1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4 5## 6# = Migration 7## 8 9{ 'include': 'common.json' } 10{ 'include': 'sockets.json' } 11 12## 13# @MigrationStats: 14# 15# Detailed migration status. 16# 17# @transferred: amount of bytes already transferred to the target VM 18# 19# @remaining: amount of bytes remaining to be transferred to the target VM 20# 21# @total: total amount of bytes involved in the migration process 22# 23# @duplicate: number of duplicate (zero) pages (since 1.2) 24# 25# @skipped: number of skipped zero pages (since 1.5) 26# 27# @normal: number of normal pages (since 1.2) 28# 29# @normal-bytes: number of normal bytes sent (since 1.2) 30# 31# @dirty-pages-rate: number of pages dirtied by second by the 32# guest (since 1.3) 33# 34# @mbps: throughput in megabits/sec. (since 1.6) 35# 36# @dirty-sync-count: number of times that dirty ram was synchronized (since 2.1) 37# 38# @postcopy-requests: The number of page requests received from the destination 39# (since 2.7) 40# 41# @page-size: The number of bytes per page for the various page-based 42# statistics (since 2.10) 43# 44# @multifd-bytes: The number of bytes sent through multifd (since 3.0) 45# 46# @pages-per-second: the number of memory pages transferred per second 47# (Since 4.0) 48# 49# Since: 0.14 50## 51{ 'struct': 'MigrationStats', 52 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' , 53 'duplicate': 'int', 'skipped': 'int', 'normal': 'int', 54 'normal-bytes': 'int', 'dirty-pages-rate' : 'int', 55 'mbps' : 'number', 'dirty-sync-count' : 'int', 56 'postcopy-requests' : 'int', 'page-size' : 'int', 57 'multifd-bytes' : 'uint64', 'pages-per-second' : 'uint64' } } 58 59## 60# @XBZRLECacheStats: 61# 62# Detailed XBZRLE migration cache statistics 63# 64# @cache-size: XBZRLE cache size 65# 66# @bytes: amount of bytes already transferred to the target VM 67# 68# @pages: amount of pages transferred to the target VM 69# 70# @cache-miss: number of cache miss 71# 72# @cache-miss-rate: rate of cache miss (since 2.1) 73# 74# @encoding-rate: rate of encoded bytes (since 5.1) 75# 76# @overflow: number of overflows 77# 78# Since: 1.2 79## 80{ 'struct': 'XBZRLECacheStats', 81 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int', 82 'cache-miss': 'int', 'cache-miss-rate': 'number', 83 'encoding-rate': 'number', 'overflow': 'int' } } 84 85## 86# @CompressionStats: 87# 88# Detailed migration compression statistics 89# 90# @pages: amount of pages compressed and transferred to the target VM 91# 92# @busy: count of times that no free thread was available to compress data 93# 94# @busy-rate: rate of thread busy 95# 96# @compressed-size: amount of bytes after compression 97# 98# @compression-rate: rate of compressed size 99# 100# Since: 3.1 101## 102{ 'struct': 'CompressionStats', 103 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number', 104 'compressed-size': 'int', 'compression-rate': 'number' } } 105 106## 107# @MigrationStatus: 108# 109# An enumeration of migration status. 110# 111# @none: no migration has ever happened. 112# 113# @setup: migration process has been initiated. 114# 115# @cancelling: in the process of cancelling migration. 116# 117# @cancelled: cancelling migration is finished. 118# 119# @active: in the process of doing migration. 120# 121# @postcopy-active: like active, but now in postcopy mode. (since 2.5) 122# 123# @postcopy-paused: during postcopy but paused. (since 3.0) 124# 125# @postcopy-recover: trying to recover from a paused postcopy. (since 3.0) 126# 127# @completed: migration is finished. 128# 129# @failed: some error occurred during migration process. 130# 131# @colo: VM is in the process of fault tolerance, VM can not get into this 132# state unless colo capability is enabled for migration. (since 2.8) 133# 134# @pre-switchover: Paused before device serialisation. (since 2.11) 135# 136# @device: During device serialisation when pause-before-switchover is enabled 137# (since 2.11) 138# 139# @wait-unplug: wait for device unplug request by guest OS to be completed. 140# (since 4.2) 141# 142# Since: 2.3 143# 144## 145{ 'enum': 'MigrationStatus', 146 'data': [ 'none', 'setup', 'cancelling', 'cancelled', 147 'active', 'postcopy-active', 'postcopy-paused', 148 'postcopy-recover', 'completed', 'failed', 'colo', 149 'pre-switchover', 'device', 'wait-unplug' ] } 150## 151# @VfioStats: 152# 153# Detailed VFIO devices migration statistics 154# 155# @transferred: amount of bytes transferred to the target VM by VFIO devices 156# 157# Since: 5.2 158# 159## 160{ 'struct': 'VfioStats', 161 'data': {'transferred': 'int' } } 162 163## 164# @MigrationInfo: 165# 166# Information about current migration process. 167# 168# @status: @MigrationStatus describing the current migration status. 169# If this field is not returned, no migration process 170# has been initiated 171# 172# @ram: @MigrationStats containing detailed migration 173# status, only returned if status is 'active' or 174# 'completed'(since 1.2) 175# 176# @disk: @MigrationStats containing detailed disk migration 177# status, only returned if status is 'active' and it is a block 178# migration 179# 180# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE 181# migration statistics, only returned if XBZRLE feature is on and 182# status is 'active' or 'completed' (since 1.2) 183# 184# @total-time: total amount of milliseconds since migration started. 185# If migration has ended, it returns the total migration 186# time. (since 1.2) 187# 188# @downtime: only present when migration finishes correctly 189# total downtime in milliseconds for the guest. 190# (since 1.3) 191# 192# @expected-downtime: only present while migration is active 193# expected downtime in milliseconds for the guest in last walk 194# of the dirty bitmap. (since 1.3) 195# 196# @setup-time: amount of setup time in milliseconds *before* the 197# iterations begin but *after* the QMP command is issued. This is designed 198# to provide an accounting of any activities (such as RDMA pinning) which 199# may be expensive, but do not actually occur during the iterative 200# migration rounds themselves. (since 1.6) 201# 202# @cpu-throttle-percentage: percentage of time guest cpus are being 203# throttled during auto-converge. This is only present when auto-converge 204# has started throttling guest cpus. (Since 2.7) 205# 206# @error-desc: the human readable error description string, when 207# @status is 'failed'. Clients should not attempt to parse the 208# error strings. (Since 2.7) 209# 210# @postcopy-blocktime: total time when all vCPU were blocked during postcopy 211# live migration. This is only present when the postcopy-blocktime 212# migration capability is enabled. (Since 3.0) 213# 214# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. This is 215# only present when the postcopy-blocktime migration capability 216# is enabled. (Since 3.0) 217# 218# @compression: migration compression statistics, only returned if compression 219# feature is on and status is 'active' or 'completed' (Since 3.1) 220# 221# @socket-address: Only used for tcp, to know what the real port is (Since 4.0) 222# 223# @vfio: @VfioStats containing detailed VFIO devices migration statistics, 224# only returned if VFIO device is present, migration is supported by all 225# VFIO devices and status is 'active' or 'completed' (since 5.2) 226# 227# @blocked-reasons: A list of reasons an outgoing migration is blocked. 228# Present and non-empty when migration is blocked. 229# (since 6.0) 230# 231# Since: 0.14 232## 233{ 'struct': 'MigrationInfo', 234 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats', 235 '*disk': 'MigrationStats', 236 '*vfio': 'VfioStats', 237 '*xbzrle-cache': 'XBZRLECacheStats', 238 '*total-time': 'int', 239 '*expected-downtime': 'int', 240 '*downtime': 'int', 241 '*setup-time': 'int', 242 '*cpu-throttle-percentage': 'int', 243 '*error-desc': 'str', 244 '*blocked-reasons': ['str'], 245 '*postcopy-blocktime' : 'uint32', 246 '*postcopy-vcpu-blocktime': ['uint32'], 247 '*compression': 'CompressionStats', 248 '*socket-address': ['SocketAddress'] } } 249 250## 251# @query-migrate: 252# 253# Returns information about current migration process. If migration 254# is active there will be another json-object with RAM migration 255# status and if block migration is active another one with block 256# migration status. 257# 258# Returns: @MigrationInfo 259# 260# Since: 0.14 261# 262# Example: 263# 264# 1. Before the first migration 265# 266# -> { "execute": "query-migrate" } 267# <- { "return": {} } 268# 269# 2. Migration is done and has succeeded 270# 271# -> { "execute": "query-migrate" } 272# <- { "return": { 273# "status": "completed", 274# "total-time":12345, 275# "setup-time":12345, 276# "downtime":12345, 277# "ram":{ 278# "transferred":123, 279# "remaining":123, 280# "total":246, 281# "duplicate":123, 282# "normal":123, 283# "normal-bytes":123456, 284# "dirty-sync-count":15 285# } 286# } 287# } 288# 289# 3. Migration is done and has failed 290# 291# -> { "execute": "query-migrate" } 292# <- { "return": { "status": "failed" } } 293# 294# 4. Migration is being performed and is not a block migration: 295# 296# -> { "execute": "query-migrate" } 297# <- { 298# "return":{ 299# "status":"active", 300# "total-time":12345, 301# "setup-time":12345, 302# "expected-downtime":12345, 303# "ram":{ 304# "transferred":123, 305# "remaining":123, 306# "total":246, 307# "duplicate":123, 308# "normal":123, 309# "normal-bytes":123456, 310# "dirty-sync-count":15 311# } 312# } 313# } 314# 315# 5. Migration is being performed and is a block migration: 316# 317# -> { "execute": "query-migrate" } 318# <- { 319# "return":{ 320# "status":"active", 321# "total-time":12345, 322# "setup-time":12345, 323# "expected-downtime":12345, 324# "ram":{ 325# "total":1057024, 326# "remaining":1053304, 327# "transferred":3720, 328# "duplicate":123, 329# "normal":123, 330# "normal-bytes":123456, 331# "dirty-sync-count":15 332# }, 333# "disk":{ 334# "total":20971520, 335# "remaining":20880384, 336# "transferred":91136 337# } 338# } 339# } 340# 341# 6. Migration is being performed and XBZRLE is active: 342# 343# -> { "execute": "query-migrate" } 344# <- { 345# "return":{ 346# "status":"active", 347# "total-time":12345, 348# "setup-time":12345, 349# "expected-downtime":12345, 350# "ram":{ 351# "total":1057024, 352# "remaining":1053304, 353# "transferred":3720, 354# "duplicate":10, 355# "normal":3333, 356# "normal-bytes":3412992, 357# "dirty-sync-count":15 358# }, 359# "xbzrle-cache":{ 360# "cache-size":67108864, 361# "bytes":20971520, 362# "pages":2444343, 363# "cache-miss":2244, 364# "cache-miss-rate":0.123, 365# "encoding-rate":80.1, 366# "overflow":34434 367# } 368# } 369# } 370# 371## 372{ 'command': 'query-migrate', 'returns': 'MigrationInfo' } 373 374## 375# @MigrationCapability: 376# 377# Migration capabilities enumeration 378# 379# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length Encoding). 380# This feature allows us to minimize migration traffic for certain work 381# loads, by sending compressed difference of the pages 382# 383# @rdma-pin-all: Controls whether or not the entire VM memory footprint is 384# mlock()'d on demand or all at once. Refer to docs/rdma.txt for usage. 385# Disabled by default. (since 2.0) 386# 387# @zero-blocks: During storage migration encode blocks of zeroes efficiently. This 388# essentially saves 1MB of zeroes per block on the wire. Enabling requires 389# source and target VM to support this feature. To enable it is sufficient 390# to enable the capability on the source VM. The feature is disabled by 391# default. (since 1.6) 392# 393# @compress: Use multiple compression threads to accelerate live migration. 394# This feature can help to reduce the migration traffic, by sending 395# compressed pages. Please note that if compress and xbzrle are both 396# on, compress only takes effect in the ram bulk stage, after that, 397# it will be disabled and only xbzrle takes effect, this can help to 398# minimize migration traffic. The feature is disabled by default. 399# (since 2.4 ) 400# 401# @events: generate events for each migration state change 402# (since 2.4 ) 403# 404# @auto-converge: If enabled, QEMU will automatically throttle down the guest 405# to speed up convergence of RAM migration. (since 1.6) 406# 407# @postcopy-ram: Start executing on the migration target before all of RAM has 408# been migrated, pulling the remaining pages along as needed. The 409# capacity must have the same setting on both source and target 410# or migration will not even start. NOTE: If the migration fails during 411# postcopy the VM will fail. (since 2.6) 412# 413# @x-colo: If enabled, migration will never end, and the state of the VM on the 414# primary side will be migrated continuously to the VM on secondary 415# side, this process is called COarse-Grain LOck Stepping (COLO) for 416# Non-stop Service. (since 2.8) 417# 418# @release-ram: if enabled, qemu will free the migrated ram pages on the source 419# during postcopy-ram migration. (since 2.9) 420# 421# @block: If enabled, QEMU will also migrate the contents of all block 422# devices. Default is disabled. A possible alternative uses 423# mirror jobs to a builtin NBD server on the destination, which 424# offers more flexibility. 425# (Since 2.10) 426# 427# @return-path: If enabled, migration will use the return path even 428# for precopy. (since 2.10) 429# 430# @pause-before-switchover: Pause outgoing migration before serialising device 431# state and before disabling block IO (since 2.11) 432# 433# @multifd: Use more than one fd for migration (since 4.0) 434# 435# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps. 436# (since 2.12) 437# 438# @postcopy-blocktime: Calculate downtime for postcopy live migration 439# (since 3.0) 440# 441# @late-block-activate: If enabled, the destination will not activate block 442# devices (and thus take locks) immediately at the end of migration. 443# (since 3.0) 444# 445# @x-ignore-shared: If enabled, QEMU will not migrate shared memory (since 4.0) 446# 447# @validate-uuid: Send the UUID of the source to allow the destination 448# to ensure it is the same. (since 4.2) 449# 450# @background-snapshot: If enabled, the migration stream will be a snapshot 451# of the VM exactly at the point when the migration 452# procedure starts. The VM RAM is saved with running VM. 453# (since 6.0) 454# 455# Features: 456# @unstable: Members @x-colo and @x-ignore-shared are experimental. 457# 458# Since: 1.2 459## 460{ 'enum': 'MigrationCapability', 461 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks', 462 'compress', 'events', 'postcopy-ram', 463 { 'name': 'x-colo', 'features': [ 'unstable' ] }, 464 'release-ram', 465 'block', 'return-path', 'pause-before-switchover', 'multifd', 466 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate', 467 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] }, 468 'validate-uuid', 'background-snapshot'] } 469 470## 471# @MigrationCapabilityStatus: 472# 473# Migration capability information 474# 475# @capability: capability enum 476# 477# @state: capability state bool 478# 479# Since: 1.2 480## 481{ 'struct': 'MigrationCapabilityStatus', 482 'data': { 'capability' : 'MigrationCapability', 'state' : 'bool' } } 483 484## 485# @migrate-set-capabilities: 486# 487# Enable/Disable the following migration capabilities (like xbzrle) 488# 489# @capabilities: json array of capability modifications to make 490# 491# Since: 1.2 492# 493# Example: 494# 495# -> { "execute": "migrate-set-capabilities" , "arguments": 496# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } } 497# 498## 499{ 'command': 'migrate-set-capabilities', 500 'data': { 'capabilities': ['MigrationCapabilityStatus'] } } 501 502## 503# @query-migrate-capabilities: 504# 505# Returns information about the current migration capabilities status 506# 507# Returns: @MigrationCapabilitiesStatus 508# 509# Since: 1.2 510# 511# Example: 512# 513# -> { "execute": "query-migrate-capabilities" } 514# <- { "return": [ 515# {"state": false, "capability": "xbzrle"}, 516# {"state": false, "capability": "rdma-pin-all"}, 517# {"state": false, "capability": "auto-converge"}, 518# {"state": false, "capability": "zero-blocks"}, 519# {"state": false, "capability": "compress"}, 520# {"state": true, "capability": "events"}, 521# {"state": false, "capability": "postcopy-ram"}, 522# {"state": false, "capability": "x-colo"} 523# ]} 524# 525## 526{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']} 527 528## 529# @MultiFDCompression: 530# 531# An enumeration of multifd compression methods. 532# 533# @none: no compression. 534# @zlib: use zlib compression method. 535# @zstd: use zstd compression method. 536# 537# Since: 5.0 538# 539## 540{ 'enum': 'MultiFDCompression', 541 'data': [ 'none', 'zlib', 542 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] } 543 544## 545# @BitmapMigrationBitmapAliasTransform: 546# 547# @persistent: If present, the bitmap will be made persistent 548# or transient depending on this parameter. 549# 550# Since: 6.0 551## 552{ 'struct': 'BitmapMigrationBitmapAliasTransform', 553 'data': { 554 '*persistent': 'bool' 555 } } 556 557## 558# @BitmapMigrationBitmapAlias: 559# 560# @name: The name of the bitmap. 561# 562# @alias: An alias name for migration (for example the bitmap name on 563# the opposite site). 564# 565# @transform: Allows the modification of the migrated bitmap. 566# (since 6.0) 567# 568# Since: 5.2 569## 570{ 'struct': 'BitmapMigrationBitmapAlias', 571 'data': { 572 'name': 'str', 573 'alias': 'str', 574 '*transform': 'BitmapMigrationBitmapAliasTransform' 575 } } 576 577## 578# @BitmapMigrationNodeAlias: 579# 580# Maps a block node name and the bitmaps it has to aliases for dirty 581# bitmap migration. 582# 583# @node-name: A block node name. 584# 585# @alias: An alias block node name for migration (for example the 586# node name on the opposite site). 587# 588# @bitmaps: Mappings for the bitmaps on this node. 589# 590# Since: 5.2 591## 592{ 'struct': 'BitmapMigrationNodeAlias', 593 'data': { 594 'node-name': 'str', 595 'alias': 'str', 596 'bitmaps': [ 'BitmapMigrationBitmapAlias' ] 597 } } 598 599## 600# @MigrationParameter: 601# 602# Migration parameters enumeration 603# 604# @announce-initial: Initial delay (in milliseconds) before sending the first 605# announce (Since 4.0) 606# 607# @announce-max: Maximum delay (in milliseconds) between packets in the 608# announcement (Since 4.0) 609# 610# @announce-rounds: Number of self-announce packets sent after migration 611# (Since 4.0) 612# 613# @announce-step: Increase in delay (in milliseconds) between subsequent 614# packets in the announcement (Since 4.0) 615# 616# @compress-level: Set the compression level to be used in live migration, 617# the compression level is an integer between 0 and 9, where 0 means 618# no compression, 1 means the best compression speed, and 9 means best 619# compression ratio which will consume more CPU. 620# 621# @compress-threads: Set compression thread count to be used in live migration, 622# the compression thread count is an integer between 1 and 255. 623# 624# @compress-wait-thread: Controls behavior when all compression threads are 625# currently busy. If true (default), wait for a free 626# compression thread to become available; otherwise, 627# send the page uncompressed. (Since 3.1) 628# 629# @decompress-threads: Set decompression thread count to be used in live 630# migration, the decompression thread count is an integer between 1 631# and 255. Usually, decompression is at least 4 times as fast as 632# compression, so set the decompress-threads to the number about 1/4 633# of compress-threads is adequate. 634# 635# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period 636# to trigger throttling. It is expressed as percentage. 637# The default value is 50. (Since 5.0) 638# 639# @cpu-throttle-initial: Initial percentage of time guest cpus are throttled 640# when migration auto-converge is activated. The 641# default value is 20. (Since 2.7) 642# 643# @cpu-throttle-increment: throttle percentage increase each time 644# auto-converge detects that migration is not making 645# progress. The default value is 10. (Since 2.7) 646# 647# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage 648# At the tail stage of throttling, the Guest is very 649# sensitive to CPU percentage while the @cpu-throttle 650# -increment is excessive usually at tail stage. 651# If this parameter is true, we will compute the ideal 652# CPU percentage used by the Guest, which may exactly make 653# the dirty rate match the dirty rate threshold. Then we 654# will choose a smaller throttle increment between the 655# one specified by @cpu-throttle-increment and the one 656# generated by ideal CPU percentage. 657# Therefore, it is compatible to traditional throttling, 658# meanwhile the throttle increment won't be excessive 659# at tail stage. 660# The default value is false. (Since 5.1) 661# 662# @tls-creds: ID of the 'tls-creds' object that provides credentials for 663# establishing a TLS connection over the migration data channel. 664# On the outgoing side of the migration, the credentials must 665# be for a 'client' endpoint, while for the incoming side the 666# credentials must be for a 'server' endpoint. Setting this 667# will enable TLS for all migrations. The default is unset, 668# resulting in unsecured migration at the QEMU level. (Since 2.7) 669# 670# @tls-hostname: hostname of the target host for the migration. This is 671# required when using x509 based TLS credentials and the 672# migration URI does not already include a hostname. For 673# example if using fd: or exec: based migration, the 674# hostname must be provided so that the server's x509 675# certificate identity can be validated. (Since 2.7) 676# 677# @tls-authz: ID of the 'authz' object subclass that provides access control 678# checking of the TLS x509 certificate distinguished name. 679# This object is only resolved at time of use, so can be deleted 680# and recreated on the fly while the migration server is active. 681# If missing, it will default to denying access (Since 4.0) 682# 683# @max-bandwidth: to set maximum speed for migration. maximum speed in 684# bytes per second. (Since 2.8) 685# 686# @downtime-limit: set maximum tolerated downtime for migration. maximum 687# downtime in milliseconds (Since 2.8) 688# 689# @x-checkpoint-delay: The delay time (in ms) between two COLO checkpoints in 690# periodic mode. (Since 2.8) 691# 692# @block-incremental: Affects how much storage is migrated when the 693# block migration capability is enabled. When false, the entire 694# storage backing chain is migrated into a flattened image at 695# the destination; when true, only the active qcow2 layer is 696# migrated and the destination must already have access to the 697# same backing chain as was used on the source. (since 2.10) 698# 699# @multifd-channels: Number of channels used to migrate data in 700# parallel. This is the same number that the 701# number of sockets used for migration. The 702# default value is 2 (since 4.0) 703# 704# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 705# needs to be a multiple of the target page size 706# and a power of 2 707# (Since 2.11) 708# 709# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy. 710# Defaults to 0 (unlimited). In bytes per second. 711# (Since 3.0) 712# 713# @max-cpu-throttle: maximum cpu throttle percentage. 714# Defaults to 99. (Since 3.1) 715# 716# @multifd-compression: Which compression method to use. 717# Defaults to none. (Since 5.0) 718# 719# @multifd-zlib-level: Set the compression level to be used in live 720# migration, the compression level is an integer between 0 721# and 9, where 0 means no compression, 1 means the best 722# compression speed, and 9 means best compression ratio which 723# will consume more CPU. 724# Defaults to 1. (Since 5.0) 725# 726# @multifd-zstd-level: Set the compression level to be used in live 727# migration, the compression level is an integer between 0 728# and 20, where 0 means no compression, 1 means the best 729# compression speed, and 20 means best compression ratio which 730# will consume more CPU. 731# Defaults to 1. (Since 5.0) 732# 733# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 734# aliases for the purpose of dirty bitmap migration. Such 735# aliases may for example be the corresponding names on the 736# opposite site. 737# The mapping must be one-to-one, but not necessarily 738# complete: On the source, unmapped bitmaps and all bitmaps 739# on unmapped nodes will be ignored. On the destination, 740# encountering an unmapped alias in the incoming migration 741# stream will result in a report, and all further bitmap 742# migration data will then be discarded. 743# Note that the destination does not know about bitmaps it 744# does not receive, so there is no limitation or requirement 745# regarding the number of bitmaps received, or how they are 746# named, or on which nodes they are placed. 747# By default (when this parameter has never been set), bitmap 748# names are mapped to themselves. Nodes are mapped to their 749# block device name if there is one, and to their node name 750# otherwise. (Since 5.2) 751# 752# Features: 753# @unstable: Member @x-checkpoint-delay is experimental. 754# 755# Since: 2.4 756## 757{ 'enum': 'MigrationParameter', 758 'data': ['announce-initial', 'announce-max', 759 'announce-rounds', 'announce-step', 760 'compress-level', 'compress-threads', 'decompress-threads', 761 'compress-wait-thread', 'throttle-trigger-threshold', 762 'cpu-throttle-initial', 'cpu-throttle-increment', 763 'cpu-throttle-tailslow', 764 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth', 765 'downtime-limit', 766 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] }, 767 'block-incremental', 768 'multifd-channels', 769 'xbzrle-cache-size', 'max-postcopy-bandwidth', 770 'max-cpu-throttle', 'multifd-compression', 771 'multifd-zlib-level' ,'multifd-zstd-level', 772 'block-bitmap-mapping' ] } 773 774## 775# @MigrateSetParameters: 776# 777# @announce-initial: Initial delay (in milliseconds) before sending the first 778# announce (Since 4.0) 779# 780# @announce-max: Maximum delay (in milliseconds) between packets in the 781# announcement (Since 4.0) 782# 783# @announce-rounds: Number of self-announce packets sent after migration 784# (Since 4.0) 785# 786# @announce-step: Increase in delay (in milliseconds) between subsequent 787# packets in the announcement (Since 4.0) 788# 789# @compress-level: compression level 790# 791# @compress-threads: compression thread count 792# 793# @compress-wait-thread: Controls behavior when all compression threads are 794# currently busy. If true (default), wait for a free 795# compression thread to become available; otherwise, 796# send the page uncompressed. (Since 3.1) 797# 798# @decompress-threads: decompression thread count 799# 800# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period 801# to trigger throttling. It is expressed as percentage. 802# The default value is 50. (Since 5.0) 803# 804# @cpu-throttle-initial: Initial percentage of time guest cpus are 805# throttled when migration auto-converge is activated. 806# The default value is 20. (Since 2.7) 807# 808# @cpu-throttle-increment: throttle percentage increase each time 809# auto-converge detects that migration is not making 810# progress. The default value is 10. (Since 2.7) 811# 812# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage 813# At the tail stage of throttling, the Guest is very 814# sensitive to CPU percentage while the @cpu-throttle 815# -increment is excessive usually at tail stage. 816# If this parameter is true, we will compute the ideal 817# CPU percentage used by the Guest, which may exactly make 818# the dirty rate match the dirty rate threshold. Then we 819# will choose a smaller throttle increment between the 820# one specified by @cpu-throttle-increment and the one 821# generated by ideal CPU percentage. 822# Therefore, it is compatible to traditional throttling, 823# meanwhile the throttle increment won't be excessive 824# at tail stage. 825# The default value is false. (Since 5.1) 826# 827# @tls-creds: ID of the 'tls-creds' object that provides credentials 828# for establishing a TLS connection over the migration data 829# channel. On the outgoing side of the migration, the credentials 830# must be for a 'client' endpoint, while for the incoming side the 831# credentials must be for a 'server' endpoint. Setting this 832# to a non-empty string enables TLS for all migrations. 833# An empty string means that QEMU will use plain text mode for 834# migration, rather than TLS (Since 2.9) 835# Previously (since 2.7), this was reported by omitting 836# tls-creds instead. 837# 838# @tls-hostname: hostname of the target host for the migration. This 839# is required when using x509 based TLS credentials and the 840# migration URI does not already include a hostname. For 841# example if using fd: or exec: based migration, the 842# hostname must be provided so that the server's x509 843# certificate identity can be validated. (Since 2.7) 844# An empty string means that QEMU will use the hostname 845# associated with the migration URI, if any. (Since 2.9) 846# Previously (since 2.7), this was reported by omitting 847# tls-hostname instead. 848# 849# @max-bandwidth: to set maximum speed for migration. maximum speed in 850# bytes per second. (Since 2.8) 851# 852# @downtime-limit: set maximum tolerated downtime for migration. maximum 853# downtime in milliseconds (Since 2.8) 854# 855# @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8) 856# 857# @block-incremental: Affects how much storage is migrated when the 858# block migration capability is enabled. When false, the entire 859# storage backing chain is migrated into a flattened image at 860# the destination; when true, only the active qcow2 layer is 861# migrated and the destination must already have access to the 862# same backing chain as was used on the source. (since 2.10) 863# 864# @multifd-channels: Number of channels used to migrate data in 865# parallel. This is the same number that the 866# number of sockets used for migration. The 867# default value is 2 (since 4.0) 868# 869# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 870# needs to be a multiple of the target page size 871# and a power of 2 872# (Since 2.11) 873# 874# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy. 875# Defaults to 0 (unlimited). In bytes per second. 876# (Since 3.0) 877# 878# @max-cpu-throttle: maximum cpu throttle percentage. 879# The default value is 99. (Since 3.1) 880# 881# @multifd-compression: Which compression method to use. 882# Defaults to none. (Since 5.0) 883# 884# @multifd-zlib-level: Set the compression level to be used in live 885# migration, the compression level is an integer between 0 886# and 9, where 0 means no compression, 1 means the best 887# compression speed, and 9 means best compression ratio which 888# will consume more CPU. 889# Defaults to 1. (Since 5.0) 890# 891# @multifd-zstd-level: Set the compression level to be used in live 892# migration, the compression level is an integer between 0 893# and 20, where 0 means no compression, 1 means the best 894# compression speed, and 20 means best compression ratio which 895# will consume more CPU. 896# Defaults to 1. (Since 5.0) 897# 898# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 899# aliases for the purpose of dirty bitmap migration. Such 900# aliases may for example be the corresponding names on the 901# opposite site. 902# The mapping must be one-to-one, but not necessarily 903# complete: On the source, unmapped bitmaps and all bitmaps 904# on unmapped nodes will be ignored. On the destination, 905# encountering an unmapped alias in the incoming migration 906# stream will result in a report, and all further bitmap 907# migration data will then be discarded. 908# Note that the destination does not know about bitmaps it 909# does not receive, so there is no limitation or requirement 910# regarding the number of bitmaps received, or how they are 911# named, or on which nodes they are placed. 912# By default (when this parameter has never been set), bitmap 913# names are mapped to themselves. Nodes are mapped to their 914# block device name if there is one, and to their node name 915# otherwise. (Since 5.2) 916# 917# Features: 918# @unstable: Member @x-checkpoint-delay is experimental. 919# 920# Since: 2.4 921## 922# TODO either fuse back into MigrationParameters, or make 923# MigrationParameters members mandatory 924{ 'struct': 'MigrateSetParameters', 925 'data': { '*announce-initial': 'size', 926 '*announce-max': 'size', 927 '*announce-rounds': 'size', 928 '*announce-step': 'size', 929 '*compress-level': 'uint8', 930 '*compress-threads': 'uint8', 931 '*compress-wait-thread': 'bool', 932 '*decompress-threads': 'uint8', 933 '*throttle-trigger-threshold': 'uint8', 934 '*cpu-throttle-initial': 'uint8', 935 '*cpu-throttle-increment': 'uint8', 936 '*cpu-throttle-tailslow': 'bool', 937 '*tls-creds': 'StrOrNull', 938 '*tls-hostname': 'StrOrNull', 939 '*tls-authz': 'StrOrNull', 940 '*max-bandwidth': 'size', 941 '*downtime-limit': 'uint64', 942 '*x-checkpoint-delay': { 'type': 'uint32', 943 'features': [ 'unstable' ] }, 944 '*block-incremental': 'bool', 945 '*multifd-channels': 'uint8', 946 '*xbzrle-cache-size': 'size', 947 '*max-postcopy-bandwidth': 'size', 948 '*max-cpu-throttle': 'uint8', 949 '*multifd-compression': 'MultiFDCompression', 950 '*multifd-zlib-level': 'uint8', 951 '*multifd-zstd-level': 'uint8', 952 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } } 953 954## 955# @migrate-set-parameters: 956# 957# Set various migration parameters. 958# 959# Since: 2.4 960# 961# Example: 962# 963# -> { "execute": "migrate-set-parameters" , 964# "arguments": { "compress-level": 1 } } 965# 966## 967{ 'command': 'migrate-set-parameters', 'boxed': true, 968 'data': 'MigrateSetParameters' } 969 970## 971# @MigrationParameters: 972# 973# The optional members aren't actually optional. 974# 975# @announce-initial: Initial delay (in milliseconds) before sending the 976# first announce (Since 4.0) 977# 978# @announce-max: Maximum delay (in milliseconds) between packets in the 979# announcement (Since 4.0) 980# 981# @announce-rounds: Number of self-announce packets sent after migration 982# (Since 4.0) 983# 984# @announce-step: Increase in delay (in milliseconds) between subsequent 985# packets in the announcement (Since 4.0) 986# 987# @compress-level: compression level 988# 989# @compress-threads: compression thread count 990# 991# @compress-wait-thread: Controls behavior when all compression threads are 992# currently busy. If true (default), wait for a free 993# compression thread to become available; otherwise, 994# send the page uncompressed. (Since 3.1) 995# 996# @decompress-threads: decompression thread count 997# 998# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period 999# to trigger throttling. It is expressed as percentage. 1000# The default value is 50. (Since 5.0) 1001# 1002# @cpu-throttle-initial: Initial percentage of time guest cpus are 1003# throttled when migration auto-converge is activated. 1004# (Since 2.7) 1005# 1006# @cpu-throttle-increment: throttle percentage increase each time 1007# auto-converge detects that migration is not making 1008# progress. (Since 2.7) 1009# 1010# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage 1011# At the tail stage of throttling, the Guest is very 1012# sensitive to CPU percentage while the @cpu-throttle 1013# -increment is excessive usually at tail stage. 1014# If this parameter is true, we will compute the ideal 1015# CPU percentage used by the Guest, which may exactly make 1016# the dirty rate match the dirty rate threshold. Then we 1017# will choose a smaller throttle increment between the 1018# one specified by @cpu-throttle-increment and the one 1019# generated by ideal CPU percentage. 1020# Therefore, it is compatible to traditional throttling, 1021# meanwhile the throttle increment won't be excessive 1022# at tail stage. 1023# The default value is false. (Since 5.1) 1024# 1025# @tls-creds: ID of the 'tls-creds' object that provides credentials 1026# for establishing a TLS connection over the migration data 1027# channel. On the outgoing side of the migration, the credentials 1028# must be for a 'client' endpoint, while for the incoming side the 1029# credentials must be for a 'server' endpoint. 1030# An empty string means that QEMU will use plain text mode for 1031# migration, rather than TLS (Since 2.7) 1032# Note: 2.8 reports this by omitting tls-creds instead. 1033# 1034# @tls-hostname: hostname of the target host for the migration. This 1035# is required when using x509 based TLS credentials and the 1036# migration URI does not already include a hostname. For 1037# example if using fd: or exec: based migration, the 1038# hostname must be provided so that the server's x509 1039# certificate identity can be validated. (Since 2.7) 1040# An empty string means that QEMU will use the hostname 1041# associated with the migration URI, if any. (Since 2.9) 1042# Note: 2.8 reports this by omitting tls-hostname instead. 1043# 1044# @tls-authz: ID of the 'authz' object subclass that provides access control 1045# checking of the TLS x509 certificate distinguished name. (Since 1046# 4.0) 1047# 1048# @max-bandwidth: to set maximum speed for migration. maximum speed in 1049# bytes per second. (Since 2.8) 1050# 1051# @downtime-limit: set maximum tolerated downtime for migration. maximum 1052# downtime in milliseconds (Since 2.8) 1053# 1054# @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8) 1055# 1056# @block-incremental: Affects how much storage is migrated when the 1057# block migration capability is enabled. When false, the entire 1058# storage backing chain is migrated into a flattened image at 1059# the destination; when true, only the active qcow2 layer is 1060# migrated and the destination must already have access to the 1061# same backing chain as was used on the source. (since 2.10) 1062# 1063# @multifd-channels: Number of channels used to migrate data in 1064# parallel. This is the same number that the 1065# number of sockets used for migration. 1066# The default value is 2 (since 4.0) 1067# 1068# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1069# needs to be a multiple of the target page size 1070# and a power of 2 1071# (Since 2.11) 1072# 1073# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy. 1074# Defaults to 0 (unlimited). In bytes per second. 1075# (Since 3.0) 1076# 1077# @max-cpu-throttle: maximum cpu throttle percentage. 1078# Defaults to 99. 1079# (Since 3.1) 1080# 1081# @multifd-compression: Which compression method to use. 1082# Defaults to none. (Since 5.0) 1083# 1084# @multifd-zlib-level: Set the compression level to be used in live 1085# migration, the compression level is an integer between 0 1086# and 9, where 0 means no compression, 1 means the best 1087# compression speed, and 9 means best compression ratio which 1088# will consume more CPU. 1089# Defaults to 1. (Since 5.0) 1090# 1091# @multifd-zstd-level: Set the compression level to be used in live 1092# migration, the compression level is an integer between 0 1093# and 20, where 0 means no compression, 1 means the best 1094# compression speed, and 20 means best compression ratio which 1095# will consume more CPU. 1096# Defaults to 1. (Since 5.0) 1097# 1098# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1099# aliases for the purpose of dirty bitmap migration. Such 1100# aliases may for example be the corresponding names on the 1101# opposite site. 1102# The mapping must be one-to-one, but not necessarily 1103# complete: On the source, unmapped bitmaps and all bitmaps 1104# on unmapped nodes will be ignored. On the destination, 1105# encountering an unmapped alias in the incoming migration 1106# stream will result in a report, and all further bitmap 1107# migration data will then be discarded. 1108# Note that the destination does not know about bitmaps it 1109# does not receive, so there is no limitation or requirement 1110# regarding the number of bitmaps received, or how they are 1111# named, or on which nodes they are placed. 1112# By default (when this parameter has never been set), bitmap 1113# names are mapped to themselves. Nodes are mapped to their 1114# block device name if there is one, and to their node name 1115# otherwise. (Since 5.2) 1116# 1117# Features: 1118# @unstable: Member @x-checkpoint-delay is experimental. 1119# 1120# Since: 2.4 1121## 1122{ 'struct': 'MigrationParameters', 1123 'data': { '*announce-initial': 'size', 1124 '*announce-max': 'size', 1125 '*announce-rounds': 'size', 1126 '*announce-step': 'size', 1127 '*compress-level': 'uint8', 1128 '*compress-threads': 'uint8', 1129 '*compress-wait-thread': 'bool', 1130 '*decompress-threads': 'uint8', 1131 '*throttle-trigger-threshold': 'uint8', 1132 '*cpu-throttle-initial': 'uint8', 1133 '*cpu-throttle-increment': 'uint8', 1134 '*cpu-throttle-tailslow': 'bool', 1135 '*tls-creds': 'str', 1136 '*tls-hostname': 'str', 1137 '*tls-authz': 'str', 1138 '*max-bandwidth': 'size', 1139 '*downtime-limit': 'uint64', 1140 '*x-checkpoint-delay': { 'type': 'uint32', 1141 'features': [ 'unstable' ] }, 1142 '*block-incremental': 'bool', 1143 '*multifd-channels': 'uint8', 1144 '*xbzrle-cache-size': 'size', 1145 '*max-postcopy-bandwidth': 'size', 1146 '*max-cpu-throttle': 'uint8', 1147 '*multifd-compression': 'MultiFDCompression', 1148 '*multifd-zlib-level': 'uint8', 1149 '*multifd-zstd-level': 'uint8', 1150 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } } 1151 1152## 1153# @query-migrate-parameters: 1154# 1155# Returns information about the current migration parameters 1156# 1157# Returns: @MigrationParameters 1158# 1159# Since: 2.4 1160# 1161# Example: 1162# 1163# -> { "execute": "query-migrate-parameters" } 1164# <- { "return": { 1165# "decompress-threads": 2, 1166# "cpu-throttle-increment": 10, 1167# "compress-threads": 8, 1168# "compress-level": 1, 1169# "cpu-throttle-initial": 20, 1170# "max-bandwidth": 33554432, 1171# "downtime-limit": 300 1172# } 1173# } 1174# 1175## 1176{ 'command': 'query-migrate-parameters', 1177 'returns': 'MigrationParameters' } 1178 1179## 1180# @client_migrate_info: 1181# 1182# Set migration information for remote display. This makes the server 1183# ask the client to automatically reconnect using the new parameters 1184# once migration finished successfully. Only implemented for SPICE. 1185# 1186# @protocol: must be "spice" 1187# @hostname: migration target hostname 1188# @port: spice tcp port for plaintext channels 1189# @tls-port: spice tcp port for tls-secured channels 1190# @cert-subject: server certificate subject 1191# 1192# Since: 0.14 1193# 1194# Example: 1195# 1196# -> { "execute": "client_migrate_info", 1197# "arguments": { "protocol": "spice", 1198# "hostname": "virt42.lab.kraxel.org", 1199# "port": 1234 } } 1200# <- { "return": {} } 1201# 1202## 1203{ 'command': 'client_migrate_info', 1204 'data': { 'protocol': 'str', 'hostname': 'str', '*port': 'int', 1205 '*tls-port': 'int', '*cert-subject': 'str' } } 1206 1207## 1208# @migrate-start-postcopy: 1209# 1210# Followup to a migration command to switch the migration to postcopy mode. 1211# The postcopy-ram capability must be set on both source and destination 1212# before the original migration command. 1213# 1214# Since: 2.5 1215# 1216# Example: 1217# 1218# -> { "execute": "migrate-start-postcopy" } 1219# <- { "return": {} } 1220# 1221## 1222{ 'command': 'migrate-start-postcopy' } 1223 1224## 1225# @MIGRATION: 1226# 1227# Emitted when a migration event happens 1228# 1229# @status: @MigrationStatus describing the current migration status. 1230# 1231# Since: 2.4 1232# 1233# Example: 1234# 1235# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001}, 1236# "event": "MIGRATION", 1237# "data": {"status": "completed"} } 1238# 1239## 1240{ 'event': 'MIGRATION', 1241 'data': {'status': 'MigrationStatus'}} 1242 1243## 1244# @MIGRATION_PASS: 1245# 1246# Emitted from the source side of a migration at the start of each pass 1247# (when it syncs the dirty bitmap) 1248# 1249# @pass: An incrementing count (starting at 1 on the first pass) 1250# 1251# Since: 2.6 1252# 1253# Example: 1254# 1255# { "timestamp": {"seconds": 1449669631, "microseconds": 239225}, 1256# "event": "MIGRATION_PASS", "data": {"pass": 2} } 1257# 1258## 1259{ 'event': 'MIGRATION_PASS', 1260 'data': { 'pass': 'int' } } 1261 1262## 1263# @COLOMessage: 1264# 1265# The message transmission between Primary side and Secondary side. 1266# 1267# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing 1268# 1269# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for checkpointing 1270# 1271# @checkpoint-reply: SVM gets PVM's checkpoint request 1272# 1273# @vmstate-send: VM's state will be sent by PVM. 1274# 1275# @vmstate-size: The total size of VMstate. 1276# 1277# @vmstate-received: VM's state has been received by SVM. 1278# 1279# @vmstate-loaded: VM's state has been loaded by SVM. 1280# 1281# Since: 2.8 1282## 1283{ 'enum': 'COLOMessage', 1284 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply', 1285 'vmstate-send', 'vmstate-size', 'vmstate-received', 1286 'vmstate-loaded' ] } 1287 1288## 1289# @COLOMode: 1290# 1291# The COLO current mode. 1292# 1293# @none: COLO is disabled. 1294# 1295# @primary: COLO node in primary side. 1296# 1297# @secondary: COLO node in slave side. 1298# 1299# Since: 2.8 1300## 1301{ 'enum': 'COLOMode', 1302 'data': [ 'none', 'primary', 'secondary'] } 1303 1304## 1305# @FailoverStatus: 1306# 1307# An enumeration of COLO failover status 1308# 1309# @none: no failover has ever happened 1310# 1311# @require: got failover requirement but not handled 1312# 1313# @active: in the process of doing failover 1314# 1315# @completed: finish the process of failover 1316# 1317# @relaunch: restart the failover process, from 'none' -> 'completed' (Since 2.9) 1318# 1319# Since: 2.8 1320## 1321{ 'enum': 'FailoverStatus', 1322 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] } 1323 1324## 1325# @COLO_EXIT: 1326# 1327# Emitted when VM finishes COLO mode due to some errors happening or 1328# at the request of users. 1329# 1330# @mode: report COLO mode when COLO exited. 1331# 1332# @reason: describes the reason for the COLO exit. 1333# 1334# Since: 3.1 1335# 1336# Example: 1337# 1338# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172}, 1339# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } } 1340# 1341## 1342{ 'event': 'COLO_EXIT', 1343 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } } 1344 1345## 1346# @COLOExitReason: 1347# 1348# The reason for a COLO exit. 1349# 1350# @none: failover has never happened. This state does not occur 1351# in the COLO_EXIT event, and is only visible in the result of 1352# query-colo-status. 1353# 1354# @request: COLO exit is due to an external request. 1355# 1356# @error: COLO exit is due to an internal error. 1357# 1358# @processing: COLO is currently handling a failover (since 4.0). 1359# 1360# Since: 3.1 1361## 1362{ 'enum': 'COLOExitReason', 1363 'data': [ 'none', 'request', 'error' , 'processing' ] } 1364 1365## 1366# @x-colo-lost-heartbeat: 1367# 1368# Tell qemu that heartbeat is lost, request it to do takeover procedures. 1369# If this command is sent to the PVM, the Primary side will exit COLO mode. 1370# If sent to the Secondary, the Secondary side will run failover work, 1371# then takes over server operation to become the service VM. 1372# 1373# Features: 1374# @unstable: This command is experimental. 1375# 1376# Since: 2.8 1377# 1378# Example: 1379# 1380# -> { "execute": "x-colo-lost-heartbeat" } 1381# <- { "return": {} } 1382# 1383## 1384{ 'command': 'x-colo-lost-heartbeat', 1385 'features': [ 'unstable' ] } 1386 1387## 1388# @migrate_cancel: 1389# 1390# Cancel the current executing migration process. 1391# 1392# Returns: nothing on success 1393# 1394# Notes: This command succeeds even if there is no migration process running. 1395# 1396# Since: 0.14 1397# 1398# Example: 1399# 1400# -> { "execute": "migrate_cancel" } 1401# <- { "return": {} } 1402# 1403## 1404{ 'command': 'migrate_cancel' } 1405 1406## 1407# @migrate-continue: 1408# 1409# Continue migration when it's in a paused state. 1410# 1411# @state: The state the migration is currently expected to be in 1412# 1413# Returns: nothing on success 1414# Since: 2.11 1415# Example: 1416# 1417# -> { "execute": "migrate-continue" , "arguments": 1418# { "state": "pre-switchover" } } 1419# <- { "return": {} } 1420## 1421{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} } 1422 1423## 1424# @migrate: 1425# 1426# Migrates the current running guest to another Virtual Machine. 1427# 1428# @uri: the Uniform Resource Identifier of the destination VM 1429# 1430# @blk: do block migration (full disk copy) 1431# 1432# @inc: incremental disk copy migration 1433# 1434# @detach: this argument exists only for compatibility reasons and 1435# is ignored by QEMU 1436# 1437# @resume: resume one paused migration, default "off". (since 3.0) 1438# 1439# Returns: nothing on success 1440# 1441# Since: 0.14 1442# 1443# Notes: 1444# 1445# 1. The 'query-migrate' command should be used to check migration's progress 1446# and final result (this information is provided by the 'status' member) 1447# 1448# 2. All boolean arguments default to false 1449# 1450# 3. The user Monitor's "detach" argument is invalid in QMP and should not 1451# be used 1452# 1453# Example: 1454# 1455# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } } 1456# <- { "return": {} } 1457# 1458## 1459{ 'command': 'migrate', 1460 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool', 1461 '*detach': 'bool', '*resume': 'bool' } } 1462 1463## 1464# @migrate-incoming: 1465# 1466# Start an incoming migration, the qemu must have been started 1467# with -incoming defer 1468# 1469# @uri: The Uniform Resource Identifier identifying the source or 1470# address to listen on 1471# 1472# Returns: nothing on success 1473# 1474# Since: 2.3 1475# 1476# Notes: 1477# 1478# 1. It's a bad idea to use a string for the uri, but it needs to stay 1479# compatible with -incoming and the format of the uri is already exposed 1480# above libvirt. 1481# 1482# 2. QEMU must be started with -incoming defer to allow migrate-incoming to 1483# be used. 1484# 1485# 3. The uri format is the same as for -incoming 1486# 1487# Example: 1488# 1489# -> { "execute": "migrate-incoming", 1490# "arguments": { "uri": "tcp::4446" } } 1491# <- { "return": {} } 1492# 1493## 1494{ 'command': 'migrate-incoming', 'data': {'uri': 'str' } } 1495 1496## 1497# @xen-save-devices-state: 1498# 1499# Save the state of all devices to file. The RAM and the block devices 1500# of the VM are not saved by this command. 1501# 1502# @filename: the file to save the state of the devices to as binary 1503# data. See xen-save-devices-state.txt for a description of the binary 1504# format. 1505# 1506# @live: Optional argument to ask QEMU to treat this command as part of a live 1507# migration. Default to true. (since 2.11) 1508# 1509# Returns: Nothing on success 1510# 1511# Since: 1.1 1512# 1513# Example: 1514# 1515# -> { "execute": "xen-save-devices-state", 1516# "arguments": { "filename": "/tmp/save" } } 1517# <- { "return": {} } 1518# 1519## 1520{ 'command': 'xen-save-devices-state', 1521 'data': {'filename': 'str', '*live':'bool' } } 1522 1523## 1524# @xen-set-global-dirty-log: 1525# 1526# Enable or disable the global dirty log mode. 1527# 1528# @enable: true to enable, false to disable. 1529# 1530# Returns: nothing 1531# 1532# Since: 1.3 1533# 1534# Example: 1535# 1536# -> { "execute": "xen-set-global-dirty-log", 1537# "arguments": { "enable": true } } 1538# <- { "return": {} } 1539# 1540## 1541{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1542 1543## 1544# @xen-load-devices-state: 1545# 1546# Load the state of all devices from file. The RAM and the block devices 1547# of the VM are not loaded by this command. 1548# 1549# @filename: the file to load the state of the devices from as binary 1550# data. See xen-save-devices-state.txt for a description of the binary 1551# format. 1552# 1553# Since: 2.7 1554# 1555# Example: 1556# 1557# -> { "execute": "xen-load-devices-state", 1558# "arguments": { "filename": "/tmp/resume" } } 1559# <- { "return": {} } 1560# 1561## 1562{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 1563 1564## 1565# @xen-set-replication: 1566# 1567# Enable or disable replication. 1568# 1569# @enable: true to enable, false to disable. 1570# 1571# @primary: true for primary or false for secondary. 1572# 1573# @failover: true to do failover, false to stop. but cannot be 1574# specified if 'enable' is true. default value is false. 1575# 1576# Returns: nothing. 1577# 1578# Example: 1579# 1580# -> { "execute": "xen-set-replication", 1581# "arguments": {"enable": true, "primary": false} } 1582# <- { "return": {} } 1583# 1584# Since: 2.9 1585## 1586{ 'command': 'xen-set-replication', 1587 'data': { 'enable': 'bool', 'primary': 'bool', '*failover' : 'bool' }, 1588 'if': 'CONFIG_REPLICATION' } 1589 1590## 1591# @ReplicationStatus: 1592# 1593# The result format for 'query-xen-replication-status'. 1594# 1595# @error: true if an error happened, false if replication is normal. 1596# 1597# @desc: the human readable error description string, when 1598# @error is 'true'. 1599# 1600# Since: 2.9 1601## 1602{ 'struct': 'ReplicationStatus', 1603 'data': { 'error': 'bool', '*desc': 'str' }, 1604 'if': 'CONFIG_REPLICATION' } 1605 1606## 1607# @query-xen-replication-status: 1608# 1609# Query replication status while the vm is running. 1610# 1611# Returns: A @ReplicationResult object showing the status. 1612# 1613# Example: 1614# 1615# -> { "execute": "query-xen-replication-status" } 1616# <- { "return": { "error": false } } 1617# 1618# Since: 2.9 1619## 1620{ 'command': 'query-xen-replication-status', 1621 'returns': 'ReplicationStatus', 1622 'if': 'CONFIG_REPLICATION' } 1623 1624## 1625# @xen-colo-do-checkpoint: 1626# 1627# Xen uses this command to notify replication to trigger a checkpoint. 1628# 1629# Returns: nothing. 1630# 1631# Example: 1632# 1633# -> { "execute": "xen-colo-do-checkpoint" } 1634# <- { "return": {} } 1635# 1636# Since: 2.9 1637## 1638{ 'command': 'xen-colo-do-checkpoint', 1639 'if': 'CONFIG_REPLICATION' } 1640 1641## 1642# @COLOStatus: 1643# 1644# The result format for 'query-colo-status'. 1645# 1646# @mode: COLO running mode. If COLO is running, this field will return 1647# 'primary' or 'secondary'. 1648# 1649# @last-mode: COLO last running mode. If COLO is running, this field 1650# will return same like mode field, after failover we can 1651# use this field to get last colo mode. (since 4.0) 1652# 1653# @reason: describes the reason for the COLO exit. 1654# 1655# Since: 3.1 1656## 1657{ 'struct': 'COLOStatus', 1658 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode', 1659 'reason': 'COLOExitReason' } } 1660 1661## 1662# @query-colo-status: 1663# 1664# Query COLO status while the vm is running. 1665# 1666# Returns: A @COLOStatus object showing the status. 1667# 1668# Example: 1669# 1670# -> { "execute": "query-colo-status" } 1671# <- { "return": { "mode": "primary", "reason": "request" } } 1672# 1673# Since: 3.1 1674## 1675{ 'command': 'query-colo-status', 1676 'returns': 'COLOStatus' } 1677 1678## 1679# @migrate-recover: 1680# 1681# Provide a recovery migration stream URI. 1682# 1683# @uri: the URI to be used for the recovery of migration stream. 1684# 1685# Returns: nothing. 1686# 1687# Example: 1688# 1689# -> { "execute": "migrate-recover", 1690# "arguments": { "uri": "tcp:192.168.1.200:12345" } } 1691# <- { "return": {} } 1692# 1693# Since: 3.0 1694## 1695{ 'command': 'migrate-recover', 1696 'data': { 'uri': 'str' }, 1697 'allow-oob': true } 1698 1699## 1700# @migrate-pause: 1701# 1702# Pause a migration. Currently it only supports postcopy. 1703# 1704# Returns: nothing. 1705# 1706# Example: 1707# 1708# -> { "execute": "migrate-pause" } 1709# <- { "return": {} } 1710# 1711# Since: 3.0 1712## 1713{ 'command': 'migrate-pause', 'allow-oob': true } 1714 1715## 1716# @UNPLUG_PRIMARY: 1717# 1718# Emitted from source side of a migration when migration state is 1719# WAIT_UNPLUG. Device was unplugged by guest operating system. 1720# Device resources in QEMU are kept on standby to be able to re-plug it in case 1721# of migration failure. 1722# 1723# @device-id: QEMU device id of the unplugged device 1724# 1725# Since: 4.2 1726# 1727# Example: 1728# {"event": "UNPLUG_PRIMARY", "data": {"device-id": "hostdev0"} } 1729# 1730## 1731{ 'event': 'UNPLUG_PRIMARY', 1732 'data': { 'device-id': 'str' } } 1733 1734## 1735# @DirtyRateVcpu: 1736# 1737# Dirty rate of vcpu. 1738# 1739# @id: vcpu index. 1740# 1741# @dirty-rate: dirty rate. 1742# 1743# Since: 6.1 1744# 1745## 1746{ 'struct': 'DirtyRateVcpu', 1747 'data': { 'id': 'int', 'dirty-rate': 'int64' } } 1748 1749## 1750# @DirtyRateStatus: 1751# 1752# An enumeration of dirtyrate status. 1753# 1754# @unstarted: the dirtyrate thread has not been started. 1755# 1756# @measuring: the dirtyrate thread is measuring. 1757# 1758# @measured: the dirtyrate thread has measured and results are available. 1759# 1760# Since: 5.2 1761# 1762## 1763{ 'enum': 'DirtyRateStatus', 1764 'data': [ 'unstarted', 'measuring', 'measured'] } 1765 1766## 1767# @DirtyRateMeasureMode: 1768# 1769# An enumeration of mode of measuring dirtyrate. 1770# 1771# @page-sampling: calculate dirtyrate by sampling pages. 1772# 1773# @dirty-ring: calculate dirtyrate by via dirty ring. 1774# 1775# Since: 6.1 1776# 1777## 1778{ 'enum': 'DirtyRateMeasureMode', 1779 'data': ['page-sampling', 'dirty-ring'] } 1780 1781## 1782# @DirtyRateInfo: 1783# 1784# Information about current dirty page rate of vm. 1785# 1786# @dirty-rate: an estimate of the dirty page rate of the VM in units of 1787# MB/s, present only when estimating the rate has completed. 1788# 1789# @status: status containing dirtyrate query status includes 1790# 'unstarted' or 'measuring' or 'measured' 1791# 1792# @start-time: start time in units of second for calculation 1793# 1794# @calc-time: time in units of second for sample dirty pages 1795# 1796# @sample-pages: page count per GB for sample dirty pages 1797# the default value is 512 (since 6.1) 1798# 1799# @mode: mode containing method of calculate dirtyrate includes 1800# 'page-sampling' and 'dirty-ring' (Since 6.1) 1801# 1802# @vcpu-dirty-rate: dirtyrate for each vcpu if dirty-ring 1803# mode specified (Since 6.1) 1804# 1805# Since: 5.2 1806# 1807## 1808{ 'struct': 'DirtyRateInfo', 1809 'data': {'*dirty-rate': 'int64', 1810 'status': 'DirtyRateStatus', 1811 'start-time': 'int64', 1812 'calc-time': 'int64', 1813 'sample-pages': 'uint64', 1814 'mode': 'DirtyRateMeasureMode', 1815 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } } 1816 1817## 1818# @calc-dirty-rate: 1819# 1820# start calculating dirty page rate for vm 1821# 1822# @calc-time: time in units of second for sample dirty pages 1823# 1824# @sample-pages: page count per GB for sample dirty pages 1825# the default value is 512 (since 6.1) 1826# 1827# @mode: mechanism of calculating dirtyrate includes 1828# 'page-sampling' and 'dirty-ring' (Since 6.1) 1829# 1830# Since: 5.2 1831# 1832# Example: 1833# {"command": "calc-dirty-rate", "data": {"calc-time": 1, 1834# 'sample-pages': 512} } 1835# 1836## 1837{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64', 1838 '*sample-pages': 'int', 1839 '*mode': 'DirtyRateMeasureMode'} } 1840 1841## 1842# @query-dirty-rate: 1843# 1844# query dirty page rate in units of MB/s for vm 1845# 1846# Since: 5.2 1847## 1848{ 'command': 'query-dirty-rate', 'returns': 'DirtyRateInfo' } 1849 1850## 1851# @snapshot-save: 1852# 1853# Save a VM snapshot 1854# 1855# @job-id: identifier for the newly created job 1856# @tag: name of the snapshot to create 1857# @vmstate: block device node name to save vmstate to 1858# @devices: list of block device node names to save a snapshot to 1859# 1860# Applications should not assume that the snapshot save is complete 1861# when this command returns. The job commands / events must be used 1862# to determine completion and to fetch details of any errors that arise. 1863# 1864# Note that execution of the guest CPUs may be stopped during the 1865# time it takes to save the snapshot. A future version of QEMU 1866# may ensure CPUs are executing continuously. 1867# 1868# It is strongly recommended that @devices contain all writable 1869# block device nodes if a consistent snapshot is required. 1870# 1871# If @tag already exists, an error will be reported 1872# 1873# Returns: nothing 1874# 1875# Example: 1876# 1877# -> { "execute": "snapshot-save", 1878# "data": { 1879# "job-id": "snapsave0", 1880# "tag": "my-snap", 1881# "vmstate": "disk0", 1882# "devices": ["disk0", "disk1"] 1883# } 1884# } 1885# <- { "return": { } } 1886# <- {"event": "JOB_STATUS_CHANGE", 1887# "data": {"status": "created", "id": "snapsave0"}} 1888# <- {"event": "JOB_STATUS_CHANGE", 1889# "data": {"status": "running", "id": "snapsave0"}} 1890# <- {"event": "STOP"} 1891# <- {"event": "RESUME"} 1892# <- {"event": "JOB_STATUS_CHANGE", 1893# "data": {"status": "waiting", "id": "snapsave0"}} 1894# <- {"event": "JOB_STATUS_CHANGE", 1895# "data": {"status": "pending", "id": "snapsave0"}} 1896# <- {"event": "JOB_STATUS_CHANGE", 1897# "data": {"status": "concluded", "id": "snapsave0"}} 1898# -> {"execute": "query-jobs"} 1899# <- {"return": [{"current-progress": 1, 1900# "status": "concluded", 1901# "total-progress": 1, 1902# "type": "snapshot-save", 1903# "id": "snapsave0"}]} 1904# 1905# Since: 6.0 1906## 1907{ 'command': 'snapshot-save', 1908 'data': { 'job-id': 'str', 1909 'tag': 'str', 1910 'vmstate': 'str', 1911 'devices': ['str'] } } 1912 1913## 1914# @snapshot-load: 1915# 1916# Load a VM snapshot 1917# 1918# @job-id: identifier for the newly created job 1919# @tag: name of the snapshot to load. 1920# @vmstate: block device node name to load vmstate from 1921# @devices: list of block device node names to load a snapshot from 1922# 1923# Applications should not assume that the snapshot load is complete 1924# when this command returns. The job commands / events must be used 1925# to determine completion and to fetch details of any errors that arise. 1926# 1927# Note that execution of the guest CPUs will be stopped during the 1928# time it takes to load the snapshot. 1929# 1930# It is strongly recommended that @devices contain all writable 1931# block device nodes that can have changed since the original 1932# @snapshot-save command execution. 1933# 1934# Returns: nothing 1935# 1936# Example: 1937# 1938# -> { "execute": "snapshot-load", 1939# "data": { 1940# "job-id": "snapload0", 1941# "tag": "my-snap", 1942# "vmstate": "disk0", 1943# "devices": ["disk0", "disk1"] 1944# } 1945# } 1946# <- { "return": { } } 1947# <- {"event": "JOB_STATUS_CHANGE", 1948# "data": {"status": "created", "id": "snapload0"}} 1949# <- {"event": "JOB_STATUS_CHANGE", 1950# "data": {"status": "running", "id": "snapload0"}} 1951# <- {"event": "STOP"} 1952# <- {"event": "RESUME"} 1953# <- {"event": "JOB_STATUS_CHANGE", 1954# "data": {"status": "waiting", "id": "snapload0"}} 1955# <- {"event": "JOB_STATUS_CHANGE", 1956# "data": {"status": "pending", "id": "snapload0"}} 1957# <- {"event": "JOB_STATUS_CHANGE", 1958# "data": {"status": "concluded", "id": "snapload0"}} 1959# -> {"execute": "query-jobs"} 1960# <- {"return": [{"current-progress": 1, 1961# "status": "concluded", 1962# "total-progress": 1, 1963# "type": "snapshot-load", 1964# "id": "snapload0"}]} 1965# 1966# Since: 6.0 1967## 1968{ 'command': 'snapshot-load', 1969 'data': { 'job-id': 'str', 1970 'tag': 'str', 1971 'vmstate': 'str', 1972 'devices': ['str'] } } 1973 1974## 1975# @snapshot-delete: 1976# 1977# Delete a VM snapshot 1978# 1979# @job-id: identifier for the newly created job 1980# @tag: name of the snapshot to delete. 1981# @devices: list of block device node names to delete a snapshot from 1982# 1983# Applications should not assume that the snapshot delete is complete 1984# when this command returns. The job commands / events must be used 1985# to determine completion and to fetch details of any errors that arise. 1986# 1987# Returns: nothing 1988# 1989# Example: 1990# 1991# -> { "execute": "snapshot-delete", 1992# "data": { 1993# "job-id": "snapdelete0", 1994# "tag": "my-snap", 1995# "devices": ["disk0", "disk1"] 1996# } 1997# } 1998# <- { "return": { } } 1999# <- {"event": "JOB_STATUS_CHANGE", 2000# "data": {"status": "created", "id": "snapdelete0"}} 2001# <- {"event": "JOB_STATUS_CHANGE", 2002# "data": {"status": "running", "id": "snapdelete0"}} 2003# <- {"event": "JOB_STATUS_CHANGE", 2004# "data": {"status": "waiting", "id": "snapdelete0"}} 2005# <- {"event": "JOB_STATUS_CHANGE", 2006# "data": {"status": "pending", "id": "snapdelete0"}} 2007# <- {"event": "JOB_STATUS_CHANGE", 2008# "data": {"status": "concluded", "id": "snapdelete0"}} 2009# -> {"execute": "query-jobs"} 2010# <- {"return": [{"current-progress": 1, 2011# "status": "concluded", 2012# "total-progress": 1, 2013# "type": "snapshot-delete", 2014# "id": "snapdelete0"}]} 2015# 2016# Since: 6.0 2017## 2018{ 'command': 'snapshot-delete', 2019 'data': { 'job-id': 'str', 2020 'tag': 'str', 2021 'devices': ['str'] } } 2022