1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4 5## 6# = Migration 7## 8 9{ 'include': 'common.json' } 10{ 'include': 'sockets.json' } 11 12## 13# @MigrationStats: 14# 15# Detailed migration status. 16# 17# @transferred: amount of bytes already transferred to the target VM 18# 19# @remaining: amount of bytes remaining to be transferred to the 20# target VM 21# 22# @total: total amount of bytes involved in the migration process 23# 24# @duplicate: number of duplicate (zero) pages (since 1.2) 25# 26# @normal: number of normal pages (since 1.2) 27# 28# @normal-bytes: number of normal bytes sent (since 1.2) 29# 30# @dirty-pages-rate: number of pages dirtied by second by the guest 31# (since 1.3) 32# 33# @mbps: throughput in megabits/sec. (since 1.6) 34# 35# @dirty-sync-count: number of times that dirty ram was synchronized 36# (since 2.1) 37# 38# @postcopy-requests: The number of page requests received from the 39# destination (since 2.7) 40# 41# @page-size: The number of bytes per page for the various page-based 42# statistics (since 2.10) 43# 44# @multifd-bytes: The number of bytes sent through multifd (since 3.0) 45# 46# @pages-per-second: the number of memory pages transferred per second 47# (Since 4.0) 48# 49# @precopy-bytes: The number of bytes sent in the pre-copy phase 50# (since 7.0). 51# 52# @downtime-bytes: The number of bytes sent while the guest is paused 53# (since 7.0). 54# 55# @postcopy-bytes: The number of bytes sent during the post-copy phase 56# (since 7.0). 57# 58# @dirty-sync-missed-zero-copy: Number of times dirty RAM 59# synchronization could not avoid copying dirty pages. This is 60# between 0 and @dirty-sync-count * @multifd-channels. (since 61# 7.1) 62# 63# Since: 0.14 64## 65{ 'struct': 'MigrationStats', 66 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' , 67 'duplicate': 'int', 68 'normal': 'int', 69 'normal-bytes': 'int', 'dirty-pages-rate': 'int', 70 'mbps': 'number', 'dirty-sync-count': 'int', 71 'postcopy-requests': 'int', 'page-size': 'int', 72 'multifd-bytes': 'uint64', 'pages-per-second': 'uint64', 73 'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64', 74 'postcopy-bytes': 'uint64', 75 'dirty-sync-missed-zero-copy': 'uint64' } } 76 77## 78# @XBZRLECacheStats: 79# 80# Detailed XBZRLE migration cache statistics 81# 82# @cache-size: XBZRLE cache size 83# 84# @bytes: amount of bytes already transferred to the target VM 85# 86# @pages: amount of pages transferred to the target VM 87# 88# @cache-miss: number of cache miss 89# 90# @cache-miss-rate: rate of cache miss (since 2.1) 91# 92# @encoding-rate: rate of encoded bytes (since 5.1) 93# 94# @overflow: number of overflows 95# 96# Since: 1.2 97## 98{ 'struct': 'XBZRLECacheStats', 99 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int', 100 'cache-miss': 'int', 'cache-miss-rate': 'number', 101 'encoding-rate': 'number', 'overflow': 'int' } } 102 103## 104# @CompressionStats: 105# 106# Detailed migration compression statistics 107# 108# @pages: amount of pages compressed and transferred to the target VM 109# 110# @busy: count of times that no free thread was available to compress 111# data 112# 113# @busy-rate: rate of thread busy 114# 115# @compressed-size: amount of bytes after compression 116# 117# @compression-rate: rate of compressed size 118# 119# Since: 3.1 120## 121{ 'struct': 'CompressionStats', 122 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number', 123 'compressed-size': 'int', 'compression-rate': 'number' } } 124 125## 126# @MigrationStatus: 127# 128# An enumeration of migration status. 129# 130# @none: no migration has ever happened. 131# 132# @setup: migration process has been initiated. 133# 134# @cancelling: in the process of cancelling migration. 135# 136# @cancelled: cancelling migration is finished. 137# 138# @active: in the process of doing migration. 139# 140# @postcopy-active: like active, but now in postcopy mode. (since 141# 2.5) 142# 143# @postcopy-paused: during postcopy but paused. (since 3.0) 144# 145# @postcopy-recover: trying to recover from a paused postcopy. (since 146# 3.0) 147# 148# @completed: migration is finished. 149# 150# @failed: some error occurred during migration process. 151# 152# @colo: VM is in the process of fault tolerance, VM can not get into 153# this state unless colo capability is enabled for migration. 154# (since 2.8) 155# 156# @pre-switchover: Paused before device serialisation. (since 2.11) 157# 158# @device: During device serialisation when pause-before-switchover is 159# enabled (since 2.11) 160# 161# @wait-unplug: wait for device unplug request by guest OS to be 162# completed. (since 4.2) 163# 164# Since: 2.3 165## 166{ 'enum': 'MigrationStatus', 167 'data': [ 'none', 'setup', 'cancelling', 'cancelled', 168 'active', 'postcopy-active', 'postcopy-paused', 169 'postcopy-recover', 'completed', 'failed', 'colo', 170 'pre-switchover', 'device', 'wait-unplug' ] } 171## 172# @VfioStats: 173# 174# Detailed VFIO devices migration statistics 175# 176# @transferred: amount of bytes transferred to the target VM by VFIO 177# devices 178# 179# Since: 5.2 180## 181{ 'struct': 'VfioStats', 182 'data': {'transferred': 'int' } } 183 184## 185# @MigrationInfo: 186# 187# Information about current migration process. 188# 189# @status: @MigrationStatus describing the current migration status. 190# If this field is not returned, no migration process has been 191# initiated 192# 193# @ram: @MigrationStats containing detailed migration status, only 194# returned if status is 'active' or 'completed'(since 1.2) 195# 196# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE 197# migration statistics, only returned if XBZRLE feature is on and 198# status is 'active' or 'completed' (since 1.2) 199# 200# @total-time: total amount of milliseconds since migration started. 201# If migration has ended, it returns the total migration time. 202# (since 1.2) 203# 204# @downtime: only present when migration finishes correctly total 205# downtime in milliseconds for the guest. (since 1.3) 206# 207# @expected-downtime: only present while migration is active expected 208# downtime in milliseconds for the guest in last walk of the dirty 209# bitmap. (since 1.3) 210# 211# @setup-time: amount of setup time in milliseconds *before* the 212# iterations begin but *after* the QMP command is issued. This is 213# designed to provide an accounting of any activities (such as 214# RDMA pinning) which may be expensive, but do not actually occur 215# during the iterative migration rounds themselves. (since 1.6) 216# 217# @cpu-throttle-percentage: percentage of time guest cpus are being 218# throttled during auto-converge. This is only present when 219# auto-converge has started throttling guest cpus. (Since 2.7) 220# 221# @error-desc: the human readable error description string. Clients 222# should not attempt to parse the error strings. (Since 2.7) 223# 224# @postcopy-blocktime: total time when all vCPU were blocked during 225# postcopy live migration. This is only present when the 226# postcopy-blocktime migration capability is enabled. (Since 3.0) 227# 228# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. 229# This is only present when the postcopy-blocktime migration 230# capability is enabled. (Since 3.0) 231# 232# @socket-address: Only used for tcp, to know what the real port is 233# (Since 4.0) 234# 235# @vfio: @VfioStats containing detailed VFIO devices migration 236# statistics, only returned if VFIO device is present, migration 237# is supported by all VFIO devices and status is 'active' or 238# 'completed' (since 5.2) 239# 240# @blocked-reasons: A list of reasons an outgoing migration is 241# blocked. Present and non-empty when migration is blocked. 242# (since 6.0) 243# 244# @dirty-limit-throttle-time-per-round: Maximum throttle time 245# (in microseconds) of virtual CPUs each dirty ring full round, 246# which shows how MigrationCapability dirty-limit affects the 247# guest during live migration. (Since 8.1) 248# 249# @dirty-limit-ring-full-time: Estimated average dirty ring full time 250# (in microseconds) for each dirty ring full round. The value 251# equals the dirty ring memory size divided by the average dirty 252# page rate of the virtual CPU, which can be used to observe the 253# average memory load of the virtual CPU indirectly. Note that 254# zero means guest doesn't dirty memory. (Since 8.1) 255# 256# Since: 0.14 257## 258{ 'struct': 'MigrationInfo', 259 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats', 260 '*vfio': 'VfioStats', 261 '*xbzrle-cache': 'XBZRLECacheStats', 262 '*total-time': 'int', 263 '*expected-downtime': 'int', 264 '*downtime': 'int', 265 '*setup-time': 'int', 266 '*cpu-throttle-percentage': 'int', 267 '*error-desc': 'str', 268 '*blocked-reasons': ['str'], 269 '*postcopy-blocktime': 'uint32', 270 '*postcopy-vcpu-blocktime': ['uint32'], 271 '*socket-address': ['SocketAddress'], 272 '*dirty-limit-throttle-time-per-round': 'uint64', 273 '*dirty-limit-ring-full-time': 'uint64'} } 274 275## 276# @query-migrate: 277# 278# Returns information about current migration process. If migration 279# is active there will be another json-object with RAM migration 280# status. 281# 282# Returns: @MigrationInfo 283# 284# Since: 0.14 285# 286# Examples: 287# 288# 1. Before the first migration 289# 290# -> { "execute": "query-migrate" } 291# <- { "return": {} } 292# 293# 2. Migration is done and has succeeded 294# 295# -> { "execute": "query-migrate" } 296# <- { "return": { 297# "status": "completed", 298# "total-time":12345, 299# "setup-time":12345, 300# "downtime":12345, 301# "ram":{ 302# "transferred":123, 303# "remaining":123, 304# "total":246, 305# "duplicate":123, 306# "normal":123, 307# "normal-bytes":123456, 308# "dirty-sync-count":15 309# } 310# } 311# } 312# 313# 3. Migration is done and has failed 314# 315# -> { "execute": "query-migrate" } 316# <- { "return": { "status": "failed" } } 317# 318# 4. Migration is being performed: 319# 320# -> { "execute": "query-migrate" } 321# <- { 322# "return":{ 323# "status":"active", 324# "total-time":12345, 325# "setup-time":12345, 326# "expected-downtime":12345, 327# "ram":{ 328# "transferred":123, 329# "remaining":123, 330# "total":246, 331# "duplicate":123, 332# "normal":123, 333# "normal-bytes":123456, 334# "dirty-sync-count":15 335# } 336# } 337# } 338# 339# 5. Migration is being performed and XBZRLE is active: 340# 341# -> { "execute": "query-migrate" } 342# <- { 343# "return":{ 344# "status":"active", 345# "total-time":12345, 346# "setup-time":12345, 347# "expected-downtime":12345, 348# "ram":{ 349# "total":1057024, 350# "remaining":1053304, 351# "transferred":3720, 352# "duplicate":10, 353# "normal":3333, 354# "normal-bytes":3412992, 355# "dirty-sync-count":15 356# }, 357# "xbzrle-cache":{ 358# "cache-size":67108864, 359# "bytes":20971520, 360# "pages":2444343, 361# "cache-miss":2244, 362# "cache-miss-rate":0.123, 363# "encoding-rate":80.1, 364# "overflow":34434 365# } 366# } 367# } 368## 369{ 'command': 'query-migrate', 'returns': 'MigrationInfo' } 370 371## 372# @MigrationCapability: 373# 374# Migration capabilities enumeration 375# 376# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length 377# Encoding). This feature allows us to minimize migration traffic 378# for certain work loads, by sending compressed difference of the 379# pages 380# 381# @rdma-pin-all: Controls whether or not the entire VM memory 382# footprint is mlock()'d on demand or all at once. Refer to 383# docs/rdma.txt for usage. Disabled by default. (since 2.0) 384# 385# @zero-blocks: During storage migration encode blocks of zeroes 386# efficiently. This essentially saves 1MB of zeroes per block on 387# the wire. Enabling requires source and target VM to support 388# this feature. To enable it is sufficient to enable the 389# capability on the source VM. The feature is disabled by default. 390# (since 1.6) 391# 392# @events: generate events for each migration state change (since 2.4) 393# 394# @auto-converge: If enabled, QEMU will automatically throttle down 395# the guest to speed up convergence of RAM migration. (since 1.6) 396# 397# @postcopy-ram: Start executing on the migration target before all of 398# RAM has been migrated, pulling the remaining pages along as 399# needed. The capacity must have the same setting on both source 400# and target or migration will not even start. NOTE: If the 401# migration fails during postcopy the VM will fail. (since 2.6) 402# 403# @x-colo: If enabled, migration will never end, and the state of the 404# VM on the primary side will be migrated continuously to the VM 405# on secondary side, this process is called COarse-Grain LOck 406# Stepping (COLO) for Non-stop Service. (since 2.8) 407# 408# @release-ram: if enabled, qemu will free the migrated ram pages on 409# the source during postcopy-ram migration. (since 2.9) 410# 411# @return-path: If enabled, migration will use the return path even 412# for precopy. (since 2.10) 413# 414# @pause-before-switchover: Pause outgoing migration before 415# serialising device state and before disabling block IO (since 416# 2.11) 417# 418# @multifd: Use more than one fd for migration (since 4.0) 419# 420# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps. 421# (since 2.12) 422# 423# @postcopy-blocktime: Calculate downtime for postcopy live migration 424# (since 3.0) 425# 426# @late-block-activate: If enabled, the destination will not activate 427# block devices (and thus take locks) immediately at the end of 428# migration. (since 3.0) 429# 430# @x-ignore-shared: If enabled, QEMU will not migrate shared memory 431# that is accessible on the destination machine. (since 4.0) 432# 433# @validate-uuid: Send the UUID of the source to allow the destination 434# to ensure it is the same. (since 4.2) 435# 436# @background-snapshot: If enabled, the migration stream will be a 437# snapshot of the VM exactly at the point when the migration 438# procedure starts. The VM RAM is saved with running VM. 439# (since 6.0) 440# 441# @zero-copy-send: Controls behavior on sending memory pages on 442# migration. When true, enables a zero-copy mechanism for sending 443# memory pages, if host supports it. Requires that QEMU be 444# permitted to use locked memory for guest RAM pages. (since 7.1) 445# 446# @postcopy-preempt: If enabled, the migration process will allow 447# postcopy requests to preempt precopy stream, so postcopy 448# requests will be handled faster. This is a performance feature 449# and should not affect the correctness of postcopy migration. 450# (since 7.1) 451# 452# @switchover-ack: If enabled, migration will not stop the source VM 453# and complete the migration until an ACK is received from the 454# destination that it's OK to do so. Exactly when this ACK is 455# sent depends on the migrated devices that use this feature. For 456# example, a device can use it to make sure some of its data is 457# sent and loaded in the destination before doing switchover. 458# This can reduce downtime if devices that support this capability 459# are present. 'return-path' capability must be enabled to use 460# it. (since 8.1) 461# 462# @dirty-limit: If enabled, migration will throttle vCPUs as needed to 463# keep their dirty page rate within @vcpu-dirty-limit. This can 464# improve responsiveness of large guests during live migration, 465# and can result in more stable read performance. Requires KVM 466# with accelerator property "dirty-ring-size" set. (Since 8.1) 467# 468# @mapped-ram: Migrate using fixed offsets in the migration file for 469# each RAM page. Requires a migration URI that supports seeking, 470# such as a file. (since 9.0) 471# 472# Features: 473# 474# @unstable: Members @x-colo and @x-ignore-shared are experimental. 475# 476# Since: 1.2 477## 478{ 'enum': 'MigrationCapability', 479 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks', 480 'events', 'postcopy-ram', 481 { 'name': 'x-colo', 'features': [ 'unstable' ] }, 482 'release-ram', 483 'return-path', 'pause-before-switchover', 'multifd', 484 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate', 485 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] }, 486 'validate-uuid', 'background-snapshot', 487 'zero-copy-send', 'postcopy-preempt', 'switchover-ack', 488 'dirty-limit', 'mapped-ram'] } 489 490## 491# @MigrationCapabilityStatus: 492# 493# Migration capability information 494# 495# @capability: capability enum 496# 497# @state: capability state bool 498# 499# Since: 1.2 500## 501{ 'struct': 'MigrationCapabilityStatus', 502 'data': { 'capability': 'MigrationCapability', 'state': 'bool' } } 503 504## 505# @migrate-set-capabilities: 506# 507# Enable/Disable the following migration capabilities (like xbzrle) 508# 509# @capabilities: json array of capability modifications to make 510# 511# Since: 1.2 512# 513# Example: 514# 515# -> { "execute": "migrate-set-capabilities" , "arguments": 516# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } } 517# <- { "return": {} } 518## 519{ 'command': 'migrate-set-capabilities', 520 'data': { 'capabilities': ['MigrationCapabilityStatus'] } } 521 522## 523# @query-migrate-capabilities: 524# 525# Returns information about the current migration capabilities status 526# 527# Returns: @MigrationCapabilityStatus 528# 529# Since: 1.2 530# 531# Example: 532# 533# -> { "execute": "query-migrate-capabilities" } 534# <- { "return": [ 535# {"state": false, "capability": "xbzrle"}, 536# {"state": false, "capability": "rdma-pin-all"}, 537# {"state": false, "capability": "auto-converge"}, 538# {"state": false, "capability": "zero-blocks"}, 539# {"state": true, "capability": "events"}, 540# {"state": false, "capability": "postcopy-ram"}, 541# {"state": false, "capability": "x-colo"} 542# ]} 543## 544{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']} 545 546## 547# @MultiFDCompression: 548# 549# An enumeration of multifd compression methods. 550# 551# @none: no compression. 552# 553# @zlib: use zlib compression method. 554# 555# @zstd: use zstd compression method. 556# 557# Since: 5.0 558## 559{ 'enum': 'MultiFDCompression', 560 'data': [ 'none', 'zlib', 561 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] } 562 563## 564# @MigMode: 565# 566# @normal: the original form of migration. (since 8.2) 567# 568# @cpr-reboot: The migrate command stops the VM and saves state to the 569# URI. After quitting QEMU, the user resumes by running QEMU 570# -incoming. 571# 572# This mode allows the user to quit QEMU, optionally update and 573# reboot the OS, and restart QEMU. If the user reboots, the URI 574# must persist across the reboot, such as by using a file. 575# 576# Unlike normal mode, the use of certain local storage options 577# does not block the migration, but the user must not modify the 578# contents of guest block devices between the quit and restart. 579# 580# This mode supports VFIO devices provided the user first puts the 581# guest in the suspended runstate, such as by issuing 582# guest-suspend-ram to the QEMU guest agent. 583# 584# Best performance is achieved when the memory backend is shared 585# and the @x-ignore-shared migration capability is set, but this 586# is not required. Further, if the user reboots before restarting 587# such a configuration, the shared memory must persist across the 588# reboot, such as by backing it with a dax device. 589# 590# @cpr-reboot may not be used with postcopy, background-snapshot, 591# or COLO. 592# 593# (since 8.2) 594## 595{ 'enum': 'MigMode', 596 'data': [ 'normal', 'cpr-reboot' ] } 597 598## 599# @ZeroPageDetection: 600# 601# @none: Do not perform zero page checking. 602# 603# @legacy: Perform zero page checking in main migration thread. 604# 605# @multifd: Perform zero page checking in multifd sender thread if 606# multifd migration is enabled, else in the main migration thread 607# as for @legacy. 608# 609# Since: 9.0 610## 611{ 'enum': 'ZeroPageDetection', 612 'data': [ 'none', 'legacy', 'multifd' ] } 613 614## 615# @BitmapMigrationBitmapAliasTransform: 616# 617# @persistent: If present, the bitmap will be made persistent or 618# transient depending on this parameter. 619# 620# Since: 6.0 621## 622{ 'struct': 'BitmapMigrationBitmapAliasTransform', 623 'data': { 624 '*persistent': 'bool' 625 } } 626 627## 628# @BitmapMigrationBitmapAlias: 629# 630# @name: The name of the bitmap. 631# 632# @alias: An alias name for migration (for example the bitmap name on 633# the opposite site). 634# 635# @transform: Allows the modification of the migrated bitmap. (since 636# 6.0) 637# 638# Since: 5.2 639## 640{ 'struct': 'BitmapMigrationBitmapAlias', 641 'data': { 642 'name': 'str', 643 'alias': 'str', 644 '*transform': 'BitmapMigrationBitmapAliasTransform' 645 } } 646 647## 648# @BitmapMigrationNodeAlias: 649# 650# Maps a block node name and the bitmaps it has to aliases for dirty 651# bitmap migration. 652# 653# @node-name: A block node name. 654# 655# @alias: An alias block node name for migration (for example the node 656# name on the opposite site). 657# 658# @bitmaps: Mappings for the bitmaps on this node. 659# 660# Since: 5.2 661## 662{ 'struct': 'BitmapMigrationNodeAlias', 663 'data': { 664 'node-name': 'str', 665 'alias': 'str', 666 'bitmaps': [ 'BitmapMigrationBitmapAlias' ] 667 } } 668 669## 670# @MigrationParameter: 671# 672# Migration parameters enumeration 673# 674# @announce-initial: Initial delay (in milliseconds) before sending 675# the first announce (Since 4.0) 676# 677# @announce-max: Maximum delay (in milliseconds) between packets in 678# the announcement (Since 4.0) 679# 680# @announce-rounds: Number of self-announce packets sent after 681# migration (Since 4.0) 682# 683# @announce-step: Increase in delay (in milliseconds) between 684# subsequent packets in the announcement (Since 4.0) 685# 686# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 687# bytes_xfer_period to trigger throttling. It is expressed as 688# percentage. The default value is 50. (Since 5.0) 689# 690# @cpu-throttle-initial: Initial percentage of time guest cpus are 691# throttled when migration auto-converge is activated. The 692# default value is 20. (Since 2.7) 693# 694# @cpu-throttle-increment: throttle percentage increase each time 695# auto-converge detects that migration is not making progress. 696# The default value is 10. (Since 2.7) 697# 698# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 699# the tail stage of throttling, the Guest is very sensitive to CPU 700# percentage while the @cpu-throttle -increment is excessive 701# usually at tail stage. If this parameter is true, we will 702# compute the ideal CPU percentage used by the Guest, which may 703# exactly make the dirty rate match the dirty rate threshold. 704# Then we will choose a smaller throttle increment between the one 705# specified by @cpu-throttle-increment and the one generated by 706# ideal CPU percentage. Therefore, it is compatible to 707# traditional throttling, meanwhile the throttle increment won't 708# be excessive at tail stage. The default value is false. (Since 709# 5.1) 710# 711# @tls-creds: ID of the 'tls-creds' object that provides credentials 712# for establishing a TLS connection over the migration data 713# channel. On the outgoing side of the migration, the credentials 714# must be for a 'client' endpoint, while for the incoming side the 715# credentials must be for a 'server' endpoint. Setting this to a 716# non-empty string enables TLS for all migrations. An empty 717# string means that QEMU will use plain text mode for migration, 718# rather than TLS. (Since 2.7) 719# 720# @tls-hostname: migration target's hostname for validating the 721# server's x509 certificate identity. If empty, QEMU will use the 722# hostname from the migration URI, if any. A non-empty value is 723# required when using x509 based TLS credentials and the migration 724# URI does not include a hostname, such as fd: or exec: based 725# migration. (Since 2.7) 726# 727# Note: empty value works only since 2.9. 728# 729# @tls-authz: ID of the 'authz' object subclass that provides access 730# control checking of the TLS x509 certificate distinguished name. 731# This object is only resolved at time of use, so can be deleted 732# and recreated on the fly while the migration server is active. 733# If missing, it will default to denying access (Since 4.0) 734# 735# @max-bandwidth: maximum speed for migration, in bytes per second. 736# (Since 2.8) 737# 738# @avail-switchover-bandwidth: to set the available bandwidth that 739# migration can use during switchover phase. NOTE! This does not 740# limit the bandwidth during switchover, but only for calculations 741# when making decisions to switchover. By default, this value is 742# zero, which means QEMU will estimate the bandwidth 743# automatically. This can be set when the estimated value is not 744# accurate, while the user is able to guarantee such bandwidth is 745# available when switching over. When specified correctly, this 746# can make the switchover decision much more accurate. 747# (Since 8.2) 748# 749# @downtime-limit: set maximum tolerated downtime for migration. 750# maximum downtime in milliseconds (Since 2.8) 751# 752# @x-checkpoint-delay: The delay time (in ms) between two COLO 753# checkpoints in periodic mode. (Since 2.8) 754# 755# @multifd-channels: Number of channels used to migrate data in 756# parallel. This is the same number that the number of sockets 757# used for migration. The default value is 2 (since 4.0) 758# 759# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 760# needs to be a multiple of the target page size and a power of 2 761# (Since 2.11) 762# 763# @max-postcopy-bandwidth: Background transfer bandwidth during 764# postcopy. Defaults to 0 (unlimited). In bytes per second. 765# (Since 3.0) 766# 767# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 768# (Since 3.1) 769# 770# @multifd-compression: Which compression method to use. Defaults to 771# none. (Since 5.0) 772# 773# @multifd-zlib-level: Set the compression level to be used in live 774# migration, the compression level is an integer between 0 and 9, 775# where 0 means no compression, 1 means the best compression 776# speed, and 9 means best compression ratio which will consume 777# more CPU. Defaults to 1. (Since 5.0) 778# 779# @multifd-zstd-level: Set the compression level to be used in live 780# migration, the compression level is an integer between 0 and 20, 781# where 0 means no compression, 1 means the best compression 782# speed, and 20 means best compression ratio which will consume 783# more CPU. Defaults to 1. (Since 5.0) 784# 785# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 786# aliases for the purpose of dirty bitmap migration. Such aliases 787# may for example be the corresponding names on the opposite site. 788# The mapping must be one-to-one, but not necessarily complete: On 789# the source, unmapped bitmaps and all bitmaps on unmapped nodes 790# will be ignored. On the destination, encountering an unmapped 791# alias in the incoming migration stream will result in a report, 792# and all further bitmap migration data will then be discarded. 793# Note that the destination does not know about bitmaps it does 794# not receive, so there is no limitation or requirement regarding 795# the number of bitmaps received, or how they are named, or on 796# which nodes they are placed. By default (when this parameter 797# has never been set), bitmap names are mapped to themselves. 798# Nodes are mapped to their block device name if there is one, and 799# to their node name otherwise. (Since 5.2) 800# 801# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 802# limit during live migration. Should be in the range 1 to 803# 1000ms. Defaults to 1000ms. (Since 8.1) 804# 805# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 806# Defaults to 1. (Since 8.1) 807# 808# @mode: Migration mode. See description in @MigMode. Default is 809# 'normal'. (Since 8.2) 810# 811# @zero-page-detection: Whether and how to detect zero pages. 812# See description in @ZeroPageDetection. Default is 'multifd'. 813# (since 9.0) 814# 815# Features: 816# 817# @unstable: Members @x-checkpoint-delay and 818# @x-vcpu-dirty-limit-period are experimental. 819# 820# Since: 2.4 821## 822{ 'enum': 'MigrationParameter', 823 'data': ['announce-initial', 'announce-max', 824 'announce-rounds', 'announce-step', 825 'throttle-trigger-threshold', 826 'cpu-throttle-initial', 'cpu-throttle-increment', 827 'cpu-throttle-tailslow', 828 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth', 829 'avail-switchover-bandwidth', 'downtime-limit', 830 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] }, 831 'multifd-channels', 832 'xbzrle-cache-size', 'max-postcopy-bandwidth', 833 'max-cpu-throttle', 'multifd-compression', 834 'multifd-zlib-level', 'multifd-zstd-level', 835 'block-bitmap-mapping', 836 { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] }, 837 'vcpu-dirty-limit', 838 'mode', 839 'zero-page-detection'] } 840 841## 842# @MigrateSetParameters: 843# 844# @announce-initial: Initial delay (in milliseconds) before sending 845# the first announce (Since 4.0) 846# 847# @announce-max: Maximum delay (in milliseconds) between packets in 848# the announcement (Since 4.0) 849# 850# @announce-rounds: Number of self-announce packets sent after 851# migration (Since 4.0) 852# 853# @announce-step: Increase in delay (in milliseconds) between 854# subsequent packets in the announcement (Since 4.0) 855# 856# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 857# bytes_xfer_period to trigger throttling. It is expressed as 858# percentage. The default value is 50. (Since 5.0) 859# 860# @cpu-throttle-initial: Initial percentage of time guest cpus are 861# throttled when migration auto-converge is activated. The 862# default value is 20. (Since 2.7) 863# 864# @cpu-throttle-increment: throttle percentage increase each time 865# auto-converge detects that migration is not making progress. 866# The default value is 10. (Since 2.7) 867# 868# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 869# the tail stage of throttling, the Guest is very sensitive to CPU 870# percentage while the @cpu-throttle -increment is excessive 871# usually at tail stage. If this parameter is true, we will 872# compute the ideal CPU percentage used by the Guest, which may 873# exactly make the dirty rate match the dirty rate threshold. 874# Then we will choose a smaller throttle increment between the one 875# specified by @cpu-throttle-increment and the one generated by 876# ideal CPU percentage. Therefore, it is compatible to 877# traditional throttling, meanwhile the throttle increment won't 878# be excessive at tail stage. The default value is false. (Since 879# 5.1) 880# 881# @tls-creds: ID of the 'tls-creds' object that provides credentials 882# for establishing a TLS connection over the migration data 883# channel. On the outgoing side of the migration, the credentials 884# must be for a 'client' endpoint, while for the incoming side the 885# credentials must be for a 'server' endpoint. Setting this to a 886# non-empty string enables TLS for all migrations. An empty 887# string means that QEMU will use plain text mode for migration, 888# rather than TLS. This is the default. (Since 2.7) 889# 890# @tls-hostname: migration target's hostname for validating the 891# server's x509 certificate identity. If empty, QEMU will use the 892# hostname from the migration URI, if any. A non-empty value is 893# required when using x509 based TLS credentials and the migration 894# URI does not include a hostname, such as fd: or exec: based 895# migration. (Since 2.7) 896# 897# Note: empty value works only since 2.9. 898# 899# @tls-authz: ID of the 'authz' object subclass that provides access 900# control checking of the TLS x509 certificate distinguished name. 901# This object is only resolved at time of use, so can be deleted 902# and recreated on the fly while the migration server is active. 903# If missing, it will default to denying access (Since 4.0) 904# 905# @max-bandwidth: maximum speed for migration, in bytes per second. 906# (Since 2.8) 907# 908# @avail-switchover-bandwidth: to set the available bandwidth that 909# migration can use during switchover phase. NOTE! This does not 910# limit the bandwidth during switchover, but only for calculations 911# when making decisions to switchover. By default, this value is 912# zero, which means QEMU will estimate the bandwidth 913# automatically. This can be set when the estimated value is not 914# accurate, while the user is able to guarantee such bandwidth is 915# available when switching over. When specified correctly, this 916# can make the switchover decision much more accurate. 917# (Since 8.2) 918# 919# @downtime-limit: set maximum tolerated downtime for migration. 920# maximum downtime in milliseconds (Since 2.8) 921# 922# @x-checkpoint-delay: The delay time (in ms) between two COLO 923# checkpoints in periodic mode. (Since 2.8) 924# 925# @multifd-channels: Number of channels used to migrate data in 926# parallel. This is the same number that the number of sockets 927# used for migration. The default value is 2 (since 4.0) 928# 929# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 930# needs to be a multiple of the target page size and a power of 2 931# (Since 2.11) 932# 933# @max-postcopy-bandwidth: Background transfer bandwidth during 934# postcopy. Defaults to 0 (unlimited). In bytes per second. 935# (Since 3.0) 936# 937# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 938# (Since 3.1) 939# 940# @multifd-compression: Which compression method to use. Defaults to 941# none. (Since 5.0) 942# 943# @multifd-zlib-level: Set the compression level to be used in live 944# migration, the compression level is an integer between 0 and 9, 945# where 0 means no compression, 1 means the best compression 946# speed, and 9 means best compression ratio which will consume 947# more CPU. Defaults to 1. (Since 5.0) 948# 949# @multifd-zstd-level: Set the compression level to be used in live 950# migration, the compression level is an integer between 0 and 20, 951# where 0 means no compression, 1 means the best compression 952# speed, and 20 means best compression ratio which will consume 953# more CPU. Defaults to 1. (Since 5.0) 954# 955# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 956# aliases for the purpose of dirty bitmap migration. Such aliases 957# may for example be the corresponding names on the opposite site. 958# The mapping must be one-to-one, but not necessarily complete: On 959# the source, unmapped bitmaps and all bitmaps on unmapped nodes 960# will be ignored. On the destination, encountering an unmapped 961# alias in the incoming migration stream will result in a report, 962# and all further bitmap migration data will then be discarded. 963# Note that the destination does not know about bitmaps it does 964# not receive, so there is no limitation or requirement regarding 965# the number of bitmaps received, or how they are named, or on 966# which nodes they are placed. By default (when this parameter 967# has never been set), bitmap names are mapped to themselves. 968# Nodes are mapped to their block device name if there is one, and 969# to their node name otherwise. (Since 5.2) 970# 971# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 972# limit during live migration. Should be in the range 1 to 973# 1000ms. Defaults to 1000ms. (Since 8.1) 974# 975# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 976# Defaults to 1. (Since 8.1) 977# 978# @mode: Migration mode. See description in @MigMode. Default is 979# 'normal'. (Since 8.2) 980# 981# @zero-page-detection: Whether and how to detect zero pages. 982# See description in @ZeroPageDetection. Default is 'multifd'. 983# (since 9.0) 984# 985# Features: 986# 987# @unstable: Members @x-checkpoint-delay and 988# @x-vcpu-dirty-limit-period are experimental. 989# 990# TODO: either fuse back into MigrationParameters, or make 991# MigrationParameters members mandatory 992# 993# Since: 2.4 994## 995{ 'struct': 'MigrateSetParameters', 996 'data': { '*announce-initial': 'size', 997 '*announce-max': 'size', 998 '*announce-rounds': 'size', 999 '*announce-step': 'size', 1000 '*throttle-trigger-threshold': 'uint8', 1001 '*cpu-throttle-initial': 'uint8', 1002 '*cpu-throttle-increment': 'uint8', 1003 '*cpu-throttle-tailslow': 'bool', 1004 '*tls-creds': 'StrOrNull', 1005 '*tls-hostname': 'StrOrNull', 1006 '*tls-authz': 'StrOrNull', 1007 '*max-bandwidth': 'size', 1008 '*avail-switchover-bandwidth': 'size', 1009 '*downtime-limit': 'uint64', 1010 '*x-checkpoint-delay': { 'type': 'uint32', 1011 'features': [ 'unstable' ] }, 1012 '*multifd-channels': 'uint8', 1013 '*xbzrle-cache-size': 'size', 1014 '*max-postcopy-bandwidth': 'size', 1015 '*max-cpu-throttle': 'uint8', 1016 '*multifd-compression': 'MultiFDCompression', 1017 '*multifd-zlib-level': 'uint8', 1018 '*multifd-zstd-level': 'uint8', 1019 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1020 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1021 'features': [ 'unstable' ] }, 1022 '*vcpu-dirty-limit': 'uint64', 1023 '*mode': 'MigMode', 1024 '*zero-page-detection': 'ZeroPageDetection'} } 1025 1026## 1027# @migrate-set-parameters: 1028# 1029# Set various migration parameters. 1030# 1031# Since: 2.4 1032# 1033# Example: 1034# 1035# -> { "execute": "migrate-set-parameters" , 1036# "arguments": { "multifd-channels": 5 } } 1037# <- { "return": {} } 1038## 1039{ 'command': 'migrate-set-parameters', 'boxed': true, 1040 'data': 'MigrateSetParameters' } 1041 1042## 1043# @MigrationParameters: 1044# 1045# The optional members aren't actually optional. 1046# 1047# @announce-initial: Initial delay (in milliseconds) before sending 1048# the first announce (Since 4.0) 1049# 1050# @announce-max: Maximum delay (in milliseconds) between packets in 1051# the announcement (Since 4.0) 1052# 1053# @announce-rounds: Number of self-announce packets sent after 1054# migration (Since 4.0) 1055# 1056# @announce-step: Increase in delay (in milliseconds) between 1057# subsequent packets in the announcement (Since 4.0) 1058# 1059# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 1060# bytes_xfer_period to trigger throttling. It is expressed as 1061# percentage. The default value is 50. (Since 5.0) 1062# 1063# @cpu-throttle-initial: Initial percentage of time guest cpus are 1064# throttled when migration auto-converge is activated. (Since 1065# 2.7) 1066# 1067# @cpu-throttle-increment: throttle percentage increase each time 1068# auto-converge detects that migration is not making progress. 1069# (Since 2.7) 1070# 1071# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 1072# the tail stage of throttling, the Guest is very sensitive to CPU 1073# percentage while the @cpu-throttle -increment is excessive 1074# usually at tail stage. If this parameter is true, we will 1075# compute the ideal CPU percentage used by the Guest, which may 1076# exactly make the dirty rate match the dirty rate threshold. 1077# Then we will choose a smaller throttle increment between the one 1078# specified by @cpu-throttle-increment and the one generated by 1079# ideal CPU percentage. Therefore, it is compatible to 1080# traditional throttling, meanwhile the throttle increment won't 1081# be excessive at tail stage. The default value is false. (Since 1082# 5.1) 1083# 1084# @tls-creds: ID of the 'tls-creds' object that provides credentials 1085# for establishing a TLS connection over the migration data 1086# channel. On the outgoing side of the migration, the credentials 1087# must be for a 'client' endpoint, while for the incoming side the 1088# credentials must be for a 'server' endpoint. An empty string 1089# means that QEMU will use plain text mode for migration, rather 1090# than TLS. (Since 2.7) 1091# 1092# Note: 2.8 omits empty @tls-creds instead. 1093# 1094# @tls-hostname: migration target's hostname for validating the 1095# server's x509 certificate identity. If empty, QEMU will use the 1096# hostname from the migration URI, if any. (Since 2.7) 1097# 1098# Note: 2.8 omits empty @tls-hostname instead. 1099# 1100# @tls-authz: ID of the 'authz' object subclass that provides access 1101# control checking of the TLS x509 certificate distinguished name. 1102# (Since 4.0) 1103# 1104# @max-bandwidth: maximum speed for migration, in bytes per second. 1105# (Since 2.8) 1106# 1107# @avail-switchover-bandwidth: to set the available bandwidth that 1108# migration can use during switchover phase. NOTE! This does not 1109# limit the bandwidth during switchover, but only for calculations 1110# when making decisions to switchover. By default, this value is 1111# zero, which means QEMU will estimate the bandwidth 1112# automatically. This can be set when the estimated value is not 1113# accurate, while the user is able to guarantee such bandwidth is 1114# available when switching over. When specified correctly, this 1115# can make the switchover decision much more accurate. 1116# (Since 8.2) 1117# 1118# @downtime-limit: set maximum tolerated downtime for migration. 1119# maximum downtime in milliseconds (Since 2.8) 1120# 1121# @x-checkpoint-delay: the delay time between two COLO checkpoints. 1122# (Since 2.8) 1123# 1124# @multifd-channels: Number of channels used to migrate data in 1125# parallel. This is the same number that the number of sockets 1126# used for migration. The default value is 2 (since 4.0) 1127# 1128# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1129# needs to be a multiple of the target page size and a power of 2 1130# (Since 2.11) 1131# 1132# @max-postcopy-bandwidth: Background transfer bandwidth during 1133# postcopy. Defaults to 0 (unlimited). In bytes per second. 1134# (Since 3.0) 1135# 1136# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 1137# (Since 3.1) 1138# 1139# @multifd-compression: Which compression method to use. Defaults to 1140# none. (Since 5.0) 1141# 1142# @multifd-zlib-level: Set the compression level to be used in live 1143# migration, the compression level is an integer between 0 and 9, 1144# where 0 means no compression, 1 means the best compression 1145# speed, and 9 means best compression ratio which will consume 1146# more CPU. Defaults to 1. (Since 5.0) 1147# 1148# @multifd-zstd-level: Set the compression level to be used in live 1149# migration, the compression level is an integer between 0 and 20, 1150# where 0 means no compression, 1 means the best compression 1151# speed, and 20 means best compression ratio which will consume 1152# more CPU. Defaults to 1. (Since 5.0) 1153# 1154# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1155# aliases for the purpose of dirty bitmap migration. Such aliases 1156# may for example be the corresponding names on the opposite site. 1157# The mapping must be one-to-one, but not necessarily complete: On 1158# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1159# will be ignored. On the destination, encountering an unmapped 1160# alias in the incoming migration stream will result in a report, 1161# and all further bitmap migration data will then be discarded. 1162# Note that the destination does not know about bitmaps it does 1163# not receive, so there is no limitation or requirement regarding 1164# the number of bitmaps received, or how they are named, or on 1165# which nodes they are placed. By default (when this parameter 1166# has never been set), bitmap names are mapped to themselves. 1167# Nodes are mapped to their block device name if there is one, and 1168# to their node name otherwise. (Since 5.2) 1169# 1170# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 1171# limit during live migration. Should be in the range 1 to 1172# 1000ms. Defaults to 1000ms. (Since 8.1) 1173# 1174# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1175# Defaults to 1. (Since 8.1) 1176# 1177# @mode: Migration mode. See description in @MigMode. Default is 1178# 'normal'. (Since 8.2) 1179# 1180# @zero-page-detection: Whether and how to detect zero pages. 1181# See description in @ZeroPageDetection. Default is 'multifd'. 1182# (since 9.0) 1183# 1184# Features: 1185# 1186# @unstable: Members @x-checkpoint-delay and 1187# @x-vcpu-dirty-limit-period are experimental. 1188# 1189# Since: 2.4 1190## 1191{ 'struct': 'MigrationParameters', 1192 'data': { '*announce-initial': 'size', 1193 '*announce-max': 'size', 1194 '*announce-rounds': 'size', 1195 '*announce-step': 'size', 1196 '*throttle-trigger-threshold': 'uint8', 1197 '*cpu-throttle-initial': 'uint8', 1198 '*cpu-throttle-increment': 'uint8', 1199 '*cpu-throttle-tailslow': 'bool', 1200 '*tls-creds': 'str', 1201 '*tls-hostname': 'str', 1202 '*tls-authz': 'str', 1203 '*max-bandwidth': 'size', 1204 '*avail-switchover-bandwidth': 'size', 1205 '*downtime-limit': 'uint64', 1206 '*x-checkpoint-delay': { 'type': 'uint32', 1207 'features': [ 'unstable' ] }, 1208 '*multifd-channels': 'uint8', 1209 '*xbzrle-cache-size': 'size', 1210 '*max-postcopy-bandwidth': 'size', 1211 '*max-cpu-throttle': 'uint8', 1212 '*multifd-compression': 'MultiFDCompression', 1213 '*multifd-zlib-level': 'uint8', 1214 '*multifd-zstd-level': 'uint8', 1215 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1216 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1217 'features': [ 'unstable' ] }, 1218 '*vcpu-dirty-limit': 'uint64', 1219 '*mode': 'MigMode', 1220 '*zero-page-detection': 'ZeroPageDetection'} } 1221 1222## 1223# @query-migrate-parameters: 1224# 1225# Returns information about the current migration parameters 1226# 1227# Returns: @MigrationParameters 1228# 1229# Since: 2.4 1230# 1231# Example: 1232# 1233# -> { "execute": "query-migrate-parameters" } 1234# <- { "return": { 1235# "multifd-channels": 2, 1236# "cpu-throttle-increment": 10, 1237# "cpu-throttle-initial": 20, 1238# "max-bandwidth": 33554432, 1239# "downtime-limit": 300 1240# } 1241# } 1242## 1243{ 'command': 'query-migrate-parameters', 1244 'returns': 'MigrationParameters' } 1245 1246## 1247# @migrate-start-postcopy: 1248# 1249# Followup to a migration command to switch the migration to postcopy 1250# mode. The postcopy-ram capability must be set on both source and 1251# destination before the original migration command. 1252# 1253# Since: 2.5 1254# 1255# Example: 1256# 1257# -> { "execute": "migrate-start-postcopy" } 1258# <- { "return": {} } 1259## 1260{ 'command': 'migrate-start-postcopy' } 1261 1262## 1263# @MIGRATION: 1264# 1265# Emitted when a migration event happens 1266# 1267# @status: @MigrationStatus describing the current migration status. 1268# 1269# Since: 2.4 1270# 1271# Example: 1272# 1273# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001}, 1274# "event": "MIGRATION", 1275# "data": {"status": "completed"} } 1276## 1277{ 'event': 'MIGRATION', 1278 'data': {'status': 'MigrationStatus'}} 1279 1280## 1281# @MIGRATION_PASS: 1282# 1283# Emitted from the source side of a migration at the start of each 1284# pass (when it syncs the dirty bitmap) 1285# 1286# @pass: An incrementing count (starting at 1 on the first pass) 1287# 1288# Since: 2.6 1289# 1290# Example: 1291# 1292# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225}, 1293# "event": "MIGRATION_PASS", "data": {"pass": 2} } 1294## 1295{ 'event': 'MIGRATION_PASS', 1296 'data': { 'pass': 'int' } } 1297 1298## 1299# @COLOMessage: 1300# 1301# The message transmission between Primary side and Secondary side. 1302# 1303# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing 1304# 1305# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for 1306# checkpointing 1307# 1308# @checkpoint-reply: SVM gets PVM's checkpoint request 1309# 1310# @vmstate-send: VM's state will be sent by PVM. 1311# 1312# @vmstate-size: The total size of VMstate. 1313# 1314# @vmstate-received: VM's state has been received by SVM. 1315# 1316# @vmstate-loaded: VM's state has been loaded by SVM. 1317# 1318# Since: 2.8 1319## 1320{ 'enum': 'COLOMessage', 1321 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply', 1322 'vmstate-send', 'vmstate-size', 'vmstate-received', 1323 'vmstate-loaded' ] } 1324 1325## 1326# @COLOMode: 1327# 1328# The COLO current mode. 1329# 1330# @none: COLO is disabled. 1331# 1332# @primary: COLO node in primary side. 1333# 1334# @secondary: COLO node in slave side. 1335# 1336# Since: 2.8 1337## 1338{ 'enum': 'COLOMode', 1339 'data': [ 'none', 'primary', 'secondary'] } 1340 1341## 1342# @FailoverStatus: 1343# 1344# An enumeration of COLO failover status 1345# 1346# @none: no failover has ever happened 1347# 1348# @require: got failover requirement but not handled 1349# 1350# @active: in the process of doing failover 1351# 1352# @completed: finish the process of failover 1353# 1354# @relaunch: restart the failover process, from 'none' -> 'completed' 1355# (Since 2.9) 1356# 1357# Since: 2.8 1358## 1359{ 'enum': 'FailoverStatus', 1360 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] } 1361 1362## 1363# @COLO_EXIT: 1364# 1365# Emitted when VM finishes COLO mode due to some errors happening or 1366# at the request of users. 1367# 1368# @mode: report COLO mode when COLO exited. 1369# 1370# @reason: describes the reason for the COLO exit. 1371# 1372# Since: 3.1 1373# 1374# Example: 1375# 1376# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172}, 1377# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } } 1378## 1379{ 'event': 'COLO_EXIT', 1380 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } } 1381 1382## 1383# @COLOExitReason: 1384# 1385# The reason for a COLO exit. 1386# 1387# @none: failover has never happened. This state does not occur in 1388# the COLO_EXIT event, and is only visible in the result of 1389# query-colo-status. 1390# 1391# @request: COLO exit is due to an external request. 1392# 1393# @error: COLO exit is due to an internal error. 1394# 1395# @processing: COLO is currently handling a failover (since 4.0). 1396# 1397# Since: 3.1 1398## 1399{ 'enum': 'COLOExitReason', 1400 'data': [ 'none', 'request', 'error' , 'processing' ] } 1401 1402## 1403# @x-colo-lost-heartbeat: 1404# 1405# Tell qemu that heartbeat is lost, request it to do takeover 1406# procedures. If this command is sent to the PVM, the Primary side 1407# will exit COLO mode. If sent to the Secondary, the Secondary side 1408# will run failover work, then takes over server operation to become 1409# the service VM. 1410# 1411# Features: 1412# 1413# @unstable: This command is experimental. 1414# 1415# Since: 2.8 1416# 1417# Example: 1418# 1419# -> { "execute": "x-colo-lost-heartbeat" } 1420# <- { "return": {} } 1421## 1422{ 'command': 'x-colo-lost-heartbeat', 1423 'features': [ 'unstable' ], 1424 'if': 'CONFIG_REPLICATION' } 1425 1426## 1427# @migrate_cancel: 1428# 1429# Cancel the current executing migration process. 1430# 1431# Notes: This command succeeds even if there is no migration process 1432# running. 1433# 1434# Since: 0.14 1435# 1436# Example: 1437# 1438# -> { "execute": "migrate_cancel" } 1439# <- { "return": {} } 1440## 1441{ 'command': 'migrate_cancel' } 1442 1443## 1444# @migrate-continue: 1445# 1446# Continue migration when it's in a paused state. 1447# 1448# @state: The state the migration is currently expected to be in 1449# 1450# Since: 2.11 1451# 1452# Example: 1453# 1454# -> { "execute": "migrate-continue" , "arguments": 1455# { "state": "pre-switchover" } } 1456# <- { "return": {} } 1457## 1458{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} } 1459 1460## 1461# @MigrationAddressType: 1462# 1463# The migration stream transport mechanisms. 1464# 1465# @socket: Migrate via socket. 1466# 1467# @exec: Direct the migration stream to another process. 1468# 1469# @rdma: Migrate via RDMA. 1470# 1471# @file: Direct the migration stream to a file. 1472# 1473# Since: 8.2 1474## 1475{ 'enum': 'MigrationAddressType', 1476 'data': [ 'socket', 'exec', 'rdma', 'file' ] } 1477 1478## 1479# @FileMigrationArgs: 1480# 1481# @filename: The file to receive the migration stream 1482# 1483# @offset: The file offset where the migration stream will start 1484# 1485# Since: 8.2 1486## 1487{ 'struct': 'FileMigrationArgs', 1488 'data': { 'filename': 'str', 1489 'offset': 'uint64' } } 1490 1491## 1492# @MigrationExecCommand: 1493# 1494# @args: command (list head) and arguments to execute. 1495# 1496# Since: 8.2 1497## 1498{ 'struct': 'MigrationExecCommand', 1499 'data': {'args': [ 'str' ] } } 1500 1501## 1502# @MigrationAddress: 1503# 1504# Migration endpoint configuration. 1505# 1506# @transport: The migration stream transport mechanism 1507# 1508# Since: 8.2 1509## 1510{ 'union': 'MigrationAddress', 1511 'base': { 'transport' : 'MigrationAddressType'}, 1512 'discriminator': 'transport', 1513 'data': { 1514 'socket': 'SocketAddress', 1515 'exec': 'MigrationExecCommand', 1516 'rdma': 'InetSocketAddress', 1517 'file': 'FileMigrationArgs' } } 1518 1519## 1520# @MigrationChannelType: 1521# 1522# The migration channel-type request options. 1523# 1524# @main: Main outbound migration channel. 1525# 1526# Since: 8.1 1527## 1528{ 'enum': 'MigrationChannelType', 1529 'data': [ 'main' ] } 1530 1531## 1532# @MigrationChannel: 1533# 1534# Migration stream channel parameters. 1535# 1536# @channel-type: Channel type for transferring packet information. 1537# 1538# @addr: Migration endpoint configuration on destination interface. 1539# 1540# Since: 8.1 1541## 1542{ 'struct': 'MigrationChannel', 1543 'data': { 1544 'channel-type': 'MigrationChannelType', 1545 'addr': 'MigrationAddress' } } 1546 1547## 1548# @migrate: 1549# 1550# Migrates the current running guest to another Virtual Machine. 1551# 1552# @uri: the Uniform Resource Identifier of the destination VM 1553# 1554# @channels: list of migration stream channels with each stream in the 1555# list connected to a destination interface endpoint. 1556# 1557# @detach: this argument exists only for compatibility reasons and is 1558# ignored by QEMU 1559# 1560# @resume: resume one paused migration, default "off". (since 3.0) 1561# 1562# Since: 0.14 1563# 1564# Notes: 1565# 1566# 1. The 'query-migrate' command should be used to check 1567# migration's progress and final result (this information is 1568# provided by the 'status' member) 1569# 1570# 2. All boolean arguments default to false 1571# 1572# 3. The user Monitor's "detach" argument is invalid in QMP and 1573# should not be used 1574# 1575# 4. The uri argument should have the Uniform Resource Identifier 1576# of default destination VM. This connection will be bound to 1577# default network. 1578# 1579# 5. For now, number of migration streams is restricted to one, 1580# i.e. number of items in 'channels' list is just 1. 1581# 1582# 6. The 'uri' and 'channels' arguments are mutually exclusive; 1583# exactly one of the two should be present. 1584# 1585# Example: 1586# 1587# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } } 1588# <- { "return": {} } 1589# 1590# -> { "execute": "migrate", 1591# "arguments": { 1592# "channels": [ { "channel-type": "main", 1593# "addr": { "transport": "socket", 1594# "type": "inet", 1595# "host": "10.12.34.9", 1596# "port": "1050" } } ] } } 1597# <- { "return": {} } 1598# 1599# -> { "execute": "migrate", 1600# "arguments": { 1601# "channels": [ { "channel-type": "main", 1602# "addr": { "transport": "exec", 1603# "args": [ "/bin/nc", "-p", "6000", 1604# "/some/sock" ] } } ] } } 1605# <- { "return": {} } 1606# 1607# -> { "execute": "migrate", 1608# "arguments": { 1609# "channels": [ { "channel-type": "main", 1610# "addr": { "transport": "rdma", 1611# "host": "10.12.34.9", 1612# "port": "1050" } } ] } } 1613# <- { "return": {} } 1614# 1615# -> { "execute": "migrate", 1616# "arguments": { 1617# "channels": [ { "channel-type": "main", 1618# "addr": { "transport": "file", 1619# "filename": "/tmp/migfile", 1620# "offset": "0x1000" } } ] } } 1621# <- { "return": {} } 1622# 1623## 1624{ 'command': 'migrate', 1625 'data': {'*uri': 'str', 1626 '*channels': [ 'MigrationChannel' ], 1627 '*detach': 'bool', '*resume': 'bool' } } 1628 1629## 1630# @migrate-incoming: 1631# 1632# Start an incoming migration, the qemu must have been started with 1633# -incoming defer 1634# 1635# @uri: The Uniform Resource Identifier identifying the source or 1636# address to listen on 1637# 1638# @channels: list of migration stream channels with each stream in the 1639# list connected to a destination interface endpoint. 1640# 1641# @exit-on-error: Exit on incoming migration failure. Default true. 1642# When set to false, the failure triggers a MIGRATION event, and 1643# error details could be retrieved with query-migrate. (since 9.1) 1644# 1645# Since: 2.3 1646# 1647# Notes: 1648# 1649# 1. It's a bad idea to use a string for the uri, but it needs to 1650# stay compatible with -incoming and the format of the uri is 1651# already exposed above libvirt. 1652# 1653# 2. QEMU must be started with -incoming defer to allow 1654# migrate-incoming to be used. 1655# 1656# 3. The uri format is the same as for -incoming 1657# 1658# 4. For now, number of migration streams is restricted to one, 1659# i.e. number of items in 'channels' list is just 1. 1660# 1661# 5. The 'uri' and 'channels' arguments are mutually exclusive; 1662# exactly one of the two should be present. 1663# 1664# Example: 1665# 1666# -> { "execute": "migrate-incoming", 1667# "arguments": { "uri": "tcp:0:4446" } } 1668# <- { "return": {} } 1669# 1670# -> { "execute": "migrate-incoming", 1671# "arguments": { 1672# "channels": [ { "channel-type": "main", 1673# "addr": { "transport": "socket", 1674# "type": "inet", 1675# "host": "10.12.34.9", 1676# "port": "1050" } } ] } } 1677# <- { "return": {} } 1678# 1679# -> { "execute": "migrate-incoming", 1680# "arguments": { 1681# "channels": [ { "channel-type": "main", 1682# "addr": { "transport": "exec", 1683# "args": [ "/bin/nc", "-p", "6000", 1684# "/some/sock" ] } } ] } } 1685# <- { "return": {} } 1686# 1687# -> { "execute": "migrate-incoming", 1688# "arguments": { 1689# "channels": [ { "channel-type": "main", 1690# "addr": { "transport": "rdma", 1691# "host": "10.12.34.9", 1692# "port": "1050" } } ] } } 1693# <- { "return": {} } 1694## 1695{ 'command': 'migrate-incoming', 1696 'data': {'*uri': 'str', 1697 '*channels': [ 'MigrationChannel' ], 1698 '*exit-on-error': 'bool' } } 1699 1700## 1701# @xen-save-devices-state: 1702# 1703# Save the state of all devices to file. The RAM and the block 1704# devices of the VM are not saved by this command. 1705# 1706# @filename: the file to save the state of the devices to as binary 1707# data. See xen-save-devices-state.txt for a description of the 1708# binary format. 1709# 1710# @live: Optional argument to ask QEMU to treat this command as part 1711# of a live migration. Default to true. (since 2.11) 1712# 1713# Since: 1.1 1714# 1715# Example: 1716# 1717# -> { "execute": "xen-save-devices-state", 1718# "arguments": { "filename": "/tmp/save" } } 1719# <- { "return": {} } 1720## 1721{ 'command': 'xen-save-devices-state', 1722 'data': {'filename': 'str', '*live':'bool' } } 1723 1724## 1725# @xen-set-global-dirty-log: 1726# 1727# Enable or disable the global dirty log mode. 1728# 1729# @enable: true to enable, false to disable. 1730# 1731# Since: 1.3 1732# 1733# Example: 1734# 1735# -> { "execute": "xen-set-global-dirty-log", 1736# "arguments": { "enable": true } } 1737# <- { "return": {} } 1738## 1739{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1740 1741## 1742# @xen-load-devices-state: 1743# 1744# Load the state of all devices from file. The RAM and the block 1745# devices of the VM are not loaded by this command. 1746# 1747# @filename: the file to load the state of the devices from as binary 1748# data. See xen-save-devices-state.txt for a description of the 1749# binary format. 1750# 1751# Since: 2.7 1752# 1753# Example: 1754# 1755# -> { "execute": "xen-load-devices-state", 1756# "arguments": { "filename": "/tmp/resume" } } 1757# <- { "return": {} } 1758## 1759{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 1760 1761## 1762# @xen-set-replication: 1763# 1764# Enable or disable replication. 1765# 1766# @enable: true to enable, false to disable. 1767# 1768# @primary: true for primary or false for secondary. 1769# 1770# @failover: true to do failover, false to stop. Cannot be specified 1771# if 'enable' is true. Default value is false. 1772# 1773# Example: 1774# 1775# -> { "execute": "xen-set-replication", 1776# "arguments": {"enable": true, "primary": false} } 1777# <- { "return": {} } 1778# 1779# Since: 2.9 1780## 1781{ 'command': 'xen-set-replication', 1782 'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' }, 1783 'if': 'CONFIG_REPLICATION' } 1784 1785## 1786# @ReplicationStatus: 1787# 1788# The result format for 'query-xen-replication-status'. 1789# 1790# @error: true if an error happened, false if replication is normal. 1791# 1792# @desc: the human readable error description string, when @error is 1793# 'true'. 1794# 1795# Since: 2.9 1796## 1797{ 'struct': 'ReplicationStatus', 1798 'data': { 'error': 'bool', '*desc': 'str' }, 1799 'if': 'CONFIG_REPLICATION' } 1800 1801## 1802# @query-xen-replication-status: 1803# 1804# Query replication status while the vm is running. 1805# 1806# Returns: A @ReplicationStatus object showing the status. 1807# 1808# Example: 1809# 1810# -> { "execute": "query-xen-replication-status" } 1811# <- { "return": { "error": false } } 1812# 1813# Since: 2.9 1814## 1815{ 'command': 'query-xen-replication-status', 1816 'returns': 'ReplicationStatus', 1817 'if': 'CONFIG_REPLICATION' } 1818 1819## 1820# @xen-colo-do-checkpoint: 1821# 1822# Xen uses this command to notify replication to trigger a checkpoint. 1823# 1824# Example: 1825# 1826# -> { "execute": "xen-colo-do-checkpoint" } 1827# <- { "return": {} } 1828# 1829# Since: 2.9 1830## 1831{ 'command': 'xen-colo-do-checkpoint', 1832 'if': 'CONFIG_REPLICATION' } 1833 1834## 1835# @COLOStatus: 1836# 1837# The result format for 'query-colo-status'. 1838# 1839# @mode: COLO running mode. If COLO is running, this field will 1840# return 'primary' or 'secondary'. 1841# 1842# @last-mode: COLO last running mode. If COLO is running, this field 1843# will return same like mode field, after failover we can use this 1844# field to get last colo mode. (since 4.0) 1845# 1846# @reason: describes the reason for the COLO exit. 1847# 1848# Since: 3.1 1849## 1850{ 'struct': 'COLOStatus', 1851 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode', 1852 'reason': 'COLOExitReason' }, 1853 'if': 'CONFIG_REPLICATION' } 1854 1855## 1856# @query-colo-status: 1857# 1858# Query COLO status while the vm is running. 1859# 1860# Returns: A @COLOStatus object showing the status. 1861# 1862# Example: 1863# 1864# -> { "execute": "query-colo-status" } 1865# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } } 1866# 1867# Since: 3.1 1868## 1869{ 'command': 'query-colo-status', 1870 'returns': 'COLOStatus', 1871 'if': 'CONFIG_REPLICATION' } 1872 1873## 1874# @migrate-recover: 1875# 1876# Provide a recovery migration stream URI. 1877# 1878# @uri: the URI to be used for the recovery of migration stream. 1879# 1880# Example: 1881# 1882# -> { "execute": "migrate-recover", 1883# "arguments": { "uri": "tcp:192.168.1.200:12345" } } 1884# <- { "return": {} } 1885# 1886# Since: 3.0 1887## 1888{ 'command': 'migrate-recover', 1889 'data': { 'uri': 'str' }, 1890 'allow-oob': true } 1891 1892## 1893# @migrate-pause: 1894# 1895# Pause a migration. Currently it only supports postcopy. 1896# 1897# Example: 1898# 1899# -> { "execute": "migrate-pause" } 1900# <- { "return": {} } 1901# 1902# Since: 3.0 1903## 1904{ 'command': 'migrate-pause', 'allow-oob': true } 1905 1906## 1907# @UNPLUG_PRIMARY: 1908# 1909# Emitted from source side of a migration when migration state is 1910# WAIT_UNPLUG. Device was unplugged by guest operating system. Device 1911# resources in QEMU are kept on standby to be able to re-plug it in 1912# case of migration failure. 1913# 1914# @device-id: QEMU device id of the unplugged device 1915# 1916# Since: 4.2 1917# 1918# Example: 1919# 1920# <- { "event": "UNPLUG_PRIMARY", 1921# "data": { "device-id": "hostdev0" }, 1922# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 1923## 1924{ 'event': 'UNPLUG_PRIMARY', 1925 'data': { 'device-id': 'str' } } 1926 1927## 1928# @DirtyRateVcpu: 1929# 1930# Dirty rate of vcpu. 1931# 1932# @id: vcpu index. 1933# 1934# @dirty-rate: dirty rate. 1935# 1936# Since: 6.2 1937## 1938{ 'struct': 'DirtyRateVcpu', 1939 'data': { 'id': 'int', 'dirty-rate': 'int64' } } 1940 1941## 1942# @DirtyRateStatus: 1943# 1944# Dirty page rate measurement status. 1945# 1946# @unstarted: measuring thread has not been started yet 1947# 1948# @measuring: measuring thread is running 1949# 1950# @measured: dirty page rate is measured and the results are available 1951# 1952# Since: 5.2 1953## 1954{ 'enum': 'DirtyRateStatus', 1955 'data': [ 'unstarted', 'measuring', 'measured'] } 1956 1957## 1958# @DirtyRateMeasureMode: 1959# 1960# Method used to measure dirty page rate. Differences between 1961# available methods are explained in @calc-dirty-rate. 1962# 1963# @page-sampling: use page sampling 1964# 1965# @dirty-ring: use dirty ring 1966# 1967# @dirty-bitmap: use dirty bitmap 1968# 1969# Since: 6.2 1970## 1971{ 'enum': 'DirtyRateMeasureMode', 1972 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] } 1973 1974## 1975# @TimeUnit: 1976# 1977# Specifies unit in which time-related value is specified. 1978# 1979# @second: value is in seconds 1980# 1981# @millisecond: value is in milliseconds 1982# 1983# Since: 8.2 1984## 1985{ 'enum': 'TimeUnit', 1986 'data': ['second', 'millisecond'] } 1987 1988## 1989# @DirtyRateInfo: 1990# 1991# Information about measured dirty page rate. 1992# 1993# @dirty-rate: an estimate of the dirty page rate of the VM in units 1994# of MiB/s. Value is present only when @status is 'measured'. 1995# 1996# @status: current status of dirty page rate measurements 1997# 1998# @start-time: start time in units of second for calculation 1999# 2000# @calc-time: time period for which dirty page rate was measured, 2001# expressed and rounded down to @calc-time-unit. 2002# 2003# @calc-time-unit: time unit of @calc-time (Since 8.2) 2004# 2005# @sample-pages: number of sampled pages per GiB of guest memory. 2006# Valid only in page-sampling mode (Since 6.1) 2007# 2008# @mode: mode that was used to measure dirty page rate (Since 6.2) 2009# 2010# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was 2011# specified (Since 6.2) 2012# 2013# Since: 5.2 2014## 2015{ 'struct': 'DirtyRateInfo', 2016 'data': {'*dirty-rate': 'int64', 2017 'status': 'DirtyRateStatus', 2018 'start-time': 'int64', 2019 'calc-time': 'int64', 2020 'calc-time-unit': 'TimeUnit', 2021 'sample-pages': 'uint64', 2022 'mode': 'DirtyRateMeasureMode', 2023 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } } 2024 2025## 2026# @calc-dirty-rate: 2027# 2028# Start measuring dirty page rate of the VM. Results can be retrieved 2029# with @query-dirty-rate after measurements are completed. 2030# 2031# Dirty page rate is the number of pages changed in a given time 2032# period expressed in MiB/s. The following methods of calculation are 2033# available: 2034# 2035# 1. In page sampling mode, a random subset of pages are selected and 2036# hashed twice: once at the beginning of measurement time period, 2037# and once again at the end. If two hashes for some page are 2038# different, the page is counted as changed. Since this method 2039# relies on sampling and hashing, calculated dirty page rate is 2040# only an estimate of its true value. Increasing @sample-pages 2041# improves estimation quality at the cost of higher computational 2042# overhead. 2043# 2044# 2. Dirty bitmap mode captures writes to memory (for example by 2045# temporarily revoking write access to all pages) and counting page 2046# faults. Information about modified pages is collected into a 2047# bitmap, where each bit corresponds to one guest page. This mode 2048# requires that KVM accelerator property "dirty-ring-size" is *not* 2049# set. 2050# 2051# 3. Dirty ring mode is similar to dirty bitmap mode, but the 2052# information about modified pages is collected into ring buffer. 2053# This mode tracks page modification per each vCPU separately. It 2054# requires that KVM accelerator property "dirty-ring-size" is set. 2055# 2056# @calc-time: time period for which dirty page rate is calculated. 2057# By default it is specified in seconds, but the unit can be set 2058# explicitly with @calc-time-unit. Note that larger @calc-time 2059# values will typically result in smaller dirty page rates because 2060# page dirtying is a one-time event. Once some page is counted 2061# as dirty during @calc-time period, further writes to this page 2062# will not increase dirty page rate anymore. 2063# 2064# @calc-time-unit: time unit in which @calc-time is specified. 2065# By default it is seconds. (Since 8.2) 2066# 2067# @sample-pages: number of sampled pages per each GiB of guest memory. 2068# Default value is 512. For 4KiB guest pages this corresponds to 2069# sampling ratio of 0.2%. This argument is used only in page 2070# sampling mode. (Since 6.1) 2071# 2072# @mode: mechanism for tracking dirty pages. Default value is 2073# 'page-sampling'. Others are 'dirty-bitmap' and 'dirty-ring'. 2074# (Since 6.1) 2075# 2076# Since: 5.2 2077# 2078# Example: 2079# 2080# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1, 2081# 'sample-pages': 512} } 2082# <- { "return": {} } 2083# 2084# Measure dirty rate using dirty bitmap for 500 milliseconds: 2085# 2086# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500, 2087# "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} } 2088# 2089# <- { "return": {} } 2090## 2091{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64', 2092 '*calc-time-unit': 'TimeUnit', 2093 '*sample-pages': 'int', 2094 '*mode': 'DirtyRateMeasureMode'} } 2095 2096## 2097# @query-dirty-rate: 2098# 2099# Query results of the most recent invocation of @calc-dirty-rate. 2100# 2101# @calc-time-unit: time unit in which to report calculation time. 2102# By default it is reported in seconds. (Since 8.2) 2103# 2104# Since: 5.2 2105# 2106# Examples: 2107# 2108# 1. Measurement is in progress: 2109# 2110# <- {"status": "measuring", "sample-pages": 512, 2111# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2112# "calc-time-unit": "second"} 2113# 2114# 2. Measurement has been completed: 2115# 2116# <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108, 2117# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2118# "calc-time-unit": "second"} 2119## 2120{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' }, 2121 'returns': 'DirtyRateInfo' } 2122 2123## 2124# @DirtyLimitInfo: 2125# 2126# Dirty page rate limit information of a virtual CPU. 2127# 2128# @cpu-index: index of a virtual CPU. 2129# 2130# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual 2131# CPU, 0 means unlimited. 2132# 2133# @current-rate: current dirty page rate (MB/s) for a virtual CPU. 2134# 2135# Since: 7.1 2136## 2137{ 'struct': 'DirtyLimitInfo', 2138 'data': { 'cpu-index': 'int', 2139 'limit-rate': 'uint64', 2140 'current-rate': 'uint64' } } 2141 2142## 2143# @set-vcpu-dirty-limit: 2144# 2145# Set the upper limit of dirty page rate for virtual CPUs. 2146# 2147# Requires KVM with accelerator property "dirty-ring-size" set. A 2148# virtual CPU's dirty page rate is a measure of its memory load. To 2149# observe dirty page rates, use @calc-dirty-rate. 2150# 2151# @cpu-index: index of a virtual CPU, default is all. 2152# 2153# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs. 2154# 2155# Since: 7.1 2156# 2157# Example: 2158# 2159# -> {"execute": "set-vcpu-dirty-limit"} 2160# "arguments": { "dirty-rate": 200, 2161# "cpu-index": 1 } } 2162# <- { "return": {} } 2163## 2164{ 'command': 'set-vcpu-dirty-limit', 2165 'data': { '*cpu-index': 'int', 2166 'dirty-rate': 'uint64' } } 2167 2168## 2169# @cancel-vcpu-dirty-limit: 2170# 2171# Cancel the upper limit of dirty page rate for virtual CPUs. 2172# 2173# Cancel the dirty page limit for the vCPU which has been set with 2174# set-vcpu-dirty-limit command. Note that this command requires 2175# support from dirty ring, same as the "set-vcpu-dirty-limit". 2176# 2177# @cpu-index: index of a virtual CPU, default is all. 2178# 2179# Since: 7.1 2180# 2181# Example: 2182# 2183# -> {"execute": "cancel-vcpu-dirty-limit"}, 2184# "arguments": { "cpu-index": 1 } } 2185# <- { "return": {} } 2186## 2187{ 'command': 'cancel-vcpu-dirty-limit', 2188 'data': { '*cpu-index': 'int'} } 2189 2190## 2191# @query-vcpu-dirty-limit: 2192# 2193# Returns information about virtual CPU dirty page rate limits, if 2194# any. 2195# 2196# Since: 7.1 2197# 2198# Example: 2199# 2200# -> {"execute": "query-vcpu-dirty-limit"} 2201# <- {"return": [ 2202# { "limit-rate": 60, "current-rate": 3, "cpu-index": 0}, 2203# { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]} 2204## 2205{ 'command': 'query-vcpu-dirty-limit', 2206 'returns': [ 'DirtyLimitInfo' ] } 2207 2208## 2209# @MigrationThreadInfo: 2210# 2211# Information about migrationthreads 2212# 2213# @name: the name of migration thread 2214# 2215# @thread-id: ID of the underlying host thread 2216# 2217# Since: 7.2 2218## 2219{ 'struct': 'MigrationThreadInfo', 2220 'data': {'name': 'str', 2221 'thread-id': 'int'} } 2222 2223## 2224# @query-migrationthreads: 2225# 2226# Returns information of migration threads 2227# 2228# Returns: @MigrationThreadInfo 2229# 2230# Since: 7.2 2231## 2232{ 'command': 'query-migrationthreads', 2233 'returns': ['MigrationThreadInfo'] } 2234 2235## 2236# @snapshot-save: 2237# 2238# Save a VM snapshot 2239# 2240# @job-id: identifier for the newly created job 2241# 2242# @tag: name of the snapshot to create 2243# 2244# @vmstate: block device node name to save vmstate to 2245# 2246# @devices: list of block device node names to save a snapshot to 2247# 2248# Applications should not assume that the snapshot save is complete 2249# when this command returns. The job commands / events must be used 2250# to determine completion and to fetch details of any errors that 2251# arise. 2252# 2253# Note that execution of the guest CPUs may be stopped during the time 2254# it takes to save the snapshot. A future version of QEMU may ensure 2255# CPUs are executing continuously. 2256# 2257# It is strongly recommended that @devices contain all writable block 2258# device nodes if a consistent snapshot is required. 2259# 2260# If @tag already exists, an error will be reported 2261# 2262# Example: 2263# 2264# -> { "execute": "snapshot-save", 2265# "arguments": { 2266# "job-id": "snapsave0", 2267# "tag": "my-snap", 2268# "vmstate": "disk0", 2269# "devices": ["disk0", "disk1"] 2270# } 2271# } 2272# <- { "return": { } } 2273# <- {"event": "JOB_STATUS_CHANGE", 2274# "timestamp": {"seconds": 1432121972, "microseconds": 744001}, 2275# "data": {"status": "created", "id": "snapsave0"}} 2276# <- {"event": "JOB_STATUS_CHANGE", 2277# "timestamp": {"seconds": 1432122172, "microseconds": 744001}, 2278# "data": {"status": "running", "id": "snapsave0"}} 2279# <- {"event": "STOP", 2280# "timestamp": {"seconds": 1432122372, "microseconds": 744001} } 2281# <- {"event": "RESUME", 2282# "timestamp": {"seconds": 1432122572, "microseconds": 744001} } 2283# <- {"event": "JOB_STATUS_CHANGE", 2284# "timestamp": {"seconds": 1432122772, "microseconds": 744001}, 2285# "data": {"status": "waiting", "id": "snapsave0"}} 2286# <- {"event": "JOB_STATUS_CHANGE", 2287# "timestamp": {"seconds": 1432122972, "microseconds": 744001}, 2288# "data": {"status": "pending", "id": "snapsave0"}} 2289# <- {"event": "JOB_STATUS_CHANGE", 2290# "timestamp": {"seconds": 1432123172, "microseconds": 744001}, 2291# "data": {"status": "concluded", "id": "snapsave0"}} 2292# -> {"execute": "query-jobs"} 2293# <- {"return": [{"current-progress": 1, 2294# "status": "concluded", 2295# "total-progress": 1, 2296# "type": "snapshot-save", 2297# "id": "snapsave0"}]} 2298# 2299# Since: 6.0 2300## 2301{ 'command': 'snapshot-save', 2302 'data': { 'job-id': 'str', 2303 'tag': 'str', 2304 'vmstate': 'str', 2305 'devices': ['str'] } } 2306 2307## 2308# @snapshot-load: 2309# 2310# Load a VM snapshot 2311# 2312# @job-id: identifier for the newly created job 2313# 2314# @tag: name of the snapshot to load. 2315# 2316# @vmstate: block device node name to load vmstate from 2317# 2318# @devices: list of block device node names to load a snapshot from 2319# 2320# Applications should not assume that the snapshot load is complete 2321# when this command returns. The job commands / events must be used 2322# to determine completion and to fetch details of any errors that 2323# arise. 2324# 2325# Note that execution of the guest CPUs will be stopped during the 2326# time it takes to load the snapshot. 2327# 2328# It is strongly recommended that @devices contain all writable block 2329# device nodes that can have changed since the original @snapshot-save 2330# command execution. 2331# 2332# Example: 2333# 2334# -> { "execute": "snapshot-load", 2335# "arguments": { 2336# "job-id": "snapload0", 2337# "tag": "my-snap", 2338# "vmstate": "disk0", 2339# "devices": ["disk0", "disk1"] 2340# } 2341# } 2342# <- { "return": { } } 2343# <- {"event": "JOB_STATUS_CHANGE", 2344# "timestamp": {"seconds": 1472124172, "microseconds": 744001}, 2345# "data": {"status": "created", "id": "snapload0"}} 2346# <- {"event": "JOB_STATUS_CHANGE", 2347# "timestamp": {"seconds": 1472125172, "microseconds": 744001}, 2348# "data": {"status": "running", "id": "snapload0"}} 2349# <- {"event": "STOP", 2350# "timestamp": {"seconds": 1472125472, "microseconds": 744001} } 2351# <- {"event": "RESUME", 2352# "timestamp": {"seconds": 1472125872, "microseconds": 744001} } 2353# <- {"event": "JOB_STATUS_CHANGE", 2354# "timestamp": {"seconds": 1472126172, "microseconds": 744001}, 2355# "data": {"status": "waiting", "id": "snapload0"}} 2356# <- {"event": "JOB_STATUS_CHANGE", 2357# "timestamp": {"seconds": 1472127172, "microseconds": 744001}, 2358# "data": {"status": "pending", "id": "snapload0"}} 2359# <- {"event": "JOB_STATUS_CHANGE", 2360# "timestamp": {"seconds": 1472128172, "microseconds": 744001}, 2361# "data": {"status": "concluded", "id": "snapload0"}} 2362# -> {"execute": "query-jobs"} 2363# <- {"return": [{"current-progress": 1, 2364# "status": "concluded", 2365# "total-progress": 1, 2366# "type": "snapshot-load", 2367# "id": "snapload0"}]} 2368# 2369# Since: 6.0 2370## 2371{ 'command': 'snapshot-load', 2372 'data': { 'job-id': 'str', 2373 'tag': 'str', 2374 'vmstate': 'str', 2375 'devices': ['str'] } } 2376 2377## 2378# @snapshot-delete: 2379# 2380# Delete a VM snapshot 2381# 2382# @job-id: identifier for the newly created job 2383# 2384# @tag: name of the snapshot to delete. 2385# 2386# @devices: list of block device node names to delete a snapshot from 2387# 2388# Applications should not assume that the snapshot delete is complete 2389# when this command returns. The job commands / events must be used 2390# to determine completion and to fetch details of any errors that 2391# arise. 2392# 2393# Example: 2394# 2395# -> { "execute": "snapshot-delete", 2396# "arguments": { 2397# "job-id": "snapdelete0", 2398# "tag": "my-snap", 2399# "devices": ["disk0", "disk1"] 2400# } 2401# } 2402# <- { "return": { } } 2403# <- {"event": "JOB_STATUS_CHANGE", 2404# "timestamp": {"seconds": 1442124172, "microseconds": 744001}, 2405# "data": {"status": "created", "id": "snapdelete0"}} 2406# <- {"event": "JOB_STATUS_CHANGE", 2407# "timestamp": {"seconds": 1442125172, "microseconds": 744001}, 2408# "data": {"status": "running", "id": "snapdelete0"}} 2409# <- {"event": "JOB_STATUS_CHANGE", 2410# "timestamp": {"seconds": 1442126172, "microseconds": 744001}, 2411# "data": {"status": "waiting", "id": "snapdelete0"}} 2412# <- {"event": "JOB_STATUS_CHANGE", 2413# "timestamp": {"seconds": 1442127172, "microseconds": 744001}, 2414# "data": {"status": "pending", "id": "snapdelete0"}} 2415# <- {"event": "JOB_STATUS_CHANGE", 2416# "timestamp": {"seconds": 1442128172, "microseconds": 744001}, 2417# "data": {"status": "concluded", "id": "snapdelete0"}} 2418# -> {"execute": "query-jobs"} 2419# <- {"return": [{"current-progress": 1, 2420# "status": "concluded", 2421# "total-progress": 1, 2422# "type": "snapshot-delete", 2423# "id": "snapdelete0"}]} 2424# 2425# Since: 6.0 2426## 2427{ 'command': 'snapshot-delete', 2428 'data': { 'job-id': 'str', 2429 'tag': 'str', 2430 'devices': ['str'] } } 2431