1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4 5## 6# = Migration 7## 8 9{ 'include': 'common.json' } 10{ 'include': 'sockets.json' } 11 12## 13# @MigrationStats: 14# 15# Detailed migration status. 16# 17# @transferred: amount of bytes already transferred to the target VM 18# 19# @remaining: amount of bytes remaining to be transferred to the 20# target VM 21# 22# @total: total amount of bytes involved in the migration process 23# 24# @duplicate: number of duplicate (zero) pages (since 1.2) 25# 26# @normal: number of normal pages (since 1.2) 27# 28# @normal-bytes: number of normal bytes sent (since 1.2) 29# 30# @dirty-pages-rate: number of pages dirtied by second by the guest 31# (since 1.3) 32# 33# @mbps: throughput in megabits/sec. (since 1.6) 34# 35# @dirty-sync-count: number of times that dirty ram was synchronized 36# (since 2.1) 37# 38# @postcopy-requests: The number of page requests received from the 39# destination (since 2.7) 40# 41# @page-size: The number of bytes per page for the various page-based 42# statistics (since 2.10) 43# 44# @multifd-bytes: The number of bytes sent through multifd (since 3.0) 45# 46# @pages-per-second: the number of memory pages transferred per second 47# (Since 4.0) 48# 49# @precopy-bytes: The number of bytes sent in the pre-copy phase 50# (since 7.0). 51# 52# @downtime-bytes: The number of bytes sent while the guest is paused 53# (since 7.0). 54# 55# @postcopy-bytes: The number of bytes sent during the post-copy phase 56# (since 7.0). 57# 58# @dirty-sync-missed-zero-copy: Number of times dirty RAM 59# synchronization could not avoid copying dirty pages. This is 60# between 0 and @dirty-sync-count * @multifd-channels. (since 61# 7.1) 62# 63# Since: 0.14 64## 65{ 'struct': 'MigrationStats', 66 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' , 67 'duplicate': 'int', 68 'normal': 'int', 69 'normal-bytes': 'int', 'dirty-pages-rate': 'int', 70 'mbps': 'number', 'dirty-sync-count': 'int', 71 'postcopy-requests': 'int', 'page-size': 'int', 72 'multifd-bytes': 'uint64', 'pages-per-second': 'uint64', 73 'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64', 74 'postcopy-bytes': 'uint64', 75 'dirty-sync-missed-zero-copy': 'uint64' } } 76 77## 78# @XBZRLECacheStats: 79# 80# Detailed XBZRLE migration cache statistics 81# 82# @cache-size: XBZRLE cache size 83# 84# @bytes: amount of bytes already transferred to the target VM 85# 86# @pages: amount of pages transferred to the target VM 87# 88# @cache-miss: number of cache miss 89# 90# @cache-miss-rate: rate of cache miss (since 2.1) 91# 92# @encoding-rate: rate of encoded bytes (since 5.1) 93# 94# @overflow: number of overflows 95# 96# Since: 1.2 97## 98{ 'struct': 'XBZRLECacheStats', 99 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int', 100 'cache-miss': 'int', 'cache-miss-rate': 'number', 101 'encoding-rate': 'number', 'overflow': 'int' } } 102 103## 104# @CompressionStats: 105# 106# Detailed migration compression statistics 107# 108# @pages: amount of pages compressed and transferred to the target VM 109# 110# @busy: count of times that no free thread was available to compress 111# data 112# 113# @busy-rate: rate of thread busy 114# 115# @compressed-size: amount of bytes after compression 116# 117# @compression-rate: rate of compressed size 118# 119# Since: 3.1 120## 121{ 'struct': 'CompressionStats', 122 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number', 123 'compressed-size': 'int', 'compression-rate': 'number' } } 124 125## 126# @MigrationStatus: 127# 128# An enumeration of migration status. 129# 130# @none: no migration has ever happened. 131# 132# @setup: migration process has been initiated. 133# 134# @cancelling: in the process of cancelling migration. 135# 136# @cancelled: cancelling migration is finished. 137# 138# @active: in the process of doing migration. 139# 140# @postcopy-active: like active, but now in postcopy mode. (since 141# 2.5) 142# 143# @postcopy-paused: during postcopy but paused. (since 3.0) 144# 145# @postcopy-recover: trying to recover from a paused postcopy. (since 146# 3.0) 147# 148# @completed: migration is finished. 149# 150# @failed: some error occurred during migration process. 151# 152# @colo: VM is in the process of fault tolerance, VM can not get into 153# this state unless colo capability is enabled for migration. 154# (since 2.8) 155# 156# @pre-switchover: Paused before device serialisation. (since 2.11) 157# 158# @device: During device serialisation when pause-before-switchover is 159# enabled (since 2.11) 160# 161# @wait-unplug: wait for device unplug request by guest OS to be 162# completed. (since 4.2) 163# 164# Since: 2.3 165## 166{ 'enum': 'MigrationStatus', 167 'data': [ 'none', 'setup', 'cancelling', 'cancelled', 168 'active', 'postcopy-active', 'postcopy-paused', 169 'postcopy-recover', 'completed', 'failed', 'colo', 170 'pre-switchover', 'device', 'wait-unplug' ] } 171## 172# @VfioStats: 173# 174# Detailed VFIO devices migration statistics 175# 176# @transferred: amount of bytes transferred to the target VM by VFIO 177# devices 178# 179# Since: 5.2 180## 181{ 'struct': 'VfioStats', 182 'data': {'transferred': 'int' } } 183 184## 185# @MigrationInfo: 186# 187# Information about current migration process. 188# 189# @status: @MigrationStatus describing the current migration status. 190# If this field is not returned, no migration process has been 191# initiated 192# 193# @ram: @MigrationStats containing detailed migration status, only 194# returned if status is 'active' or 'completed'(since 1.2) 195# 196# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE 197# migration statistics, only returned if XBZRLE feature is on and 198# status is 'active' or 'completed' (since 1.2) 199# 200# @total-time: total amount of milliseconds since migration started. 201# If migration has ended, it returns the total migration time. 202# (since 1.2) 203# 204# @downtime: only present when migration finishes correctly total 205# downtime in milliseconds for the guest. (since 1.3) 206# 207# @expected-downtime: only present while migration is active expected 208# downtime in milliseconds for the guest in last walk of the dirty 209# bitmap. (since 1.3) 210# 211# @setup-time: amount of setup time in milliseconds *before* the 212# iterations begin but *after* the QMP command is issued. This is 213# designed to provide an accounting of any activities (such as 214# RDMA pinning) which may be expensive, but do not actually occur 215# during the iterative migration rounds themselves. (since 1.6) 216# 217# @cpu-throttle-percentage: percentage of time guest cpus are being 218# throttled during auto-converge. This is only present when 219# auto-converge has started throttling guest cpus. (Since 2.7) 220# 221# @error-desc: the human readable error description string. Clients 222# should not attempt to parse the error strings. (Since 2.7) 223# 224# @postcopy-blocktime: total time when all vCPU were blocked during 225# postcopy live migration. This is only present when the 226# postcopy-blocktime migration capability is enabled. (Since 3.0) 227# 228# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. 229# This is only present when the postcopy-blocktime migration 230# capability is enabled. (Since 3.0) 231# 232# @socket-address: Only used for tcp, to know what the real port is 233# (Since 4.0) 234# 235# @vfio: @VfioStats containing detailed VFIO devices migration 236# statistics, only returned if VFIO device is present, migration 237# is supported by all VFIO devices and status is 'active' or 238# 'completed' (since 5.2) 239# 240# @blocked-reasons: A list of reasons an outgoing migration is 241# blocked. Present and non-empty when migration is blocked. 242# (since 6.0) 243# 244# @dirty-limit-throttle-time-per-round: Maximum throttle time 245# (in microseconds) of virtual CPUs each dirty ring full round, 246# which shows how MigrationCapability dirty-limit affects the 247# guest during live migration. (Since 8.1) 248# 249# @dirty-limit-ring-full-time: Estimated average dirty ring full time 250# (in microseconds) for each dirty ring full round. The value 251# equals the dirty ring memory size divided by the average dirty 252# page rate of the virtual CPU, which can be used to observe the 253# average memory load of the virtual CPU indirectly. Note that 254# zero means guest doesn't dirty memory. (Since 8.1) 255# 256# Since: 0.14 257## 258{ 'struct': 'MigrationInfo', 259 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats', 260 '*vfio': 'VfioStats', 261 '*xbzrle-cache': 'XBZRLECacheStats', 262 '*total-time': 'int', 263 '*expected-downtime': 'int', 264 '*downtime': 'int', 265 '*setup-time': 'int', 266 '*cpu-throttle-percentage': 'int', 267 '*error-desc': 'str', 268 '*blocked-reasons': ['str'], 269 '*postcopy-blocktime': 'uint32', 270 '*postcopy-vcpu-blocktime': ['uint32'], 271 '*socket-address': ['SocketAddress'], 272 '*dirty-limit-throttle-time-per-round': 'uint64', 273 '*dirty-limit-ring-full-time': 'uint64'} } 274 275## 276# @query-migrate: 277# 278# Returns information about current migration process. If migration 279# is active there will be another json-object with RAM migration 280# status. 281# 282# Returns: @MigrationInfo 283# 284# Since: 0.14 285# 286# Examples: 287# 288# 1. Before the first migration 289# 290# -> { "execute": "query-migrate" } 291# <- { "return": {} } 292# 293# 2. Migration is done and has succeeded 294# 295# -> { "execute": "query-migrate" } 296# <- { "return": { 297# "status": "completed", 298# "total-time":12345, 299# "setup-time":12345, 300# "downtime":12345, 301# "ram":{ 302# "transferred":123, 303# "remaining":123, 304# "total":246, 305# "duplicate":123, 306# "normal":123, 307# "normal-bytes":123456, 308# "dirty-sync-count":15 309# } 310# } 311# } 312# 313# 3. Migration is done and has failed 314# 315# -> { "execute": "query-migrate" } 316# <- { "return": { "status": "failed" } } 317# 318# 4. Migration is being performed: 319# 320# -> { "execute": "query-migrate" } 321# <- { 322# "return":{ 323# "status":"active", 324# "total-time":12345, 325# "setup-time":12345, 326# "expected-downtime":12345, 327# "ram":{ 328# "transferred":123, 329# "remaining":123, 330# "total":246, 331# "duplicate":123, 332# "normal":123, 333# "normal-bytes":123456, 334# "dirty-sync-count":15 335# } 336# } 337# } 338# 339# 5. Migration is being performed and XBZRLE is active: 340# 341# -> { "execute": "query-migrate" } 342# <- { 343# "return":{ 344# "status":"active", 345# "total-time":12345, 346# "setup-time":12345, 347# "expected-downtime":12345, 348# "ram":{ 349# "total":1057024, 350# "remaining":1053304, 351# "transferred":3720, 352# "duplicate":10, 353# "normal":3333, 354# "normal-bytes":3412992, 355# "dirty-sync-count":15 356# }, 357# "xbzrle-cache":{ 358# "cache-size":67108864, 359# "bytes":20971520, 360# "pages":2444343, 361# "cache-miss":2244, 362# "cache-miss-rate":0.123, 363# "encoding-rate":80.1, 364# "overflow":34434 365# } 366# } 367# } 368## 369{ 'command': 'query-migrate', 'returns': 'MigrationInfo' } 370 371## 372# @MigrationCapability: 373# 374# Migration capabilities enumeration 375# 376# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length 377# Encoding). This feature allows us to minimize migration traffic 378# for certain work loads, by sending compressed difference of the 379# pages 380# 381# @rdma-pin-all: Controls whether or not the entire VM memory 382# footprint is mlock()'d on demand or all at once. Refer to 383# docs/rdma.txt for usage. Disabled by default. (since 2.0) 384# 385# @zero-blocks: During storage migration encode blocks of zeroes 386# efficiently. This essentially saves 1MB of zeroes per block on 387# the wire. Enabling requires source and target VM to support 388# this feature. To enable it is sufficient to enable the 389# capability on the source VM. The feature is disabled by default. 390# (since 1.6) 391# 392# @events: generate events for each migration state change (since 2.4) 393# 394# @auto-converge: If enabled, QEMU will automatically throttle down 395# the guest to speed up convergence of RAM migration. (since 1.6) 396# 397# @postcopy-ram: Start executing on the migration target before all of 398# RAM has been migrated, pulling the remaining pages along as 399# needed. The capacity must have the same setting on both source 400# and target or migration will not even start. NOTE: If the 401# migration fails during postcopy the VM will fail. (since 2.6) 402# 403# @x-colo: If enabled, migration will never end, and the state of the 404# VM on the primary side will be migrated continuously to the VM 405# on secondary side, this process is called COarse-Grain LOck 406# Stepping (COLO) for Non-stop Service. (since 2.8) 407# 408# @release-ram: if enabled, qemu will free the migrated ram pages on 409# the source during postcopy-ram migration. (since 2.9) 410# 411# @return-path: If enabled, migration will use the return path even 412# for precopy. (since 2.10) 413# 414# @pause-before-switchover: Pause outgoing migration before 415# serialising device state and before disabling block IO (since 416# 2.11) 417# 418# @multifd: Use more than one fd for migration (since 4.0) 419# 420# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps. 421# (since 2.12) 422# 423# @postcopy-blocktime: Calculate downtime for postcopy live migration 424# (since 3.0) 425# 426# @late-block-activate: If enabled, the destination will not activate 427# block devices (and thus take locks) immediately at the end of 428# migration. (since 3.0) 429# 430# @x-ignore-shared: If enabled, QEMU will not migrate shared memory 431# that is accessible on the destination machine. (since 4.0) 432# 433# @validate-uuid: Send the UUID of the source to allow the destination 434# to ensure it is the same. (since 4.2) 435# 436# @background-snapshot: If enabled, the migration stream will be a 437# snapshot of the VM exactly at the point when the migration 438# procedure starts. The VM RAM is saved with running VM. 439# (since 6.0) 440# 441# @zero-copy-send: Controls behavior on sending memory pages on 442# migration. When true, enables a zero-copy mechanism for sending 443# memory pages, if host supports it. Requires that QEMU be 444# permitted to use locked memory for guest RAM pages. (since 7.1) 445# 446# @postcopy-preempt: If enabled, the migration process will allow 447# postcopy requests to preempt precopy stream, so postcopy 448# requests will be handled faster. This is a performance feature 449# and should not affect the correctness of postcopy migration. 450# (since 7.1) 451# 452# @switchover-ack: If enabled, migration will not stop the source VM 453# and complete the migration until an ACK is received from the 454# destination that it's OK to do so. Exactly when this ACK is 455# sent depends on the migrated devices that use this feature. For 456# example, a device can use it to make sure some of its data is 457# sent and loaded in the destination before doing switchover. 458# This can reduce downtime if devices that support this capability 459# are present. 'return-path' capability must be enabled to use 460# it. (since 8.1) 461# 462# @dirty-limit: If enabled, migration will throttle vCPUs as needed to 463# keep their dirty page rate within @vcpu-dirty-limit. This can 464# improve responsiveness of large guests during live migration, 465# and can result in more stable read performance. Requires KVM 466# with accelerator property "dirty-ring-size" set. (Since 8.1) 467# 468# @mapped-ram: Migrate using fixed offsets in the migration file for 469# each RAM page. Requires a migration URI that supports seeking, 470# such as a file. (since 9.0) 471# 472# Features: 473# 474# @unstable: Members @x-colo and @x-ignore-shared are experimental. 475# 476# Since: 1.2 477## 478{ 'enum': 'MigrationCapability', 479 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks', 480 'events', 'postcopy-ram', 481 { 'name': 'x-colo', 'features': [ 'unstable' ] }, 482 'release-ram', 483 'return-path', 'pause-before-switchover', 'multifd', 484 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate', 485 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] }, 486 'validate-uuid', 'background-snapshot', 487 'zero-copy-send', 'postcopy-preempt', 'switchover-ack', 488 'dirty-limit', 'mapped-ram'] } 489 490## 491# @MigrationCapabilityStatus: 492# 493# Migration capability information 494# 495# @capability: capability enum 496# 497# @state: capability state bool 498# 499# Since: 1.2 500## 501{ 'struct': 'MigrationCapabilityStatus', 502 'data': { 'capability': 'MigrationCapability', 'state': 'bool' } } 503 504## 505# @migrate-set-capabilities: 506# 507# Enable/Disable the following migration capabilities (like xbzrle) 508# 509# @capabilities: json array of capability modifications to make 510# 511# Since: 1.2 512# 513# Example: 514# 515# -> { "execute": "migrate-set-capabilities" , "arguments": 516# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } } 517# <- { "return": {} } 518## 519{ 'command': 'migrate-set-capabilities', 520 'data': { 'capabilities': ['MigrationCapabilityStatus'] } } 521 522## 523# @query-migrate-capabilities: 524# 525# Returns information about the current migration capabilities status 526# 527# Returns: @MigrationCapabilityStatus 528# 529# Since: 1.2 530# 531# Example: 532# 533# -> { "execute": "query-migrate-capabilities" } 534# <- { "return": [ 535# {"state": false, "capability": "xbzrle"}, 536# {"state": false, "capability": "rdma-pin-all"}, 537# {"state": false, "capability": "auto-converge"}, 538# {"state": false, "capability": "zero-blocks"}, 539# {"state": true, "capability": "events"}, 540# {"state": false, "capability": "postcopy-ram"}, 541# {"state": false, "capability": "x-colo"} 542# ]} 543## 544{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']} 545 546## 547# @MultiFDCompression: 548# 549# An enumeration of multifd compression methods. 550# 551# @none: no compression. 552# 553# @zlib: use zlib compression method. 554# 555# @zstd: use zstd compression method. 556# 557# @qpl: use qpl compression method. Query Processing Library(qpl) is 558# based on the deflate compression algorithm and use the Intel 559# In-Memory Analytics Accelerator(IAA) accelerated compression 560# and decompression. (Since 9.1) 561# 562# @uadk: use UADK library compression method. (Since 9.1) 563# 564# Since: 5.0 565## 566{ 'enum': 'MultiFDCompression', 567 'data': [ 'none', 'zlib', 568 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' }, 569 { 'name': 'qpl', 'if': 'CONFIG_QPL' }, 570 { 'name': 'uadk', 'if': 'CONFIG_UADK' } ] } 571 572## 573# @MigMode: 574# 575# @normal: the original form of migration. (since 8.2) 576# 577# @cpr-reboot: The migrate command stops the VM and saves state to the 578# URI. After quitting QEMU, the user resumes by running QEMU 579# -incoming. 580# 581# This mode allows the user to quit QEMU, optionally update and 582# reboot the OS, and restart QEMU. If the user reboots, the URI 583# must persist across the reboot, such as by using a file. 584# 585# Unlike normal mode, the use of certain local storage options 586# does not block the migration, but the user must not modify the 587# contents of guest block devices between the quit and restart. 588# 589# This mode supports VFIO devices provided the user first puts the 590# guest in the suspended runstate, such as by issuing 591# guest-suspend-ram to the QEMU guest agent. 592# 593# Best performance is achieved when the memory backend is shared 594# and the @x-ignore-shared migration capability is set, but this 595# is not required. Further, if the user reboots before restarting 596# such a configuration, the shared memory must persist across the 597# reboot, such as by backing it with a dax device. 598# 599# @cpr-reboot may not be used with postcopy, background-snapshot, 600# or COLO. 601# 602# (since 8.2) 603## 604{ 'enum': 'MigMode', 605 'data': [ 'normal', 'cpr-reboot' ] } 606 607## 608# @ZeroPageDetection: 609# 610# @none: Do not perform zero page checking. 611# 612# @legacy: Perform zero page checking in main migration thread. 613# 614# @multifd: Perform zero page checking in multifd sender thread if 615# multifd migration is enabled, else in the main migration thread 616# as for @legacy. 617# 618# Since: 9.0 619## 620{ 'enum': 'ZeroPageDetection', 621 'data': [ 'none', 'legacy', 'multifd' ] } 622 623## 624# @BitmapMigrationBitmapAliasTransform: 625# 626# @persistent: If present, the bitmap will be made persistent or 627# transient depending on this parameter. 628# 629# Since: 6.0 630## 631{ 'struct': 'BitmapMigrationBitmapAliasTransform', 632 'data': { 633 '*persistent': 'bool' 634 } } 635 636## 637# @BitmapMigrationBitmapAlias: 638# 639# @name: The name of the bitmap. 640# 641# @alias: An alias name for migration (for example the bitmap name on 642# the opposite site). 643# 644# @transform: Allows the modification of the migrated bitmap. (since 645# 6.0) 646# 647# Since: 5.2 648## 649{ 'struct': 'BitmapMigrationBitmapAlias', 650 'data': { 651 'name': 'str', 652 'alias': 'str', 653 '*transform': 'BitmapMigrationBitmapAliasTransform' 654 } } 655 656## 657# @BitmapMigrationNodeAlias: 658# 659# Maps a block node name and the bitmaps it has to aliases for dirty 660# bitmap migration. 661# 662# @node-name: A block node name. 663# 664# @alias: An alias block node name for migration (for example the node 665# name on the opposite site). 666# 667# @bitmaps: Mappings for the bitmaps on this node. 668# 669# Since: 5.2 670## 671{ 'struct': 'BitmapMigrationNodeAlias', 672 'data': { 673 'node-name': 'str', 674 'alias': 'str', 675 'bitmaps': [ 'BitmapMigrationBitmapAlias' ] 676 } } 677 678## 679# @MigrationParameter: 680# 681# Migration parameters enumeration 682# 683# @announce-initial: Initial delay (in milliseconds) before sending 684# the first announce (Since 4.0) 685# 686# @announce-max: Maximum delay (in milliseconds) between packets in 687# the announcement (Since 4.0) 688# 689# @announce-rounds: Number of self-announce packets sent after 690# migration (Since 4.0) 691# 692# @announce-step: Increase in delay (in milliseconds) between 693# subsequent packets in the announcement (Since 4.0) 694# 695# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 696# bytes_xfer_period to trigger throttling. It is expressed as 697# percentage. The default value is 50. (Since 5.0) 698# 699# @cpu-throttle-initial: Initial percentage of time guest cpus are 700# throttled when migration auto-converge is activated. The 701# default value is 20. (Since 2.7) 702# 703# @cpu-throttle-increment: throttle percentage increase each time 704# auto-converge detects that migration is not making progress. 705# The default value is 10. (Since 2.7) 706# 707# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 708# the tail stage of throttling, the Guest is very sensitive to CPU 709# percentage while the @cpu-throttle -increment is excessive 710# usually at tail stage. If this parameter is true, we will 711# compute the ideal CPU percentage used by the Guest, which may 712# exactly make the dirty rate match the dirty rate threshold. 713# Then we will choose a smaller throttle increment between the one 714# specified by @cpu-throttle-increment and the one generated by 715# ideal CPU percentage. Therefore, it is compatible to 716# traditional throttling, meanwhile the throttle increment won't 717# be excessive at tail stage. The default value is false. (Since 718# 5.1) 719# 720# @tls-creds: ID of the 'tls-creds' object that provides credentials 721# for establishing a TLS connection over the migration data 722# channel. On the outgoing side of the migration, the credentials 723# must be for a 'client' endpoint, while for the incoming side the 724# credentials must be for a 'server' endpoint. Setting this to a 725# non-empty string enables TLS for all migrations. An empty 726# string means that QEMU will use plain text mode for migration, 727# rather than TLS. (Since 2.7) 728# 729# @tls-hostname: migration target's hostname for validating the 730# server's x509 certificate identity. If empty, QEMU will use the 731# hostname from the migration URI, if any. A non-empty value is 732# required when using x509 based TLS credentials and the migration 733# URI does not include a hostname, such as fd: or exec: based 734# migration. (Since 2.7) 735# 736# Note: empty value works only since 2.9. 737# 738# @tls-authz: ID of the 'authz' object subclass that provides access 739# control checking of the TLS x509 certificate distinguished name. 740# This object is only resolved at time of use, so can be deleted 741# and recreated on the fly while the migration server is active. 742# If missing, it will default to denying access (Since 4.0) 743# 744# @max-bandwidth: maximum speed for migration, in bytes per second. 745# (Since 2.8) 746# 747# @avail-switchover-bandwidth: to set the available bandwidth that 748# migration can use during switchover phase. NOTE! This does not 749# limit the bandwidth during switchover, but only for calculations 750# when making decisions to switchover. By default, this value is 751# zero, which means QEMU will estimate the bandwidth 752# automatically. This can be set when the estimated value is not 753# accurate, while the user is able to guarantee such bandwidth is 754# available when switching over. When specified correctly, this 755# can make the switchover decision much more accurate. 756# (Since 8.2) 757# 758# @downtime-limit: set maximum tolerated downtime for migration. 759# maximum downtime in milliseconds (Since 2.8) 760# 761# @x-checkpoint-delay: The delay time (in ms) between two COLO 762# checkpoints in periodic mode. (Since 2.8) 763# 764# @multifd-channels: Number of channels used to migrate data in 765# parallel. This is the same number that the number of sockets 766# used for migration. The default value is 2 (since 4.0) 767# 768# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 769# needs to be a multiple of the target page size and a power of 2 770# (Since 2.11) 771# 772# @max-postcopy-bandwidth: Background transfer bandwidth during 773# postcopy. Defaults to 0 (unlimited). In bytes per second. 774# (Since 3.0) 775# 776# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 777# (Since 3.1) 778# 779# @multifd-compression: Which compression method to use. Defaults to 780# none. (Since 5.0) 781# 782# @multifd-zlib-level: Set the compression level to be used in live 783# migration, the compression level is an integer between 0 and 9, 784# where 0 means no compression, 1 means the best compression 785# speed, and 9 means best compression ratio which will consume 786# more CPU. Defaults to 1. (Since 5.0) 787# 788# @multifd-zstd-level: Set the compression level to be used in live 789# migration, the compression level is an integer between 0 and 20, 790# where 0 means no compression, 1 means the best compression 791# speed, and 20 means best compression ratio which will consume 792# more CPU. Defaults to 1. (Since 5.0) 793# 794# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 795# aliases for the purpose of dirty bitmap migration. Such aliases 796# may for example be the corresponding names on the opposite site. 797# The mapping must be one-to-one, but not necessarily complete: On 798# the source, unmapped bitmaps and all bitmaps on unmapped nodes 799# will be ignored. On the destination, encountering an unmapped 800# alias in the incoming migration stream will result in a report, 801# and all further bitmap migration data will then be discarded. 802# Note that the destination does not know about bitmaps it does 803# not receive, so there is no limitation or requirement regarding 804# the number of bitmaps received, or how they are named, or on 805# which nodes they are placed. By default (when this parameter 806# has never been set), bitmap names are mapped to themselves. 807# Nodes are mapped to their block device name if there is one, and 808# to their node name otherwise. (Since 5.2) 809# 810# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 811# limit during live migration. Should be in the range 1 to 812# 1000ms. Defaults to 1000ms. (Since 8.1) 813# 814# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 815# Defaults to 1. (Since 8.1) 816# 817# @mode: Migration mode. See description in @MigMode. Default is 818# 'normal'. (Since 8.2) 819# 820# @zero-page-detection: Whether and how to detect zero pages. 821# See description in @ZeroPageDetection. Default is 'multifd'. 822# (since 9.0) 823# 824# Features: 825# 826# @unstable: Members @x-checkpoint-delay and 827# @x-vcpu-dirty-limit-period are experimental. 828# 829# Since: 2.4 830## 831{ 'enum': 'MigrationParameter', 832 'data': ['announce-initial', 'announce-max', 833 'announce-rounds', 'announce-step', 834 'throttle-trigger-threshold', 835 'cpu-throttle-initial', 'cpu-throttle-increment', 836 'cpu-throttle-tailslow', 837 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth', 838 'avail-switchover-bandwidth', 'downtime-limit', 839 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] }, 840 'multifd-channels', 841 'xbzrle-cache-size', 'max-postcopy-bandwidth', 842 'max-cpu-throttle', 'multifd-compression', 843 'multifd-zlib-level', 'multifd-zstd-level', 844 'block-bitmap-mapping', 845 { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] }, 846 'vcpu-dirty-limit', 847 'mode', 848 'zero-page-detection'] } 849 850## 851# @MigrateSetParameters: 852# 853# @announce-initial: Initial delay (in milliseconds) before sending 854# the first announce (Since 4.0) 855# 856# @announce-max: Maximum delay (in milliseconds) between packets in 857# the announcement (Since 4.0) 858# 859# @announce-rounds: Number of self-announce packets sent after 860# migration (Since 4.0) 861# 862# @announce-step: Increase in delay (in milliseconds) between 863# subsequent packets in the announcement (Since 4.0) 864# 865# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 866# bytes_xfer_period to trigger throttling. It is expressed as 867# percentage. The default value is 50. (Since 5.0) 868# 869# @cpu-throttle-initial: Initial percentage of time guest cpus are 870# throttled when migration auto-converge is activated. The 871# default value is 20. (Since 2.7) 872# 873# @cpu-throttle-increment: throttle percentage increase each time 874# auto-converge detects that migration is not making progress. 875# The default value is 10. (Since 2.7) 876# 877# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 878# the tail stage of throttling, the Guest is very sensitive to CPU 879# percentage while the @cpu-throttle -increment is excessive 880# usually at tail stage. If this parameter is true, we will 881# compute the ideal CPU percentage used by the Guest, which may 882# exactly make the dirty rate match the dirty rate threshold. 883# Then we will choose a smaller throttle increment between the one 884# specified by @cpu-throttle-increment and the one generated by 885# ideal CPU percentage. Therefore, it is compatible to 886# traditional throttling, meanwhile the throttle increment won't 887# be excessive at tail stage. The default value is false. (Since 888# 5.1) 889# 890# @tls-creds: ID of the 'tls-creds' object that provides credentials 891# for establishing a TLS connection over the migration data 892# channel. On the outgoing side of the migration, the credentials 893# must be for a 'client' endpoint, while for the incoming side the 894# credentials must be for a 'server' endpoint. Setting this to a 895# non-empty string enables TLS for all migrations. An empty 896# string means that QEMU will use plain text mode for migration, 897# rather than TLS. This is the default. (Since 2.7) 898# 899# @tls-hostname: migration target's hostname for validating the 900# server's x509 certificate identity. If empty, QEMU will use the 901# hostname from the migration URI, if any. A non-empty value is 902# required when using x509 based TLS credentials and the migration 903# URI does not include a hostname, such as fd: or exec: based 904# migration. (Since 2.7) 905# 906# Note: empty value works only since 2.9. 907# 908# @tls-authz: ID of the 'authz' object subclass that provides access 909# control checking of the TLS x509 certificate distinguished name. 910# This object is only resolved at time of use, so can be deleted 911# and recreated on the fly while the migration server is active. 912# If missing, it will default to denying access (Since 4.0) 913# 914# @max-bandwidth: maximum speed for migration, in bytes per second. 915# (Since 2.8) 916# 917# @avail-switchover-bandwidth: to set the available bandwidth that 918# migration can use during switchover phase. NOTE! This does not 919# limit the bandwidth during switchover, but only for calculations 920# when making decisions to switchover. By default, this value is 921# zero, which means QEMU will estimate the bandwidth 922# automatically. This can be set when the estimated value is not 923# accurate, while the user is able to guarantee such bandwidth is 924# available when switching over. When specified correctly, this 925# can make the switchover decision much more accurate. 926# (Since 8.2) 927# 928# @downtime-limit: set maximum tolerated downtime for migration. 929# maximum downtime in milliseconds (Since 2.8) 930# 931# @x-checkpoint-delay: The delay time (in ms) between two COLO 932# checkpoints in periodic mode. (Since 2.8) 933# 934# @multifd-channels: Number of channels used to migrate data in 935# parallel. This is the same number that the number of sockets 936# used for migration. The default value is 2 (since 4.0) 937# 938# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 939# needs to be a multiple of the target page size and a power of 2 940# (Since 2.11) 941# 942# @max-postcopy-bandwidth: Background transfer bandwidth during 943# postcopy. Defaults to 0 (unlimited). In bytes per second. 944# (Since 3.0) 945# 946# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 947# (Since 3.1) 948# 949# @multifd-compression: Which compression method to use. Defaults to 950# none. (Since 5.0) 951# 952# @multifd-zlib-level: Set the compression level to be used in live 953# migration, the compression level is an integer between 0 and 9, 954# where 0 means no compression, 1 means the best compression 955# speed, and 9 means best compression ratio which will consume 956# more CPU. Defaults to 1. (Since 5.0) 957# 958# @multifd-zstd-level: Set the compression level to be used in live 959# migration, the compression level is an integer between 0 and 20, 960# where 0 means no compression, 1 means the best compression 961# speed, and 20 means best compression ratio which will consume 962# more CPU. Defaults to 1. (Since 5.0) 963# 964# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 965# aliases for the purpose of dirty bitmap migration. Such aliases 966# may for example be the corresponding names on the opposite site. 967# The mapping must be one-to-one, but not necessarily complete: On 968# the source, unmapped bitmaps and all bitmaps on unmapped nodes 969# will be ignored. On the destination, encountering an unmapped 970# alias in the incoming migration stream will result in a report, 971# and all further bitmap migration data will then be discarded. 972# Note that the destination does not know about bitmaps it does 973# not receive, so there is no limitation or requirement regarding 974# the number of bitmaps received, or how they are named, or on 975# which nodes they are placed. By default (when this parameter 976# has never been set), bitmap names are mapped to themselves. 977# Nodes are mapped to their block device name if there is one, and 978# to their node name otherwise. (Since 5.2) 979# 980# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 981# limit during live migration. Should be in the range 1 to 982# 1000ms. Defaults to 1000ms. (Since 8.1) 983# 984# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 985# Defaults to 1. (Since 8.1) 986# 987# @mode: Migration mode. See description in @MigMode. Default is 988# 'normal'. (Since 8.2) 989# 990# @zero-page-detection: Whether and how to detect zero pages. 991# See description in @ZeroPageDetection. Default is 'multifd'. 992# (since 9.0) 993# 994# Features: 995# 996# @unstable: Members @x-checkpoint-delay and 997# @x-vcpu-dirty-limit-period are experimental. 998# 999# TODO: either fuse back into MigrationParameters, or make 1000# MigrationParameters members mandatory 1001# 1002# Since: 2.4 1003## 1004{ 'struct': 'MigrateSetParameters', 1005 'data': { '*announce-initial': 'size', 1006 '*announce-max': 'size', 1007 '*announce-rounds': 'size', 1008 '*announce-step': 'size', 1009 '*throttle-trigger-threshold': 'uint8', 1010 '*cpu-throttle-initial': 'uint8', 1011 '*cpu-throttle-increment': 'uint8', 1012 '*cpu-throttle-tailslow': 'bool', 1013 '*tls-creds': 'StrOrNull', 1014 '*tls-hostname': 'StrOrNull', 1015 '*tls-authz': 'StrOrNull', 1016 '*max-bandwidth': 'size', 1017 '*avail-switchover-bandwidth': 'size', 1018 '*downtime-limit': 'uint64', 1019 '*x-checkpoint-delay': { 'type': 'uint32', 1020 'features': [ 'unstable' ] }, 1021 '*multifd-channels': 'uint8', 1022 '*xbzrle-cache-size': 'size', 1023 '*max-postcopy-bandwidth': 'size', 1024 '*max-cpu-throttle': 'uint8', 1025 '*multifd-compression': 'MultiFDCompression', 1026 '*multifd-zlib-level': 'uint8', 1027 '*multifd-zstd-level': 'uint8', 1028 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1029 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1030 'features': [ 'unstable' ] }, 1031 '*vcpu-dirty-limit': 'uint64', 1032 '*mode': 'MigMode', 1033 '*zero-page-detection': 'ZeroPageDetection'} } 1034 1035## 1036# @migrate-set-parameters: 1037# 1038# Set various migration parameters. 1039# 1040# Since: 2.4 1041# 1042# Example: 1043# 1044# -> { "execute": "migrate-set-parameters" , 1045# "arguments": { "multifd-channels": 5 } } 1046# <- { "return": {} } 1047## 1048{ 'command': 'migrate-set-parameters', 'boxed': true, 1049 'data': 'MigrateSetParameters' } 1050 1051## 1052# @MigrationParameters: 1053# 1054# The optional members aren't actually optional. 1055# 1056# @announce-initial: Initial delay (in milliseconds) before sending 1057# the first announce (Since 4.0) 1058# 1059# @announce-max: Maximum delay (in milliseconds) between packets in 1060# the announcement (Since 4.0) 1061# 1062# @announce-rounds: Number of self-announce packets sent after 1063# migration (Since 4.0) 1064# 1065# @announce-step: Increase in delay (in milliseconds) between 1066# subsequent packets in the announcement (Since 4.0) 1067# 1068# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 1069# bytes_xfer_period to trigger throttling. It is expressed as 1070# percentage. The default value is 50. (Since 5.0) 1071# 1072# @cpu-throttle-initial: Initial percentage of time guest cpus are 1073# throttled when migration auto-converge is activated. (Since 1074# 2.7) 1075# 1076# @cpu-throttle-increment: throttle percentage increase each time 1077# auto-converge detects that migration is not making progress. 1078# (Since 2.7) 1079# 1080# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 1081# the tail stage of throttling, the Guest is very sensitive to CPU 1082# percentage while the @cpu-throttle -increment is excessive 1083# usually at tail stage. If this parameter is true, we will 1084# compute the ideal CPU percentage used by the Guest, which may 1085# exactly make the dirty rate match the dirty rate threshold. 1086# Then we will choose a smaller throttle increment between the one 1087# specified by @cpu-throttle-increment and the one generated by 1088# ideal CPU percentage. Therefore, it is compatible to 1089# traditional throttling, meanwhile the throttle increment won't 1090# be excessive at tail stage. The default value is false. (Since 1091# 5.1) 1092# 1093# @tls-creds: ID of the 'tls-creds' object that provides credentials 1094# for establishing a TLS connection over the migration data 1095# channel. On the outgoing side of the migration, the credentials 1096# must be for a 'client' endpoint, while for the incoming side the 1097# credentials must be for a 'server' endpoint. An empty string 1098# means that QEMU will use plain text mode for migration, rather 1099# than TLS. (Since 2.7) 1100# 1101# Note: 2.8 omits empty @tls-creds instead. 1102# 1103# @tls-hostname: migration target's hostname for validating the 1104# server's x509 certificate identity. If empty, QEMU will use the 1105# hostname from the migration URI, if any. (Since 2.7) 1106# 1107# Note: 2.8 omits empty @tls-hostname instead. 1108# 1109# @tls-authz: ID of the 'authz' object subclass that provides access 1110# control checking of the TLS x509 certificate distinguished name. 1111# (Since 4.0) 1112# 1113# @max-bandwidth: maximum speed for migration, in bytes per second. 1114# (Since 2.8) 1115# 1116# @avail-switchover-bandwidth: to set the available bandwidth that 1117# migration can use during switchover phase. NOTE! This does not 1118# limit the bandwidth during switchover, but only for calculations 1119# when making decisions to switchover. By default, this value is 1120# zero, which means QEMU will estimate the bandwidth 1121# automatically. This can be set when the estimated value is not 1122# accurate, while the user is able to guarantee such bandwidth is 1123# available when switching over. When specified correctly, this 1124# can make the switchover decision much more accurate. 1125# (Since 8.2) 1126# 1127# @downtime-limit: set maximum tolerated downtime for migration. 1128# maximum downtime in milliseconds (Since 2.8) 1129# 1130# @x-checkpoint-delay: the delay time between two COLO checkpoints. 1131# (Since 2.8) 1132# 1133# @multifd-channels: Number of channels used to migrate data in 1134# parallel. This is the same number that the number of sockets 1135# used for migration. The default value is 2 (since 4.0) 1136# 1137# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1138# needs to be a multiple of the target page size and a power of 2 1139# (Since 2.11) 1140# 1141# @max-postcopy-bandwidth: Background transfer bandwidth during 1142# postcopy. Defaults to 0 (unlimited). In bytes per second. 1143# (Since 3.0) 1144# 1145# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 1146# (Since 3.1) 1147# 1148# @multifd-compression: Which compression method to use. Defaults to 1149# none. (Since 5.0) 1150# 1151# @multifd-zlib-level: Set the compression level to be used in live 1152# migration, the compression level is an integer between 0 and 9, 1153# where 0 means no compression, 1 means the best compression 1154# speed, and 9 means best compression ratio which will consume 1155# more CPU. Defaults to 1. (Since 5.0) 1156# 1157# @multifd-zstd-level: Set the compression level to be used in live 1158# migration, the compression level is an integer between 0 and 20, 1159# where 0 means no compression, 1 means the best compression 1160# speed, and 20 means best compression ratio which will consume 1161# more CPU. Defaults to 1. (Since 5.0) 1162# 1163# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1164# aliases for the purpose of dirty bitmap migration. Such aliases 1165# may for example be the corresponding names on the opposite site. 1166# The mapping must be one-to-one, but not necessarily complete: On 1167# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1168# will be ignored. On the destination, encountering an unmapped 1169# alias in the incoming migration stream will result in a report, 1170# and all further bitmap migration data will then be discarded. 1171# Note that the destination does not know about bitmaps it does 1172# not receive, so there is no limitation or requirement regarding 1173# the number of bitmaps received, or how they are named, or on 1174# which nodes they are placed. By default (when this parameter 1175# has never been set), bitmap names are mapped to themselves. 1176# Nodes are mapped to their block device name if there is one, and 1177# to their node name otherwise. (Since 5.2) 1178# 1179# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 1180# limit during live migration. Should be in the range 1 to 1181# 1000ms. Defaults to 1000ms. (Since 8.1) 1182# 1183# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1184# Defaults to 1. (Since 8.1) 1185# 1186# @mode: Migration mode. See description in @MigMode. Default is 1187# 'normal'. (Since 8.2) 1188# 1189# @zero-page-detection: Whether and how to detect zero pages. 1190# See description in @ZeroPageDetection. Default is 'multifd'. 1191# (since 9.0) 1192# 1193# Features: 1194# 1195# @unstable: Members @x-checkpoint-delay and 1196# @x-vcpu-dirty-limit-period are experimental. 1197# 1198# Since: 2.4 1199## 1200{ 'struct': 'MigrationParameters', 1201 'data': { '*announce-initial': 'size', 1202 '*announce-max': 'size', 1203 '*announce-rounds': 'size', 1204 '*announce-step': 'size', 1205 '*throttle-trigger-threshold': 'uint8', 1206 '*cpu-throttle-initial': 'uint8', 1207 '*cpu-throttle-increment': 'uint8', 1208 '*cpu-throttle-tailslow': 'bool', 1209 '*tls-creds': 'str', 1210 '*tls-hostname': 'str', 1211 '*tls-authz': 'str', 1212 '*max-bandwidth': 'size', 1213 '*avail-switchover-bandwidth': 'size', 1214 '*downtime-limit': 'uint64', 1215 '*x-checkpoint-delay': { 'type': 'uint32', 1216 'features': [ 'unstable' ] }, 1217 '*multifd-channels': 'uint8', 1218 '*xbzrle-cache-size': 'size', 1219 '*max-postcopy-bandwidth': 'size', 1220 '*max-cpu-throttle': 'uint8', 1221 '*multifd-compression': 'MultiFDCompression', 1222 '*multifd-zlib-level': 'uint8', 1223 '*multifd-zstd-level': 'uint8', 1224 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1225 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1226 'features': [ 'unstable' ] }, 1227 '*vcpu-dirty-limit': 'uint64', 1228 '*mode': 'MigMode', 1229 '*zero-page-detection': 'ZeroPageDetection'} } 1230 1231## 1232# @query-migrate-parameters: 1233# 1234# Returns information about the current migration parameters 1235# 1236# Returns: @MigrationParameters 1237# 1238# Since: 2.4 1239# 1240# Example: 1241# 1242# -> { "execute": "query-migrate-parameters" } 1243# <- { "return": { 1244# "multifd-channels": 2, 1245# "cpu-throttle-increment": 10, 1246# "cpu-throttle-initial": 20, 1247# "max-bandwidth": 33554432, 1248# "downtime-limit": 300 1249# } 1250# } 1251## 1252{ 'command': 'query-migrate-parameters', 1253 'returns': 'MigrationParameters' } 1254 1255## 1256# @migrate-start-postcopy: 1257# 1258# Followup to a migration command to switch the migration to postcopy 1259# mode. The postcopy-ram capability must be set on both source and 1260# destination before the original migration command. 1261# 1262# Since: 2.5 1263# 1264# Example: 1265# 1266# -> { "execute": "migrate-start-postcopy" } 1267# <- { "return": {} } 1268## 1269{ 'command': 'migrate-start-postcopy' } 1270 1271## 1272# @MIGRATION: 1273# 1274# Emitted when a migration event happens 1275# 1276# @status: @MigrationStatus describing the current migration status. 1277# 1278# Since: 2.4 1279# 1280# Example: 1281# 1282# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001}, 1283# "event": "MIGRATION", 1284# "data": {"status": "completed"} } 1285## 1286{ 'event': 'MIGRATION', 1287 'data': {'status': 'MigrationStatus'}} 1288 1289## 1290# @MIGRATION_PASS: 1291# 1292# Emitted from the source side of a migration at the start of each 1293# pass (when it syncs the dirty bitmap) 1294# 1295# @pass: An incrementing count (starting at 1 on the first pass) 1296# 1297# Since: 2.6 1298# 1299# Example: 1300# 1301# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225}, 1302# "event": "MIGRATION_PASS", "data": {"pass": 2} } 1303## 1304{ 'event': 'MIGRATION_PASS', 1305 'data': { 'pass': 'int' } } 1306 1307## 1308# @COLOMessage: 1309# 1310# The message transmission between Primary side and Secondary side. 1311# 1312# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing 1313# 1314# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for 1315# checkpointing 1316# 1317# @checkpoint-reply: SVM gets PVM's checkpoint request 1318# 1319# @vmstate-send: VM's state will be sent by PVM. 1320# 1321# @vmstate-size: The total size of VMstate. 1322# 1323# @vmstate-received: VM's state has been received by SVM. 1324# 1325# @vmstate-loaded: VM's state has been loaded by SVM. 1326# 1327# Since: 2.8 1328## 1329{ 'enum': 'COLOMessage', 1330 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply', 1331 'vmstate-send', 'vmstate-size', 'vmstate-received', 1332 'vmstate-loaded' ] } 1333 1334## 1335# @COLOMode: 1336# 1337# The COLO current mode. 1338# 1339# @none: COLO is disabled. 1340# 1341# @primary: COLO node in primary side. 1342# 1343# @secondary: COLO node in slave side. 1344# 1345# Since: 2.8 1346## 1347{ 'enum': 'COLOMode', 1348 'data': [ 'none', 'primary', 'secondary'] } 1349 1350## 1351# @FailoverStatus: 1352# 1353# An enumeration of COLO failover status 1354# 1355# @none: no failover has ever happened 1356# 1357# @require: got failover requirement but not handled 1358# 1359# @active: in the process of doing failover 1360# 1361# @completed: finish the process of failover 1362# 1363# @relaunch: restart the failover process, from 'none' -> 'completed' 1364# (Since 2.9) 1365# 1366# Since: 2.8 1367## 1368{ 'enum': 'FailoverStatus', 1369 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] } 1370 1371## 1372# @COLO_EXIT: 1373# 1374# Emitted when VM finishes COLO mode due to some errors happening or 1375# at the request of users. 1376# 1377# @mode: report COLO mode when COLO exited. 1378# 1379# @reason: describes the reason for the COLO exit. 1380# 1381# Since: 3.1 1382# 1383# Example: 1384# 1385# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172}, 1386# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } } 1387## 1388{ 'event': 'COLO_EXIT', 1389 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } } 1390 1391## 1392# @COLOExitReason: 1393# 1394# The reason for a COLO exit. 1395# 1396# @none: failover has never happened. This state does not occur in 1397# the COLO_EXIT event, and is only visible in the result of 1398# query-colo-status. 1399# 1400# @request: COLO exit is due to an external request. 1401# 1402# @error: COLO exit is due to an internal error. 1403# 1404# @processing: COLO is currently handling a failover (since 4.0). 1405# 1406# Since: 3.1 1407## 1408{ 'enum': 'COLOExitReason', 1409 'data': [ 'none', 'request', 'error' , 'processing' ] } 1410 1411## 1412# @x-colo-lost-heartbeat: 1413# 1414# Tell qemu that heartbeat is lost, request it to do takeover 1415# procedures. If this command is sent to the PVM, the Primary side 1416# will exit COLO mode. If sent to the Secondary, the Secondary side 1417# will run failover work, then takes over server operation to become 1418# the service VM. 1419# 1420# Features: 1421# 1422# @unstable: This command is experimental. 1423# 1424# Since: 2.8 1425# 1426# Example: 1427# 1428# -> { "execute": "x-colo-lost-heartbeat" } 1429# <- { "return": {} } 1430## 1431{ 'command': 'x-colo-lost-heartbeat', 1432 'features': [ 'unstable' ], 1433 'if': 'CONFIG_REPLICATION' } 1434 1435## 1436# @migrate_cancel: 1437# 1438# Cancel the current executing migration process. 1439# 1440# Notes: This command succeeds even if there is no migration process 1441# running. 1442# 1443# Since: 0.14 1444# 1445# Example: 1446# 1447# -> { "execute": "migrate_cancel" } 1448# <- { "return": {} } 1449## 1450{ 'command': 'migrate_cancel' } 1451 1452## 1453# @migrate-continue: 1454# 1455# Continue migration when it's in a paused state. 1456# 1457# @state: The state the migration is currently expected to be in 1458# 1459# Since: 2.11 1460# 1461# Example: 1462# 1463# -> { "execute": "migrate-continue" , "arguments": 1464# { "state": "pre-switchover" } } 1465# <- { "return": {} } 1466## 1467{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} } 1468 1469## 1470# @MigrationAddressType: 1471# 1472# The migration stream transport mechanisms. 1473# 1474# @socket: Migrate via socket. 1475# 1476# @exec: Direct the migration stream to another process. 1477# 1478# @rdma: Migrate via RDMA. 1479# 1480# @file: Direct the migration stream to a file. 1481# 1482# Since: 8.2 1483## 1484{ 'enum': 'MigrationAddressType', 1485 'data': [ 'socket', 'exec', 'rdma', 'file' ] } 1486 1487## 1488# @FileMigrationArgs: 1489# 1490# @filename: The file to receive the migration stream 1491# 1492# @offset: The file offset where the migration stream will start 1493# 1494# Since: 8.2 1495## 1496{ 'struct': 'FileMigrationArgs', 1497 'data': { 'filename': 'str', 1498 'offset': 'uint64' } } 1499 1500## 1501# @MigrationExecCommand: 1502# 1503# @args: command (list head) and arguments to execute. 1504# 1505# Since: 8.2 1506## 1507{ 'struct': 'MigrationExecCommand', 1508 'data': {'args': [ 'str' ] } } 1509 1510## 1511# @MigrationAddress: 1512# 1513# Migration endpoint configuration. 1514# 1515# @transport: The migration stream transport mechanism 1516# 1517# Since: 8.2 1518## 1519{ 'union': 'MigrationAddress', 1520 'base': { 'transport' : 'MigrationAddressType'}, 1521 'discriminator': 'transport', 1522 'data': { 1523 'socket': 'SocketAddress', 1524 'exec': 'MigrationExecCommand', 1525 'rdma': 'InetSocketAddress', 1526 'file': 'FileMigrationArgs' } } 1527 1528## 1529# @MigrationChannelType: 1530# 1531# The migration channel-type request options. 1532# 1533# @main: Main outbound migration channel. 1534# 1535# Since: 8.1 1536## 1537{ 'enum': 'MigrationChannelType', 1538 'data': [ 'main' ] } 1539 1540## 1541# @MigrationChannel: 1542# 1543# Migration stream channel parameters. 1544# 1545# @channel-type: Channel type for transferring packet information. 1546# 1547# @addr: Migration endpoint configuration on destination interface. 1548# 1549# Since: 8.1 1550## 1551{ 'struct': 'MigrationChannel', 1552 'data': { 1553 'channel-type': 'MigrationChannelType', 1554 'addr': 'MigrationAddress' } } 1555 1556## 1557# @migrate: 1558# 1559# Migrates the current running guest to another Virtual Machine. 1560# 1561# @uri: the Uniform Resource Identifier of the destination VM 1562# 1563# @channels: list of migration stream channels with each stream in the 1564# list connected to a destination interface endpoint. 1565# 1566# @detach: this argument exists only for compatibility reasons and is 1567# ignored by QEMU 1568# 1569# @resume: resume one paused migration, default "off". (since 3.0) 1570# 1571# Since: 0.14 1572# 1573# Notes: 1574# 1575# 1. The 'query-migrate' command should be used to check 1576# migration's progress and final result (this information is 1577# provided by the 'status' member) 1578# 1579# 2. All boolean arguments default to false 1580# 1581# 3. The user Monitor's "detach" argument is invalid in QMP and 1582# should not be used 1583# 1584# 4. The uri argument should have the Uniform Resource Identifier 1585# of default destination VM. This connection will be bound to 1586# default network. 1587# 1588# 5. For now, number of migration streams is restricted to one, 1589# i.e. number of items in 'channels' list is just 1. 1590# 1591# 6. The 'uri' and 'channels' arguments are mutually exclusive; 1592# exactly one of the two should be present. 1593# 1594# Example: 1595# 1596# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } } 1597# <- { "return": {} } 1598# 1599# -> { "execute": "migrate", 1600# "arguments": { 1601# "channels": [ { "channel-type": "main", 1602# "addr": { "transport": "socket", 1603# "type": "inet", 1604# "host": "10.12.34.9", 1605# "port": "1050" } } ] } } 1606# <- { "return": {} } 1607# 1608# -> { "execute": "migrate", 1609# "arguments": { 1610# "channels": [ { "channel-type": "main", 1611# "addr": { "transport": "exec", 1612# "args": [ "/bin/nc", "-p", "6000", 1613# "/some/sock" ] } } ] } } 1614# <- { "return": {} } 1615# 1616# -> { "execute": "migrate", 1617# "arguments": { 1618# "channels": [ { "channel-type": "main", 1619# "addr": { "transport": "rdma", 1620# "host": "10.12.34.9", 1621# "port": "1050" } } ] } } 1622# <- { "return": {} } 1623# 1624# -> { "execute": "migrate", 1625# "arguments": { 1626# "channels": [ { "channel-type": "main", 1627# "addr": { "transport": "file", 1628# "filename": "/tmp/migfile", 1629# "offset": "0x1000" } } ] } } 1630# <- { "return": {} } 1631# 1632## 1633{ 'command': 'migrate', 1634 'data': {'*uri': 'str', 1635 '*channels': [ 'MigrationChannel' ], 1636 '*detach': 'bool', '*resume': 'bool' } } 1637 1638## 1639# @migrate-incoming: 1640# 1641# Start an incoming migration, the qemu must have been started with 1642# -incoming defer 1643# 1644# @uri: The Uniform Resource Identifier identifying the source or 1645# address to listen on 1646# 1647# @channels: list of migration stream channels with each stream in the 1648# list connected to a destination interface endpoint. 1649# 1650# @exit-on-error: Exit on incoming migration failure. Default true. 1651# When set to false, the failure triggers a MIGRATION event, and 1652# error details could be retrieved with query-migrate. (since 9.1) 1653# 1654# Since: 2.3 1655# 1656# Notes: 1657# 1658# 1. It's a bad idea to use a string for the uri, but it needs to 1659# stay compatible with -incoming and the format of the uri is 1660# already exposed above libvirt. 1661# 1662# 2. QEMU must be started with -incoming defer to allow 1663# migrate-incoming to be used. 1664# 1665# 3. The uri format is the same as for -incoming 1666# 1667# 4. For now, number of migration streams is restricted to one, 1668# i.e. number of items in 'channels' list is just 1. 1669# 1670# 5. The 'uri' and 'channels' arguments are mutually exclusive; 1671# exactly one of the two should be present. 1672# 1673# Example: 1674# 1675# -> { "execute": "migrate-incoming", 1676# "arguments": { "uri": "tcp:0:4446" } } 1677# <- { "return": {} } 1678# 1679# -> { "execute": "migrate-incoming", 1680# "arguments": { 1681# "channels": [ { "channel-type": "main", 1682# "addr": { "transport": "socket", 1683# "type": "inet", 1684# "host": "10.12.34.9", 1685# "port": "1050" } } ] } } 1686# <- { "return": {} } 1687# 1688# -> { "execute": "migrate-incoming", 1689# "arguments": { 1690# "channels": [ { "channel-type": "main", 1691# "addr": { "transport": "exec", 1692# "args": [ "/bin/nc", "-p", "6000", 1693# "/some/sock" ] } } ] } } 1694# <- { "return": {} } 1695# 1696# -> { "execute": "migrate-incoming", 1697# "arguments": { 1698# "channels": [ { "channel-type": "main", 1699# "addr": { "transport": "rdma", 1700# "host": "10.12.34.9", 1701# "port": "1050" } } ] } } 1702# <- { "return": {} } 1703## 1704{ 'command': 'migrate-incoming', 1705 'data': {'*uri': 'str', 1706 '*channels': [ 'MigrationChannel' ], 1707 '*exit-on-error': 'bool' } } 1708 1709## 1710# @xen-save-devices-state: 1711# 1712# Save the state of all devices to file. The RAM and the block 1713# devices of the VM are not saved by this command. 1714# 1715# @filename: the file to save the state of the devices to as binary 1716# data. See xen-save-devices-state.txt for a description of the 1717# binary format. 1718# 1719# @live: Optional argument to ask QEMU to treat this command as part 1720# of a live migration. Default to true. (since 2.11) 1721# 1722# Since: 1.1 1723# 1724# Example: 1725# 1726# -> { "execute": "xen-save-devices-state", 1727# "arguments": { "filename": "/tmp/save" } } 1728# <- { "return": {} } 1729## 1730{ 'command': 'xen-save-devices-state', 1731 'data': {'filename': 'str', '*live':'bool' } } 1732 1733## 1734# @xen-set-global-dirty-log: 1735# 1736# Enable or disable the global dirty log mode. 1737# 1738# @enable: true to enable, false to disable. 1739# 1740# Since: 1.3 1741# 1742# Example: 1743# 1744# -> { "execute": "xen-set-global-dirty-log", 1745# "arguments": { "enable": true } } 1746# <- { "return": {} } 1747## 1748{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1749 1750## 1751# @xen-load-devices-state: 1752# 1753# Load the state of all devices from file. The RAM and the block 1754# devices of the VM are not loaded by this command. 1755# 1756# @filename: the file to load the state of the devices from as binary 1757# data. See xen-save-devices-state.txt for a description of the 1758# binary format. 1759# 1760# Since: 2.7 1761# 1762# Example: 1763# 1764# -> { "execute": "xen-load-devices-state", 1765# "arguments": { "filename": "/tmp/resume" } } 1766# <- { "return": {} } 1767## 1768{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 1769 1770## 1771# @xen-set-replication: 1772# 1773# Enable or disable replication. 1774# 1775# @enable: true to enable, false to disable. 1776# 1777# @primary: true for primary or false for secondary. 1778# 1779# @failover: true to do failover, false to stop. Cannot be specified 1780# if 'enable' is true. Default value is false. 1781# 1782# Example: 1783# 1784# -> { "execute": "xen-set-replication", 1785# "arguments": {"enable": true, "primary": false} } 1786# <- { "return": {} } 1787# 1788# Since: 2.9 1789## 1790{ 'command': 'xen-set-replication', 1791 'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' }, 1792 'if': 'CONFIG_REPLICATION' } 1793 1794## 1795# @ReplicationStatus: 1796# 1797# The result format for 'query-xen-replication-status'. 1798# 1799# @error: true if an error happened, false if replication is normal. 1800# 1801# @desc: the human readable error description string, when @error is 1802# 'true'. 1803# 1804# Since: 2.9 1805## 1806{ 'struct': 'ReplicationStatus', 1807 'data': { 'error': 'bool', '*desc': 'str' }, 1808 'if': 'CONFIG_REPLICATION' } 1809 1810## 1811# @query-xen-replication-status: 1812# 1813# Query replication status while the vm is running. 1814# 1815# Returns: A @ReplicationStatus object showing the status. 1816# 1817# Example: 1818# 1819# -> { "execute": "query-xen-replication-status" } 1820# <- { "return": { "error": false } } 1821# 1822# Since: 2.9 1823## 1824{ 'command': 'query-xen-replication-status', 1825 'returns': 'ReplicationStatus', 1826 'if': 'CONFIG_REPLICATION' } 1827 1828## 1829# @xen-colo-do-checkpoint: 1830# 1831# Xen uses this command to notify replication to trigger a checkpoint. 1832# 1833# Example: 1834# 1835# -> { "execute": "xen-colo-do-checkpoint" } 1836# <- { "return": {} } 1837# 1838# Since: 2.9 1839## 1840{ 'command': 'xen-colo-do-checkpoint', 1841 'if': 'CONFIG_REPLICATION' } 1842 1843## 1844# @COLOStatus: 1845# 1846# The result format for 'query-colo-status'. 1847# 1848# @mode: COLO running mode. If COLO is running, this field will 1849# return 'primary' or 'secondary'. 1850# 1851# @last-mode: COLO last running mode. If COLO is running, this field 1852# will return same like mode field, after failover we can use this 1853# field to get last colo mode. (since 4.0) 1854# 1855# @reason: describes the reason for the COLO exit. 1856# 1857# Since: 3.1 1858## 1859{ 'struct': 'COLOStatus', 1860 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode', 1861 'reason': 'COLOExitReason' }, 1862 'if': 'CONFIG_REPLICATION' } 1863 1864## 1865# @query-colo-status: 1866# 1867# Query COLO status while the vm is running. 1868# 1869# Returns: A @COLOStatus object showing the status. 1870# 1871# Example: 1872# 1873# -> { "execute": "query-colo-status" } 1874# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } } 1875# 1876# Since: 3.1 1877## 1878{ 'command': 'query-colo-status', 1879 'returns': 'COLOStatus', 1880 'if': 'CONFIG_REPLICATION' } 1881 1882## 1883# @migrate-recover: 1884# 1885# Provide a recovery migration stream URI. 1886# 1887# @uri: the URI to be used for the recovery of migration stream. 1888# 1889# Example: 1890# 1891# -> { "execute": "migrate-recover", 1892# "arguments": { "uri": "tcp:192.168.1.200:12345" } } 1893# <- { "return": {} } 1894# 1895# Since: 3.0 1896## 1897{ 'command': 'migrate-recover', 1898 'data': { 'uri': 'str' }, 1899 'allow-oob': true } 1900 1901## 1902# @migrate-pause: 1903# 1904# Pause a migration. Currently it only supports postcopy. 1905# 1906# Example: 1907# 1908# -> { "execute": "migrate-pause" } 1909# <- { "return": {} } 1910# 1911# Since: 3.0 1912## 1913{ 'command': 'migrate-pause', 'allow-oob': true } 1914 1915## 1916# @UNPLUG_PRIMARY: 1917# 1918# Emitted from source side of a migration when migration state is 1919# WAIT_UNPLUG. Device was unplugged by guest operating system. Device 1920# resources in QEMU are kept on standby to be able to re-plug it in 1921# case of migration failure. 1922# 1923# @device-id: QEMU device id of the unplugged device 1924# 1925# Since: 4.2 1926# 1927# Example: 1928# 1929# <- { "event": "UNPLUG_PRIMARY", 1930# "data": { "device-id": "hostdev0" }, 1931# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 1932## 1933{ 'event': 'UNPLUG_PRIMARY', 1934 'data': { 'device-id': 'str' } } 1935 1936## 1937# @DirtyRateVcpu: 1938# 1939# Dirty rate of vcpu. 1940# 1941# @id: vcpu index. 1942# 1943# @dirty-rate: dirty rate. 1944# 1945# Since: 6.2 1946## 1947{ 'struct': 'DirtyRateVcpu', 1948 'data': { 'id': 'int', 'dirty-rate': 'int64' } } 1949 1950## 1951# @DirtyRateStatus: 1952# 1953# Dirty page rate measurement status. 1954# 1955# @unstarted: measuring thread has not been started yet 1956# 1957# @measuring: measuring thread is running 1958# 1959# @measured: dirty page rate is measured and the results are available 1960# 1961# Since: 5.2 1962## 1963{ 'enum': 'DirtyRateStatus', 1964 'data': [ 'unstarted', 'measuring', 'measured'] } 1965 1966## 1967# @DirtyRateMeasureMode: 1968# 1969# Method used to measure dirty page rate. Differences between 1970# available methods are explained in @calc-dirty-rate. 1971# 1972# @page-sampling: use page sampling 1973# 1974# @dirty-ring: use dirty ring 1975# 1976# @dirty-bitmap: use dirty bitmap 1977# 1978# Since: 6.2 1979## 1980{ 'enum': 'DirtyRateMeasureMode', 1981 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] } 1982 1983## 1984# @TimeUnit: 1985# 1986# Specifies unit in which time-related value is specified. 1987# 1988# @second: value is in seconds 1989# 1990# @millisecond: value is in milliseconds 1991# 1992# Since: 8.2 1993## 1994{ 'enum': 'TimeUnit', 1995 'data': ['second', 'millisecond'] } 1996 1997## 1998# @DirtyRateInfo: 1999# 2000# Information about measured dirty page rate. 2001# 2002# @dirty-rate: an estimate of the dirty page rate of the VM in units 2003# of MiB/s. Value is present only when @status is 'measured'. 2004# 2005# @status: current status of dirty page rate measurements 2006# 2007# @start-time: start time in units of second for calculation 2008# 2009# @calc-time: time period for which dirty page rate was measured, 2010# expressed and rounded down to @calc-time-unit. 2011# 2012# @calc-time-unit: time unit of @calc-time (Since 8.2) 2013# 2014# @sample-pages: number of sampled pages per GiB of guest memory. 2015# Valid only in page-sampling mode (Since 6.1) 2016# 2017# @mode: mode that was used to measure dirty page rate (Since 6.2) 2018# 2019# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was 2020# specified (Since 6.2) 2021# 2022# Since: 5.2 2023## 2024{ 'struct': 'DirtyRateInfo', 2025 'data': {'*dirty-rate': 'int64', 2026 'status': 'DirtyRateStatus', 2027 'start-time': 'int64', 2028 'calc-time': 'int64', 2029 'calc-time-unit': 'TimeUnit', 2030 'sample-pages': 'uint64', 2031 'mode': 'DirtyRateMeasureMode', 2032 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } } 2033 2034## 2035# @calc-dirty-rate: 2036# 2037# Start measuring dirty page rate of the VM. Results can be retrieved 2038# with @query-dirty-rate after measurements are completed. 2039# 2040# Dirty page rate is the number of pages changed in a given time 2041# period expressed in MiB/s. The following methods of calculation are 2042# available: 2043# 2044# 1. In page sampling mode, a random subset of pages are selected and 2045# hashed twice: once at the beginning of measurement time period, 2046# and once again at the end. If two hashes for some page are 2047# different, the page is counted as changed. Since this method 2048# relies on sampling and hashing, calculated dirty page rate is 2049# only an estimate of its true value. Increasing @sample-pages 2050# improves estimation quality at the cost of higher computational 2051# overhead. 2052# 2053# 2. Dirty bitmap mode captures writes to memory (for example by 2054# temporarily revoking write access to all pages) and counting page 2055# faults. Information about modified pages is collected into a 2056# bitmap, where each bit corresponds to one guest page. This mode 2057# requires that KVM accelerator property "dirty-ring-size" is *not* 2058# set. 2059# 2060# 3. Dirty ring mode is similar to dirty bitmap mode, but the 2061# information about modified pages is collected into ring buffer. 2062# This mode tracks page modification per each vCPU separately. It 2063# requires that KVM accelerator property "dirty-ring-size" is set. 2064# 2065# @calc-time: time period for which dirty page rate is calculated. 2066# By default it is specified in seconds, but the unit can be set 2067# explicitly with @calc-time-unit. Note that larger @calc-time 2068# values will typically result in smaller dirty page rates because 2069# page dirtying is a one-time event. Once some page is counted 2070# as dirty during @calc-time period, further writes to this page 2071# will not increase dirty page rate anymore. 2072# 2073# @calc-time-unit: time unit in which @calc-time is specified. 2074# By default it is seconds. (Since 8.2) 2075# 2076# @sample-pages: number of sampled pages per each GiB of guest memory. 2077# Default value is 512. For 4KiB guest pages this corresponds to 2078# sampling ratio of 0.2%. This argument is used only in page 2079# sampling mode. (Since 6.1) 2080# 2081# @mode: mechanism for tracking dirty pages. Default value is 2082# 'page-sampling'. Others are 'dirty-bitmap' and 'dirty-ring'. 2083# (Since 6.1) 2084# 2085# Since: 5.2 2086# 2087# Example: 2088# 2089# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1, 2090# 'sample-pages': 512} } 2091# <- { "return": {} } 2092# 2093# Measure dirty rate using dirty bitmap for 500 milliseconds: 2094# 2095# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500, 2096# "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} } 2097# 2098# <- { "return": {} } 2099## 2100{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64', 2101 '*calc-time-unit': 'TimeUnit', 2102 '*sample-pages': 'int', 2103 '*mode': 'DirtyRateMeasureMode'} } 2104 2105## 2106# @query-dirty-rate: 2107# 2108# Query results of the most recent invocation of @calc-dirty-rate. 2109# 2110# @calc-time-unit: time unit in which to report calculation time. 2111# By default it is reported in seconds. (Since 8.2) 2112# 2113# Since: 5.2 2114# 2115# Examples: 2116# 2117# 1. Measurement is in progress: 2118# 2119# <- {"status": "measuring", "sample-pages": 512, 2120# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2121# "calc-time-unit": "second"} 2122# 2123# 2. Measurement has been completed: 2124# 2125# <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108, 2126# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2127# "calc-time-unit": "second"} 2128## 2129{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' }, 2130 'returns': 'DirtyRateInfo' } 2131 2132## 2133# @DirtyLimitInfo: 2134# 2135# Dirty page rate limit information of a virtual CPU. 2136# 2137# @cpu-index: index of a virtual CPU. 2138# 2139# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual 2140# CPU, 0 means unlimited. 2141# 2142# @current-rate: current dirty page rate (MB/s) for a virtual CPU. 2143# 2144# Since: 7.1 2145## 2146{ 'struct': 'DirtyLimitInfo', 2147 'data': { 'cpu-index': 'int', 2148 'limit-rate': 'uint64', 2149 'current-rate': 'uint64' } } 2150 2151## 2152# @set-vcpu-dirty-limit: 2153# 2154# Set the upper limit of dirty page rate for virtual CPUs. 2155# 2156# Requires KVM with accelerator property "dirty-ring-size" set. A 2157# virtual CPU's dirty page rate is a measure of its memory load. To 2158# observe dirty page rates, use @calc-dirty-rate. 2159# 2160# @cpu-index: index of a virtual CPU, default is all. 2161# 2162# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs. 2163# 2164# Since: 7.1 2165# 2166# Example: 2167# 2168# -> {"execute": "set-vcpu-dirty-limit"} 2169# "arguments": { "dirty-rate": 200, 2170# "cpu-index": 1 } } 2171# <- { "return": {} } 2172## 2173{ 'command': 'set-vcpu-dirty-limit', 2174 'data': { '*cpu-index': 'int', 2175 'dirty-rate': 'uint64' } } 2176 2177## 2178# @cancel-vcpu-dirty-limit: 2179# 2180# Cancel the upper limit of dirty page rate for virtual CPUs. 2181# 2182# Cancel the dirty page limit for the vCPU which has been set with 2183# set-vcpu-dirty-limit command. Note that this command requires 2184# support from dirty ring, same as the "set-vcpu-dirty-limit". 2185# 2186# @cpu-index: index of a virtual CPU, default is all. 2187# 2188# Since: 7.1 2189# 2190# Example: 2191# 2192# -> {"execute": "cancel-vcpu-dirty-limit"}, 2193# "arguments": { "cpu-index": 1 } } 2194# <- { "return": {} } 2195## 2196{ 'command': 'cancel-vcpu-dirty-limit', 2197 'data': { '*cpu-index': 'int'} } 2198 2199## 2200# @query-vcpu-dirty-limit: 2201# 2202# Returns information about virtual CPU dirty page rate limits, if 2203# any. 2204# 2205# Since: 7.1 2206# 2207# Example: 2208# 2209# -> {"execute": "query-vcpu-dirty-limit"} 2210# <- {"return": [ 2211# { "limit-rate": 60, "current-rate": 3, "cpu-index": 0}, 2212# { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]} 2213## 2214{ 'command': 'query-vcpu-dirty-limit', 2215 'returns': [ 'DirtyLimitInfo' ] } 2216 2217## 2218# @MigrationThreadInfo: 2219# 2220# Information about migrationthreads 2221# 2222# @name: the name of migration thread 2223# 2224# @thread-id: ID of the underlying host thread 2225# 2226# Since: 7.2 2227## 2228{ 'struct': 'MigrationThreadInfo', 2229 'data': {'name': 'str', 2230 'thread-id': 'int'} } 2231 2232## 2233# @query-migrationthreads: 2234# 2235# Returns information of migration threads 2236# 2237# Returns: @MigrationThreadInfo 2238# 2239# Since: 7.2 2240## 2241{ 'command': 'query-migrationthreads', 2242 'returns': ['MigrationThreadInfo'] } 2243 2244## 2245# @snapshot-save: 2246# 2247# Save a VM snapshot 2248# 2249# @job-id: identifier for the newly created job 2250# 2251# @tag: name of the snapshot to create 2252# 2253# @vmstate: block device node name to save vmstate to 2254# 2255# @devices: list of block device node names to save a snapshot to 2256# 2257# Applications should not assume that the snapshot save is complete 2258# when this command returns. The job commands / events must be used 2259# to determine completion and to fetch details of any errors that 2260# arise. 2261# 2262# Note that execution of the guest CPUs may be stopped during the time 2263# it takes to save the snapshot. A future version of QEMU may ensure 2264# CPUs are executing continuously. 2265# 2266# It is strongly recommended that @devices contain all writable block 2267# device nodes if a consistent snapshot is required. 2268# 2269# If @tag already exists, an error will be reported 2270# 2271# Example: 2272# 2273# -> { "execute": "snapshot-save", 2274# "arguments": { 2275# "job-id": "snapsave0", 2276# "tag": "my-snap", 2277# "vmstate": "disk0", 2278# "devices": ["disk0", "disk1"] 2279# } 2280# } 2281# <- { "return": { } } 2282# <- {"event": "JOB_STATUS_CHANGE", 2283# "timestamp": {"seconds": 1432121972, "microseconds": 744001}, 2284# "data": {"status": "created", "id": "snapsave0"}} 2285# <- {"event": "JOB_STATUS_CHANGE", 2286# "timestamp": {"seconds": 1432122172, "microseconds": 744001}, 2287# "data": {"status": "running", "id": "snapsave0"}} 2288# <- {"event": "STOP", 2289# "timestamp": {"seconds": 1432122372, "microseconds": 744001} } 2290# <- {"event": "RESUME", 2291# "timestamp": {"seconds": 1432122572, "microseconds": 744001} } 2292# <- {"event": "JOB_STATUS_CHANGE", 2293# "timestamp": {"seconds": 1432122772, "microseconds": 744001}, 2294# "data": {"status": "waiting", "id": "snapsave0"}} 2295# <- {"event": "JOB_STATUS_CHANGE", 2296# "timestamp": {"seconds": 1432122972, "microseconds": 744001}, 2297# "data": {"status": "pending", "id": "snapsave0"}} 2298# <- {"event": "JOB_STATUS_CHANGE", 2299# "timestamp": {"seconds": 1432123172, "microseconds": 744001}, 2300# "data": {"status": "concluded", "id": "snapsave0"}} 2301# -> {"execute": "query-jobs"} 2302# <- {"return": [{"current-progress": 1, 2303# "status": "concluded", 2304# "total-progress": 1, 2305# "type": "snapshot-save", 2306# "id": "snapsave0"}]} 2307# 2308# Since: 6.0 2309## 2310{ 'command': 'snapshot-save', 2311 'data': { 'job-id': 'str', 2312 'tag': 'str', 2313 'vmstate': 'str', 2314 'devices': ['str'] } } 2315 2316## 2317# @snapshot-load: 2318# 2319# Load a VM snapshot 2320# 2321# @job-id: identifier for the newly created job 2322# 2323# @tag: name of the snapshot to load. 2324# 2325# @vmstate: block device node name to load vmstate from 2326# 2327# @devices: list of block device node names to load a snapshot from 2328# 2329# Applications should not assume that the snapshot load is complete 2330# when this command returns. The job commands / events must be used 2331# to determine completion and to fetch details of any errors that 2332# arise. 2333# 2334# Note that execution of the guest CPUs will be stopped during the 2335# time it takes to load the snapshot. 2336# 2337# It is strongly recommended that @devices contain all writable block 2338# device nodes that can have changed since the original @snapshot-save 2339# command execution. 2340# 2341# Example: 2342# 2343# -> { "execute": "snapshot-load", 2344# "arguments": { 2345# "job-id": "snapload0", 2346# "tag": "my-snap", 2347# "vmstate": "disk0", 2348# "devices": ["disk0", "disk1"] 2349# } 2350# } 2351# <- { "return": { } } 2352# <- {"event": "JOB_STATUS_CHANGE", 2353# "timestamp": {"seconds": 1472124172, "microseconds": 744001}, 2354# "data": {"status": "created", "id": "snapload0"}} 2355# <- {"event": "JOB_STATUS_CHANGE", 2356# "timestamp": {"seconds": 1472125172, "microseconds": 744001}, 2357# "data": {"status": "running", "id": "snapload0"}} 2358# <- {"event": "STOP", 2359# "timestamp": {"seconds": 1472125472, "microseconds": 744001} } 2360# <- {"event": "RESUME", 2361# "timestamp": {"seconds": 1472125872, "microseconds": 744001} } 2362# <- {"event": "JOB_STATUS_CHANGE", 2363# "timestamp": {"seconds": 1472126172, "microseconds": 744001}, 2364# "data": {"status": "waiting", "id": "snapload0"}} 2365# <- {"event": "JOB_STATUS_CHANGE", 2366# "timestamp": {"seconds": 1472127172, "microseconds": 744001}, 2367# "data": {"status": "pending", "id": "snapload0"}} 2368# <- {"event": "JOB_STATUS_CHANGE", 2369# "timestamp": {"seconds": 1472128172, "microseconds": 744001}, 2370# "data": {"status": "concluded", "id": "snapload0"}} 2371# -> {"execute": "query-jobs"} 2372# <- {"return": [{"current-progress": 1, 2373# "status": "concluded", 2374# "total-progress": 1, 2375# "type": "snapshot-load", 2376# "id": "snapload0"}]} 2377# 2378# Since: 6.0 2379## 2380{ 'command': 'snapshot-load', 2381 'data': { 'job-id': 'str', 2382 'tag': 'str', 2383 'vmstate': 'str', 2384 'devices': ['str'] } } 2385 2386## 2387# @snapshot-delete: 2388# 2389# Delete a VM snapshot 2390# 2391# @job-id: identifier for the newly created job 2392# 2393# @tag: name of the snapshot to delete. 2394# 2395# @devices: list of block device node names to delete a snapshot from 2396# 2397# Applications should not assume that the snapshot delete is complete 2398# when this command returns. The job commands / events must be used 2399# to determine completion and to fetch details of any errors that 2400# arise. 2401# 2402# Example: 2403# 2404# -> { "execute": "snapshot-delete", 2405# "arguments": { 2406# "job-id": "snapdelete0", 2407# "tag": "my-snap", 2408# "devices": ["disk0", "disk1"] 2409# } 2410# } 2411# <- { "return": { } } 2412# <- {"event": "JOB_STATUS_CHANGE", 2413# "timestamp": {"seconds": 1442124172, "microseconds": 744001}, 2414# "data": {"status": "created", "id": "snapdelete0"}} 2415# <- {"event": "JOB_STATUS_CHANGE", 2416# "timestamp": {"seconds": 1442125172, "microseconds": 744001}, 2417# "data": {"status": "running", "id": "snapdelete0"}} 2418# <- {"event": "JOB_STATUS_CHANGE", 2419# "timestamp": {"seconds": 1442126172, "microseconds": 744001}, 2420# "data": {"status": "waiting", "id": "snapdelete0"}} 2421# <- {"event": "JOB_STATUS_CHANGE", 2422# "timestamp": {"seconds": 1442127172, "microseconds": 744001}, 2423# "data": {"status": "pending", "id": "snapdelete0"}} 2424# <- {"event": "JOB_STATUS_CHANGE", 2425# "timestamp": {"seconds": 1442128172, "microseconds": 744001}, 2426# "data": {"status": "concluded", "id": "snapdelete0"}} 2427# -> {"execute": "query-jobs"} 2428# <- {"return": [{"current-progress": 1, 2429# "status": "concluded", 2430# "total-progress": 1, 2431# "type": "snapshot-delete", 2432# "id": "snapdelete0"}]} 2433# 2434# Since: 6.0 2435## 2436{ 'command': 'snapshot-delete', 2437 'data': { 'job-id': 'str', 2438 'tag': 'str', 2439 'devices': ['str'] } } 2440