 '*tls-authz': 'str', 1165 '*max-bandwidth': 'size', 1166 '*downtime-limit': 'uint64', 1167 '*x-checkpoint-delay': { 'type': 'uint32', 1168 'features': [ 'unstable' ] }, 1169 '*block-incremental': 'bool', 1170 '*multifd-channels': 'uint8', 1171 '*xbzrle-cache-size': 'size', 1172 '*max-postcopy-bandwidth': 'size', 1173 '*max-cpu-throttle': 'uint8', 1174 '*multifd-compression': 'MultiFDCompression', 1175 '*multifd-zlib-level': 'uint8', 1176 '*multifd-zstd-level': 'uint8', 1177 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } } 1178 1179## 1180# @query-migrate-parameters: 1181# 1182# Returns information about the current migration parameters 1183# 1184# Returns: @MigrationParameters 1185# 1186# Since: 2.4 1187# 1188# Example: 1189# 1190# -> { "execute": "query-migrate-parameters" } 1191# <- { "return": { 1192# "decompress-threads": 2, 1193# "cpu-throttle-increment": 10, 1194# "compress-threads": 8, 1195# "compress-level": 1, 1196# "cpu-throttle-initial": 20, 1197# "max-bandwidth": 33554432, 1198# "downtime-limit": 300 1199# } 1200# } 1201# 1202## 1203{ 'command': 'query-migrate-parameters', 1204 'returns': 'MigrationParameters' } 1205 1206## 1207# @migrate-start-postcopy: 1208# 1209# Followup to a migration command to switch the migration to postcopy mode. 1210# The postcopy-ram capability must be set on both source and destination 1211# before the original migration command. 1212# 1213# Since: 2.5 1214# 1215# Example: 1216# 1217# -> { "execute": "migrate-start-postcopy" } 1218# <- { "return": {} } 1219# 1220## 1221{ 'command': 'migrate-start-postcopy' } 1222 1223## 1224# @MIGRATION: 1225# 1226# Emitted when a migration event happens 1227# 1228# @status: @MigrationStatus describing the current migration status. 1229# 1230# Since: 2.4 1231# 1232# Example: 1233# 1234# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001}, 1235# "event": "MIGRATION", 1236# "data": {"status": "completed"} } 1237# 1238## 1239{ 'event': 'MIGRATION', 1240 'data': {'status': 'MigrationStatus'}} 1241 1242## 1243# @MIGRATION_PASS: 1244# 1245# Emitted from the source side of a migration at the start of each pass 1246# (when it syncs the dirty bitmap) 1247# 1248# @pass: An incrementing count (starting at 1 on the first pass) 1249# 1250# Since: 2.6 1251# 1252# Example: 1253# 1254# { "timestamp": {"seconds": 1449669631, "microseconds": 239225}, 1255# "event": "MIGRATION_PASS", "data": {"pass": 2} } 1256# 1257## 1258{ 'event': 'MIGRATION_PASS', 1259 'data': { 'pass': 'int' } } 1260 1261## 1262# @COLOMessage: 1263# 1264# The message transmission between Primary side and Secondary side. 1265# 1266# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing 1267# 1268# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for checkpointing 1269# 1270# @checkpoint-reply: SVM gets PVM's checkpoint request 1271# 1272# @vmstate-send: VM's state will be sent by PVM. 1273# 1274# @vmstate-size: The total size of VMstate. 1275# 1276# @vmstate-received: VM's state has been received by SVM. 1277# 1278# @vmstate-loaded: VM's state has been loaded by SVM. 1279# 1280# Since: 2.8 1281## 1282{ 'enum': 'COLOMessage', 1283 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply', 1284 'vmstate-send', 'vmstate-size', 'vmstate-received', 1285 'vmstate-loaded' ] } 1286 1287## 1288# @COLOMode: 1289# 1290# The COLO current mode. 1291# 1292# @none: COLO is disabled. 1293# 1294# @primary: COLO node in primary side. 1295# 1296# @secondary: COLO node in slave side. 1297# 1298# Since: 2.8 1299## 1300{ 'enum': 'COLOMode', 1301 'data': [ 'none', 'primary', 'secondary'] } 1302 1303## 1304# @FailoverStatus: 1305# 1306# An enumeration of COLO failover status 1307# 1308# @none: no failover has ever happened 1309# 1310# @require: got failover requirement but not handled 1311# 1312# @active: in the process of doing failover 1313# 1314# @completed: finish the process of failover 1315# 1316# @relaunch: restart the failover process, from 'none' -> 'completed' (Since 2.9) 1317# 1318# Since: 2.8 1319## 1320{ 'enum': 'FailoverStatus', 1321 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] } 1322 1323## 1324# @COLO_EXIT: 1325# 1326# Emitted when VM finishes COLO mode due to some errors happening or 1327# at the request of users. 1328# 1329# @mode: report COLO mode when COLO exited. 1330# 1331# @reason: describes the reason for the COLO exit. 1332# 1333# Since: 3.1 1334# 1335# Example: 1336# 1337# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172}, 1338# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } } 1339# 1340## 1341{ 'event': 'COLO_EXIT', 1342 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } } 1343 1344## 1345# @COLOExitReason: 1346# 1347# The reason for a COLO exit. 1348# 1349# @none: failover has never happened. This state does not occur 1350# in the COLO_EXIT event, and is only visible in the result of 1351# query-colo-status. 1352# 1353# @request: COLO exit is due to an external request. 1354# 1355# @error: COLO exit is due to an internal error. 1356# 1357# @processing: COLO is currently handling a failover (since 4.0). 1358# 1359# Since: 3.1 1360## 1361{ 'enum': 'COLOExitReason', 1362 'data': [ 'none', 'request', 'error' , 'processing' ] } 1363 1364## 1365# @x-colo-lost-heartbeat: 1366# 1367# Tell qemu that heartbeat is lost, request it to do takeover procedures. 1368# If this command is sent to the PVM, the Primary side will exit COLO mode. 1369# If sent to the Secondary, the Secondary side will run failover work, 1370# then takes over server operation to become the service VM. 1371# 1372# Features: 1373# @unstable: This command is experimental. 1374# 1375# Since: 2.8 1376# 1377# Example: 1378# 1379# -> { "execute": "x-colo-lost-heartbeat" } 1380# <- { "return": {} } 1381# 1382## 1383{ 'command': 'x-colo-lost-heartbeat', 1384 'features': [ 'unstable' ] } 1385 1386## 1387# @migrate_cancel: 1388# 1389# Cancel the current executing migration process. 1390# 1391# Returns: nothing on success 1392# 1393# Notes: This command succeeds even if there is no migration process running. 1394# 1395# Since: 0.14 1396# 1397# Example: 1398# 1399# -> { "execute": "migrate_cancel" } 1400# <- { "return": {} } 1401# 1402## 1403{ 'command': 'migrate_cancel' } 1404 1405## 1406# @migrate-continue: 1407# 1408# Continue migration when it's in a paused state. 1409# 1410# @state: The state the migration is currently expected to be in 1411# 1412# Returns: nothing on success 1413# 1414# Since: 2.11 1415# 1416# Example: 1417# 1418# -> { "execute": "migrate-continue" , "arguments": 1419# { "state": "pre-switchover" } } 1420# <- { "return": {} } 1421## 1422{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} } 1423 1424## 1425# @migrate: 1426# 1427# Migrates the current running guest to another Virtual Machine. 1428# 1429# @uri: the Uniform Resource Identifier of the destination VM 1430# 1431# @blk: do block migration (full disk copy) 1432# 1433# @inc: incremental disk copy migration 1434# 1435# @detach: this argument exists only for compatibility reasons and 1436# is ignored by QEMU 1437# 1438# @resume: resume one paused migration, default "off". (since 3.0) 1439# 1440# Returns: nothing on success 1441# 1442# Since: 0.14 1443# 1444# Notes: 1445# 1446# 1. The 'query-migrate' command should be used to check migration's progress 1447# and final result (this information is provided by the 'status' member) 1448# 1449# 2. All boolean arguments default to false 1450# 1451# 3. The user Monitor's "detach" argument is invalid in QMP and should not 1452# be used 1453# 1454# Example: 1455# 1456# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } } 1457# <- { "return": {} } 1458# 1459## 1460{ 'command': 'migrate', 1461 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool', 1462 '*detach': 'bool', '*resume': 'bool' } } 1463 1464## 1465# @migrate-incoming: 1466# 1467# Start an incoming migration, the qemu must have been started 1468# with -incoming defer 1469# 1470# @uri: The Uniform Resource Identifier identifying the source or 1471# address to listen on 1472# 1473# Returns: nothing on success 1474# 1475# Since: 2.3 1476# 1477# Notes: 1478# 1479# 1. It's a bad idea to use a string for the uri, but it needs to stay 1480# compatible with -incoming and the format of the uri is already exposed 1481# above libvirt. 1482# 1483# 2. QEMU must be started with -incoming defer to allow migrate-incoming to 1484# be used. 1485# 1486# 3. The uri format is the same as for -incoming 1487# 1488# Example: 1489# 1490# -> { "execute": "migrate-incoming", 1491# "arguments": { "uri": "tcp::4446" } } 1492# <- { "return": {} } 1493# 1494## 1495{ 'command': 'migrate-incoming', 'data': {'uri': 'str' } } 1496 1497## 1498# @xen-save-devices-state: 1499# 1500# Save the state of all devices to file. The RAM and the block devices 1501# of the VM are not saved by this command. 1502# 1503# @filename: the file to save the state of the devices to as binary 1504# data. See xen-save-devices-state.txt for a description of the binary 1505# format. 1506# 1507# @live: Optional argument to ask QEMU to treat this command as part of a live 1508# migration. Default to true. (since 2.11) 1509# 1510# Returns: Nothing on success 1511# 1512# Since: 1.1 1513# 1514# Example: 1515# 1516# -> { "execute": "xen-save-devices-state", 1517# "arguments": { "filename": "/tmp/save" } } 1518# <- { "return": {} } 1519# 1520## 1521{ 'command': 'xen-save-devices-state', 1522 'data': {'filename': 'str', '*live':'bool' } } 1523 1524## 1525# @xen-set-global-dirty-log: 1526# 1527# Enable or disable the global dirty log mode. 1528# 1529# @enable: true to enable, false to disable. 1530# 1531# Returns: nothing 1532# 1533# Since: 1.3 1534# 1535# Example: 1536# 1537# -> { "execute": "xen-set-global-dirty-log", 1538# "arguments": { "enable": true } } 1539# <- { "return": {} } 1540# 1541## 1542{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1543 1544## 1545# @xen-load-devices-state: 1546# 1547# Load the state of all devices from file. The RAM and the block devices 1548# of the VM are not loaded by this command. 1549# 1550# @filename: the file to load the state of the devices from as binary 1551# data. See xen-save-devices-state.txt for a description of the binary 1552# format. 1553# 1554# Since: 2.7 1555# 1556# Example: 1557# 1558# -> { "execute": "xen-load-devices-state", 1559# "arguments": { "filename": "/tmp/resume" } } 1560# <- { "return": {} } 1561# 1562## 1563{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 1564 1565## 1566# @xen-set-replication: 1567# 1568# Enable or disable replication. 1569# 1570# @enable: true to enable, false to disable. 1571# 1572# @primary: true for primary or false for secondary. 1573# 1574# @failover: true to do failover, false to stop. but cannot be 1575# specified if 'enable' is true. default value is false. 1576# 1577# Returns: nothing. 1578# 1579# Example: 1580# 1581# -> { "execute": "xen-set-replication", 1582# "arguments": {"enable": true, "primary": false} } 1583# <- { "return": {} } 1584# 1585# Since: 2.9 1586## 1587{ 'command': 'xen-set-replication', 1588 'data': { 'enable': 'bool', 'primary': 'bool', '*failover' : 'bool' }, 1589 'if': 'CONFIG_REPLICATION' } 1590 1591## 1592# @ReplicationStatus: 1593# 1594# The result format for 'query-xen-replication-status'. 1595# 1596# @error: true if an error happened, false if replication is normal. 1597# 1598# @desc: the human readable error description string, when 1599# @error is 'true'. 1600# 1601# Since: 2.9 1602## 1603{ 'struct': 'ReplicationStatus', 1604 'data': { 'error': 'bool', '*desc': 'str' }, 1605 'if': 'CONFIG_REPLICATION' } 1606 1607## 1608# @query-xen-replication-status: 1609# 1610# Query replication status while the vm is running. 1611# 1612# Returns: A @ReplicationStatus object showing the status. 1613# 1614# Example: 1615# 1616# -> { "execute": "query-xen-replication-status" } 1617# <- { "return": { "error": false } } 1618# 1619# Since: 2.9 1620## 1621{ 'command': 'query-xen-replication-status', 1622 'returns': 'ReplicationStatus', 1623 'if': 'CONFIG_REPLICATION' } 1624 1625## 1626# @xen-colo-do-checkpoint: 1627# 1628# Xen uses this command to notify replication to trigger a checkpoint. 1629# 1630# Returns: nothing. 1631# 1632# Example: 1633# 1634# -> { "execute": "xen-colo-do-checkpoint" } 1635# <- { "return": {} } 1636# 1637# Since: 2.9 1638## 1639{ 'command': 'xen-colo-do-checkpoint', 1640 'if': 'CONFIG_REPLICATION' } 1641 1642## 1643# @COLOStatus: 1644# 1645# The result format for 'query-colo-status'. 1646# 1647# @mode: COLO running mode. If COLO is running, this field will return 1648# 'primary' or 'secondary'. 1649# 1650# @last-mode: COLO last running mode. If COLO is running, this field 1651# will return same like mode field, after failover we can 1652# use this field to get last colo mode. (since 4.0) 1653# 1654# @reason: describes the reason for the COLO exit. 1655# 1656# Since: 3.1 1657## 1658{ 'struct': 'COLOStatus', 1659 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode', 1660 'reason': 'COLOExitReason' } } 1661 1662## 1663# @query-colo-status: 1664# 1665# Query COLO status while the vm is running. 1666# 1667# Returns: A @COLOStatus object showing the status. 1668# 1669# Example: 1670# 1671# -> { "execute": "query-colo-status" } 1672# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } } 1673# 1674# Since: 3.1 1675## 1676{ 'command': 'query-colo-status', 1677 'returns': 'COLOStatus' } 1678 1679## 1680# @migrate-recover: 1681# 1682# Provide a recovery migration stream URI. 1683# 1684# @uri: the URI to be used for the recovery of migration stream. 1685# 1686# Returns: nothing. 1687# 1688# Example: 1689# 1690# -> { "execute": "migrate-recover", 1691# "arguments": { "uri": "tcp:192.168.1.200:12345" } } 1692# <- { "return": {} } 1693# 1694# Since: 3.0 1695## 1696{ 'command': 'migrate-recover', 1697 'data': { 'uri': 'str' }, 1698 'allow-oob': true } 1699 1700## 1701# @migrate-pause: 1702# 1703# Pause a migration. Currently it only supports postcopy. 1704# 1705# Returns: nothing. 1706# 1707# Example: 1708# 1709# -> { "execute": "migrate-pause" } 1710# <- { "return": {} } 1711# 1712# Since: 3.0 1713## 1714{ 'command': 'migrate-pause', 'allow-oob': true } 1715 1716## 1717# @UNPLUG_PRIMARY: 1718# 1719# Emitted from source side of a migration when migration state is 1720# WAIT_UNPLUG. Device was unplugged by guest operating system. 1721# Device resources in QEMU are kept on standby to be able to re-plug it in case 1722# of migration failure. 1723# 1724# @device-id: QEMU device id of the unplugged device 1725# 1726# Since: 4.2 1727# 1728# Example: 1729# 1730# <- { "event": "UNPLUG_PRIMARY", 1731# "data": { "device-id": "hostdev0" }, 1732# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 1733# 1734## 1735{ 'event': 'UNPLUG_PRIMARY', 1736 'data': { 'device-id': 'str' } } 1737 1738## 1739# @DirtyRateVcpu: 1740# 1741# Dirty rate of vcpu. 1742# 1743# @id: vcpu index. 1744# 1745# @dirty-rate: dirty rate. 1746# 1747# Since: 6.2 1748## 1749{ 'struct': 'DirtyRateVcpu', 1750 'data': { 'id': 'int', 'dirty-rate': 'int64' } } 1751 1752## 1753# @DirtyRateStatus: 1754# 1755# An enumeration of dirtyrate status. 1756# 1757# @unstarted: the dirtyrate thread has not been started. 1758# 1759# @measuring: the dirtyrate thread is measuring. 1760# 1761# @measured: the dirtyrate thread has measured and results are available. 1762# 1763# Since: 5.2 1764## 1765{ 'enum': 'DirtyRateStatus', 1766 'data': [ 'unstarted', 'measuring', 'measured'] } 1767 1768## 1769# @DirtyRateMeasureMode: 1770# 1771# An enumeration of mode of measuring dirtyrate. 1772# 1773# @page-sampling: calculate dirtyrate by sampling pages. 1774# 1775# @dirty-ring: calculate dirtyrate by dirty ring. 1776# 1777# @dirty-bitmap: calculate dirtyrate by dirty bitmap. 1778# 1779# Since: 6.2 1780## 1781{ 'enum': 'DirtyRateMeasureMode', 1782 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] } 1783 1784## 1785# @DirtyRateInfo: 1786# 1787# Information about current dirty page rate of vm. 1788# 1789# @dirty-rate: an estimate of the dirty page rate of the VM in units of 1790# MB/s, present only when estimating the rate has completed. 1791# 1792# @status: status containing dirtyrate query status includes 1793# 'unstarted' or 'measuring' or 'measured' 1794# 1795# @start-time: start time in units of second for calculation 1796# 1797# @calc-time: time in units of second for sample dirty pages 1798# 1799# @sample-pages: page count per GB for sample dirty pages 1800# the default value is 512 (since 6.1) 1801# 1802# @mode: mode containing method of calculate dirtyrate includes 1803# 'page-sampling' and 'dirty-ring' (Since 6.2) 1804# 1805# @vcpu-dirty-rate: dirtyrate for each vcpu if dirty-ring 1806# mode specified (Since 6.2) 1807# 1808# Since: 5.2 1809## 1810{ 'struct': 'DirtyRateInfo', 1811 'data': {'*dirty-rate': 'int64', 1812 'status': 'DirtyRateStatus', 1813 'start-time': 'int64', 1814 'calc-time': 'int64', 1815 'sample-pages': 'uint64', 1816 'mode': 'DirtyRateMeasureMode', 1817 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } } 1818 1819## 1820# @calc-dirty-rate: 1821# 1822# start calculating dirty page rate for vm 1823# 1824# @calc-time: time in units of second for sample dirty pages 1825# 1826# @sample-pages: page count per GB for sample dirty pages 1827# the default value is 512 (since 6.1) 1828# 1829# @mode: mechanism of calculating dirtyrate includes 1830# 'page-sampling' and 'dirty-ring' (Since 6.1) 1831# 1832# Since: 5.2 1833# 1834# Example: 1835# 1836# {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1, 1837# 'sample-pages': 512} } 1838# 1839## 1840{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64', 1841 '*sample-pages': 'int', 1842 '*mode': 'DirtyRateMeasureMode'} } 1843 1844## 1845# @query-dirty-rate: 1846# 1847# query dirty page rate in units of MB/s for vm 1848# 1849# Since: 5.2 1850## 1851{ 'command': 'query-dirty-rate', 'returns': 'DirtyRateInfo' } 1852 1853## 1854# @DirtyLimitInfo: 1855# 1856# Dirty page rate limit information of a virtual CPU. 1857# 1858# @cpu-index: index of a virtual CPU. 1859# 1860# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual 1861# CPU, 0 means unlimited. 1862# 1863# @current-rate: current dirty page rate (MB/s) for a virtual CPU. 1864# 1865# Since: 7.1 1866# 1867## 1868{ 'struct': 'DirtyLimitInfo', 1869 'data': { 'cpu-index': 'int', 1870 'limit-rate': 'uint64', 1871 'current-rate': 'uint64' } } 1872 1873## 1874# @set-vcpu-dirty-limit: 1875# 1876# Set the upper limit of dirty page rate for virtual CPUs. 1877# 1878# Requires KVM with accelerator property "dirty-ring-size" set. 1879# A virtual CPU's dirty page rate is a measure of its memory load. 1880# To observe dirty page rates, use @calc-dirty-rate. 1881# 1882# @cpu-index: index of a virtual CPU, default is all. 1883# 1884# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs. 1885# 1886# Since: 7.1 1887# 1888# Example: 1889# {"execute": "set-vcpu-dirty-limit"} 1890# "arguments": { "dirty-rate": 200, 1891# "cpu-index": 1 } } 1892# 1893## 1894{ 'command': 'set-vcpu-dirty-limit', 1895 'data': { '*cpu-index': 'int', 1896 'dirty-rate': 'uint64' } } 1897 1898## 1899# @cancel-vcpu-dirty-limit: 1900# 1901# Cancel the upper limit of dirty page rate for virtual CPUs. 1902# 1903# Cancel the dirty page limit for the vCPU which has been set with 1904# set-vcpu-dirty-limit command. Note that this command requires 1905# support from dirty ring, same as the "set-vcpu-dirty-limit". 1906# 1907# @cpu-index: index of a virtual CPU, default is all. 1908# 1909# Since: 7.1 1910# 1911# Example: 1912# {"execute": "cancel-vcpu-dirty-limit"} 1913# "arguments": { "cpu-index": 1 } } 1914# 1915## 1916{ 'command': 'cancel-vcpu-dirty-limit', 1917 'data': { '*cpu-index': 'int'} } 1918 1919## 1920# @query-vcpu-dirty-limit: 1921# 1922# Returns information about virtual CPU dirty page rate limits, if any. 1923# 1924# Since: 7.1 1925# 1926# Example: 1927# {"execute": "query-vcpu-dirty-limit"} 1928# 1929## 1930{ 'command': 'query-vcpu-dirty-limit', 1931 'returns': [ 'DirtyLimitInfo' ] } 1932 1933## 1934# @MigrationThreadInfo: 1935# 1936# Information about migrationthreads 1937# 1938# @name: the name of migration thread 1939# 1940# @thread-id: ID of the underlying host thread 1941# 1942# Since: 7.2 1943## 1944{ 'struct': 'MigrationThreadInfo', 1945 'data': {'name': 'str', 1946 'thread-id': 'int'} } 1947 1948## 1949# @query-migrationthreads: 1950# 1951# Returns information of migration threads 1952# 1953# data: migration thread name 1954# 1955# returns: information about migration threads 1956# 1957# Since: 7.2 1958## 1959{ 'command': 'query-migrationthreads', 1960 'returns': ['MigrationThreadInfo'] } 1961 1962## 1963# @snapshot-save: 1964# 1965# Save a VM snapshot 1966# 1967# @job-id: identifier for the newly created job 1968# @tag: name of the snapshot to create 1969# @vmstate: block device node name to save vmstate to 1970# @devices: list of block device node names to save a snapshot to 1971# 1972# Applications should not assume that the snapshot save is complete 1973# when this command returns. The job commands / events must be used 1974# to determine completion and to fetch details of any errors that arise. 1975# 1976# Note that execution of the guest CPUs may be stopped during the 1977# time it takes to save the snapshot. A future version of QEMU 1978# may ensure CPUs are executing continuously. 1979# 1980# It is strongly recommended that @devices contain all writable 1981# block device nodes if a consistent snapshot is required. 1982# 1983# If @tag already exists, an error will be reported 1984# 1985# Returns: nothing 1986# 1987# Example: 1988# 1989# -> { "execute": "snapshot-save", 1990# "arguments": { 1991# "job-id": "snapsave0", 1992# "tag": "my-snap", 1993# "vmstate": "disk0", 1994# "devices": ["disk0", "disk1"] 1995# } 1996# } 1997# <- { "return": { } } 1998# <- {"event": "JOB_STATUS_CHANGE", 1999# "timestamp": {"seconds": 1432121972, "microseconds": 744001}, 2000# "data": {"status": "created", "id": "snapsave0"}} 2001# <- {"event": "JOB_STATUS_CHANGE", 2002# "timestamp": {"seconds": 1432122172, "microseconds": 744001}, 2003# "data": {"status": "running", "id": "snapsave0"}} 2004# <- {"event": "STOP", 2005# "timestamp": {"seconds": 1432122372, "microseconds": 744001} } 2006# <- {"event": "RESUME", 2007# "timestamp": {"seconds": 1432122572, "microseconds": 744001} } 2008# <- {"event": "JOB_STATUS_CHANGE", 2009# "timestamp": {"seconds": 1432122772, "microseconds": 744001}, 2010# "data": {"status": "waiting", "id": "snapsave0"}} 2011# <- {"event": "JOB_STATUS_CHANGE", 2012# "timestamp": {"seconds": 1432122972, "microseconds": 744001}, 2013# "data": {"status": "pending", "id": "snapsave0"}} 2014# <- {"event": "JOB_STATUS_CHANGE", 2015# "timestamp": {"seconds": 1432123172, "microseconds": 744001}, 2016# "data": {"status": "concluded", "id": "snapsave0"}} 2017# -> {"execute": "query-jobs"} 2018# <- {"return": [{"current-progress": 1, 2019# "status": "concluded", 2020# "total-progress": 1, 2021# "type": "snapshot-save", 2022# "id": "snapsave0"}]} 2023# 2024# Since: 6.0 2025## 2026{ 'command': 'snapshot-save', 2027 'data': { 'job-id': 'str', 2028 'tag': 'str', 2029 'vmstate': 'str', 2030 'devices': ['str'] } } 2031 2032## 2033# @snapshot-load: 2034# 2035# Load a VM snapshot 2036# 2037# @job-id: identifier for the newly created job 2038# @tag: name of the snapshot to load. 2039# @vmstate: block device node name to load vmstate from 2040# @devices: list of block device node names to load a snapshot from 2041# 2042# Applications should not assume that the snapshot load is complete 2043# when this command returns. The job commands / events must be used 2044# to determine completion and to fetch details of any errors that arise. 2045# 2046# Note that execution of the guest CPUs will be stopped during the 2047# time it takes to load the snapshot. 2048# 2049# It is strongly recommended that @devices contain all writable 2050# block device nodes that can have changed since the original 2051# @snapshot-save command execution. 2052# 2053# Returns: nothing 2054# 2055# Example: 2056# 2057# -> { "execute": "snapshot-load", 2058# "arguments": { 2059# "job-id": "snapload0", 2060# "tag": "my-snap", 2061# "vmstate": "disk0", 2062# "devices": ["disk0", "disk1"] 2063# } 2064# } 2065# <- { "return": { } } 2066# <- {"event": "JOB_STATUS_CHANGE", 2067# "timestamp": {"seconds": 1472124172, "microseconds": 744001}, 2068# "data": {"status": "created", "id": "snapload0"}} 2069# <- {"event": "JOB_STATUS_CHANGE", 2070# "timestamp": {"seconds": 1472125172, "microseconds": 744001}, 2071# "data": {"status": "running", "id": "snapload0"}} 2072# <- {"event": "STOP", 2073# "timestamp": {"seconds": 1472125472, "microseconds": 744001} } 2074# <- {"event": "RESUME", 2075# "timestamp": {"seconds": 1472125872, "microseconds": 744001} } 2076# <- {"event": "JOB_STATUS_CHANGE", 2077# "timestamp": {"seconds": 1472126172, "microseconds": 744001}, 2078# "data": {"status": "waiting", "id": "snapload0"}} 2079# <- {"event": "JOB_STATUS_CHANGE", 2080# "timestamp": {"seconds": 1472127172, "microseconds": 744001}, 2081# "data": {"status": "pending", "id": "snapload0"}} 2082# <- {"event": "JOB_STATUS_CHANGE", 2083# "timestamp": {"seconds": 1472128172, "microseconds": 744001}, 2084# "data": {"status": "concluded", "id": "snapload0"}} 2085# -> {"execute": "query-jobs"} 2086# <- {"return": [{"current-progress": 1, 2087# "status": "concluded", 2088# "total-progress": 1, 2089# "type": "snapshot-load", 2090# "id": "snapload0"}]} 2091# 2092# Since: 6.0 2093## 2094{ 'command': 'snapshot-load', 2095 'data': { 'job-id': 'str', 2096 'tag': 'str', 2097 'vmstate': 'str', 2098 'devices': ['str'] } } 2099 2100## 2101# @snapshot-delete: 2102# 2103# Delete a VM snapshot 2104# 2105# @job-id: identifier for the newly created job 2106# @tag: name of the snapshot to delete. 2107# @devices: list of block device node names to delete a snapshot from 2108# 2109# Applications should not assume that the snapshot delete is complete 2110# when this command returns. The job commands / events must be used 2111# to determine completion and to fetch details of any errors that arise. 2112# 2113# Returns: nothing 2114# 2115# Example: 2116# 2117# -> { "execute": "snapshot-delete", 2118# "arguments": { 2119# "job-id": "snapdelete0", 2120# "tag": "my-snap", 2121# "devices": ["disk0", "disk1"] 2122# } 2123# } 2124# <- { "return": { } } 2125# <- {"event": "JOB_STATUS_CHANGE", 2126# "timestamp": {"seconds": 1442124172, "microseconds": 744001}, 2127# "data": {"status": "created", "id": "snapdelete0"}} 2128# <- {"event": "JOB_STATUS_CHANGE", 2129# "timestamp": {"seconds": 1442125172, "microseconds": 744001}, 2130# "data": {"status": "running", "id": "snapdelete0"}} 2131# <- {"event": "JOB_STATUS_CHANGE", 2132# "timestamp": {"seconds": 1442126172, "microseconds": 744001}, 2133# "data": {"status": "waiting", "id": "snapdelete0"}} 2134# <- {"event": "JOB_STATUS_CHANGE", 2135# "timestamp": {"seconds": 1442127172, "microseconds": 744001}, 2136# "data": {"status": "pending", "id": "snapdelete0"}} 2137# <- {"event": "JOB_STATUS_CHANGE", 2138# "timestamp": {"seconds": 1442128172, "microseconds": 744001}, 2139# "data": {"status": "concluded", "id": "snapdelete0"}} 2140# -> {"execute": "query-jobs"} 2141# <- {"return": [{"current-progress": 1, 2142# "status": "concluded", 2143# "total-progress": 1, 2144# "type": "snapshot-delete", 2145# "id": "snapdelete0"}]} 2146# 2147# Since: 6.0 2148## 2149{ 'command': 'snapshot-delete', 2150 'data': { 'job-id': 'str', 2151 'tag': 'str', 2152 'devices': ['str'] } } 2153