xref: /openbmc/qemu/qapi/migration.json (revision 8b239597)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4
5##
6# = Migration
7##
8
9{ 'include': 'common.json' }
10{ 'include': 'sockets.json' }
11
12##
13# @MigrationStats:
14#
15# Detailed migration status.
16#
17# @transferred: amount of bytes already transferred to the target VM
18#
19# @remaining: amount of bytes remaining to be transferred to the
20#     target VM
21#
22# @total: total amount of bytes involved in the migration process
23#
24# @duplicate: number of duplicate (zero) pages (since 1.2)
25#
26# @skipped: number of skipped zero pages. Always zero, only provided for
27#     compatibility (since 1.5)
28#
29# @normal: number of normal pages (since 1.2)
30#
31# @normal-bytes: number of normal bytes sent (since 1.2)
32#
33# @dirty-pages-rate: number of pages dirtied by second by the guest
34#     (since 1.3)
35#
36# @mbps: throughput in megabits/sec.  (since 1.6)
37#
38# @dirty-sync-count: number of times that dirty ram was synchronized
39#     (since 2.1)
40#
41# @postcopy-requests: The number of page requests received from the
42#     destination (since 2.7)
43#
44# @page-size: The number of bytes per page for the various page-based
45#     statistics (since 2.10)
46#
47# @multifd-bytes: The number of bytes sent through multifd (since 3.0)
48#
49# @pages-per-second: the number of memory pages transferred per second
50#     (Since 4.0)
51#
52# @precopy-bytes: The number of bytes sent in the pre-copy phase
53#     (since 7.0).
54#
55# @downtime-bytes: The number of bytes sent while the guest is paused
56#     (since 7.0).
57#
58# @postcopy-bytes: The number of bytes sent during the post-copy phase
59#     (since 7.0).
60#
61# @dirty-sync-missed-zero-copy: Number of times dirty RAM
62#     synchronization could not avoid copying dirty pages.  This is
63#     between 0 and @dirty-sync-count * @multifd-channels.  (since
64#     7.1)
65#
66# Features:
67#
68# @deprecated: Member @skipped is always zero since 1.5.3
69#
70# Since: 0.14
71#
72##
73{ 'struct': 'MigrationStats',
74  'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
75           'duplicate': 'int',
76           'skipped': { 'type': 'int', 'features': ['deprecated'] },
77           'normal': 'int',
78           'normal-bytes': 'int', 'dirty-pages-rate': 'int',
79           'mbps': 'number', 'dirty-sync-count': 'int',
80           'postcopy-requests': 'int', 'page-size': 'int',
81           'multifd-bytes': 'uint64', 'pages-per-second': 'uint64',
82           'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64',
83           'postcopy-bytes': 'uint64',
84           'dirty-sync-missed-zero-copy': 'uint64' } }
85
86##
87# @XBZRLECacheStats:
88#
89# Detailed XBZRLE migration cache statistics
90#
91# @cache-size: XBZRLE cache size
92#
93# @bytes: amount of bytes already transferred to the target VM
94#
95# @pages: amount of pages transferred to the target VM
96#
97# @cache-miss: number of cache miss
98#
99# @cache-miss-rate: rate of cache miss (since 2.1)
100#
101# @encoding-rate: rate of encoded bytes (since 5.1)
102#
103# @overflow: number of overflows
104#
105# Since: 1.2
106##
107{ 'struct': 'XBZRLECacheStats',
108  'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
109           'cache-miss': 'int', 'cache-miss-rate': 'number',
110           'encoding-rate': 'number', 'overflow': 'int' } }
111
112##
113# @CompressionStats:
114#
115# Detailed migration compression statistics
116#
117# @pages: amount of pages compressed and transferred to the target VM
118#
119# @busy: count of times that no free thread was available to compress
120#     data
121#
122# @busy-rate: rate of thread busy
123#
124# @compressed-size: amount of bytes after compression
125#
126# @compression-rate: rate of compressed size
127#
128# Since: 3.1
129##
130{ 'struct': 'CompressionStats',
131  'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
132           'compressed-size': 'int', 'compression-rate': 'number' } }
133
134##
135# @MigrationStatus:
136#
137# An enumeration of migration status.
138#
139# @none: no migration has ever happened.
140#
141# @setup: migration process has been initiated.
142#
143# @cancelling: in the process of cancelling migration.
144#
145# @cancelled: cancelling migration is finished.
146#
147# @active: in the process of doing migration.
148#
149# @postcopy-active: like active, but now in postcopy mode.  (since
150#     2.5)
151#
152# @postcopy-paused: during postcopy but paused.  (since 3.0)
153#
154# @postcopy-recover: trying to recover from a paused postcopy.  (since
155#     3.0)
156#
157# @completed: migration is finished.
158#
159# @failed: some error occurred during migration process.
160#
161# @colo: VM is in the process of fault tolerance, VM can not get into
162#     this state unless colo capability is enabled for migration.
163#     (since 2.8)
164#
165# @pre-switchover: Paused before device serialisation.  (since 2.11)
166#
167# @device: During device serialisation when pause-before-switchover is
168#     enabled (since 2.11)
169#
170# @wait-unplug: wait for device unplug request by guest OS to be
171#     completed.  (since 4.2)
172#
173# Since: 2.3
174##
175{ 'enum': 'MigrationStatus',
176  'data': [ 'none', 'setup', 'cancelling', 'cancelled',
177            'active', 'postcopy-active', 'postcopy-paused',
178            'postcopy-recover', 'completed', 'failed', 'colo',
179            'pre-switchover', 'device', 'wait-unplug' ] }
180##
181# @VfioStats:
182#
183# Detailed VFIO devices migration statistics
184#
185# @transferred: amount of bytes transferred to the target VM by VFIO
186#     devices
187#
188# Since: 5.2
189##
190{ 'struct': 'VfioStats',
191  'data': {'transferred': 'int' } }
192
193##
194# @MigrationInfo:
195#
196# Information about current migration process.
197#
198# @status: @MigrationStatus describing the current migration status.
199#     If this field is not returned, no migration process has been
200#     initiated
201#
202# @ram: @MigrationStats containing detailed migration status, only
203#     returned if status is 'active' or 'completed'(since 1.2)
204#
205# @disk: @MigrationStats containing detailed disk migration status,
206#     only returned if status is 'active' and it is a block migration
207#
208# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
209#     migration statistics, only returned if XBZRLE feature is on and
210#     status is 'active' or 'completed' (since 1.2)
211#
212# @total-time: total amount of milliseconds since migration started.
213#     If migration has ended, it returns the total migration time.
214#     (since 1.2)
215#
216# @downtime: only present when migration finishes correctly total
217#     downtime in milliseconds for the guest.  (since 1.3)
218#
219# @expected-downtime: only present while migration is active expected
220#     downtime in milliseconds for the guest in last walk of the dirty
221#     bitmap.  (since 1.3)
222#
223# @setup-time: amount of setup time in milliseconds *before* the
224#     iterations begin but *after* the QMP command is issued.  This is
225#     designed to provide an accounting of any activities (such as
226#     RDMA pinning) which may be expensive, but do not actually occur
227#     during the iterative migration rounds themselves.  (since 1.6)
228#
229# @cpu-throttle-percentage: percentage of time guest cpus are being
230#     throttled during auto-converge.  This is only present when
231#     auto-converge has started throttling guest cpus.  (Since 2.7)
232#
233# @error-desc: the human readable error description string. Clients
234#     should not attempt to parse the error strings.  (Since 2.7)
235#
236# @postcopy-blocktime: total time when all vCPU were blocked during
237#     postcopy live migration.  This is only present when the
238#     postcopy-blocktime migration capability is enabled.  (Since 3.0)
239#
240# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU.
241#     This is only present when the postcopy-blocktime migration
242#     capability is enabled.  (Since 3.0)
243#
244# @compression: migration compression statistics, only returned if
245#     compression feature is on and status is 'active' or 'completed'
246#     (Since 3.1)
247#
248# @socket-address: Only used for tcp, to know what the real port is
249#     (Since 4.0)
250#
251# @vfio: @VfioStats containing detailed VFIO devices migration
252#     statistics, only returned if VFIO device is present, migration
253#     is supported by all VFIO devices and status is 'active' or
254#     'completed' (since 5.2)
255#
256# @blocked-reasons: A list of reasons an outgoing migration is
257#     blocked.  Present and non-empty when migration is blocked.
258#     (since 6.0)
259#
260# @dirty-limit-throttle-time-per-round: Maximum throttle time
261#     (in microseconds) of virtual CPUs each dirty ring full round,
262#     which shows how MigrationCapability dirty-limit affects the
263#     guest during live migration.  (Since 8.1)
264#
265# @dirty-limit-ring-full-time: Estimated average dirty ring full time
266#     (in microseconds) for each dirty ring full round.  The value
267#     equals the dirty ring memory size divided by the average dirty
268#     page rate of the virtual CPU, which can be used to observe the
269#     average memory load of the virtual CPU indirectly.  Note that
270#     zero means guest doesn't dirty memory.  (Since 8.1)
271#
272# Since: 0.14
273##
274{ 'struct': 'MigrationInfo',
275  'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
276           '*disk': 'MigrationStats',
277           '*vfio': 'VfioStats',
278           '*xbzrle-cache': 'XBZRLECacheStats',
279           '*total-time': 'int',
280           '*expected-downtime': 'int',
281           '*downtime': 'int',
282           '*setup-time': 'int',
283           '*cpu-throttle-percentage': 'int',
284           '*error-desc': 'str',
285           '*blocked-reasons': ['str'],
286           '*postcopy-blocktime': 'uint32',
287           '*postcopy-vcpu-blocktime': ['uint32'],
288           '*compression': 'CompressionStats',
289           '*socket-address': ['SocketAddress'],
290           '*dirty-limit-throttle-time-per-round': 'uint64',
291           '*dirty-limit-ring-full-time': 'uint64'} }
292
293##
294# @query-migrate:
295#
296# Returns information about current migration process.  If migration
297# is active there will be another json-object with RAM migration
298# status and if block migration is active another one with block
299# migration status.
300#
301# Returns: @MigrationInfo
302#
303# Since: 0.14
304#
305# Examples:
306#
307# 1. Before the first migration
308#
309# -> { "execute": "query-migrate" }
310# <- { "return": {} }
311#
312# 2. Migration is done and has succeeded
313#
314# -> { "execute": "query-migrate" }
315# <- { "return": {
316#         "status": "completed",
317#         "total-time":12345,
318#         "setup-time":12345,
319#         "downtime":12345,
320#         "ram":{
321#           "transferred":123,
322#           "remaining":123,
323#           "total":246,
324#           "duplicate":123,
325#           "normal":123,
326#           "normal-bytes":123456,
327#           "dirty-sync-count":15
328#         }
329#      }
330#    }
331#
332# 3. Migration is done and has failed
333#
334# -> { "execute": "query-migrate" }
335# <- { "return": { "status": "failed" } }
336#
337# 4. Migration is being performed and is not a block migration:
338#
339# -> { "execute": "query-migrate" }
340# <- {
341#       "return":{
342#          "status":"active",
343#          "total-time":12345,
344#          "setup-time":12345,
345#          "expected-downtime":12345,
346#          "ram":{
347#             "transferred":123,
348#             "remaining":123,
349#             "total":246,
350#             "duplicate":123,
351#             "normal":123,
352#             "normal-bytes":123456,
353#             "dirty-sync-count":15
354#          }
355#       }
356#    }
357#
358# 5. Migration is being performed and is a block migration:
359#
360# -> { "execute": "query-migrate" }
361# <- {
362#       "return":{
363#          "status":"active",
364#          "total-time":12345,
365#          "setup-time":12345,
366#          "expected-downtime":12345,
367#          "ram":{
368#             "total":1057024,
369#             "remaining":1053304,
370#             "transferred":3720,
371#             "duplicate":123,
372#             "normal":123,
373#             "normal-bytes":123456,
374#             "dirty-sync-count":15
375#          },
376#          "disk":{
377#             "total":20971520,
378#             "remaining":20880384,
379#             "transferred":91136
380#          }
381#       }
382#    }
383#
384# 6. Migration is being performed and XBZRLE is active:
385#
386# -> { "execute": "query-migrate" }
387# <- {
388#       "return":{
389#          "status":"active",
390#          "total-time":12345,
391#          "setup-time":12345,
392#          "expected-downtime":12345,
393#          "ram":{
394#             "total":1057024,
395#             "remaining":1053304,
396#             "transferred":3720,
397#             "duplicate":10,
398#             "normal":3333,
399#             "normal-bytes":3412992,
400#             "dirty-sync-count":15
401#          },
402#          "xbzrle-cache":{
403#             "cache-size":67108864,
404#             "bytes":20971520,
405#             "pages":2444343,
406#             "cache-miss":2244,
407#             "cache-miss-rate":0.123,
408#             "encoding-rate":80.1,
409#             "overflow":34434
410#          }
411#       }
412#    }
413##
414{ 'command': 'query-migrate', 'returns': 'MigrationInfo' }
415
416##
417# @MigrationCapability:
418#
419# Migration capabilities enumeration
420#
421# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length
422#     Encoding). This feature allows us to minimize migration traffic
423#     for certain work loads, by sending compressed difference of the
424#     pages
425#
426# @rdma-pin-all: Controls whether or not the entire VM memory
427#     footprint is mlock()'d on demand or all at once.  Refer to
428#     docs/rdma.txt for usage.  Disabled by default.  (since 2.0)
429#
430# @zero-blocks: During storage migration encode blocks of zeroes
431#     efficiently.  This essentially saves 1MB of zeroes per block on
432#     the wire.  Enabling requires source and target VM to support
433#     this feature.  To enable it is sufficient to enable the
434#     capability on the source VM. The feature is disabled by default.
435#     (since 1.6)
436#
437# @compress: Use multiple compression threads to accelerate live
438#     migration.  This feature can help to reduce the migration
439#     traffic, by sending compressed pages.  Please note that if
440#     compress and xbzrle are both on, compress only takes effect in
441#     the ram bulk stage, after that, it will be disabled and only
442#     xbzrle takes effect, this can help to minimize migration
443#     traffic.  The feature is disabled by default.  (since 2.4 )
444#
445# @events: generate events for each migration state change (since 2.4
446#     )
447#
448# @auto-converge: If enabled, QEMU will automatically throttle down
449#     the guest to speed up convergence of RAM migration.  (since 1.6)
450#
451# @postcopy-ram: Start executing on the migration target before all of
452#     RAM has been migrated, pulling the remaining pages along as
453#     needed.  The capacity must have the same setting on both source
454#     and target or migration will not even start.  NOTE: If the
455#     migration fails during postcopy the VM will fail.  (since 2.6)
456#
457# @x-colo: If enabled, migration will never end, and the state of the
458#     VM on the primary side will be migrated continuously to the VM
459#     on secondary side, this process is called COarse-Grain LOck
460#     Stepping (COLO) for Non-stop Service.  (since 2.8)
461#
462# @release-ram: if enabled, qemu will free the migrated ram pages on
463#     the source during postcopy-ram migration.  (since 2.9)
464#
465# @block: If enabled, QEMU will also migrate the contents of all block
466#     devices.  Default is disabled.  A possible alternative uses
467#     mirror jobs to a builtin NBD server on the destination, which
468#     offers more flexibility.  (Since 2.10)
469#
470# @return-path: If enabled, migration will use the return path even
471#     for precopy.  (since 2.10)
472#
473# @pause-before-switchover: Pause outgoing migration before
474#     serialising device state and before disabling block IO (since
475#     2.11)
476#
477# @multifd: Use more than one fd for migration (since 4.0)
478#
479# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
480#     (since 2.12)
481#
482# @postcopy-blocktime: Calculate downtime for postcopy live migration
483#     (since 3.0)
484#
485# @late-block-activate: If enabled, the destination will not activate
486#     block devices (and thus take locks) immediately at the end of
487#     migration.  (since 3.0)
488#
489# @x-ignore-shared: If enabled, QEMU will not migrate shared memory
490#     that is accessible on the destination machine.  (since 4.0)
491#
492# @validate-uuid: Send the UUID of the source to allow the destination
493#     to ensure it is the same.  (since 4.2)
494#
495# @background-snapshot: If enabled, the migration stream will be a
496#     snapshot of the VM exactly at the point when the migration
497#     procedure starts.  The VM RAM is saved with running VM. (since
498#     6.0)
499#
500# @zero-copy-send: Controls behavior on sending memory pages on
501#     migration.  When true, enables a zero-copy mechanism for sending
502#     memory pages, if host supports it.  Requires that QEMU be
503#     permitted to use locked memory for guest RAM pages.  (since 7.1)
504#
505# @postcopy-preempt: If enabled, the migration process will allow
506#     postcopy requests to preempt precopy stream, so postcopy
507#     requests will be handled faster.  This is a performance feature
508#     and should not affect the correctness of postcopy migration.
509#     (since 7.1)
510#
511# @switchover-ack: If enabled, migration will not stop the source VM
512#     and complete the migration until an ACK is received from the
513#     destination that it's OK to do so.  Exactly when this ACK is
514#     sent depends on the migrated devices that use this feature.  For
515#     example, a device can use it to make sure some of its data is
516#     sent and loaded in the destination before doing switchover.
517#     This can reduce downtime if devices that support this capability
518#     are present.  'return-path' capability must be enabled to use
519#     it.  (since 8.1)
520#
521# @dirty-limit: If enabled, migration will throttle vCPUs as needed to
522#     keep their dirty page rate within @vcpu-dirty-limit.  This can
523#     improve responsiveness of large guests during live migration,
524#     and can result in more stable read performance.  Requires KVM
525#     with accelerator property "dirty-ring-size" set.  (Since 8.1)
526#
527# Features:
528#
529# @unstable: Members @x-colo and @x-ignore-shared are experimental.
530#
531# Since: 1.2
532##
533{ 'enum': 'MigrationCapability',
534  'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
535           'compress', 'events', 'postcopy-ram',
536           { 'name': 'x-colo', 'features': [ 'unstable' ] },
537           'release-ram',
538           'block', 'return-path', 'pause-before-switchover', 'multifd',
539           'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
540           { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
541           'validate-uuid', 'background-snapshot',
542           'zero-copy-send', 'postcopy-preempt', 'switchover-ack',
543           'dirty-limit'] }
544
545##
546# @MigrationCapabilityStatus:
547#
548# Migration capability information
549#
550# @capability: capability enum
551#
552# @state: capability state bool
553#
554# Since: 1.2
555##
556{ 'struct': 'MigrationCapabilityStatus',
557  'data': { 'capability': 'MigrationCapability', 'state': 'bool' } }
558
559##
560# @migrate-set-capabilities:
561#
562# Enable/Disable the following migration capabilities (like xbzrle)
563#
564# @capabilities: json array of capability modifications to make
565#
566# Since: 1.2
567#
568# Example:
569#
570# -> { "execute": "migrate-set-capabilities" , "arguments":
571#      { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
572# <- { "return": {} }
573##
574{ 'command': 'migrate-set-capabilities',
575  'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
576
577##
578# @query-migrate-capabilities:
579#
580# Returns information about the current migration capabilities status
581#
582# Returns: @MigrationCapabilityStatus
583#
584# Since: 1.2
585#
586# Example:
587#
588# -> { "execute": "query-migrate-capabilities" }
589# <- { "return": [
590#       {"state": false, "capability": "xbzrle"},
591#       {"state": false, "capability": "rdma-pin-all"},
592#       {"state": false, "capability": "auto-converge"},
593#       {"state": false, "capability": "zero-blocks"},
594#       {"state": false, "capability": "compress"},
595#       {"state": true, "capability": "events"},
596#       {"state": false, "capability": "postcopy-ram"},
597#       {"state": false, "capability": "x-colo"}
598#    ]}
599##
600{ 'command': 'query-migrate-capabilities', 'returns':   ['MigrationCapabilityStatus']}
601
602##
603# @MultiFDCompression:
604#
605# An enumeration of multifd compression methods.
606#
607# @none: no compression.
608#
609# @zlib: use zlib compression method.
610#
611# @zstd: use zstd compression method.
612#
613# Since: 5.0
614##
615{ 'enum': 'MultiFDCompression',
616  'data': [ 'none', 'zlib',
617            { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
618
619##
620# @BitmapMigrationBitmapAliasTransform:
621#
622# @persistent: If present, the bitmap will be made persistent or
623#     transient depending on this parameter.
624#
625# Since: 6.0
626##
627{ 'struct': 'BitmapMigrationBitmapAliasTransform',
628  'data': {
629      '*persistent': 'bool'
630  } }
631
632##
633# @BitmapMigrationBitmapAlias:
634#
635# @name: The name of the bitmap.
636#
637# @alias: An alias name for migration (for example the bitmap name on
638#     the opposite site).
639#
640# @transform: Allows the modification of the migrated bitmap.  (since
641#     6.0)
642#
643# Since: 5.2
644##
645{ 'struct': 'BitmapMigrationBitmapAlias',
646  'data': {
647      'name': 'str',
648      'alias': 'str',
649      '*transform': 'BitmapMigrationBitmapAliasTransform'
650  } }
651
652##
653# @BitmapMigrationNodeAlias:
654#
655# Maps a block node name and the bitmaps it has to aliases for dirty
656# bitmap migration.
657#
658# @node-name: A block node name.
659#
660# @alias: An alias block node name for migration (for example the node
661#     name on the opposite site).
662#
663# @bitmaps: Mappings for the bitmaps on this node.
664#
665# Since: 5.2
666##
667{ 'struct': 'BitmapMigrationNodeAlias',
668  'data': {
669      'node-name': 'str',
670      'alias': 'str',
671      'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
672  } }
673
674##
675# @MigrationParameter:
676#
677# Migration parameters enumeration
678#
679# @announce-initial: Initial delay (in milliseconds) before sending
680#     the first announce (Since 4.0)
681#
682# @announce-max: Maximum delay (in milliseconds) between packets in
683#     the announcement (Since 4.0)
684#
685# @announce-rounds: Number of self-announce packets sent after
686#     migration (Since 4.0)
687#
688# @announce-step: Increase in delay (in milliseconds) between
689#     subsequent packets in the announcement (Since 4.0)
690#
691# @compress-level: Set the compression level to be used in live
692#     migration, the compression level is an integer between 0 and 9,
693#     where 0 means no compression, 1 means the best compression
694#     speed, and 9 means best compression ratio which will consume
695#     more CPU.
696#
697# @compress-threads: Set compression thread count to be used in live
698#     migration, the compression thread count is an integer between 1
699#     and 255.
700#
701# @compress-wait-thread: Controls behavior when all compression
702#     threads are currently busy.  If true (default), wait for a free
703#     compression thread to become available; otherwise, send the page
704#     uncompressed.  (Since 3.1)
705#
706# @decompress-threads: Set decompression thread count to be used in
707#     live migration, the decompression thread count is an integer
708#     between 1 and 255. Usually, decompression is at least 4 times as
709#     fast as compression, so set the decompress-threads to the number
710#     about 1/4 of compress-threads is adequate.
711#
712# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
713#     bytes_xfer_period to trigger throttling.  It is expressed as
714#     percentage.  The default value is 50. (Since 5.0)
715#
716# @cpu-throttle-initial: Initial percentage of time guest cpus are
717#     throttled when migration auto-converge is activated.  The
718#     default value is 20. (Since 2.7)
719#
720# @cpu-throttle-increment: throttle percentage increase each time
721#     auto-converge detects that migration is not making progress.
722#     The default value is 10. (Since 2.7)
723#
724# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
725#     the tail stage of throttling, the Guest is very sensitive to CPU
726#     percentage while the @cpu-throttle -increment is excessive
727#     usually at tail stage.  If this parameter is true, we will
728#     compute the ideal CPU percentage used by the Guest, which may
729#     exactly make the dirty rate match the dirty rate threshold.
730#     Then we will choose a smaller throttle increment between the one
731#     specified by @cpu-throttle-increment and the one generated by
732#     ideal CPU percentage.  Therefore, it is compatible to
733#     traditional throttling, meanwhile the throttle increment won't
734#     be excessive at tail stage.  The default value is false.  (Since
735#     5.1)
736#
737# @tls-creds: ID of the 'tls-creds' object that provides credentials
738#     for establishing a TLS connection over the migration data
739#     channel.  On the outgoing side of the migration, the credentials
740#     must be for a 'client' endpoint, while for the incoming side the
741#     credentials must be for a 'server' endpoint.  Setting this will
742#     enable TLS for all migrations.  The default is unset, resulting
743#     in unsecured migration at the QEMU level.  (Since 2.7)
744#
745# @tls-hostname: hostname of the target host for the migration.  This
746#     is required when using x509 based TLS credentials and the
747#     migration URI does not already include a hostname.  For example
748#     if using fd: or exec: based migration, the hostname must be
749#     provided so that the server's x509 certificate identity can be
750#     validated.  (Since 2.7)
751#
752# @tls-authz: ID of the 'authz' object subclass that provides access
753#     control checking of the TLS x509 certificate distinguished name.
754#     This object is only resolved at time of use, so can be deleted
755#     and recreated on the fly while the migration server is active.
756#     If missing, it will default to denying access (Since 4.0)
757#
758# @max-bandwidth: to set maximum speed for migration.  maximum speed
759#     in bytes per second.  (Since 2.8)
760#
761# @avail-switchover-bandwidth: to set the available bandwidth that
762#     migration can use during switchover phase.  NOTE!  This does not
763#     limit the bandwidth during switchover, but only for calculations when
764#     making decisions to switchover.  By default, this value is zero,
765#     which means QEMU will estimate the bandwidth automatically.  This can
766#     be set when the estimated value is not accurate, while the user is
767#     able to guarantee such bandwidth is available when switching over.
768#     When specified correctly, this can make the switchover decision much
769#     more accurate.  (Since 8.2)
770#
771# @downtime-limit: set maximum tolerated downtime for migration.
772#     maximum downtime in milliseconds (Since 2.8)
773#
774# @x-checkpoint-delay: The delay time (in ms) between two COLO
775#     checkpoints in periodic mode.  (Since 2.8)
776#
777# @block-incremental: Affects how much storage is migrated when the
778#     block migration capability is enabled.  When false, the entire
779#     storage backing chain is migrated into a flattened image at the
780#     destination; when true, only the active qcow2 layer is migrated
781#     and the destination must already have access to the same backing
782#     chain as was used on the source.  (since 2.10)
783#
784# @multifd-channels: Number of channels used to migrate data in
785#     parallel.  This is the same number that the number of sockets
786#     used for migration.  The default value is 2 (since 4.0)
787#
788# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
789#     needs to be a multiple of the target page size and a power of 2
790#     (Since 2.11)
791#
792# @max-postcopy-bandwidth: Background transfer bandwidth during
793#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
794#     (Since 3.0)
795#
796# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
797#     (Since 3.1)
798#
799# @multifd-compression: Which compression method to use.  Defaults to
800#     none.  (Since 5.0)
801#
802# @multifd-zlib-level: Set the compression level to be used in live
803#     migration, the compression level is an integer between 0 and 9,
804#     where 0 means no compression, 1 means the best compression
805#     speed, and 9 means best compression ratio which will consume
806#     more CPU. Defaults to 1. (Since 5.0)
807#
808# @multifd-zstd-level: Set the compression level to be used in live
809#     migration, the compression level is an integer between 0 and 20,
810#     where 0 means no compression, 1 means the best compression
811#     speed, and 20 means best compression ratio which will consume
812#     more CPU. Defaults to 1. (Since 5.0)
813#
814# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
815#     aliases for the purpose of dirty bitmap migration.  Such aliases
816#     may for example be the corresponding names on the opposite site.
817#     The mapping must be one-to-one, but not necessarily complete: On
818#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
819#     will be ignored.  On the destination, encountering an unmapped
820#     alias in the incoming migration stream will result in a report,
821#     and all further bitmap migration data will then be discarded.
822#     Note that the destination does not know about bitmaps it does
823#     not receive, so there is no limitation or requirement regarding
824#     the number of bitmaps received, or how they are named, or on
825#     which nodes they are placed.  By default (when this parameter
826#     has never been set), bitmap names are mapped to themselves.
827#     Nodes are mapped to their block device name if there is one, and
828#     to their node name otherwise.  (Since 5.2)
829#
830# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
831#     limit during live migration.  Should be in the range 1 to 1000ms.
832#     Defaults to 1000ms.  (Since 8.1)
833#
834# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
835#     Defaults to 1.  (Since 8.1)
836#
837# Features:
838#
839# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
840#     are experimental.
841#
842# Since: 2.4
843##
844{ 'enum': 'MigrationParameter',
845  'data': ['announce-initial', 'announce-max',
846           'announce-rounds', 'announce-step',
847           'compress-level', 'compress-threads', 'decompress-threads',
848           'compress-wait-thread', 'throttle-trigger-threshold',
849           'cpu-throttle-initial', 'cpu-throttle-increment',
850           'cpu-throttle-tailslow',
851           'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
852           'avail-switchover-bandwidth', 'downtime-limit',
853           { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
854           'block-incremental',
855           'multifd-channels',
856           'xbzrle-cache-size', 'max-postcopy-bandwidth',
857           'max-cpu-throttle', 'multifd-compression',
858           'multifd-zlib-level', 'multifd-zstd-level',
859           'block-bitmap-mapping',
860           { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] },
861           'vcpu-dirty-limit'] }
862
863##
864# @MigrateSetParameters:
865#
866# @announce-initial: Initial delay (in milliseconds) before sending
867#     the first announce (Since 4.0)
868#
869# @announce-max: Maximum delay (in milliseconds) between packets in
870#     the announcement (Since 4.0)
871#
872# @announce-rounds: Number of self-announce packets sent after
873#     migration (Since 4.0)
874#
875# @announce-step: Increase in delay (in milliseconds) between
876#     subsequent packets in the announcement (Since 4.0)
877#
878# @compress-level: compression level
879#
880# @compress-threads: compression thread count
881#
882# @compress-wait-thread: Controls behavior when all compression
883#     threads are currently busy.  If true (default), wait for a free
884#     compression thread to become available; otherwise, send the page
885#     uncompressed.  (Since 3.1)
886#
887# @decompress-threads: decompression thread count
888#
889# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
890#     bytes_xfer_period to trigger throttling.  It is expressed as
891#     percentage.  The default value is 50. (Since 5.0)
892#
893# @cpu-throttle-initial: Initial percentage of time guest cpus are
894#     throttled when migration auto-converge is activated.  The
895#     default value is 20. (Since 2.7)
896#
897# @cpu-throttle-increment: throttle percentage increase each time
898#     auto-converge detects that migration is not making progress.
899#     The default value is 10. (Since 2.7)
900#
901# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
902#     the tail stage of throttling, the Guest is very sensitive to CPU
903#     percentage while the @cpu-throttle -increment is excessive
904#     usually at tail stage.  If this parameter is true, we will
905#     compute the ideal CPU percentage used by the Guest, which may
906#     exactly make the dirty rate match the dirty rate threshold.
907#     Then we will choose a smaller throttle increment between the one
908#     specified by @cpu-throttle-increment and the one generated by
909#     ideal CPU percentage.  Therefore, it is compatible to
910#     traditional throttling, meanwhile the throttle increment won't
911#     be excessive at tail stage.  The default value is false.  (Since
912#     5.1)
913#
914# @tls-creds: ID of the 'tls-creds' object that provides credentials
915#     for establishing a TLS connection over the migration data
916#     channel.  On the outgoing side of the migration, the credentials
917#     must be for a 'client' endpoint, while for the incoming side the
918#     credentials must be for a 'server' endpoint.  Setting this to a
919#     non-empty string enables TLS for all migrations.  An empty
920#     string means that QEMU will use plain text mode for migration,
921#     rather than TLS (Since 2.9) Previously (since 2.7), this was
922#     reported by omitting tls-creds instead.
923#
924# @tls-hostname: hostname of the target host for the migration.  This
925#     is required when using x509 based TLS credentials and the
926#     migration URI does not already include a hostname.  For example
927#     if using fd: or exec: based migration, the hostname must be
928#     provided so that the server's x509 certificate identity can be
929#     validated.  (Since 2.7) An empty string means that QEMU will use
930#     the hostname associated with the migration URI, if any.  (Since
931#     2.9) Previously (since 2.7), this was reported by omitting
932#     tls-hostname instead.
933#
934# @max-bandwidth: to set maximum speed for migration.  maximum speed
935#     in bytes per second.  (Since 2.8)
936#
937# @avail-switchover-bandwidth: to set the available bandwidth that
938#     migration can use during switchover phase.  NOTE!  This does not
939#     limit the bandwidth during switchover, but only for calculations when
940#     making decisions to switchover.  By default, this value is zero,
941#     which means QEMU will estimate the bandwidth automatically.  This can
942#     be set when the estimated value is not accurate, while the user is
943#     able to guarantee such bandwidth is available when switching over.
944#     When specified correctly, this can make the switchover decision much
945#     more accurate.  (Since 8.2)
946#
947# @downtime-limit: set maximum tolerated downtime for migration.
948#     maximum downtime in milliseconds (Since 2.8)
949#
950# @x-checkpoint-delay: the delay time between two COLO checkpoints.
951#     (Since 2.8)
952#
953# @block-incremental: Affects how much storage is migrated when the
954#     block migration capability is enabled.  When false, the entire
955#     storage backing chain is migrated into a flattened image at the
956#     destination; when true, only the active qcow2 layer is migrated
957#     and the destination must already have access to the same backing
958#     chain as was used on the source.  (since 2.10)
959#
960# @multifd-channels: Number of channels used to migrate data in
961#     parallel.  This is the same number that the number of sockets
962#     used for migration.  The default value is 2 (since 4.0)
963#
964# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
965#     needs to be a multiple of the target page size and a power of 2
966#     (Since 2.11)
967#
968# @max-postcopy-bandwidth: Background transfer bandwidth during
969#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
970#     (Since 3.0)
971#
972# @max-cpu-throttle: maximum cpu throttle percentage.  The default
973#     value is 99. (Since 3.1)
974#
975# @multifd-compression: Which compression method to use.  Defaults to
976#     none.  (Since 5.0)
977#
978# @multifd-zlib-level: Set the compression level to be used in live
979#     migration, the compression level is an integer between 0 and 9,
980#     where 0 means no compression, 1 means the best compression
981#     speed, and 9 means best compression ratio which will consume
982#     more CPU. Defaults to 1. (Since 5.0)
983#
984# @multifd-zstd-level: Set the compression level to be used in live
985#     migration, the compression level is an integer between 0 and 20,
986#     where 0 means no compression, 1 means the best compression
987#     speed, and 20 means best compression ratio which will consume
988#     more CPU. Defaults to 1. (Since 5.0)
989#
990# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
991#     aliases for the purpose of dirty bitmap migration.  Such aliases
992#     may for example be the corresponding names on the opposite site.
993#     The mapping must be one-to-one, but not necessarily complete: On
994#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
995#     will be ignored.  On the destination, encountering an unmapped
996#     alias in the incoming migration stream will result in a report,
997#     and all further bitmap migration data will then be discarded.
998#     Note that the destination does not know about bitmaps it does
999#     not receive, so there is no limitation or requirement regarding
1000#     the number of bitmaps received, or how they are named, or on
1001#     which nodes they are placed.  By default (when this parameter
1002#     has never been set), bitmap names are mapped to themselves.
1003#     Nodes are mapped to their block device name if there is one, and
1004#     to their node name otherwise.  (Since 5.2)
1005#
1006# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1007#     limit during live migration.  Should be in the range 1 to 1000ms.
1008#     Defaults to 1000ms.  (Since 8.1)
1009#
1010# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1011#     Defaults to 1.  (Since 8.1)
1012#
1013# Features:
1014#
1015# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
1016#     are experimental.
1017#
1018# TODO: either fuse back into MigrationParameters, or make
1019#     MigrationParameters members mandatory
1020#
1021# Since: 2.4
1022##
1023{ 'struct': 'MigrateSetParameters',
1024  'data': { '*announce-initial': 'size',
1025            '*announce-max': 'size',
1026            '*announce-rounds': 'size',
1027            '*announce-step': 'size',
1028            '*compress-level': 'uint8',
1029            '*compress-threads': 'uint8',
1030            '*compress-wait-thread': 'bool',
1031            '*decompress-threads': 'uint8',
1032            '*throttle-trigger-threshold': 'uint8',
1033            '*cpu-throttle-initial': 'uint8',
1034            '*cpu-throttle-increment': 'uint8',
1035            '*cpu-throttle-tailslow': 'bool',
1036            '*tls-creds': 'StrOrNull',
1037            '*tls-hostname': 'StrOrNull',
1038            '*tls-authz': 'StrOrNull',
1039            '*max-bandwidth': 'size',
1040            '*avail-switchover-bandwidth': 'size',
1041            '*downtime-limit': 'uint64',
1042            '*x-checkpoint-delay': { 'type': 'uint32',
1043                                     'features': [ 'unstable' ] },
1044            '*block-incremental': 'bool',
1045            '*multifd-channels': 'uint8',
1046            '*xbzrle-cache-size': 'size',
1047            '*max-postcopy-bandwidth': 'size',
1048            '*max-cpu-throttle': 'uint8',
1049            '*multifd-compression': 'MultiFDCompression',
1050            '*multifd-zlib-level': 'uint8',
1051            '*multifd-zstd-level': 'uint8',
1052            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1053            '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1054                                            'features': [ 'unstable' ] },
1055            '*vcpu-dirty-limit': 'uint64'} }
1056
1057##
1058# @migrate-set-parameters:
1059#
1060# Set various migration parameters.
1061#
1062# Since: 2.4
1063#
1064# Example:
1065#
1066# -> { "execute": "migrate-set-parameters" ,
1067#      "arguments": { "compress-level": 1 } }
1068# <- { "return": {} }
1069##
1070{ 'command': 'migrate-set-parameters', 'boxed': true,
1071  'data': 'MigrateSetParameters' }
1072
1073##
1074# @MigrationParameters:
1075#
1076# The optional members aren't actually optional.
1077#
1078# @announce-initial: Initial delay (in milliseconds) before sending
1079#     the first announce (Since 4.0)
1080#
1081# @announce-max: Maximum delay (in milliseconds) between packets in
1082#     the announcement (Since 4.0)
1083#
1084# @announce-rounds: Number of self-announce packets sent after
1085#     migration (Since 4.0)
1086#
1087# @announce-step: Increase in delay (in milliseconds) between
1088#     subsequent packets in the announcement (Since 4.0)
1089#
1090# @compress-level: compression level
1091#
1092# @compress-threads: compression thread count
1093#
1094# @compress-wait-thread: Controls behavior when all compression
1095#     threads are currently busy.  If true (default), wait for a free
1096#     compression thread to become available; otherwise, send the page
1097#     uncompressed.  (Since 3.1)
1098#
1099# @decompress-threads: decompression thread count
1100#
1101# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
1102#     bytes_xfer_period to trigger throttling.  It is expressed as
1103#     percentage.  The default value is 50. (Since 5.0)
1104#
1105# @cpu-throttle-initial: Initial percentage of time guest cpus are
1106#     throttled when migration auto-converge is activated.  (Since
1107#     2.7)
1108#
1109# @cpu-throttle-increment: throttle percentage increase each time
1110#     auto-converge detects that migration is not making progress.
1111#     (Since 2.7)
1112#
1113# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
1114#     the tail stage of throttling, the Guest is very sensitive to CPU
1115#     percentage while the @cpu-throttle -increment is excessive
1116#     usually at tail stage.  If this parameter is true, we will
1117#     compute the ideal CPU percentage used by the Guest, which may
1118#     exactly make the dirty rate match the dirty rate threshold.
1119#     Then we will choose a smaller throttle increment between the one
1120#     specified by @cpu-throttle-increment and the one generated by
1121#     ideal CPU percentage.  Therefore, it is compatible to
1122#     traditional throttling, meanwhile the throttle increment won't
1123#     be excessive at tail stage.  The default value is false.  (Since
1124#     5.1)
1125#
1126# @tls-creds: ID of the 'tls-creds' object that provides credentials
1127#     for establishing a TLS connection over the migration data
1128#     channel.  On the outgoing side of the migration, the credentials
1129#     must be for a 'client' endpoint, while for the incoming side the
1130#     credentials must be for a 'server' endpoint.  An empty string
1131#     means that QEMU will use plain text mode for migration, rather
1132#     than TLS (Since 2.7) Note: 2.8 reports this by omitting
1133#     tls-creds instead.
1134#
1135# @tls-hostname: hostname of the target host for the migration.  This
1136#     is required when using x509 based TLS credentials and the
1137#     migration URI does not already include a hostname.  For example
1138#     if using fd: or exec: based migration, the hostname must be
1139#     provided so that the server's x509 certificate identity can be
1140#     validated.  (Since 2.7) An empty string means that QEMU will use
1141#     the hostname associated with the migration URI, if any.  (Since
1142#     2.9) Note: 2.8 reports this by omitting tls-hostname instead.
1143#
1144# @tls-authz: ID of the 'authz' object subclass that provides access
1145#     control checking of the TLS x509 certificate distinguished name.
1146#     (Since 4.0)
1147#
1148# @max-bandwidth: to set maximum speed for migration.  maximum speed
1149#     in bytes per second.  (Since 2.8)
1150#
1151# @avail-switchover-bandwidth: to set the available bandwidth that
1152#     migration can use during switchover phase.  NOTE!  This does not
1153#     limit the bandwidth during switchover, but only for calculations when
1154#     making decisions to switchover.  By default, this value is zero,
1155#     which means QEMU will estimate the bandwidth automatically.  This can
1156#     be set when the estimated value is not accurate, while the user is
1157#     able to guarantee such bandwidth is available when switching over.
1158#     When specified correctly, this can make the switchover decision much
1159#     more accurate.  (Since 8.2)
1160#
1161# @downtime-limit: set maximum tolerated downtime for migration.
1162#     maximum downtime in milliseconds (Since 2.8)
1163#
1164# @x-checkpoint-delay: the delay time between two COLO checkpoints.
1165#     (Since 2.8)
1166#
1167# @block-incremental: Affects how much storage is migrated when the
1168#     block migration capability is enabled.  When false, the entire
1169#     storage backing chain is migrated into a flattened image at the
1170#     destination; when true, only the active qcow2 layer is migrated
1171#     and the destination must already have access to the same backing
1172#     chain as was used on the source.  (since 2.10)
1173#
1174# @multifd-channels: Number of channels used to migrate data in
1175#     parallel.  This is the same number that the number of sockets
1176#     used for migration.  The default value is 2 (since 4.0)
1177#
1178# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
1179#     needs to be a multiple of the target page size and a power of 2
1180#     (Since 2.11)
1181#
1182# @max-postcopy-bandwidth: Background transfer bandwidth during
1183#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
1184#     (Since 3.0)
1185#
1186# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
1187#     (Since 3.1)
1188#
1189# @multifd-compression: Which compression method to use.  Defaults to
1190#     none.  (Since 5.0)
1191#
1192# @multifd-zlib-level: Set the compression level to be used in live
1193#     migration, the compression level is an integer between 0 and 9,
1194#     where 0 means no compression, 1 means the best compression
1195#     speed, and 9 means best compression ratio which will consume
1196#     more CPU. Defaults to 1. (Since 5.0)
1197#
1198# @multifd-zstd-level: Set the compression level to be used in live
1199#     migration, the compression level is an integer between 0 and 20,
1200#     where 0 means no compression, 1 means the best compression
1201#     speed, and 20 means best compression ratio which will consume
1202#     more CPU. Defaults to 1. (Since 5.0)
1203#
1204# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1205#     aliases for the purpose of dirty bitmap migration.  Such aliases
1206#     may for example be the corresponding names on the opposite site.
1207#     The mapping must be one-to-one, but not necessarily complete: On
1208#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
1209#     will be ignored.  On the destination, encountering an unmapped
1210#     alias in the incoming migration stream will result in a report,
1211#     and all further bitmap migration data will then be discarded.
1212#     Note that the destination does not know about bitmaps it does
1213#     not receive, so there is no limitation or requirement regarding
1214#     the number of bitmaps received, or how they are named, or on
1215#     which nodes they are placed.  By default (when this parameter
1216#     has never been set), bitmap names are mapped to themselves.
1217#     Nodes are mapped to their block device name if there is one, and
1218#     to their node name otherwise.  (Since 5.2)
1219#
1220# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1221#     limit during live migration.  Should be in the range 1 to 1000ms.
1222#     Defaults to 1000ms.  (Since 8.1)
1223#
1224# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1225#     Defaults to 1.  (Since 8.1)
1226#
1227# Features:
1228#
1229# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
1230#     are experimental.
1231#
1232# Since: 2.4
1233##
1234{ 'struct': 'MigrationParameters',
1235  'data': { '*announce-initial': 'size',
1236            '*announce-max': 'size',
1237            '*announce-rounds': 'size',
1238            '*announce-step': 'size',
1239            '*compress-level': 'uint8',
1240            '*compress-threads': 'uint8',
1241            '*compress-wait-thread': 'bool',
1242            '*decompress-threads': 'uint8',
1243            '*throttle-trigger-threshold': 'uint8',
1244            '*cpu-throttle-initial': 'uint8',
1245            '*cpu-throttle-increment': 'uint8',
1246            '*cpu-throttle-tailslow': 'bool',
1247            '*tls-creds': 'str',
1248            '*tls-hostname': 'str',
1249            '*tls-authz': 'str',
1250            '*max-bandwidth': 'size',
1251            '*avail-switchover-bandwidth': 'size',
1252            '*downtime-limit': 'uint64',
1253            '*x-checkpoint-delay': { 'type': 'uint32',
1254                                     'features': [ 'unstable' ] },
1255            '*block-incremental': 'bool',
1256            '*multifd-channels': 'uint8',
1257            '*xbzrle-cache-size': 'size',
1258            '*max-postcopy-bandwidth': 'size',
1259            '*max-cpu-throttle': 'uint8',
1260            '*multifd-compression': 'MultiFDCompression',
1261            '*multifd-zlib-level': 'uint8',
1262            '*multifd-zstd-level': 'uint8',
1263            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1264            '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1265                                            'features': [ 'unstable' ] },
1266            '*vcpu-dirty-limit': 'uint64'} }
1267
1268##
1269# @query-migrate-parameters:
1270#
1271# Returns information about the current migration parameters
1272#
1273# Returns: @MigrationParameters
1274#
1275# Since: 2.4
1276#
1277# Example:
1278#
1279# -> { "execute": "query-migrate-parameters" }
1280# <- { "return": {
1281#          "decompress-threads": 2,
1282#          "cpu-throttle-increment": 10,
1283#          "compress-threads": 8,
1284#          "compress-level": 1,
1285#          "cpu-throttle-initial": 20,
1286#          "max-bandwidth": 33554432,
1287#          "downtime-limit": 300
1288#       }
1289#    }
1290##
1291{ 'command': 'query-migrate-parameters',
1292  'returns': 'MigrationParameters' }
1293
1294##
1295# @migrate-start-postcopy:
1296#
1297# Followup to a migration command to switch the migration to postcopy
1298# mode.  The postcopy-ram capability must be set on both source and
1299# destination before the original migration command.
1300#
1301# Since: 2.5
1302#
1303# Example:
1304#
1305# -> { "execute": "migrate-start-postcopy" }
1306# <- { "return": {} }
1307##
1308{ 'command': 'migrate-start-postcopy' }
1309
1310##
1311# @MIGRATION:
1312#
1313# Emitted when a migration event happens
1314#
1315# @status: @MigrationStatus describing the current migration status.
1316#
1317# Since: 2.4
1318#
1319# Example:
1320#
1321# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1322#     "event": "MIGRATION",
1323#     "data": {"status": "completed"} }
1324##
1325{ 'event': 'MIGRATION',
1326  'data': {'status': 'MigrationStatus'}}
1327
1328##
1329# @MIGRATION_PASS:
1330#
1331# Emitted from the source side of a migration at the start of each
1332# pass (when it syncs the dirty bitmap)
1333#
1334# @pass: An incrementing count (starting at 1 on the first pass)
1335#
1336# Since: 2.6
1337#
1338# Example:
1339#
1340# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1341#       "event": "MIGRATION_PASS", "data": {"pass": 2} }
1342##
1343{ 'event': 'MIGRATION_PASS',
1344  'data': { 'pass': 'int' } }
1345
1346##
1347# @COLOMessage:
1348#
1349# The message transmission between Primary side and Secondary side.
1350#
1351# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1352#
1353# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for
1354#     checkpointing
1355#
1356# @checkpoint-reply: SVM gets PVM's checkpoint request
1357#
1358# @vmstate-send: VM's state will be sent by PVM.
1359#
1360# @vmstate-size: The total size of VMstate.
1361#
1362# @vmstate-received: VM's state has been received by SVM.
1363#
1364# @vmstate-loaded: VM's state has been loaded by SVM.
1365#
1366# Since: 2.8
1367##
1368{ 'enum': 'COLOMessage',
1369  'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1370            'vmstate-send', 'vmstate-size', 'vmstate-received',
1371            'vmstate-loaded' ] }
1372
1373##
1374# @COLOMode:
1375#
1376# The COLO current mode.
1377#
1378# @none: COLO is disabled.
1379#
1380# @primary: COLO node in primary side.
1381#
1382# @secondary: COLO node in slave side.
1383#
1384# Since: 2.8
1385##
1386{ 'enum': 'COLOMode',
1387  'data': [ 'none', 'primary', 'secondary'] }
1388
1389##
1390# @FailoverStatus:
1391#
1392# An enumeration of COLO failover status
1393#
1394# @none: no failover has ever happened
1395#
1396# @require: got failover requirement but not handled
1397#
1398# @active: in the process of doing failover
1399#
1400# @completed: finish the process of failover
1401#
1402# @relaunch: restart the failover process, from 'none' -> 'completed'
1403#     (Since 2.9)
1404#
1405# Since: 2.8
1406##
1407{ 'enum': 'FailoverStatus',
1408  'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1409
1410##
1411# @COLO_EXIT:
1412#
1413# Emitted when VM finishes COLO mode due to some errors happening or
1414# at the request of users.
1415#
1416# @mode: report COLO mode when COLO exited.
1417#
1418# @reason: describes the reason for the COLO exit.
1419#
1420# Since: 3.1
1421#
1422# Example:
1423#
1424# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1425#      "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1426##
1427{ 'event': 'COLO_EXIT',
1428  'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1429
1430##
1431# @COLOExitReason:
1432#
1433# The reason for a COLO exit.
1434#
1435# @none: failover has never happened.  This state does not occur in
1436#     the COLO_EXIT event, and is only visible in the result of
1437#     query-colo-status.
1438#
1439# @request: COLO exit is due to an external request.
1440#
1441# @error: COLO exit is due to an internal error.
1442#
1443# @processing: COLO is currently handling a failover (since 4.0).
1444#
1445# Since: 3.1
1446##
1447{ 'enum': 'COLOExitReason',
1448  'data': [ 'none', 'request', 'error' , 'processing' ] }
1449
1450##
1451# @x-colo-lost-heartbeat:
1452#
1453# Tell qemu that heartbeat is lost, request it to do takeover
1454# procedures.  If this command is sent to the PVM, the Primary side
1455# will exit COLO mode.  If sent to the Secondary, the Secondary side
1456# will run failover work, then takes over server operation to become
1457# the service VM.
1458#
1459# Features:
1460#
1461# @unstable: This command is experimental.
1462#
1463# Since: 2.8
1464#
1465# Example:
1466#
1467# -> { "execute": "x-colo-lost-heartbeat" }
1468# <- { "return": {} }
1469##
1470{ 'command': 'x-colo-lost-heartbeat',
1471  'features': [ 'unstable' ],
1472  'if': 'CONFIG_REPLICATION' }
1473
1474##
1475# @migrate_cancel:
1476#
1477# Cancel the current executing migration process.
1478#
1479# Returns: nothing on success
1480#
1481# Notes: This command succeeds even if there is no migration process
1482#     running.
1483#
1484# Since: 0.14
1485#
1486# Example:
1487#
1488# -> { "execute": "migrate_cancel" }
1489# <- { "return": {} }
1490##
1491{ 'command': 'migrate_cancel' }
1492
1493##
1494# @migrate-continue:
1495#
1496# Continue migration when it's in a paused state.
1497#
1498# @state: The state the migration is currently expected to be in
1499#
1500# Returns: nothing on success
1501#
1502# Since: 2.11
1503#
1504# Example:
1505#
1506# -> { "execute": "migrate-continue" , "arguments":
1507#      { "state": "pre-switchover" } }
1508# <- { "return": {} }
1509##
1510{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1511
1512##
1513# @migrate:
1514#
1515# Migrates the current running guest to another Virtual Machine.
1516#
1517# @uri: the Uniform Resource Identifier of the destination VM
1518#
1519# @blk: do block migration (full disk copy)
1520#
1521# @inc: incremental disk copy migration
1522#
1523# @detach: this argument exists only for compatibility reasons and is
1524#     ignored by QEMU
1525#
1526# @resume: resume one paused migration, default "off". (since 3.0)
1527#
1528# Returns: nothing on success
1529#
1530# Since: 0.14
1531#
1532# Notes:
1533#
1534# 1. The 'query-migrate' command should be used to check migration's
1535#    progress and final result (this information is provided by the
1536#    'status' member)
1537#
1538# 2. All boolean arguments default to false
1539#
1540# 3. The user Monitor's "detach" argument is invalid in QMP and should
1541#    not be used
1542#
1543# Example:
1544#
1545# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1546# <- { "return": {} }
1547##
1548{ 'command': 'migrate',
1549  'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool',
1550           '*detach': 'bool', '*resume': 'bool' } }
1551
1552##
1553# @migrate-incoming:
1554#
1555# Start an incoming migration, the qemu must have been started with
1556# -incoming defer
1557#
1558# @uri: The Uniform Resource Identifier identifying the source or
1559#     address to listen on
1560#
1561# Returns: nothing on success
1562#
1563# Since: 2.3
1564#
1565# Notes:
1566#
1567# 1. It's a bad idea to use a string for the uri, but it needs
1568#    to stay compatible with -incoming and the format of the uri
1569#    is already exposed above libvirt.
1570#
1571# 2. QEMU must be started with -incoming defer to allow
1572#    migrate-incoming to be used.
1573#
1574# 3. The uri format is the same as for -incoming
1575#
1576# Example:
1577#
1578# -> { "execute": "migrate-incoming",
1579#      "arguments": { "uri": "tcp::4446" } }
1580# <- { "return": {} }
1581##
1582{ 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
1583
1584##
1585# @xen-save-devices-state:
1586#
1587# Save the state of all devices to file.  The RAM and the block
1588# devices of the VM are not saved by this command.
1589#
1590# @filename: the file to save the state of the devices to as binary
1591#     data.  See xen-save-devices-state.txt for a description of the
1592#     binary format.
1593#
1594# @live: Optional argument to ask QEMU to treat this command as part
1595#     of a live migration.  Default to true.  (since 2.11)
1596#
1597# Returns: Nothing on success
1598#
1599# Since: 1.1
1600#
1601# Example:
1602#
1603# -> { "execute": "xen-save-devices-state",
1604#      "arguments": { "filename": "/tmp/save" } }
1605# <- { "return": {} }
1606##
1607{ 'command': 'xen-save-devices-state',
1608  'data': {'filename': 'str', '*live':'bool' } }
1609
1610##
1611# @xen-set-global-dirty-log:
1612#
1613# Enable or disable the global dirty log mode.
1614#
1615# @enable: true to enable, false to disable.
1616#
1617# Returns: nothing
1618#
1619# Since: 1.3
1620#
1621# Example:
1622#
1623# -> { "execute": "xen-set-global-dirty-log",
1624#      "arguments": { "enable": true } }
1625# <- { "return": {} }
1626##
1627{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1628
1629##
1630# @xen-load-devices-state:
1631#
1632# Load the state of all devices from file.  The RAM and the block
1633# devices of the VM are not loaded by this command.
1634#
1635# @filename: the file to load the state of the devices from as binary
1636#     data.  See xen-save-devices-state.txt for a description of the
1637#     binary format.
1638#
1639# Since: 2.7
1640#
1641# Example:
1642#
1643# -> { "execute": "xen-load-devices-state",
1644#      "arguments": { "filename": "/tmp/resume" } }
1645# <- { "return": {} }
1646##
1647{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1648
1649##
1650# @xen-set-replication:
1651#
1652# Enable or disable replication.
1653#
1654# @enable: true to enable, false to disable.
1655#
1656# @primary: true for primary or false for secondary.
1657#
1658# @failover: true to do failover, false to stop.  but cannot be
1659#     specified if 'enable' is true.  default value is false.
1660#
1661# Returns: nothing.
1662#
1663# Example:
1664#
1665# -> { "execute": "xen-set-replication",
1666#      "arguments": {"enable": true, "primary": false} }
1667# <- { "return": {} }
1668#
1669# Since: 2.9
1670##
1671{ 'command': 'xen-set-replication',
1672  'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' },
1673  'if': 'CONFIG_REPLICATION' }
1674
1675##
1676# @ReplicationStatus:
1677#
1678# The result format for 'query-xen-replication-status'.
1679#
1680# @error: true if an error happened, false if replication is normal.
1681#
1682# @desc: the human readable error description string, when @error is
1683#     'true'.
1684#
1685# Since: 2.9
1686##
1687{ 'struct': 'ReplicationStatus',
1688  'data': { 'error': 'bool', '*desc': 'str' },
1689  'if': 'CONFIG_REPLICATION' }
1690
1691##
1692# @query-xen-replication-status:
1693#
1694# Query replication status while the vm is running.
1695#
1696# Returns: A @ReplicationStatus object showing the status.
1697#
1698# Example:
1699#
1700# -> { "execute": "query-xen-replication-status" }
1701# <- { "return": { "error": false } }
1702#
1703# Since: 2.9
1704##
1705{ 'command': 'query-xen-replication-status',
1706  'returns': 'ReplicationStatus',
1707  'if': 'CONFIG_REPLICATION' }
1708
1709##
1710# @xen-colo-do-checkpoint:
1711#
1712# Xen uses this command to notify replication to trigger a checkpoint.
1713#
1714# Returns: nothing.
1715#
1716# Example:
1717#
1718# -> { "execute": "xen-colo-do-checkpoint" }
1719# <- { "return": {} }
1720#
1721# Since: 2.9
1722##
1723{ 'command': 'xen-colo-do-checkpoint',
1724  'if': 'CONFIG_REPLICATION' }
1725
1726##
1727# @COLOStatus:
1728#
1729# The result format for 'query-colo-status'.
1730#
1731# @mode: COLO running mode.  If COLO is running, this field will
1732#     return 'primary' or 'secondary'.
1733#
1734# @last-mode: COLO last running mode.  If COLO is running, this field
1735#     will return same like mode field, after failover we can use this
1736#     field to get last colo mode.  (since 4.0)
1737#
1738# @reason: describes the reason for the COLO exit.
1739#
1740# Since: 3.1
1741##
1742{ 'struct': 'COLOStatus',
1743  'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
1744            'reason': 'COLOExitReason' },
1745  'if': 'CONFIG_REPLICATION' }
1746
1747##
1748# @query-colo-status:
1749#
1750# Query COLO status while the vm is running.
1751#
1752# Returns: A @COLOStatus object showing the status.
1753#
1754# Example:
1755#
1756# -> { "execute": "query-colo-status" }
1757# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
1758#
1759# Since: 3.1
1760##
1761{ 'command': 'query-colo-status',
1762  'returns': 'COLOStatus',
1763  'if': 'CONFIG_REPLICATION' }
1764
1765##
1766# @migrate-recover:
1767#
1768# Provide a recovery migration stream URI.
1769#
1770# @uri: the URI to be used for the recovery of migration stream.
1771#
1772# Returns: nothing.
1773#
1774# Example:
1775#
1776# -> { "execute": "migrate-recover",
1777#      "arguments": { "uri": "tcp:192.168.1.200:12345" } }
1778# <- { "return": {} }
1779#
1780# Since: 3.0
1781##
1782{ 'command': 'migrate-recover',
1783  'data': { 'uri': 'str' },
1784  'allow-oob': true }
1785
1786##
1787# @migrate-pause:
1788#
1789# Pause a migration.  Currently it only supports postcopy.
1790#
1791# Returns: nothing.
1792#
1793# Example:
1794#
1795# -> { "execute": "migrate-pause" }
1796# <- { "return": {} }
1797#
1798# Since: 3.0
1799##
1800{ 'command': 'migrate-pause', 'allow-oob': true }
1801
1802##
1803# @UNPLUG_PRIMARY:
1804#
1805# Emitted from source side of a migration when migration state is
1806# WAIT_UNPLUG. Device was unplugged by guest operating system.  Device
1807# resources in QEMU are kept on standby to be able to re-plug it in
1808# case of migration failure.
1809#
1810# @device-id: QEMU device id of the unplugged device
1811#
1812# Since: 4.2
1813#
1814# Example:
1815#
1816# <- { "event": "UNPLUG_PRIMARY",
1817#      "data": { "device-id": "hostdev0" },
1818#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1819##
1820{ 'event': 'UNPLUG_PRIMARY',
1821  'data': { 'device-id': 'str' } }
1822
1823##
1824# @DirtyRateVcpu:
1825#
1826# Dirty rate of vcpu.
1827#
1828# @id: vcpu index.
1829#
1830# @dirty-rate: dirty rate.
1831#
1832# Since: 6.2
1833##
1834{ 'struct': 'DirtyRateVcpu',
1835  'data': { 'id': 'int', 'dirty-rate': 'int64' } }
1836
1837##
1838# @DirtyRateStatus:
1839#
1840# Dirty page rate measurement status.
1841#
1842# @unstarted: measuring thread has not been started yet
1843#
1844# @measuring: measuring thread is running
1845#
1846# @measured: dirty page rate is measured and the results are available
1847#
1848# Since: 5.2
1849##
1850{ 'enum': 'DirtyRateStatus',
1851  'data': [ 'unstarted', 'measuring', 'measured'] }
1852
1853##
1854# @DirtyRateMeasureMode:
1855#
1856# Method used to measure dirty page rate.  Differences between
1857# available methods are explained in @calc-dirty-rate.
1858#
1859# @page-sampling: use page sampling
1860#
1861# @dirty-ring: use dirty ring
1862#
1863# @dirty-bitmap: use dirty bitmap
1864#
1865# Since: 6.2
1866##
1867{ 'enum': 'DirtyRateMeasureMode',
1868  'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
1869
1870##
1871# @TimeUnit:
1872#
1873# Specifies unit in which time-related value is specified.
1874#
1875# @second: value is in seconds
1876#
1877# @millisecond: value is in milliseconds
1878#
1879# Since 8.2
1880#
1881##
1882{ 'enum': 'TimeUnit',
1883  'data': ['second', 'millisecond'] }
1884
1885##
1886# @DirtyRateInfo:
1887#
1888# Information about measured dirty page rate.
1889#
1890# @dirty-rate: an estimate of the dirty page rate of the VM in units
1891#     of MiB/s.  Value is present only when @status is 'measured'.
1892#
1893# @status: current status of dirty page rate measurements
1894#
1895# @start-time: start time in units of second for calculation
1896#
1897# @calc-time: time period for which dirty page rate was measured,
1898#     expressed and rounded down to @calc-time-unit.
1899#
1900# @calc-time-unit: time unit of @calc-time  (Since 8.2)
1901#
1902# @sample-pages: number of sampled pages per GiB of guest memory.
1903#     Valid only in page-sampling mode (Since 6.1)
1904#
1905# @mode: mode that was used to measure dirty page rate (Since 6.2)
1906#
1907# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was
1908#     specified (Since 6.2)
1909#
1910# Since: 5.2
1911##
1912{ 'struct': 'DirtyRateInfo',
1913  'data': {'*dirty-rate': 'int64',
1914           'status': 'DirtyRateStatus',
1915           'start-time': 'int64',
1916           'calc-time': 'int64',
1917           'calc-time-unit': 'TimeUnit',
1918           'sample-pages': 'uint64',
1919           'mode': 'DirtyRateMeasureMode',
1920           '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
1921
1922##
1923# @calc-dirty-rate:
1924#
1925# Start measuring dirty page rate of the VM.  Results can be retrieved
1926# with @query-dirty-rate after measurements are completed.
1927#
1928# Dirty page rate is the number of pages changed in a given time
1929# period expressed in MiB/s.  The following methods of calculation are
1930# available:
1931#
1932# 1. In page sampling mode, a random subset of pages are selected and
1933#    hashed twice: once at the beginning of measurement time period,
1934#    and once again at the end.  If two hashes for some page are
1935#    different, the page is counted as changed.  Since this method
1936#    relies on sampling and hashing, calculated dirty page rate is
1937#    only an estimate of its true value.  Increasing @sample-pages
1938#    improves estimation quality at the cost of higher computational
1939#    overhead.
1940#
1941# 2. Dirty bitmap mode captures writes to memory (for example by
1942#    temporarily revoking write access to all pages) and counting page
1943#    faults.  Information about modified pages is collected into a
1944#    bitmap, where each bit corresponds to one guest page.  This mode
1945#    requires that KVM accelerator property "dirty-ring-size" is *not*
1946#    set.
1947#
1948# 3. Dirty ring mode is similar to dirty bitmap mode, but the
1949#    information about modified pages is collected into ring buffer.
1950#    This mode tracks page modification per each vCPU separately.  It
1951#    requires that KVM accelerator property "dirty-ring-size" is set.
1952#
1953# @calc-time: time period for which dirty page rate is calculated.
1954#     By default it is specified in seconds, but the unit can be set
1955#     explicitly with @calc-time-unit.  Note that larger @calc-time
1956#     values will typically result in smaller dirty page rates because
1957#     page dirtying is a one-time event.  Once some page is counted
1958#     as dirty during @calc-time period, further writes to this page
1959#     will not increase dirty page rate anymore.
1960#
1961# @calc-time-unit: time unit in which @calc-time is specified.
1962#     By default it is seconds. (Since 8.2)
1963#
1964# @sample-pages: number of sampled pages per each GiB of guest memory.
1965#     Default value is 512.  For 4KiB guest pages this corresponds to
1966#     sampling ratio of 0.2%.  This argument is used only in page
1967#     sampling mode.  (Since 6.1)
1968#
1969# @mode: mechanism for tracking dirty pages.  Default value is
1970#     'page-sampling'.  Others are 'dirty-bitmap' and 'dirty-ring'.
1971#     (Since 6.1)
1972#
1973# Since: 5.2
1974#
1975# Example:
1976#
1977# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
1978#                                                 'sample-pages': 512} }
1979# <- { "return": {} }
1980#
1981# Measure dirty rate using dirty bitmap for 500 milliseconds:
1982#
1983# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500,
1984#     "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} }
1985#
1986# <- { "return": {} }
1987##
1988{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
1989                                         '*calc-time-unit': 'TimeUnit',
1990                                         '*sample-pages': 'int',
1991                                         '*mode': 'DirtyRateMeasureMode'} }
1992
1993##
1994# @query-dirty-rate:
1995#
1996# Query results of the most recent invocation of @calc-dirty-rate.
1997#
1998# @calc-time-unit: time unit in which to report calculation time.
1999#     By default it is reported in seconds. (Since 8.2)
2000#
2001# Since: 5.2
2002#
2003# Examples:
2004#
2005# 1. Measurement is in progress:
2006#
2007# <- {"status": "measuring", "sample-pages": 512,
2008#     "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
2009#     "calc-time-unit": "second"}
2010#
2011# 2. Measurement has been completed:
2012#
2013# <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108,
2014#     "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
2015#     "calc-time-unit": "second"}
2016##
2017{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' },
2018                                 'returns': 'DirtyRateInfo' }
2019
2020##
2021# @DirtyLimitInfo:
2022#
2023# Dirty page rate limit information of a virtual CPU.
2024#
2025# @cpu-index: index of a virtual CPU.
2026#
2027# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
2028#     CPU, 0 means unlimited.
2029#
2030# @current-rate: current dirty page rate (MB/s) for a virtual CPU.
2031#
2032# Since: 7.1
2033##
2034{ 'struct': 'DirtyLimitInfo',
2035  'data': { 'cpu-index': 'int',
2036            'limit-rate': 'uint64',
2037            'current-rate': 'uint64' } }
2038
2039##
2040# @set-vcpu-dirty-limit:
2041#
2042# Set the upper limit of dirty page rate for virtual CPUs.
2043#
2044# Requires KVM with accelerator property "dirty-ring-size" set.  A
2045# virtual CPU's dirty page rate is a measure of its memory load.  To
2046# observe dirty page rates, use @calc-dirty-rate.
2047#
2048# @cpu-index: index of a virtual CPU, default is all.
2049#
2050# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
2051#
2052# Since: 7.1
2053#
2054# Example:
2055#
2056# -> {"execute": "set-vcpu-dirty-limit"}
2057#     "arguments": { "dirty-rate": 200,
2058#                    "cpu-index": 1 } }
2059# <- { "return": {} }
2060##
2061{ 'command': 'set-vcpu-dirty-limit',
2062  'data': { '*cpu-index': 'int',
2063            'dirty-rate': 'uint64' } }
2064
2065##
2066# @cancel-vcpu-dirty-limit:
2067#
2068# Cancel the upper limit of dirty page rate for virtual CPUs.
2069#
2070# Cancel the dirty page limit for the vCPU which has been set with
2071# set-vcpu-dirty-limit command.  Note that this command requires
2072# support from dirty ring, same as the "set-vcpu-dirty-limit".
2073#
2074# @cpu-index: index of a virtual CPU, default is all.
2075#
2076# Since: 7.1
2077#
2078# Example:
2079#
2080# -> {"execute": "cancel-vcpu-dirty-limit"},
2081#     "arguments": { "cpu-index": 1 } }
2082# <- { "return": {} }
2083##
2084{ 'command': 'cancel-vcpu-dirty-limit',
2085  'data': { '*cpu-index': 'int'} }
2086
2087##
2088# @query-vcpu-dirty-limit:
2089#
2090# Returns information about virtual CPU dirty page rate limits, if
2091# any.
2092#
2093# Since: 7.1
2094#
2095# Example:
2096#
2097# -> {"execute": "query-vcpu-dirty-limit"}
2098# <- {"return": [
2099#        { "limit-rate": 60, "current-rate": 3, "cpu-index": 0},
2100#        { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]}
2101##
2102{ 'command': 'query-vcpu-dirty-limit',
2103  'returns': [ 'DirtyLimitInfo' ] }
2104
2105##
2106# @MigrationThreadInfo:
2107#
2108# Information about migrationthreads
2109#
2110# @name: the name of migration thread
2111#
2112# @thread-id: ID of the underlying host thread
2113#
2114# Since: 7.2
2115##
2116{ 'struct': 'MigrationThreadInfo',
2117  'data': {'name': 'str',
2118           'thread-id': 'int'} }
2119
2120##
2121# @query-migrationthreads:
2122#
2123# Returns information of migration threads
2124#
2125# data: migration thread name
2126#
2127# Returns: information about migration threads
2128#
2129# Since: 7.2
2130##
2131{ 'command': 'query-migrationthreads',
2132  'returns': ['MigrationThreadInfo'] }
2133
2134##
2135# @snapshot-save:
2136#
2137# Save a VM snapshot
2138#
2139# @job-id: identifier for the newly created job
2140#
2141# @tag: name of the snapshot to create
2142#
2143# @vmstate: block device node name to save vmstate to
2144#
2145# @devices: list of block device node names to save a snapshot to
2146#
2147# Applications should not assume that the snapshot save is complete
2148# when this command returns.  The job commands / events must be used
2149# to determine completion and to fetch details of any errors that
2150# arise.
2151#
2152# Note that execution of the guest CPUs may be stopped during the time
2153# it takes to save the snapshot.  A future version of QEMU may ensure
2154# CPUs are executing continuously.
2155#
2156# It is strongly recommended that @devices contain all writable block
2157# device nodes if a consistent snapshot is required.
2158#
2159# If @tag already exists, an error will be reported
2160#
2161# Returns: nothing
2162#
2163# Example:
2164#
2165# -> { "execute": "snapshot-save",
2166#      "arguments": {
2167#         "job-id": "snapsave0",
2168#         "tag": "my-snap",
2169#         "vmstate": "disk0",
2170#         "devices": ["disk0", "disk1"]
2171#      }
2172#    }
2173# <- { "return": { } }
2174# <- {"event": "JOB_STATUS_CHANGE",
2175#     "timestamp": {"seconds": 1432121972, "microseconds": 744001},
2176#     "data": {"status": "created", "id": "snapsave0"}}
2177# <- {"event": "JOB_STATUS_CHANGE",
2178#     "timestamp": {"seconds": 1432122172, "microseconds": 744001},
2179#     "data": {"status": "running", "id": "snapsave0"}}
2180# <- {"event": "STOP",
2181#     "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2182# <- {"event": "RESUME",
2183#     "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
2184# <- {"event": "JOB_STATUS_CHANGE",
2185#     "timestamp": {"seconds": 1432122772, "microseconds": 744001},
2186#     "data": {"status": "waiting", "id": "snapsave0"}}
2187# <- {"event": "JOB_STATUS_CHANGE",
2188#     "timestamp": {"seconds": 1432122972, "microseconds": 744001},
2189#     "data": {"status": "pending", "id": "snapsave0"}}
2190# <- {"event": "JOB_STATUS_CHANGE",
2191#     "timestamp": {"seconds": 1432123172, "microseconds": 744001},
2192#     "data": {"status": "concluded", "id": "snapsave0"}}
2193# -> {"execute": "query-jobs"}
2194# <- {"return": [{"current-progress": 1,
2195#                 "status": "concluded",
2196#                 "total-progress": 1,
2197#                 "type": "snapshot-save",
2198#                 "id": "snapsave0"}]}
2199#
2200# Since: 6.0
2201##
2202{ 'command': 'snapshot-save',
2203  'data': { 'job-id': 'str',
2204            'tag': 'str',
2205            'vmstate': 'str',
2206            'devices': ['str'] } }
2207
2208##
2209# @snapshot-load:
2210#
2211# Load a VM snapshot
2212#
2213# @job-id: identifier for the newly created job
2214#
2215# @tag: name of the snapshot to load.
2216#
2217# @vmstate: block device node name to load vmstate from
2218#
2219# @devices: list of block device node names to load a snapshot from
2220#
2221# Applications should not assume that the snapshot load is complete
2222# when this command returns.  The job commands / events must be used
2223# to determine completion and to fetch details of any errors that
2224# arise.
2225#
2226# Note that execution of the guest CPUs will be stopped during the
2227# time it takes to load the snapshot.
2228#
2229# It is strongly recommended that @devices contain all writable block
2230# device nodes that can have changed since the original @snapshot-save
2231# command execution.
2232#
2233# Returns: nothing
2234#
2235# Example:
2236#
2237# -> { "execute": "snapshot-load",
2238#      "arguments": {
2239#         "job-id": "snapload0",
2240#         "tag": "my-snap",
2241#         "vmstate": "disk0",
2242#         "devices": ["disk0", "disk1"]
2243#      }
2244#    }
2245# <- { "return": { } }
2246# <- {"event": "JOB_STATUS_CHANGE",
2247#     "timestamp": {"seconds": 1472124172, "microseconds": 744001},
2248#     "data": {"status": "created", "id": "snapload0"}}
2249# <- {"event": "JOB_STATUS_CHANGE",
2250#     "timestamp": {"seconds": 1472125172, "microseconds": 744001},
2251#     "data": {"status": "running", "id": "snapload0"}}
2252# <- {"event": "STOP",
2253#     "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2254# <- {"event": "RESUME",
2255#     "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
2256# <- {"event": "JOB_STATUS_CHANGE",
2257#     "timestamp": {"seconds": 1472126172, "microseconds": 744001},
2258#     "data": {"status": "waiting", "id": "snapload0"}}
2259# <- {"event": "JOB_STATUS_CHANGE",
2260#     "timestamp": {"seconds": 1472127172, "microseconds": 744001},
2261#     "data": {"status": "pending", "id": "snapload0"}}
2262# <- {"event": "JOB_STATUS_CHANGE",
2263#     "timestamp": {"seconds": 1472128172, "microseconds": 744001},
2264#     "data": {"status": "concluded", "id": "snapload0"}}
2265# -> {"execute": "query-jobs"}
2266# <- {"return": [{"current-progress": 1,
2267#                 "status": "concluded",
2268#                 "total-progress": 1,
2269#                 "type": "snapshot-load",
2270#                 "id": "snapload0"}]}
2271#
2272# Since: 6.0
2273##
2274{ 'command': 'snapshot-load',
2275  'data': { 'job-id': 'str',
2276            'tag': 'str',
2277            'vmstate': 'str',
2278            'devices': ['str'] } }
2279
2280##
2281# @snapshot-delete:
2282#
2283# Delete a VM snapshot
2284#
2285# @job-id: identifier for the newly created job
2286#
2287# @tag: name of the snapshot to delete.
2288#
2289# @devices: list of block device node names to delete a snapshot from
2290#
2291# Applications should not assume that the snapshot delete is complete
2292# when this command returns.  The job commands / events must be used
2293# to determine completion and to fetch details of any errors that
2294# arise.
2295#
2296# Returns: nothing
2297#
2298# Example:
2299#
2300# -> { "execute": "snapshot-delete",
2301#      "arguments": {
2302#         "job-id": "snapdelete0",
2303#         "tag": "my-snap",
2304#         "devices": ["disk0", "disk1"]
2305#      }
2306#    }
2307# <- { "return": { } }
2308# <- {"event": "JOB_STATUS_CHANGE",
2309#     "timestamp": {"seconds": 1442124172, "microseconds": 744001},
2310#     "data": {"status": "created", "id": "snapdelete0"}}
2311# <- {"event": "JOB_STATUS_CHANGE",
2312#     "timestamp": {"seconds": 1442125172, "microseconds": 744001},
2313#     "data": {"status": "running", "id": "snapdelete0"}}
2314# <- {"event": "JOB_STATUS_CHANGE",
2315#     "timestamp": {"seconds": 1442126172, "microseconds": 744001},
2316#     "data": {"status": "waiting", "id": "snapdelete0"}}
2317# <- {"event": "JOB_STATUS_CHANGE",
2318#     "timestamp": {"seconds": 1442127172, "microseconds": 744001},
2319#     "data": {"status": "pending", "id": "snapdelete0"}}
2320# <- {"event": "JOB_STATUS_CHANGE",
2321#     "timestamp": {"seconds": 1442128172, "microseconds": 744001},
2322#     "data": {"status": "concluded", "id": "snapdelete0"}}
2323# -> {"execute": "query-jobs"}
2324# <- {"return": [{"current-progress": 1,
2325#                 "status": "concluded",
2326#                 "total-progress": 1,
2327#                 "type": "snapshot-delete",
2328#                 "id": "snapdelete0"}]}
2329#
2330# Since: 6.0
2331##
2332{ 'command': 'snapshot-delete',
2333  'data': { 'job-id': 'str',
2334            'tag': 'str',
2335            'devices': ['str'] } }
2336