1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4 5## 6# = Migration 7## 8 9{ 'include': 'common.json' } 10{ 'include': 'sockets.json' } 11 12## 13# @MigrationStats: 14# 15# Detailed migration status. 16# 17# @transferred: amount of bytes already transferred to the target VM 18# 19# @remaining: amount of bytes remaining to be transferred to the 20# target VM 21# 22# @total: total amount of bytes involved in the migration process 23# 24# @duplicate: number of duplicate (zero) pages (since 1.2) 25# 26# @normal: number of normal pages (since 1.2) 27# 28# @normal-bytes: number of normal bytes sent (since 1.2) 29# 30# @dirty-pages-rate: number of pages dirtied by second by the guest 31# (since 1.3) 32# 33# @mbps: throughput in megabits/sec. (since 1.6) 34# 35# @dirty-sync-count: number of times that dirty ram was synchronized 36# (since 2.1) 37# 38# @postcopy-requests: The number of page requests received from the 39# destination (since 2.7) 40# 41# @page-size: The number of bytes per page for the various page-based 42# statistics (since 2.10) 43# 44# @multifd-bytes: The number of bytes sent through multifd (since 3.0) 45# 46# @pages-per-second: the number of memory pages transferred per second 47# (Since 4.0) 48# 49# @precopy-bytes: The number of bytes sent in the pre-copy phase 50# (since 7.0). 51# 52# @downtime-bytes: The number of bytes sent while the guest is paused 53# (since 7.0). 54# 55# @postcopy-bytes: The number of bytes sent during the post-copy phase 56# (since 7.0). 57# 58# @dirty-sync-missed-zero-copy: Number of times dirty RAM 59# synchronization could not avoid copying dirty pages. This is 60# between 0 and @dirty-sync-count * @multifd-channels. (since 61# 7.1) 62# 63# Since: 0.14 64## 65{ 'struct': 'MigrationStats', 66 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' , 67 'duplicate': 'int', 68 'normal': 'int', 69 'normal-bytes': 'int', 'dirty-pages-rate': 'int', 70 'mbps': 'number', 'dirty-sync-count': 'int', 71 'postcopy-requests': 'int', 'page-size': 'int', 72 'multifd-bytes': 'uint64', 'pages-per-second': 'uint64', 73 'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64', 74 'postcopy-bytes': 'uint64', 75 'dirty-sync-missed-zero-copy': 'uint64' } } 76 77## 78# @XBZRLECacheStats: 79# 80# Detailed XBZRLE migration cache statistics 81# 82# @cache-size: XBZRLE cache size 83# 84# @bytes: amount of bytes already transferred to the target VM 85# 86# @pages: amount of pages transferred to the target VM 87# 88# @cache-miss: number of cache miss 89# 90# @cache-miss-rate: rate of cache miss (since 2.1) 91# 92# @encoding-rate: rate of encoded bytes (since 5.1) 93# 94# @overflow: number of overflows 95# 96# Since: 1.2 97## 98{ 'struct': 'XBZRLECacheStats', 99 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int', 100 'cache-miss': 'int', 'cache-miss-rate': 'number', 101 'encoding-rate': 'number', 'overflow': 'int' } } 102 103## 104# @CompressionStats: 105# 106# Detailed migration compression statistics 107# 108# @pages: amount of pages compressed and transferred to the target VM 109# 110# @busy: count of times that no free thread was available to compress 111# data 112# 113# @busy-rate: rate of thread busy 114# 115# @compressed-size: amount of bytes after compression 116# 117# @compression-rate: rate of compressed size 118# 119# Since: 3.1 120## 121{ 'struct': 'CompressionStats', 122 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number', 123 'compressed-size': 'int', 'compression-rate': 'number' } } 124 125## 126# @MigrationStatus: 127# 128# An enumeration of migration status. 129# 130# @none: no migration has ever happened. 131# 132# @setup: migration process has been initiated. 133# 134# @cancelling: in the process of cancelling migration. 135# 136# @cancelled: cancelling migration is finished. 137# 138# @active: in the process of doing migration. 139# 140# @postcopy-active: like active, but now in postcopy mode. (since 141# 2.5) 142# 143# @postcopy-paused: during postcopy but paused. (since 3.0) 144# 145# @postcopy-recover: trying to recover from a paused postcopy. (since 146# 3.0) 147# 148# @completed: migration is finished. 149# 150# @failed: some error occurred during migration process. 151# 152# @colo: VM is in the process of fault tolerance, VM can not get into 153# this state unless colo capability is enabled for migration. 154# (since 2.8) 155# 156# @pre-switchover: Paused before device serialisation. (since 2.11) 157# 158# @device: During device serialisation when pause-before-switchover is 159# enabled (since 2.11) 160# 161# @wait-unplug: wait for device unplug request by guest OS to be 162# completed. (since 4.2) 163# 164# Since: 2.3 165## 166{ 'enum': 'MigrationStatus', 167 'data': [ 'none', 'setup', 'cancelling', 'cancelled', 168 'active', 'postcopy-active', 'postcopy-paused', 169 'postcopy-recover', 'completed', 'failed', 'colo', 170 'pre-switchover', 'device', 'wait-unplug' ] } 171## 172# @VfioStats: 173# 174# Detailed VFIO devices migration statistics 175# 176# @transferred: amount of bytes transferred to the target VM by VFIO 177# devices 178# 179# Since: 5.2 180## 181{ 'struct': 'VfioStats', 182 'data': {'transferred': 'int' } } 183 184## 185# @MigrationInfo: 186# 187# Information about current migration process. 188# 189# @status: @MigrationStatus describing the current migration status. 190# If this field is not returned, no migration process has been 191# initiated 192# 193# @ram: @MigrationStats containing detailed migration status, only 194# returned if status is 'active' or 'completed'(since 1.2) 195# 196# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE 197# migration statistics, only returned if XBZRLE feature is on and 198# status is 'active' or 'completed' (since 1.2) 199# 200# @total-time: total amount of milliseconds since migration started. 201# If migration has ended, it returns the total migration time. 202# (since 1.2) 203# 204# @downtime: only present when migration finishes correctly total 205# downtime in milliseconds for the guest. (since 1.3) 206# 207# @expected-downtime: only present while migration is active expected 208# downtime in milliseconds for the guest in last walk of the dirty 209# bitmap. (since 1.3) 210# 211# @setup-time: amount of setup time in milliseconds *before* the 212# iterations begin but *after* the QMP command is issued. This is 213# designed to provide an accounting of any activities (such as 214# RDMA pinning) which may be expensive, but do not actually occur 215# during the iterative migration rounds themselves. (since 1.6) 216# 217# @cpu-throttle-percentage: percentage of time guest cpus are being 218# throttled during auto-converge. This is only present when 219# auto-converge has started throttling guest cpus. (Since 2.7) 220# 221# @error-desc: the human readable error description string. Clients 222# should not attempt to parse the error strings. (Since 2.7) 223# 224# @postcopy-blocktime: total time when all vCPU were blocked during 225# postcopy live migration. This is only present when the 226# postcopy-blocktime migration capability is enabled. (Since 3.0) 227# 228# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. 229# This is only present when the postcopy-blocktime migration 230# capability is enabled. (Since 3.0) 231# 232# @socket-address: Only used for tcp, to know what the real port is 233# (Since 4.0) 234# 235# @vfio: @VfioStats containing detailed VFIO devices migration 236# statistics, only returned if VFIO device is present, migration 237# is supported by all VFIO devices and status is 'active' or 238# 'completed' (since 5.2) 239# 240# @blocked-reasons: A list of reasons an outgoing migration is 241# blocked. Present and non-empty when migration is blocked. 242# (since 6.0) 243# 244# @dirty-limit-throttle-time-per-round: Maximum throttle time 245# (in microseconds) of virtual CPUs each dirty ring full round, 246# which shows how MigrationCapability dirty-limit affects the 247# guest during live migration. (Since 8.1) 248# 249# @dirty-limit-ring-full-time: Estimated average dirty ring full time 250# (in microseconds) for each dirty ring full round. The value 251# equals the dirty ring memory size divided by the average dirty 252# page rate of the virtual CPU, which can be used to observe the 253# average memory load of the virtual CPU indirectly. Note that 254# zero means guest doesn't dirty memory. (Since 8.1) 255# 256# Since: 0.14 257## 258{ 'struct': 'MigrationInfo', 259 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats', 260 '*vfio': 'VfioStats', 261 '*xbzrle-cache': 'XBZRLECacheStats', 262 '*total-time': 'int', 263 '*expected-downtime': 'int', 264 '*downtime': 'int', 265 '*setup-time': 'int', 266 '*cpu-throttle-percentage': 'int', 267 '*error-desc': 'str', 268 '*blocked-reasons': ['str'], 269 '*postcopy-blocktime': 'uint32', 270 '*postcopy-vcpu-blocktime': ['uint32'], 271 '*socket-address': ['SocketAddress'], 272 '*dirty-limit-throttle-time-per-round': 'uint64', 273 '*dirty-limit-ring-full-time': 'uint64'} } 274 275## 276# @query-migrate: 277# 278# Returns information about current migration process. If migration 279# is active there will be another json-object with RAM migration 280# status. 281# 282# Returns: @MigrationInfo 283# 284# Since: 0.14 285# 286# Examples: 287# 288# 1. Before the first migration 289# 290# -> { "execute": "query-migrate" } 291# <- { "return": {} } 292# 293# 2. Migration is done and has succeeded 294# 295# -> { "execute": "query-migrate" } 296# <- { "return": { 297# "status": "completed", 298# "total-time":12345, 299# "setup-time":12345, 300# "downtime":12345, 301# "ram":{ 302# "transferred":123, 303# "remaining":123, 304# "total":246, 305# "duplicate":123, 306# "normal":123, 307# "normal-bytes":123456, 308# "dirty-sync-count":15 309# } 310# } 311# } 312# 313# 3. Migration is done and has failed 314# 315# -> { "execute": "query-migrate" } 316# <- { "return": { "status": "failed" } } 317# 318# 4. Migration is being performed: 319# 320# -> { "execute": "query-migrate" } 321# <- { 322# "return":{ 323# "status":"active", 324# "total-time":12345, 325# "setup-time":12345, 326# "expected-downtime":12345, 327# "ram":{ 328# "transferred":123, 329# "remaining":123, 330# "total":246, 331# "duplicate":123, 332# "normal":123, 333# "normal-bytes":123456, 334# "dirty-sync-count":15 335# } 336# } 337# } 338# 339# 5. Migration is being performed and XBZRLE is active: 340# 341# -> { "execute": "query-migrate" } 342# <- { 343# "return":{ 344# "status":"active", 345# "total-time":12345, 346# "setup-time":12345, 347# "expected-downtime":12345, 348# "ram":{ 349# "total":1057024, 350# "remaining":1053304, 351# "transferred":3720, 352# "duplicate":10, 353# "normal":3333, 354# "normal-bytes":3412992, 355# "dirty-sync-count":15 356# }, 357# "xbzrle-cache":{ 358# "cache-size":67108864, 359# "bytes":20971520, 360# "pages":2444343, 361# "cache-miss":2244, 362# "cache-miss-rate":0.123, 363# "encoding-rate":80.1, 364# "overflow":34434 365# } 366# } 367# } 368## 369{ 'command': 'query-migrate', 'returns': 'MigrationInfo' } 370 371## 372# @MigrationCapability: 373# 374# Migration capabilities enumeration 375# 376# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length 377# Encoding). This feature allows us to minimize migration traffic 378# for certain work loads, by sending compressed difference of the 379# pages 380# 381# @rdma-pin-all: Controls whether or not the entire VM memory 382# footprint is mlock()'d on demand or all at once. Refer to 383# docs/rdma.txt for usage. Disabled by default. (since 2.0) 384# 385# @zero-blocks: During storage migration encode blocks of zeroes 386# efficiently. This essentially saves 1MB of zeroes per block on 387# the wire. Enabling requires source and target VM to support 388# this feature. To enable it is sufficient to enable the 389# capability on the source VM. The feature is disabled by default. 390# (since 1.6) 391# 392# @events: generate events for each migration state change (since 2.4) 393# 394# @auto-converge: If enabled, QEMU will automatically throttle down 395# the guest to speed up convergence of RAM migration. (since 1.6) 396# 397# @postcopy-ram: Start executing on the migration target before all of 398# RAM has been migrated, pulling the remaining pages along as 399# needed. The capacity must have the same setting on both source 400# and target or migration will not even start. NOTE: If the 401# migration fails during postcopy the VM will fail. (since 2.6) 402# 403# @x-colo: If enabled, migration will never end, and the state of the 404# VM on the primary side will be migrated continuously to the VM 405# on secondary side, this process is called COarse-Grain LOck 406# Stepping (COLO) for Non-stop Service. (since 2.8) 407# 408# @release-ram: if enabled, qemu will free the migrated ram pages on 409# the source during postcopy-ram migration. (since 2.9) 410# 411# @return-path: If enabled, migration will use the return path even 412# for precopy. (since 2.10) 413# 414# @pause-before-switchover: Pause outgoing migration before 415# serialising device state and before disabling block IO (since 416# 2.11) 417# 418# @multifd: Use more than one fd for migration (since 4.0) 419# 420# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps. 421# (since 2.12) 422# 423# @postcopy-blocktime: Calculate downtime for postcopy live migration 424# (since 3.0) 425# 426# @late-block-activate: If enabled, the destination will not activate 427# block devices (and thus take locks) immediately at the end of 428# migration. (since 3.0) 429# 430# @x-ignore-shared: If enabled, QEMU will not migrate shared memory 431# that is accessible on the destination machine. (since 4.0) 432# 433# @validate-uuid: Send the UUID of the source to allow the destination 434# to ensure it is the same. (since 4.2) 435# 436# @background-snapshot: If enabled, the migration stream will be a 437# snapshot of the VM exactly at the point when the migration 438# procedure starts. The VM RAM is saved with running VM. 439# (since 6.0) 440# 441# @zero-copy-send: Controls behavior on sending memory pages on 442# migration. When true, enables a zero-copy mechanism for sending 443# memory pages, if host supports it. Requires that QEMU be 444# permitted to use locked memory for guest RAM pages. (since 7.1) 445# 446# @postcopy-preempt: If enabled, the migration process will allow 447# postcopy requests to preempt precopy stream, so postcopy 448# requests will be handled faster. This is a performance feature 449# and should not affect the correctness of postcopy migration. 450# (since 7.1) 451# 452# @switchover-ack: If enabled, migration will not stop the source VM 453# and complete the migration until an ACK is received from the 454# destination that it's OK to do so. Exactly when this ACK is 455# sent depends on the migrated devices that use this feature. For 456# example, a device can use it to make sure some of its data is 457# sent and loaded in the destination before doing switchover. 458# This can reduce downtime if devices that support this capability 459# are present. 'return-path' capability must be enabled to use 460# it. (since 8.1) 461# 462# @dirty-limit: If enabled, migration will throttle vCPUs as needed to 463# keep their dirty page rate within @vcpu-dirty-limit. This can 464# improve responsiveness of large guests during live migration, 465# and can result in more stable read performance. Requires KVM 466# with accelerator property "dirty-ring-size" set. (Since 8.1) 467# 468# @mapped-ram: Migrate using fixed offsets in the migration file for 469# each RAM page. Requires a migration URI that supports seeking, 470# such as a file. (since 9.0) 471# 472# Features: 473# 474# @unstable: Members @x-colo and @x-ignore-shared are experimental. 475# 476# Since: 1.2 477## 478{ 'enum': 'MigrationCapability', 479 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks', 480 'events', 'postcopy-ram', 481 { 'name': 'x-colo', 'features': [ 'unstable' ] }, 482 'release-ram', 483 'return-path', 'pause-before-switchover', 'multifd', 484 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate', 485 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] }, 486 'validate-uuid', 'background-snapshot', 487 'zero-copy-send', 'postcopy-preempt', 'switchover-ack', 488 'dirty-limit', 'mapped-ram'] } 489 490## 491# @MigrationCapabilityStatus: 492# 493# Migration capability information 494# 495# @capability: capability enum 496# 497# @state: capability state bool 498# 499# Since: 1.2 500## 501{ 'struct': 'MigrationCapabilityStatus', 502 'data': { 'capability': 'MigrationCapability', 'state': 'bool' } } 503 504## 505# @migrate-set-capabilities: 506# 507# Enable/Disable the following migration capabilities (like xbzrle) 508# 509# @capabilities: json array of capability modifications to make 510# 511# Since: 1.2 512# 513# Example: 514# 515# -> { "execute": "migrate-set-capabilities" , "arguments": 516# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } } 517# <- { "return": {} } 518## 519{ 'command': 'migrate-set-capabilities', 520 'data': { 'capabilities': ['MigrationCapabilityStatus'] } } 521 522## 523# @query-migrate-capabilities: 524# 525# Returns information about the current migration capabilities status 526# 527# Returns: @MigrationCapabilityStatus 528# 529# Since: 1.2 530# 531# Example: 532# 533# -> { "execute": "query-migrate-capabilities" } 534# <- { "return": [ 535# {"state": false, "capability": "xbzrle"}, 536# {"state": false, "capability": "rdma-pin-all"}, 537# {"state": false, "capability": "auto-converge"}, 538# {"state": false, "capability": "zero-blocks"}, 539# {"state": true, "capability": "events"}, 540# {"state": false, "capability": "postcopy-ram"}, 541# {"state": false, "capability": "x-colo"} 542# ]} 543## 544{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']} 545 546## 547# @MultiFDCompression: 548# 549# An enumeration of multifd compression methods. 550# 551# @none: no compression. 552# 553# @zlib: use zlib compression method. 554# 555# @zstd: use zstd compression method. 556# 557# @qpl: use qpl compression method. Query Processing Library(qpl) is 558# based on the deflate compression algorithm and use the Intel 559# In-Memory Analytics Accelerator(IAA) accelerated compression 560# and decompression. (Since 9.1) 561# 562# @uadk: use UADK library compression method. (Since 9.1) 563# 564# Since: 5.0 565## 566{ 'enum': 'MultiFDCompression', 567 'data': [ 'none', 'zlib', 568 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' }, 569 { 'name': 'qpl', 'if': 'CONFIG_QPL' }, 570 { 'name': 'uadk', 'if': 'CONFIG_UADK' } ] } 571 572## 573# @MigMode: 574# 575# @normal: the original form of migration. (since 8.2) 576# 577# @cpr-reboot: The migrate command stops the VM and saves state to the 578# URI. After quitting QEMU, the user resumes by running QEMU 579# -incoming. 580# 581# This mode allows the user to quit QEMU, optionally update and 582# reboot the OS, and restart QEMU. If the user reboots, the URI 583# must persist across the reboot, such as by using a file. 584# 585# Unlike normal mode, the use of certain local storage options 586# does not block the migration, but the user must not modify the 587# contents of guest block devices between the quit and restart. 588# 589# This mode supports VFIO devices provided the user first puts the 590# guest in the suspended runstate, such as by issuing 591# guest-suspend-ram to the QEMU guest agent. 592# 593# Best performance is achieved when the memory backend is shared 594# and the @x-ignore-shared migration capability is set, but this 595# is not required. Further, if the user reboots before restarting 596# such a configuration, the shared memory must persist across the 597# reboot, such as by backing it with a dax device. 598# 599# @cpr-reboot may not be used with postcopy, background-snapshot, 600# or COLO. 601# 602# (since 8.2) 603## 604{ 'enum': 'MigMode', 605 'data': [ 'normal', 'cpr-reboot' ] } 606 607## 608# @ZeroPageDetection: 609# 610# @none: Do not perform zero page checking. 611# 612# @legacy: Perform zero page checking in main migration thread. 613# 614# @multifd: Perform zero page checking in multifd sender thread if 615# multifd migration is enabled, else in the main migration thread 616# as for @legacy. 617# 618# Since: 9.0 619## 620{ 'enum': 'ZeroPageDetection', 621 'data': [ 'none', 'legacy', 'multifd' ] } 622 623## 624# @BitmapMigrationBitmapAliasTransform: 625# 626# @persistent: If present, the bitmap will be made persistent or 627# transient depending on this parameter. 628# 629# Since: 6.0 630## 631{ 'struct': 'BitmapMigrationBitmapAliasTransform', 632 'data': { 633 '*persistent': 'bool' 634 } } 635 636## 637# @BitmapMigrationBitmapAlias: 638# 639# @name: The name of the bitmap. 640# 641# @alias: An alias name for migration (for example the bitmap name on 642# the opposite site). 643# 644# @transform: Allows the modification of the migrated bitmap. (since 645# 6.0) 646# 647# Since: 5.2 648## 649{ 'struct': 'BitmapMigrationBitmapAlias', 650 'data': { 651 'name': 'str', 652 'alias': 'str', 653 '*transform': 'BitmapMigrationBitmapAliasTransform' 654 } } 655 656## 657# @BitmapMigrationNodeAlias: 658# 659# Maps a block node name and the bitmaps it has to aliases for dirty 660# bitmap migration. 661# 662# @node-name: A block node name. 663# 664# @alias: An alias block node name for migration (for example the node 665# name on the opposite site). 666# 667# @bitmaps: Mappings for the bitmaps on this node. 668# 669# Since: 5.2 670## 671{ 'struct': 'BitmapMigrationNodeAlias', 672 'data': { 673 'node-name': 'str', 674 'alias': 'str', 675 'bitmaps': [ 'BitmapMigrationBitmapAlias' ] 676 } } 677 678## 679# @MigrationParameter: 680# 681# Migration parameters enumeration 682# 683# @announce-initial: Initial delay (in milliseconds) before sending 684# the first announce (Since 4.0) 685# 686# @announce-max: Maximum delay (in milliseconds) between packets in 687# the announcement (Since 4.0) 688# 689# @announce-rounds: Number of self-announce packets sent after 690# migration (Since 4.0) 691# 692# @announce-step: Increase in delay (in milliseconds) between 693# subsequent packets in the announcement (Since 4.0) 694# 695# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 696# bytes_xfer_period to trigger throttling. It is expressed as 697# percentage. The default value is 50. (Since 5.0) 698# 699# @cpu-throttle-initial: Initial percentage of time guest cpus are 700# throttled when migration auto-converge is activated. The 701# default value is 20. (Since 2.7) 702# 703# @cpu-throttle-increment: throttle percentage increase each time 704# auto-converge detects that migration is not making progress. 705# The default value is 10. (Since 2.7) 706# 707# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 708# the tail stage of throttling, the Guest is very sensitive to CPU 709# percentage while the @cpu-throttle -increment is excessive 710# usually at tail stage. If this parameter is true, we will 711# compute the ideal CPU percentage used by the Guest, which may 712# exactly make the dirty rate match the dirty rate threshold. 713# Then we will choose a smaller throttle increment between the one 714# specified by @cpu-throttle-increment and the one generated by 715# ideal CPU percentage. Therefore, it is compatible to 716# traditional throttling, meanwhile the throttle increment won't 717# be excessive at tail stage. The default value is false. (Since 718# 5.1) 719# 720# @tls-creds: ID of the 'tls-creds' object that provides credentials 721# for establishing a TLS connection over the migration data 722# channel. On the outgoing side of the migration, the credentials 723# must be for a 'client' endpoint, while for the incoming side the 724# credentials must be for a 'server' endpoint. Setting this to a 725# non-empty string enables TLS for all migrations. An empty 726# string means that QEMU will use plain text mode for migration, 727# rather than TLS. (Since 2.7) 728# 729# @tls-hostname: migration target's hostname for validating the 730# server's x509 certificate identity. If empty, QEMU will use the 731# hostname from the migration URI, if any. A non-empty value is 732# required when using x509 based TLS credentials and the migration 733# URI does not include a hostname, such as fd: or exec: based 734# migration. (Since 2.7) 735# 736# Note: empty value works only since 2.9. 737# 738# @tls-authz: ID of the 'authz' object subclass that provides access 739# control checking of the TLS x509 certificate distinguished name. 740# This object is only resolved at time of use, so can be deleted 741# and recreated on the fly while the migration server is active. 742# If missing, it will default to denying access (Since 4.0) 743# 744# @max-bandwidth: maximum speed for migration, in bytes per second. 745# (Since 2.8) 746# 747# @avail-switchover-bandwidth: to set the available bandwidth that 748# migration can use during switchover phase. NOTE! This does not 749# limit the bandwidth during switchover, but only for calculations 750# when making decisions to switchover. By default, this value is 751# zero, which means QEMU will estimate the bandwidth 752# automatically. This can be set when the estimated value is not 753# accurate, while the user is able to guarantee such bandwidth is 754# available when switching over. When specified correctly, this 755# can make the switchover decision much more accurate. 756# (Since 8.2) 757# 758# @downtime-limit: set maximum tolerated downtime for migration. 759# maximum downtime in milliseconds (Since 2.8) 760# 761# @x-checkpoint-delay: The delay time (in ms) between two COLO 762# checkpoints in periodic mode. (Since 2.8) 763# 764# @multifd-channels: Number of channels used to migrate data in 765# parallel. This is the same number that the number of sockets 766# used for migration. The default value is 2 (since 4.0) 767# 768# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 769# needs to be a multiple of the target page size and a power of 2 770# (Since 2.11) 771# 772# @max-postcopy-bandwidth: Background transfer bandwidth during 773# postcopy. Defaults to 0 (unlimited). In bytes per second. 774# (Since 3.0) 775# 776# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 777# (Since 3.1) 778# 779# @multifd-compression: Which compression method to use. Defaults to 780# none. (Since 5.0) 781# 782# @multifd-zlib-level: Set the compression level to be used in live 783# migration, the compression level is an integer between 0 and 9, 784# where 0 means no compression, 1 means the best compression 785# speed, and 9 means best compression ratio which will consume 786# more CPU. Defaults to 1. (Since 5.0) 787# 788# @multifd-zstd-level: Set the compression level to be used in live 789# migration, the compression level is an integer between 0 and 20, 790# where 0 means no compression, 1 means the best compression 791# speed, and 20 means best compression ratio which will consume 792# more CPU. Defaults to 1. (Since 5.0) 793# 794# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 795# aliases for the purpose of dirty bitmap migration. Such aliases 796# may for example be the corresponding names on the opposite site. 797# The mapping must be one-to-one, but not necessarily complete: On 798# the source, unmapped bitmaps and all bitmaps on unmapped nodes 799# will be ignored. On the destination, encountering an unmapped 800# alias in the incoming migration stream will result in a report, 801# and all further bitmap migration data will then be discarded. 802# Note that the destination does not know about bitmaps it does 803# not receive, so there is no limitation or requirement regarding 804# the number of bitmaps received, or how they are named, or on 805# which nodes they are placed. By default (when this parameter 806# has never been set), bitmap names are mapped to themselves. 807# Nodes are mapped to their block device name if there is one, and 808# to their node name otherwise. (Since 5.2) 809# 810# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 811# limit during live migration. Should be in the range 1 to 812# 1000ms. Defaults to 1000ms. (Since 8.1) 813# 814# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 815# Defaults to 1. (Since 8.1) 816# 817# @mode: Migration mode. See description in @MigMode. Default is 818# 'normal'. (Since 8.2) 819# 820# @zero-page-detection: Whether and how to detect zero pages. 821# See description in @ZeroPageDetection. Default is 'multifd'. 822# (since 9.0) 823# 824# @direct-io: Open migration files with O_DIRECT when possible. This 825# only has effect if the @mapped-ram capability is enabled. 826# (Since 9.1) 827# 828# Features: 829# 830# @unstable: Members @x-checkpoint-delay and 831# @x-vcpu-dirty-limit-period are experimental. 832# 833# Since: 2.4 834## 835{ 'enum': 'MigrationParameter', 836 'data': ['announce-initial', 'announce-max', 837 'announce-rounds', 'announce-step', 838 'throttle-trigger-threshold', 839 'cpu-throttle-initial', 'cpu-throttle-increment', 840 'cpu-throttle-tailslow', 841 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth', 842 'avail-switchover-bandwidth', 'downtime-limit', 843 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] }, 844 'multifd-channels', 845 'xbzrle-cache-size', 'max-postcopy-bandwidth', 846 'max-cpu-throttle', 'multifd-compression', 847 'multifd-zlib-level', 'multifd-zstd-level', 848 'block-bitmap-mapping', 849 { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] }, 850 'vcpu-dirty-limit', 851 'mode', 852 'zero-page-detection', 853 'direct-io'] } 854 855## 856# @MigrateSetParameters: 857# 858# @announce-initial: Initial delay (in milliseconds) before sending 859# the first announce (Since 4.0) 860# 861# @announce-max: Maximum delay (in milliseconds) between packets in 862# the announcement (Since 4.0) 863# 864# @announce-rounds: Number of self-announce packets sent after 865# migration (Since 4.0) 866# 867# @announce-step: Increase in delay (in milliseconds) between 868# subsequent packets in the announcement (Since 4.0) 869# 870# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 871# bytes_xfer_period to trigger throttling. It is expressed as 872# percentage. The default value is 50. (Since 5.0) 873# 874# @cpu-throttle-initial: Initial percentage of time guest cpus are 875# throttled when migration auto-converge is activated. The 876# default value is 20. (Since 2.7) 877# 878# @cpu-throttle-increment: throttle percentage increase each time 879# auto-converge detects that migration is not making progress. 880# The default value is 10. (Since 2.7) 881# 882# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 883# the tail stage of throttling, the Guest is very sensitive to CPU 884# percentage while the @cpu-throttle -increment is excessive 885# usually at tail stage. If this parameter is true, we will 886# compute the ideal CPU percentage used by the Guest, which may 887# exactly make the dirty rate match the dirty rate threshold. 888# Then we will choose a smaller throttle increment between the one 889# specified by @cpu-throttle-increment and the one generated by 890# ideal CPU percentage. Therefore, it is compatible to 891# traditional throttling, meanwhile the throttle increment won't 892# be excessive at tail stage. The default value is false. (Since 893# 5.1) 894# 895# @tls-creds: ID of the 'tls-creds' object that provides credentials 896# for establishing a TLS connection over the migration data 897# channel. On the outgoing side of the migration, the credentials 898# must be for a 'client' endpoint, while for the incoming side the 899# credentials must be for a 'server' endpoint. Setting this to a 900# non-empty string enables TLS for all migrations. An empty 901# string means that QEMU will use plain text mode for migration, 902# rather than TLS. This is the default. (Since 2.7) 903# 904# @tls-hostname: migration target's hostname for validating the 905# server's x509 certificate identity. If empty, QEMU will use the 906# hostname from the migration URI, if any. A non-empty value is 907# required when using x509 based TLS credentials and the migration 908# URI does not include a hostname, such as fd: or exec: based 909# migration. (Since 2.7) 910# 911# Note: empty value works only since 2.9. 912# 913# @tls-authz: ID of the 'authz' object subclass that provides access 914# control checking of the TLS x509 certificate distinguished name. 915# This object is only resolved at time of use, so can be deleted 916# and recreated on the fly while the migration server is active. 917# If missing, it will default to denying access (Since 4.0) 918# 919# @max-bandwidth: maximum speed for migration, in bytes per second. 920# (Since 2.8) 921# 922# @avail-switchover-bandwidth: to set the available bandwidth that 923# migration can use during switchover phase. NOTE! This does not 924# limit the bandwidth during switchover, but only for calculations 925# when making decisions to switchover. By default, this value is 926# zero, which means QEMU will estimate the bandwidth 927# automatically. This can be set when the estimated value is not 928# accurate, while the user is able to guarantee such bandwidth is 929# available when switching over. When specified correctly, this 930# can make the switchover decision much more accurate. 931# (Since 8.2) 932# 933# @downtime-limit: set maximum tolerated downtime for migration. 934# maximum downtime in milliseconds (Since 2.8) 935# 936# @x-checkpoint-delay: The delay time (in ms) between two COLO 937# checkpoints in periodic mode. (Since 2.8) 938# 939# @multifd-channels: Number of channels used to migrate data in 940# parallel. This is the same number that the number of sockets 941# used for migration. The default value is 2 (since 4.0) 942# 943# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 944# needs to be a multiple of the target page size and a power of 2 945# (Since 2.11) 946# 947# @max-postcopy-bandwidth: Background transfer bandwidth during 948# postcopy. Defaults to 0 (unlimited). In bytes per second. 949# (Since 3.0) 950# 951# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 952# (Since 3.1) 953# 954# @multifd-compression: Which compression method to use. Defaults to 955# none. (Since 5.0) 956# 957# @multifd-zlib-level: Set the compression level to be used in live 958# migration, the compression level is an integer between 0 and 9, 959# where 0 means no compression, 1 means the best compression 960# speed, and 9 means best compression ratio which will consume 961# more CPU. Defaults to 1. (Since 5.0) 962# 963# @multifd-zstd-level: Set the compression level to be used in live 964# migration, the compression level is an integer between 0 and 20, 965# where 0 means no compression, 1 means the best compression 966# speed, and 20 means best compression ratio which will consume 967# more CPU. Defaults to 1. (Since 5.0) 968# 969# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 970# aliases for the purpose of dirty bitmap migration. Such aliases 971# may for example be the corresponding names on the opposite site. 972# The mapping must be one-to-one, but not necessarily complete: On 973# the source, unmapped bitmaps and all bitmaps on unmapped nodes 974# will be ignored. On the destination, encountering an unmapped 975# alias in the incoming migration stream will result in a report, 976# and all further bitmap migration data will then be discarded. 977# Note that the destination does not know about bitmaps it does 978# not receive, so there is no limitation or requirement regarding 979# the number of bitmaps received, or how they are named, or on 980# which nodes they are placed. By default (when this parameter 981# has never been set), bitmap names are mapped to themselves. 982# Nodes are mapped to their block device name if there is one, and 983# to their node name otherwise. (Since 5.2) 984# 985# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 986# limit during live migration. Should be in the range 1 to 987# 1000ms. Defaults to 1000ms. (Since 8.1) 988# 989# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 990# Defaults to 1. (Since 8.1) 991# 992# @mode: Migration mode. See description in @MigMode. Default is 993# 'normal'. (Since 8.2) 994# 995# @zero-page-detection: Whether and how to detect zero pages. 996# See description in @ZeroPageDetection. Default is 'multifd'. 997# (since 9.0) 998# 999# @direct-io: Open migration files with O_DIRECT when possible. This 1000# only has effect if the @mapped-ram capability is enabled. 1001# (Since 9.1) 1002# 1003# Features: 1004# 1005# @unstable: Members @x-checkpoint-delay and 1006# @x-vcpu-dirty-limit-period are experimental. 1007# 1008# TODO: either fuse back into MigrationParameters, or make 1009# MigrationParameters members mandatory 1010# 1011# Since: 2.4 1012## 1013{ 'struct': 'MigrateSetParameters', 1014 'data': { '*announce-initial': 'size', 1015 '*announce-max': 'size', 1016 '*announce-rounds': 'size', 1017 '*announce-step': 'size', 1018 '*throttle-trigger-threshold': 'uint8', 1019 '*cpu-throttle-initial': 'uint8', 1020 '*cpu-throttle-increment': 'uint8', 1021 '*cpu-throttle-tailslow': 'bool', 1022 '*tls-creds': 'StrOrNull', 1023 '*tls-hostname': 'StrOrNull', 1024 '*tls-authz': 'StrOrNull', 1025 '*max-bandwidth': 'size', 1026 '*avail-switchover-bandwidth': 'size', 1027 '*downtime-limit': 'uint64', 1028 '*x-checkpoint-delay': { 'type': 'uint32', 1029 'features': [ 'unstable' ] }, 1030 '*multifd-channels': 'uint8', 1031 '*xbzrle-cache-size': 'size', 1032 '*max-postcopy-bandwidth': 'size', 1033 '*max-cpu-throttle': 'uint8', 1034 '*multifd-compression': 'MultiFDCompression', 1035 '*multifd-zlib-level': 'uint8', 1036 '*multifd-zstd-level': 'uint8', 1037 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1038 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1039 'features': [ 'unstable' ] }, 1040 '*vcpu-dirty-limit': 'uint64', 1041 '*mode': 'MigMode', 1042 '*zero-page-detection': 'ZeroPageDetection', 1043 '*direct-io': 'bool' } } 1044 1045## 1046# @migrate-set-parameters: 1047# 1048# Set various migration parameters. 1049# 1050# Since: 2.4 1051# 1052# Example: 1053# 1054# -> { "execute": "migrate-set-parameters" , 1055# "arguments": { "multifd-channels": 5 } } 1056# <- { "return": {} } 1057## 1058{ 'command': 'migrate-set-parameters', 'boxed': true, 1059 'data': 'MigrateSetParameters' } 1060 1061## 1062# @MigrationParameters: 1063# 1064# The optional members aren't actually optional. 1065# 1066# @announce-initial: Initial delay (in milliseconds) before sending 1067# the first announce (Since 4.0) 1068# 1069# @announce-max: Maximum delay (in milliseconds) between packets in 1070# the announcement (Since 4.0) 1071# 1072# @announce-rounds: Number of self-announce packets sent after 1073# migration (Since 4.0) 1074# 1075# @announce-step: Increase in delay (in milliseconds) between 1076# subsequent packets in the announcement (Since 4.0) 1077# 1078# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 1079# bytes_xfer_period to trigger throttling. It is expressed as 1080# percentage. The default value is 50. (Since 5.0) 1081# 1082# @cpu-throttle-initial: Initial percentage of time guest cpus are 1083# throttled when migration auto-converge is activated. (Since 1084# 2.7) 1085# 1086# @cpu-throttle-increment: throttle percentage increase each time 1087# auto-converge detects that migration is not making progress. 1088# (Since 2.7) 1089# 1090# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 1091# the tail stage of throttling, the Guest is very sensitive to CPU 1092# percentage while the @cpu-throttle -increment is excessive 1093# usually at tail stage. If this parameter is true, we will 1094# compute the ideal CPU percentage used by the Guest, which may 1095# exactly make the dirty rate match the dirty rate threshold. 1096# Then we will choose a smaller throttle increment between the one 1097# specified by @cpu-throttle-increment and the one generated by 1098# ideal CPU percentage. Therefore, it is compatible to 1099# traditional throttling, meanwhile the throttle increment won't 1100# be excessive at tail stage. The default value is false. (Since 1101# 5.1) 1102# 1103# @tls-creds: ID of the 'tls-creds' object that provides credentials 1104# for establishing a TLS connection over the migration data 1105# channel. On the outgoing side of the migration, the credentials 1106# must be for a 'client' endpoint, while for the incoming side the 1107# credentials must be for a 'server' endpoint. An empty string 1108# means that QEMU will use plain text mode for migration, rather 1109# than TLS. (Since 2.7) 1110# 1111# Note: 2.8 omits empty @tls-creds instead. 1112# 1113# @tls-hostname: migration target's hostname for validating the 1114# server's x509 certificate identity. If empty, QEMU will use the 1115# hostname from the migration URI, if any. (Since 2.7) 1116# 1117# Note: 2.8 omits empty @tls-hostname instead. 1118# 1119# @tls-authz: ID of the 'authz' object subclass that provides access 1120# control checking of the TLS x509 certificate distinguished name. 1121# (Since 4.0) 1122# 1123# @max-bandwidth: maximum speed for migration, in bytes per second. 1124# (Since 2.8) 1125# 1126# @avail-switchover-bandwidth: to set the available bandwidth that 1127# migration can use during switchover phase. NOTE! This does not 1128# limit the bandwidth during switchover, but only for calculations 1129# when making decisions to switchover. By default, this value is 1130# zero, which means QEMU will estimate the bandwidth 1131# automatically. This can be set when the estimated value is not 1132# accurate, while the user is able to guarantee such bandwidth is 1133# available when switching over. When specified correctly, this 1134# can make the switchover decision much more accurate. 1135# (Since 8.2) 1136# 1137# @downtime-limit: set maximum tolerated downtime for migration. 1138# maximum downtime in milliseconds (Since 2.8) 1139# 1140# @x-checkpoint-delay: the delay time between two COLO checkpoints. 1141# (Since 2.8) 1142# 1143# @multifd-channels: Number of channels used to migrate data in 1144# parallel. This is the same number that the number of sockets 1145# used for migration. The default value is 2 (since 4.0) 1146# 1147# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1148# needs to be a multiple of the target page size and a power of 2 1149# (Since 2.11) 1150# 1151# @max-postcopy-bandwidth: Background transfer bandwidth during 1152# postcopy. Defaults to 0 (unlimited). In bytes per second. 1153# (Since 3.0) 1154# 1155# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 1156# (Since 3.1) 1157# 1158# @multifd-compression: Which compression method to use. Defaults to 1159# none. (Since 5.0) 1160# 1161# @multifd-zlib-level: Set the compression level to be used in live 1162# migration, the compression level is an integer between 0 and 9, 1163# where 0 means no compression, 1 means the best compression 1164# speed, and 9 means best compression ratio which will consume 1165# more CPU. Defaults to 1. (Since 5.0) 1166# 1167# @multifd-zstd-level: Set the compression level to be used in live 1168# migration, the compression level is an integer between 0 and 20, 1169# where 0 means no compression, 1 means the best compression 1170# speed, and 20 means best compression ratio which will consume 1171# more CPU. Defaults to 1. (Since 5.0) 1172# 1173# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1174# aliases for the purpose of dirty bitmap migration. Such aliases 1175# may for example be the corresponding names on the opposite site. 1176# The mapping must be one-to-one, but not necessarily complete: On 1177# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1178# will be ignored. On the destination, encountering an unmapped 1179# alias in the incoming migration stream will result in a report, 1180# and all further bitmap migration data will then be discarded. 1181# Note that the destination does not know about bitmaps it does 1182# not receive, so there is no limitation or requirement regarding 1183# the number of bitmaps received, or how they are named, or on 1184# which nodes they are placed. By default (when this parameter 1185# has never been set), bitmap names are mapped to themselves. 1186# Nodes are mapped to their block device name if there is one, and 1187# to their node name otherwise. (Since 5.2) 1188# 1189# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 1190# limit during live migration. Should be in the range 1 to 1191# 1000ms. Defaults to 1000ms. (Since 8.1) 1192# 1193# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1194# Defaults to 1. (Since 8.1) 1195# 1196# @mode: Migration mode. See description in @MigMode. Default is 1197# 'normal'. (Since 8.2) 1198# 1199# @zero-page-detection: Whether and how to detect zero pages. 1200# See description in @ZeroPageDetection. Default is 'multifd'. 1201# (since 9.0) 1202# 1203# @direct-io: Open migration files with O_DIRECT when possible. This 1204# only has effect if the @mapped-ram capability is enabled. 1205# (Since 9.1) 1206# 1207# Features: 1208# 1209# @unstable: Members @x-checkpoint-delay and 1210# @x-vcpu-dirty-limit-period are experimental. 1211# 1212# Since: 2.4 1213## 1214{ 'struct': 'MigrationParameters', 1215 'data': { '*announce-initial': 'size', 1216 '*announce-max': 'size', 1217 '*announce-rounds': 'size', 1218 '*announce-step': 'size', 1219 '*throttle-trigger-threshold': 'uint8', 1220 '*cpu-throttle-initial': 'uint8', 1221 '*cpu-throttle-increment': 'uint8', 1222 '*cpu-throttle-tailslow': 'bool', 1223 '*tls-creds': 'str', 1224 '*tls-hostname': 'str', 1225 '*tls-authz': 'str', 1226 '*max-bandwidth': 'size', 1227 '*avail-switchover-bandwidth': 'size', 1228 '*downtime-limit': 'uint64', 1229 '*x-checkpoint-delay': { 'type': 'uint32', 1230 'features': [ 'unstable' ] }, 1231 '*multifd-channels': 'uint8', 1232 '*xbzrle-cache-size': 'size', 1233 '*max-postcopy-bandwidth': 'size', 1234 '*max-cpu-throttle': 'uint8', 1235 '*multifd-compression': 'MultiFDCompression', 1236 '*multifd-zlib-level': 'uint8', 1237 '*multifd-zstd-level': 'uint8', 1238 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1239 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1240 'features': [ 'unstable' ] }, 1241 '*vcpu-dirty-limit': 'uint64', 1242 '*mode': 'MigMode', 1243 '*zero-page-detection': 'ZeroPageDetection', 1244 '*direct-io': 'bool' } } 1245 1246## 1247# @query-migrate-parameters: 1248# 1249# Returns information about the current migration parameters 1250# 1251# Returns: @MigrationParameters 1252# 1253# Since: 2.4 1254# 1255# Example: 1256# 1257# -> { "execute": "query-migrate-parameters" } 1258# <- { "return": { 1259# "multifd-channels": 2, 1260# "cpu-throttle-increment": 10, 1261# "cpu-throttle-initial": 20, 1262# "max-bandwidth": 33554432, 1263# "downtime-limit": 300 1264# } 1265# } 1266## 1267{ 'command': 'query-migrate-parameters', 1268 'returns': 'MigrationParameters' } 1269 1270## 1271# @migrate-start-postcopy: 1272# 1273# Followup to a migration command to switch the migration to postcopy 1274# mode. The postcopy-ram capability must be set on both source and 1275# destination before the original migration command. 1276# 1277# Since: 2.5 1278# 1279# Example: 1280# 1281# -> { "execute": "migrate-start-postcopy" } 1282# <- { "return": {} } 1283## 1284{ 'command': 'migrate-start-postcopy' } 1285 1286## 1287# @MIGRATION: 1288# 1289# Emitted when a migration event happens 1290# 1291# @status: @MigrationStatus describing the current migration status. 1292# 1293# Since: 2.4 1294# 1295# Example: 1296# 1297# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001}, 1298# "event": "MIGRATION", 1299# "data": {"status": "completed"} } 1300## 1301{ 'event': 'MIGRATION', 1302 'data': {'status': 'MigrationStatus'}} 1303 1304## 1305# @MIGRATION_PASS: 1306# 1307# Emitted from the source side of a migration at the start of each 1308# pass (when it syncs the dirty bitmap) 1309# 1310# @pass: An incrementing count (starting at 1 on the first pass) 1311# 1312# Since: 2.6 1313# 1314# Example: 1315# 1316# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225}, 1317# "event": "MIGRATION_PASS", "data": {"pass": 2} } 1318## 1319{ 'event': 'MIGRATION_PASS', 1320 'data': { 'pass': 'int' } } 1321 1322## 1323# @COLOMessage: 1324# 1325# The message transmission between Primary side and Secondary side. 1326# 1327# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing 1328# 1329# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for 1330# checkpointing 1331# 1332# @checkpoint-reply: SVM gets PVM's checkpoint request 1333# 1334# @vmstate-send: VM's state will be sent by PVM. 1335# 1336# @vmstate-size: The total size of VMstate. 1337# 1338# @vmstate-received: VM's state has been received by SVM. 1339# 1340# @vmstate-loaded: VM's state has been loaded by SVM. 1341# 1342# Since: 2.8 1343## 1344{ 'enum': 'COLOMessage', 1345 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply', 1346 'vmstate-send', 'vmstate-size', 'vmstate-received', 1347 'vmstate-loaded' ] } 1348 1349## 1350# @COLOMode: 1351# 1352# The COLO current mode. 1353# 1354# @none: COLO is disabled. 1355# 1356# @primary: COLO node in primary side. 1357# 1358# @secondary: COLO node in slave side. 1359# 1360# Since: 2.8 1361## 1362{ 'enum': 'COLOMode', 1363 'data': [ 'none', 'primary', 'secondary'] } 1364 1365## 1366# @FailoverStatus: 1367# 1368# An enumeration of COLO failover status 1369# 1370# @none: no failover has ever happened 1371# 1372# @require: got failover requirement but not handled 1373# 1374# @active: in the process of doing failover 1375# 1376# @completed: finish the process of failover 1377# 1378# @relaunch: restart the failover process, from 'none' -> 'completed' 1379# (Since 2.9) 1380# 1381# Since: 2.8 1382## 1383{ 'enum': 'FailoverStatus', 1384 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] } 1385 1386## 1387# @COLO_EXIT: 1388# 1389# Emitted when VM finishes COLO mode due to some errors happening or 1390# at the request of users. 1391# 1392# @mode: report COLO mode when COLO exited. 1393# 1394# @reason: describes the reason for the COLO exit. 1395# 1396# Since: 3.1 1397# 1398# Example: 1399# 1400# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172}, 1401# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } } 1402## 1403{ 'event': 'COLO_EXIT', 1404 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } } 1405 1406## 1407# @COLOExitReason: 1408# 1409# The reason for a COLO exit. 1410# 1411# @none: failover has never happened. This state does not occur in 1412# the COLO_EXIT event, and is only visible in the result of 1413# query-colo-status. 1414# 1415# @request: COLO exit is due to an external request. 1416# 1417# @error: COLO exit is due to an internal error. 1418# 1419# @processing: COLO is currently handling a failover (since 4.0). 1420# 1421# Since: 3.1 1422## 1423{ 'enum': 'COLOExitReason', 1424 'data': [ 'none', 'request', 'error' , 'processing' ] } 1425 1426## 1427# @x-colo-lost-heartbeat: 1428# 1429# Tell qemu that heartbeat is lost, request it to do takeover 1430# procedures. If this command is sent to the PVM, the Primary side 1431# will exit COLO mode. If sent to the Secondary, the Secondary side 1432# will run failover work, then takes over server operation to become 1433# the service VM. 1434# 1435# Features: 1436# 1437# @unstable: This command is experimental. 1438# 1439# Since: 2.8 1440# 1441# Example: 1442# 1443# -> { "execute": "x-colo-lost-heartbeat" } 1444# <- { "return": {} } 1445## 1446{ 'command': 'x-colo-lost-heartbeat', 1447 'features': [ 'unstable' ], 1448 'if': 'CONFIG_REPLICATION' } 1449 1450## 1451# @migrate_cancel: 1452# 1453# Cancel the current executing migration process. 1454# 1455# Notes: This command succeeds even if there is no migration process 1456# running. 1457# 1458# Since: 0.14 1459# 1460# Example: 1461# 1462# -> { "execute": "migrate_cancel" } 1463# <- { "return": {} } 1464## 1465{ 'command': 'migrate_cancel' } 1466 1467## 1468# @migrate-continue: 1469# 1470# Continue migration when it's in a paused state. 1471# 1472# @state: The state the migration is currently expected to be in 1473# 1474# Since: 2.11 1475# 1476# Example: 1477# 1478# -> { "execute": "migrate-continue" , "arguments": 1479# { "state": "pre-switchover" } } 1480# <- { "return": {} } 1481## 1482{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} } 1483 1484## 1485# @MigrationAddressType: 1486# 1487# The migration stream transport mechanisms. 1488# 1489# @socket: Migrate via socket. 1490# 1491# @exec: Direct the migration stream to another process. 1492# 1493# @rdma: Migrate via RDMA. 1494# 1495# @file: Direct the migration stream to a file. 1496# 1497# Since: 8.2 1498## 1499{ 'enum': 'MigrationAddressType', 1500 'data': [ 'socket', 'exec', 'rdma', 'file' ] } 1501 1502## 1503# @FileMigrationArgs: 1504# 1505# @filename: The file to receive the migration stream 1506# 1507# @offset: The file offset where the migration stream will start 1508# 1509# Since: 8.2 1510## 1511{ 'struct': 'FileMigrationArgs', 1512 'data': { 'filename': 'str', 1513 'offset': 'uint64' } } 1514 1515## 1516# @MigrationExecCommand: 1517# 1518# @args: command (list head) and arguments to execute. 1519# 1520# Since: 8.2 1521## 1522{ 'struct': 'MigrationExecCommand', 1523 'data': {'args': [ 'str' ] } } 1524 1525## 1526# @MigrationAddress: 1527# 1528# Migration endpoint configuration. 1529# 1530# @transport: The migration stream transport mechanism 1531# 1532# Since: 8.2 1533## 1534{ 'union': 'MigrationAddress', 1535 'base': { 'transport' : 'MigrationAddressType'}, 1536 'discriminator': 'transport', 1537 'data': { 1538 'socket': 'SocketAddress', 1539 'exec': 'MigrationExecCommand', 1540 'rdma': 'InetSocketAddress', 1541 'file': 'FileMigrationArgs' } } 1542 1543## 1544# @MigrationChannelType: 1545# 1546# The migration channel-type request options. 1547# 1548# @main: Main outbound migration channel. 1549# 1550# Since: 8.1 1551## 1552{ 'enum': 'MigrationChannelType', 1553 'data': [ 'main' ] } 1554 1555## 1556# @MigrationChannel: 1557# 1558# Migration stream channel parameters. 1559# 1560# @channel-type: Channel type for transferring packet information. 1561# 1562# @addr: Migration endpoint configuration on destination interface. 1563# 1564# Since: 8.1 1565## 1566{ 'struct': 'MigrationChannel', 1567 'data': { 1568 'channel-type': 'MigrationChannelType', 1569 'addr': 'MigrationAddress' } } 1570 1571## 1572# @migrate: 1573# 1574# Migrates the current running guest to another Virtual Machine. 1575# 1576# @uri: the Uniform Resource Identifier of the destination VM 1577# 1578# @channels: list of migration stream channels with each stream in the 1579# list connected to a destination interface endpoint. 1580# 1581# @detach: this argument exists only for compatibility reasons and is 1582# ignored by QEMU 1583# 1584# @resume: resume one paused migration, default "off". (since 3.0) 1585# 1586# Since: 0.14 1587# 1588# Notes: 1589# 1590# 1. The 'query-migrate' command should be used to check 1591# migration's progress and final result (this information is 1592# provided by the 'status' member) 1593# 1594# 2. All boolean arguments default to false 1595# 1596# 3. The user Monitor's "detach" argument is invalid in QMP and 1597# should not be used 1598# 1599# 4. The uri argument should have the Uniform Resource Identifier 1600# of default destination VM. This connection will be bound to 1601# default network. 1602# 1603# 5. For now, number of migration streams is restricted to one, 1604# i.e. number of items in 'channels' list is just 1. 1605# 1606# 6. The 'uri' and 'channels' arguments are mutually exclusive; 1607# exactly one of the two should be present. 1608# 1609# Example: 1610# 1611# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } } 1612# <- { "return": {} } 1613# 1614# -> { "execute": "migrate", 1615# "arguments": { 1616# "channels": [ { "channel-type": "main", 1617# "addr": { "transport": "socket", 1618# "type": "inet", 1619# "host": "10.12.34.9", 1620# "port": "1050" } } ] } } 1621# <- { "return": {} } 1622# 1623# -> { "execute": "migrate", 1624# "arguments": { 1625# "channels": [ { "channel-type": "main", 1626# "addr": { "transport": "exec", 1627# "args": [ "/bin/nc", "-p", "6000", 1628# "/some/sock" ] } } ] } } 1629# <- { "return": {} } 1630# 1631# -> { "execute": "migrate", 1632# "arguments": { 1633# "channels": [ { "channel-type": "main", 1634# "addr": { "transport": "rdma", 1635# "host": "10.12.34.9", 1636# "port": "1050" } } ] } } 1637# <- { "return": {} } 1638# 1639# -> { "execute": "migrate", 1640# "arguments": { 1641# "channels": [ { "channel-type": "main", 1642# "addr": { "transport": "file", 1643# "filename": "/tmp/migfile", 1644# "offset": "0x1000" } } ] } } 1645# <- { "return": {} } 1646# 1647## 1648{ 'command': 'migrate', 1649 'data': {'*uri': 'str', 1650 '*channels': [ 'MigrationChannel' ], 1651 '*detach': 'bool', '*resume': 'bool' } } 1652 1653## 1654# @migrate-incoming: 1655# 1656# Start an incoming migration, the qemu must have been started with 1657# -incoming defer 1658# 1659# @uri: The Uniform Resource Identifier identifying the source or 1660# address to listen on 1661# 1662# @channels: list of migration stream channels with each stream in the 1663# list connected to a destination interface endpoint. 1664# 1665# @exit-on-error: Exit on incoming migration failure. Default true. 1666# When set to false, the failure triggers a MIGRATION event, and 1667# error details could be retrieved with query-migrate. (since 9.1) 1668# 1669# Since: 2.3 1670# 1671# Notes: 1672# 1673# 1. It's a bad idea to use a string for the uri, but it needs to 1674# stay compatible with -incoming and the format of the uri is 1675# already exposed above libvirt. 1676# 1677# 2. QEMU must be started with -incoming defer to allow 1678# migrate-incoming to be used. 1679# 1680# 3. The uri format is the same as for -incoming 1681# 1682# 4. For now, number of migration streams is restricted to one, 1683# i.e. number of items in 'channels' list is just 1. 1684# 1685# 5. The 'uri' and 'channels' arguments are mutually exclusive; 1686# exactly one of the two should be present. 1687# 1688# Example: 1689# 1690# -> { "execute": "migrate-incoming", 1691# "arguments": { "uri": "tcp:0:4446" } } 1692# <- { "return": {} } 1693# 1694# -> { "execute": "migrate-incoming", 1695# "arguments": { 1696# "channels": [ { "channel-type": "main", 1697# "addr": { "transport": "socket", 1698# "type": "inet", 1699# "host": "10.12.34.9", 1700# "port": "1050" } } ] } } 1701# <- { "return": {} } 1702# 1703# -> { "execute": "migrate-incoming", 1704# "arguments": { 1705# "channels": [ { "channel-type": "main", 1706# "addr": { "transport": "exec", 1707# "args": [ "/bin/nc", "-p", "6000", 1708# "/some/sock" ] } } ] } } 1709# <- { "return": {} } 1710# 1711# -> { "execute": "migrate-incoming", 1712# "arguments": { 1713# "channels": [ { "channel-type": "main", 1714# "addr": { "transport": "rdma", 1715# "host": "10.12.34.9", 1716# "port": "1050" } } ] } } 1717# <- { "return": {} } 1718## 1719{ 'command': 'migrate-incoming', 1720 'data': {'*uri': 'str', 1721 '*channels': [ 'MigrationChannel' ], 1722 '*exit-on-error': 'bool' } } 1723 1724## 1725# @xen-save-devices-state: 1726# 1727# Save the state of all devices to file. The RAM and the block 1728# devices of the VM are not saved by this command. 1729# 1730# @filename: the file to save the state of the devices to as binary 1731# data. See xen-save-devices-state.txt for a description of the 1732# binary format. 1733# 1734# @live: Optional argument to ask QEMU to treat this command as part 1735# of a live migration. Default to true. (since 2.11) 1736# 1737# Since: 1.1 1738# 1739# Example: 1740# 1741# -> { "execute": "xen-save-devices-state", 1742# "arguments": { "filename": "/tmp/save" } } 1743# <- { "return": {} } 1744## 1745{ 'command': 'xen-save-devices-state', 1746 'data': {'filename': 'str', '*live':'bool' } } 1747 1748## 1749# @xen-set-global-dirty-log: 1750# 1751# Enable or disable the global dirty log mode. 1752# 1753# @enable: true to enable, false to disable. 1754# 1755# Since: 1.3 1756# 1757# Example: 1758# 1759# -> { "execute": "xen-set-global-dirty-log", 1760# "arguments": { "enable": true } } 1761# <- { "return": {} } 1762## 1763{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1764 1765## 1766# @xen-load-devices-state: 1767# 1768# Load the state of all devices from file. The RAM and the block 1769# devices of the VM are not loaded by this command. 1770# 1771# @filename: the file to load the state of the devices from as binary 1772# data. See xen-save-devices-state.txt for a description of the 1773# binary format. 1774# 1775# Since: 2.7 1776# 1777# Example: 1778# 1779# -> { "execute": "xen-load-devices-state", 1780# "arguments": { "filename": "/tmp/resume" } } 1781# <- { "return": {} } 1782## 1783{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 1784 1785## 1786# @xen-set-replication: 1787# 1788# Enable or disable replication. 1789# 1790# @enable: true to enable, false to disable. 1791# 1792# @primary: true for primary or false for secondary. 1793# 1794# @failover: true to do failover, false to stop. Cannot be specified 1795# if 'enable' is true. Default value is false. 1796# 1797# Example: 1798# 1799# -> { "execute": "xen-set-replication", 1800# "arguments": {"enable": true, "primary": false} } 1801# <- { "return": {} } 1802# 1803# Since: 2.9 1804## 1805{ 'command': 'xen-set-replication', 1806 'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' }, 1807 'if': 'CONFIG_REPLICATION' } 1808 1809## 1810# @ReplicationStatus: 1811# 1812# The result format for 'query-xen-replication-status'. 1813# 1814# @error: true if an error happened, false if replication is normal. 1815# 1816# @desc: the human readable error description string, when @error is 1817# 'true'. 1818# 1819# Since: 2.9 1820## 1821{ 'struct': 'ReplicationStatus', 1822 'data': { 'error': 'bool', '*desc': 'str' }, 1823 'if': 'CONFIG_REPLICATION' } 1824 1825## 1826# @query-xen-replication-status: 1827# 1828# Query replication status while the vm is running. 1829# 1830# Returns: A @ReplicationStatus object showing the status. 1831# 1832# Example: 1833# 1834# -> { "execute": "query-xen-replication-status" } 1835# <- { "return": { "error": false } } 1836# 1837# Since: 2.9 1838## 1839{ 'command': 'query-xen-replication-status', 1840 'returns': 'ReplicationStatus', 1841 'if': 'CONFIG_REPLICATION' } 1842 1843## 1844# @xen-colo-do-checkpoint: 1845# 1846# Xen uses this command to notify replication to trigger a checkpoint. 1847# 1848# Example: 1849# 1850# -> { "execute": "xen-colo-do-checkpoint" } 1851# <- { "return": {} } 1852# 1853# Since: 2.9 1854## 1855{ 'command': 'xen-colo-do-checkpoint', 1856 'if': 'CONFIG_REPLICATION' } 1857 1858## 1859# @COLOStatus: 1860# 1861# The result format for 'query-colo-status'. 1862# 1863# @mode: COLO running mode. If COLO is running, this field will 1864# return 'primary' or 'secondary'. 1865# 1866# @last-mode: COLO last running mode. If COLO is running, this field 1867# will return same like mode field, after failover we can use this 1868# field to get last colo mode. (since 4.0) 1869# 1870# @reason: describes the reason for the COLO exit. 1871# 1872# Since: 3.1 1873## 1874{ 'struct': 'COLOStatus', 1875 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode', 1876 'reason': 'COLOExitReason' }, 1877 'if': 'CONFIG_REPLICATION' } 1878 1879## 1880# @query-colo-status: 1881# 1882# Query COLO status while the vm is running. 1883# 1884# Returns: A @COLOStatus object showing the status. 1885# 1886# Example: 1887# 1888# -> { "execute": "query-colo-status" } 1889# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } } 1890# 1891# Since: 3.1 1892## 1893{ 'command': 'query-colo-status', 1894 'returns': 'COLOStatus', 1895 'if': 'CONFIG_REPLICATION' } 1896 1897## 1898# @migrate-recover: 1899# 1900# Provide a recovery migration stream URI. 1901# 1902# @uri: the URI to be used for the recovery of migration stream. 1903# 1904# Example: 1905# 1906# -> { "execute": "migrate-recover", 1907# "arguments": { "uri": "tcp:192.168.1.200:12345" } } 1908# <- { "return": {} } 1909# 1910# Since: 3.0 1911## 1912{ 'command': 'migrate-recover', 1913 'data': { 'uri': 'str' }, 1914 'allow-oob': true } 1915 1916## 1917# @migrate-pause: 1918# 1919# Pause a migration. Currently it only supports postcopy. 1920# 1921# Example: 1922# 1923# -> { "execute": "migrate-pause" } 1924# <- { "return": {} } 1925# 1926# Since: 3.0 1927## 1928{ 'command': 'migrate-pause', 'allow-oob': true } 1929 1930## 1931# @UNPLUG_PRIMARY: 1932# 1933# Emitted from source side of a migration when migration state is 1934# WAIT_UNPLUG. Device was unplugged by guest operating system. Device 1935# resources in QEMU are kept on standby to be able to re-plug it in 1936# case of migration failure. 1937# 1938# @device-id: QEMU device id of the unplugged device 1939# 1940# Since: 4.2 1941# 1942# Example: 1943# 1944# <- { "event": "UNPLUG_PRIMARY", 1945# "data": { "device-id": "hostdev0" }, 1946# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 1947## 1948{ 'event': 'UNPLUG_PRIMARY', 1949 'data': { 'device-id': 'str' } } 1950 1951## 1952# @DirtyRateVcpu: 1953# 1954# Dirty rate of vcpu. 1955# 1956# @id: vcpu index. 1957# 1958# @dirty-rate: dirty rate. 1959# 1960# Since: 6.2 1961## 1962{ 'struct': 'DirtyRateVcpu', 1963 'data': { 'id': 'int', 'dirty-rate': 'int64' } } 1964 1965## 1966# @DirtyRateStatus: 1967# 1968# Dirty page rate measurement status. 1969# 1970# @unstarted: measuring thread has not been started yet 1971# 1972# @measuring: measuring thread is running 1973# 1974# @measured: dirty page rate is measured and the results are available 1975# 1976# Since: 5.2 1977## 1978{ 'enum': 'DirtyRateStatus', 1979 'data': [ 'unstarted', 'measuring', 'measured'] } 1980 1981## 1982# @DirtyRateMeasureMode: 1983# 1984# Method used to measure dirty page rate. Differences between 1985# available methods are explained in @calc-dirty-rate. 1986# 1987# @page-sampling: use page sampling 1988# 1989# @dirty-ring: use dirty ring 1990# 1991# @dirty-bitmap: use dirty bitmap 1992# 1993# Since: 6.2 1994## 1995{ 'enum': 'DirtyRateMeasureMode', 1996 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] } 1997 1998## 1999# @TimeUnit: 2000# 2001# Specifies unit in which time-related value is specified. 2002# 2003# @second: value is in seconds 2004# 2005# @millisecond: value is in milliseconds 2006# 2007# Since: 8.2 2008## 2009{ 'enum': 'TimeUnit', 2010 'data': ['second', 'millisecond'] } 2011 2012## 2013# @DirtyRateInfo: 2014# 2015# Information about measured dirty page rate. 2016# 2017# @dirty-rate: an estimate of the dirty page rate of the VM in units 2018# of MiB/s. Value is present only when @status is 'measured'. 2019# 2020# @status: current status of dirty page rate measurements 2021# 2022# @start-time: start time in units of second for calculation 2023# 2024# @calc-time: time period for which dirty page rate was measured, 2025# expressed and rounded down to @calc-time-unit. 2026# 2027# @calc-time-unit: time unit of @calc-time (Since 8.2) 2028# 2029# @sample-pages: number of sampled pages per GiB of guest memory. 2030# Valid only in page-sampling mode (Since 6.1) 2031# 2032# @mode: mode that was used to measure dirty page rate (Since 6.2) 2033# 2034# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was 2035# specified (Since 6.2) 2036# 2037# Since: 5.2 2038## 2039{ 'struct': 'DirtyRateInfo', 2040 'data': {'*dirty-rate': 'int64', 2041 'status': 'DirtyRateStatus', 2042 'start-time': 'int64', 2043 'calc-time': 'int64', 2044 'calc-time-unit': 'TimeUnit', 2045 'sample-pages': 'uint64', 2046 'mode': 'DirtyRateMeasureMode', 2047 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } } 2048 2049## 2050# @calc-dirty-rate: 2051# 2052# Start measuring dirty page rate of the VM. Results can be retrieved 2053# with @query-dirty-rate after measurements are completed. 2054# 2055# Dirty page rate is the number of pages changed in a given time 2056# period expressed in MiB/s. The following methods of calculation are 2057# available: 2058# 2059# 1. In page sampling mode, a random subset of pages are selected and 2060# hashed twice: once at the beginning of measurement time period, 2061# and once again at the end. If two hashes for some page are 2062# different, the page is counted as changed. Since this method 2063# relies on sampling and hashing, calculated dirty page rate is 2064# only an estimate of its true value. Increasing @sample-pages 2065# improves estimation quality at the cost of higher computational 2066# overhead. 2067# 2068# 2. Dirty bitmap mode captures writes to memory (for example by 2069# temporarily revoking write access to all pages) and counting page 2070# faults. Information about modified pages is collected into a 2071# bitmap, where each bit corresponds to one guest page. This mode 2072# requires that KVM accelerator property "dirty-ring-size" is *not* 2073# set. 2074# 2075# 3. Dirty ring mode is similar to dirty bitmap mode, but the 2076# information about modified pages is collected into ring buffer. 2077# This mode tracks page modification per each vCPU separately. It 2078# requires that KVM accelerator property "dirty-ring-size" is set. 2079# 2080# @calc-time: time period for which dirty page rate is calculated. 2081# By default it is specified in seconds, but the unit can be set 2082# explicitly with @calc-time-unit. Note that larger @calc-time 2083# values will typically result in smaller dirty page rates because 2084# page dirtying is a one-time event. Once some page is counted 2085# as dirty during @calc-time period, further writes to this page 2086# will not increase dirty page rate anymore. 2087# 2088# @calc-time-unit: time unit in which @calc-time is specified. 2089# By default it is seconds. (Since 8.2) 2090# 2091# @sample-pages: number of sampled pages per each GiB of guest memory. 2092# Default value is 512. For 4KiB guest pages this corresponds to 2093# sampling ratio of 0.2%. This argument is used only in page 2094# sampling mode. (Since 6.1) 2095# 2096# @mode: mechanism for tracking dirty pages. Default value is 2097# 'page-sampling'. Others are 'dirty-bitmap' and 'dirty-ring'. 2098# (Since 6.1) 2099# 2100# Since: 5.2 2101# 2102# Example: 2103# 2104# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1, 2105# 'sample-pages': 512} } 2106# <- { "return": {} } 2107# 2108# Measure dirty rate using dirty bitmap for 500 milliseconds: 2109# 2110# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500, 2111# "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} } 2112# 2113# <- { "return": {} } 2114## 2115{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64', 2116 '*calc-time-unit': 'TimeUnit', 2117 '*sample-pages': 'int', 2118 '*mode': 'DirtyRateMeasureMode'} } 2119 2120## 2121# @query-dirty-rate: 2122# 2123# Query results of the most recent invocation of @calc-dirty-rate. 2124# 2125# @calc-time-unit: time unit in which to report calculation time. 2126# By default it is reported in seconds. (Since 8.2) 2127# 2128# Since: 5.2 2129# 2130# Examples: 2131# 2132# 1. Measurement is in progress: 2133# 2134# <- {"status": "measuring", "sample-pages": 512, 2135# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2136# "calc-time-unit": "second"} 2137# 2138# 2. Measurement has been completed: 2139# 2140# <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108, 2141# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2142# "calc-time-unit": "second"} 2143## 2144{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' }, 2145 'returns': 'DirtyRateInfo' } 2146 2147## 2148# @DirtyLimitInfo: 2149# 2150# Dirty page rate limit information of a virtual CPU. 2151# 2152# @cpu-index: index of a virtual CPU. 2153# 2154# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual 2155# CPU, 0 means unlimited. 2156# 2157# @current-rate: current dirty page rate (MB/s) for a virtual CPU. 2158# 2159# Since: 7.1 2160## 2161{ 'struct': 'DirtyLimitInfo', 2162 'data': { 'cpu-index': 'int', 2163 'limit-rate': 'uint64', 2164 'current-rate': 'uint64' } } 2165 2166## 2167# @set-vcpu-dirty-limit: 2168# 2169# Set the upper limit of dirty page rate for virtual CPUs. 2170# 2171# Requires KVM with accelerator property "dirty-ring-size" set. A 2172# virtual CPU's dirty page rate is a measure of its memory load. To 2173# observe dirty page rates, use @calc-dirty-rate. 2174# 2175# @cpu-index: index of a virtual CPU, default is all. 2176# 2177# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs. 2178# 2179# Since: 7.1 2180# 2181# Example: 2182# 2183# -> {"execute": "set-vcpu-dirty-limit"} 2184# "arguments": { "dirty-rate": 200, 2185# "cpu-index": 1 } } 2186# <- { "return": {} } 2187## 2188{ 'command': 'set-vcpu-dirty-limit', 2189 'data': { '*cpu-index': 'int', 2190 'dirty-rate': 'uint64' } } 2191 2192## 2193# @cancel-vcpu-dirty-limit: 2194# 2195# Cancel the upper limit of dirty page rate for virtual CPUs. 2196# 2197# Cancel the dirty page limit for the vCPU which has been set with 2198# set-vcpu-dirty-limit command. Note that this command requires 2199# support from dirty ring, same as the "set-vcpu-dirty-limit". 2200# 2201# @cpu-index: index of a virtual CPU, default is all. 2202# 2203# Since: 7.1 2204# 2205# Example: 2206# 2207# -> {"execute": "cancel-vcpu-dirty-limit"}, 2208# "arguments": { "cpu-index": 1 } } 2209# <- { "return": {} } 2210## 2211{ 'command': 'cancel-vcpu-dirty-limit', 2212 'data': { '*cpu-index': 'int'} } 2213 2214## 2215# @query-vcpu-dirty-limit: 2216# 2217# Returns information about virtual CPU dirty page rate limits, if 2218# any. 2219# 2220# Since: 7.1 2221# 2222# Example: 2223# 2224# -> {"execute": "query-vcpu-dirty-limit"} 2225# <- {"return": [ 2226# { "limit-rate": 60, "current-rate": 3, "cpu-index": 0}, 2227# { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]} 2228## 2229{ 'command': 'query-vcpu-dirty-limit', 2230 'returns': [ 'DirtyLimitInfo' ] } 2231 2232## 2233# @MigrationThreadInfo: 2234# 2235# Information about migrationthreads 2236# 2237# @name: the name of migration thread 2238# 2239# @thread-id: ID of the underlying host thread 2240# 2241# Since: 7.2 2242## 2243{ 'struct': 'MigrationThreadInfo', 2244 'data': {'name': 'str', 2245 'thread-id': 'int'} } 2246 2247## 2248# @query-migrationthreads: 2249# 2250# Returns information of migration threads 2251# 2252# Returns: @MigrationThreadInfo 2253# 2254# Since: 7.2 2255## 2256{ 'command': 'query-migrationthreads', 2257 'returns': ['MigrationThreadInfo'] } 2258 2259## 2260# @snapshot-save: 2261# 2262# Save a VM snapshot 2263# 2264# @job-id: identifier for the newly created job 2265# 2266# @tag: name of the snapshot to create 2267# 2268# @vmstate: block device node name to save vmstate to 2269# 2270# @devices: list of block device node names to save a snapshot to 2271# 2272# Applications should not assume that the snapshot save is complete 2273# when this command returns. The job commands / events must be used 2274# to determine completion and to fetch details of any errors that 2275# arise. 2276# 2277# Note that execution of the guest CPUs may be stopped during the time 2278# it takes to save the snapshot. A future version of QEMU may ensure 2279# CPUs are executing continuously. 2280# 2281# It is strongly recommended that @devices contain all writable block 2282# device nodes if a consistent snapshot is required. 2283# 2284# If @tag already exists, an error will be reported 2285# 2286# Example: 2287# 2288# -> { "execute": "snapshot-save", 2289# "arguments": { 2290# "job-id": "snapsave0", 2291# "tag": "my-snap", 2292# "vmstate": "disk0", 2293# "devices": ["disk0", "disk1"] 2294# } 2295# } 2296# <- { "return": { } } 2297# <- {"event": "JOB_STATUS_CHANGE", 2298# "timestamp": {"seconds": 1432121972, "microseconds": 744001}, 2299# "data": {"status": "created", "id": "snapsave0"}} 2300# <- {"event": "JOB_STATUS_CHANGE", 2301# "timestamp": {"seconds": 1432122172, "microseconds": 744001}, 2302# "data": {"status": "running", "id": "snapsave0"}} 2303# <- {"event": "STOP", 2304# "timestamp": {"seconds": 1432122372, "microseconds": 744001} } 2305# <- {"event": "RESUME", 2306# "timestamp": {"seconds": 1432122572, "microseconds": 744001} } 2307# <- {"event": "JOB_STATUS_CHANGE", 2308# "timestamp": {"seconds": 1432122772, "microseconds": 744001}, 2309# "data": {"status": "waiting", "id": "snapsave0"}} 2310# <- {"event": "JOB_STATUS_CHANGE", 2311# "timestamp": {"seconds": 1432122972, "microseconds": 744001}, 2312# "data": {"status": "pending", "id": "snapsave0"}} 2313# <- {"event": "JOB_STATUS_CHANGE", 2314# "timestamp": {"seconds": 1432123172, "microseconds": 744001}, 2315# "data": {"status": "concluded", "id": "snapsave0"}} 2316# -> {"execute": "query-jobs"} 2317# <- {"return": [{"current-progress": 1, 2318# "status": "concluded", 2319# "total-progress": 1, 2320# "type": "snapshot-save", 2321# "id": "snapsave0"}]} 2322# 2323# Since: 6.0 2324## 2325{ 'command': 'snapshot-save', 2326 'data': { 'job-id': 'str', 2327 'tag': 'str', 2328 'vmstate': 'str', 2329 'devices': ['str'] } } 2330 2331## 2332# @snapshot-load: 2333# 2334# Load a VM snapshot 2335# 2336# @job-id: identifier for the newly created job 2337# 2338# @tag: name of the snapshot to load. 2339# 2340# @vmstate: block device node name to load vmstate from 2341# 2342# @devices: list of block device node names to load a snapshot from 2343# 2344# Applications should not assume that the snapshot load is complete 2345# when this command returns. The job commands / events must be used 2346# to determine completion and to fetch details of any errors that 2347# arise. 2348# 2349# Note that execution of the guest CPUs will be stopped during the 2350# time it takes to load the snapshot. 2351# 2352# It is strongly recommended that @devices contain all writable block 2353# device nodes that can have changed since the original @snapshot-save 2354# command execution. 2355# 2356# Example: 2357# 2358# -> { "execute": "snapshot-load", 2359# "arguments": { 2360# "job-id": "snapload0", 2361# "tag": "my-snap", 2362# "vmstate": "disk0", 2363# "devices": ["disk0", "disk1"] 2364# } 2365# } 2366# <- { "return": { } } 2367# <- {"event": "JOB_STATUS_CHANGE", 2368# "timestamp": {"seconds": 1472124172, "microseconds": 744001}, 2369# "data": {"status": "created", "id": "snapload0"}} 2370# <- {"event": "JOB_STATUS_CHANGE", 2371# "timestamp": {"seconds": 1472125172, "microseconds": 744001}, 2372# "data": {"status": "running", "id": "snapload0"}} 2373# <- {"event": "STOP", 2374# "timestamp": {"seconds": 1472125472, "microseconds": 744001} } 2375# <- {"event": "RESUME", 2376# "timestamp": {"seconds": 1472125872, "microseconds": 744001} } 2377# <- {"event": "JOB_STATUS_CHANGE", 2378# "timestamp": {"seconds": 1472126172, "microseconds": 744001}, 2379# "data": {"status": "waiting", "id": "snapload0"}} 2380# <- {"event": "JOB_STATUS_CHANGE", 2381# "timestamp": {"seconds": 1472127172, "microseconds": 744001}, 2382# "data": {"status": "pending", "id": "snapload0"}} 2383# <- {"event": "JOB_STATUS_CHANGE", 2384# "timestamp": {"seconds": 1472128172, "microseconds": 744001}, 2385# "data": {"status": "concluded", "id": "snapload0"}} 2386# -> {"execute": "query-jobs"} 2387# <- {"return": [{"current-progress": 1, 2388# "status": "concluded", 2389# "total-progress": 1, 2390# "type": "snapshot-load", 2391# "id": "snapload0"}]} 2392# 2393# Since: 6.0 2394## 2395{ 'command': 'snapshot-load', 2396 'data': { 'job-id': 'str', 2397 'tag': 'str', 2398 'vmstate': 'str', 2399 'devices': ['str'] } } 2400 2401## 2402# @snapshot-delete: 2403# 2404# Delete a VM snapshot 2405# 2406# @job-id: identifier for the newly created job 2407# 2408# @tag: name of the snapshot to delete. 2409# 2410# @devices: list of block device node names to delete a snapshot from 2411# 2412# Applications should not assume that the snapshot delete is complete 2413# when this command returns. The job commands / events must be used 2414# to determine completion and to fetch details of any errors that 2415# arise. 2416# 2417# Example: 2418# 2419# -> { "execute": "snapshot-delete", 2420# "arguments": { 2421# "job-id": "snapdelete0", 2422# "tag": "my-snap", 2423# "devices": ["disk0", "disk1"] 2424# } 2425# } 2426# <- { "return": { } } 2427# <- {"event": "JOB_STATUS_CHANGE", 2428# "timestamp": {"seconds": 1442124172, "microseconds": 744001}, 2429# "data": {"status": "created", "id": "snapdelete0"}} 2430# <- {"event": "JOB_STATUS_CHANGE", 2431# "timestamp": {"seconds": 1442125172, "microseconds": 744001}, 2432# "data": {"status": "running", "id": "snapdelete0"}} 2433# <- {"event": "JOB_STATUS_CHANGE", 2434# "timestamp": {"seconds": 1442126172, "microseconds": 744001}, 2435# "data": {"status": "waiting", "id": "snapdelete0"}} 2436# <- {"event": "JOB_STATUS_CHANGE", 2437# "timestamp": {"seconds": 1442127172, "microseconds": 744001}, 2438# "data": {"status": "pending", "id": "snapdelete0"}} 2439# <- {"event": "JOB_STATUS_CHANGE", 2440# "timestamp": {"seconds": 1442128172, "microseconds": 744001}, 2441# "data": {"status": "concluded", "id": "snapdelete0"}} 2442# -> {"execute": "query-jobs"} 2443# <- {"return": [{"current-progress": 1, 2444# "status": "concluded", 2445# "total-progress": 1, 2446# "type": "snapshot-delete", 2447# "id": "snapdelete0"}]} 2448# 2449# Since: 6.0 2450## 2451{ 'command': 'snapshot-delete', 2452 'data': { 'job-id': 'str', 2453 'tag': 'str', 2454 'devices': ['str'] } } 2455