xref: /openbmc/qemu/qapi/migration.json (revision 864128df)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4
5##
6# = Migration
7##
8
9{ 'include': 'common.json' }
10{ 'include': 'sockets.json' }
11
12##
13# @MigrationStats:
14#
15# Detailed migration status.
16#
17# @transferred: amount of bytes already transferred to the target VM
18#
19# @remaining: amount of bytes remaining to be transferred to the
20#     target VM
21#
22# @total: total amount of bytes involved in the migration process
23#
24# @duplicate: number of duplicate (zero) pages (since 1.2)
25#
26# @skipped: number of skipped zero pages. Always zero, only provided for
27#     compatibility (since 1.5)
28#
29# @normal: number of normal pages (since 1.2)
30#
31# @normal-bytes: number of normal bytes sent (since 1.2)
32#
33# @dirty-pages-rate: number of pages dirtied by second by the guest
34#     (since 1.3)
35#
36# @mbps: throughput in megabits/sec.  (since 1.6)
37#
38# @dirty-sync-count: number of times that dirty ram was synchronized
39#     (since 2.1)
40#
41# @postcopy-requests: The number of page requests received from the
42#     destination (since 2.7)
43#
44# @page-size: The number of bytes per page for the various page-based
45#     statistics (since 2.10)
46#
47# @multifd-bytes: The number of bytes sent through multifd (since 3.0)
48#
49# @pages-per-second: the number of memory pages transferred per second
50#     (Since 4.0)
51#
52# @precopy-bytes: The number of bytes sent in the pre-copy phase
53#     (since 7.0).
54#
55# @downtime-bytes: The number of bytes sent while the guest is paused
56#     (since 7.0).
57#
58# @postcopy-bytes: The number of bytes sent during the post-copy phase
59#     (since 7.0).
60#
61# @dirty-sync-missed-zero-copy: Number of times dirty RAM
62#     synchronization could not avoid copying dirty pages.  This is
63#     between 0 and @dirty-sync-count * @multifd-channels.  (since
64#     7.1)
65#
66# Features:
67#
68# @deprecated: Member @skipped is always zero since 1.5.3
69#
70# Since: 0.14
71#
72##
73{ 'struct': 'MigrationStats',
74  'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
75           'duplicate': 'int',
76           'skipped': { 'type': 'int', 'features': [ 'deprecated' ] },
77           'normal': 'int',
78           'normal-bytes': 'int', 'dirty-pages-rate': 'int',
79           'mbps': 'number', 'dirty-sync-count': 'int',
80           'postcopy-requests': 'int', 'page-size': 'int',
81           'multifd-bytes': 'uint64', 'pages-per-second': 'uint64',
82           'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64',
83           'postcopy-bytes': 'uint64',
84           'dirty-sync-missed-zero-copy': 'uint64' } }
85
86##
87# @XBZRLECacheStats:
88#
89# Detailed XBZRLE migration cache statistics
90#
91# @cache-size: XBZRLE cache size
92#
93# @bytes: amount of bytes already transferred to the target VM
94#
95# @pages: amount of pages transferred to the target VM
96#
97# @cache-miss: number of cache miss
98#
99# @cache-miss-rate: rate of cache miss (since 2.1)
100#
101# @encoding-rate: rate of encoded bytes (since 5.1)
102#
103# @overflow: number of overflows
104#
105# Since: 1.2
106##
107{ 'struct': 'XBZRLECacheStats',
108  'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
109           'cache-miss': 'int', 'cache-miss-rate': 'number',
110           'encoding-rate': 'number', 'overflow': 'int' } }
111
112##
113# @CompressionStats:
114#
115# Detailed migration compression statistics
116#
117# @pages: amount of pages compressed and transferred to the target VM
118#
119# @busy: count of times that no free thread was available to compress
120#     data
121#
122# @busy-rate: rate of thread busy
123#
124# @compressed-size: amount of bytes after compression
125#
126# @compression-rate: rate of compressed size
127#
128# Since: 3.1
129##
130{ 'struct': 'CompressionStats',
131  'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
132           'compressed-size': 'int', 'compression-rate': 'number' } }
133
134##
135# @MigrationStatus:
136#
137# An enumeration of migration status.
138#
139# @none: no migration has ever happened.
140#
141# @setup: migration process has been initiated.
142#
143# @cancelling: in the process of cancelling migration.
144#
145# @cancelled: cancelling migration is finished.
146#
147# @active: in the process of doing migration.
148#
149# @postcopy-active: like active, but now in postcopy mode.  (since
150#     2.5)
151#
152# @postcopy-paused: during postcopy but paused.  (since 3.0)
153#
154# @postcopy-recover: trying to recover from a paused postcopy.  (since
155#     3.0)
156#
157# @completed: migration is finished.
158#
159# @failed: some error occurred during migration process.
160#
161# @colo: VM is in the process of fault tolerance, VM can not get into
162#     this state unless colo capability is enabled for migration.
163#     (since 2.8)
164#
165# @pre-switchover: Paused before device serialisation.  (since 2.11)
166#
167# @device: During device serialisation when pause-before-switchover is
168#     enabled (since 2.11)
169#
170# @wait-unplug: wait for device unplug request by guest OS to be
171#     completed.  (since 4.2)
172#
173# Since: 2.3
174##
175{ 'enum': 'MigrationStatus',
176  'data': [ 'none', 'setup', 'cancelling', 'cancelled',
177            'active', 'postcopy-active', 'postcopy-paused',
178            'postcopy-recover', 'completed', 'failed', 'colo',
179            'pre-switchover', 'device', 'wait-unplug' ] }
180##
181# @VfioStats:
182#
183# Detailed VFIO devices migration statistics
184#
185# @transferred: amount of bytes transferred to the target VM by VFIO
186#     devices
187#
188# Since: 5.2
189##
190{ 'struct': 'VfioStats',
191  'data': {'transferred': 'int' } }
192
193##
194# @MigrationInfo:
195#
196# Information about current migration process.
197#
198# @status: @MigrationStatus describing the current migration status.
199#     If this field is not returned, no migration process has been
200#     initiated
201#
202# @ram: @MigrationStats containing detailed migration status, only
203#     returned if status is 'active' or 'completed'(since 1.2)
204#
205# @disk: @MigrationStats containing detailed disk migration status,
206#     only returned if status is 'active' and it is a block migration
207#
208# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
209#     migration statistics, only returned if XBZRLE feature is on and
210#     status is 'active' or 'completed' (since 1.2)
211#
212# @total-time: total amount of milliseconds since migration started.
213#     If migration has ended, it returns the total migration time.
214#     (since 1.2)
215#
216# @downtime: only present when migration finishes correctly total
217#     downtime in milliseconds for the guest.  (since 1.3)
218#
219# @expected-downtime: only present while migration is active expected
220#     downtime in milliseconds for the guest in last walk of the dirty
221#     bitmap.  (since 1.3)
222#
223# @setup-time: amount of setup time in milliseconds *before* the
224#     iterations begin but *after* the QMP command is issued.  This is
225#     designed to provide an accounting of any activities (such as
226#     RDMA pinning) which may be expensive, but do not actually occur
227#     during the iterative migration rounds themselves.  (since 1.6)
228#
229# @cpu-throttle-percentage: percentage of time guest cpus are being
230#     throttled during auto-converge.  This is only present when
231#     auto-converge has started throttling guest cpus.  (Since 2.7)
232#
233# @error-desc: the human readable error description string. Clients
234#     should not attempt to parse the error strings.  (Since 2.7)
235#
236# @postcopy-blocktime: total time when all vCPU were blocked during
237#     postcopy live migration.  This is only present when the
238#     postcopy-blocktime migration capability is enabled.  (Since 3.0)
239#
240# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU.
241#     This is only present when the postcopy-blocktime migration
242#     capability is enabled.  (Since 3.0)
243#
244# @compression: migration compression statistics, only returned if
245#     compression feature is on and status is 'active' or 'completed'
246#     (Since 3.1)
247#
248# @socket-address: Only used for tcp, to know what the real port is
249#     (Since 4.0)
250#
251# @vfio: @VfioStats containing detailed VFIO devices migration
252#     statistics, only returned if VFIO device is present, migration
253#     is supported by all VFIO devices and status is 'active' or
254#     'completed' (since 5.2)
255#
256# @blocked-reasons: A list of reasons an outgoing migration is
257#     blocked.  Present and non-empty when migration is blocked.
258#     (since 6.0)
259#
260# @dirty-limit-throttle-time-per-round: Maximum throttle time
261#     (in microseconds) of virtual CPUs each dirty ring full round,
262#     which shows how MigrationCapability dirty-limit affects the
263#     guest during live migration.  (Since 8.1)
264#
265# @dirty-limit-ring-full-time: Estimated average dirty ring full time
266#     (in microseconds) for each dirty ring full round.  The value
267#     equals the dirty ring memory size divided by the average dirty
268#     page rate of the virtual CPU, which can be used to observe the
269#     average memory load of the virtual CPU indirectly.  Note that
270#     zero means guest doesn't dirty memory.  (Since 8.1)
271#
272# Features:
273#
274# @deprecated: Member @disk is deprecated because block migration is.
275#     Member @compression is deprecated because it is unreliable and
276#     untested.  It is recommended to use multifd migration, which
277#     offers an alternative compression implementation that is
278#     reliable and tested.
279#
280# Since: 0.14
281##
282{ 'struct': 'MigrationInfo',
283  'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
284           '*disk': { 'type': 'MigrationStats', 'features': [ 'deprecated' ] },
285           '*vfio': 'VfioStats',
286           '*xbzrle-cache': 'XBZRLECacheStats',
287           '*total-time': 'int',
288           '*expected-downtime': 'int',
289           '*downtime': 'int',
290           '*setup-time': 'int',
291           '*cpu-throttle-percentage': 'int',
292           '*error-desc': 'str',
293           '*blocked-reasons': ['str'],
294           '*postcopy-blocktime': 'uint32',
295           '*postcopy-vcpu-blocktime': ['uint32'],
296           '*compression': { 'type': 'CompressionStats', 'features': [ 'deprecated' ] },
297           '*socket-address': ['SocketAddress'],
298           '*dirty-limit-throttle-time-per-round': 'uint64',
299           '*dirty-limit-ring-full-time': 'uint64'} }
300
301##
302# @query-migrate:
303#
304# Returns information about current migration process.  If migration
305# is active there will be another json-object with RAM migration
306# status and if block migration is active another one with block
307# migration status.
308#
309# Returns: @MigrationInfo
310#
311# Since: 0.14
312#
313# Examples:
314#
315# 1. Before the first migration
316#
317# -> { "execute": "query-migrate" }
318# <- { "return": {} }
319#
320# 2. Migration is done and has succeeded
321#
322# -> { "execute": "query-migrate" }
323# <- { "return": {
324#         "status": "completed",
325#         "total-time":12345,
326#         "setup-time":12345,
327#         "downtime":12345,
328#         "ram":{
329#           "transferred":123,
330#           "remaining":123,
331#           "total":246,
332#           "duplicate":123,
333#           "normal":123,
334#           "normal-bytes":123456,
335#           "dirty-sync-count":15
336#         }
337#      }
338#    }
339#
340# 3. Migration is done and has failed
341#
342# -> { "execute": "query-migrate" }
343# <- { "return": { "status": "failed" } }
344#
345# 4. Migration is being performed and is not a block migration:
346#
347# -> { "execute": "query-migrate" }
348# <- {
349#       "return":{
350#          "status":"active",
351#          "total-time":12345,
352#          "setup-time":12345,
353#          "expected-downtime":12345,
354#          "ram":{
355#             "transferred":123,
356#             "remaining":123,
357#             "total":246,
358#             "duplicate":123,
359#             "normal":123,
360#             "normal-bytes":123456,
361#             "dirty-sync-count":15
362#          }
363#       }
364#    }
365#
366# 5. Migration is being performed and is a block migration:
367#
368# -> { "execute": "query-migrate" }
369# <- {
370#       "return":{
371#          "status":"active",
372#          "total-time":12345,
373#          "setup-time":12345,
374#          "expected-downtime":12345,
375#          "ram":{
376#             "total":1057024,
377#             "remaining":1053304,
378#             "transferred":3720,
379#             "duplicate":123,
380#             "normal":123,
381#             "normal-bytes":123456,
382#             "dirty-sync-count":15
383#          },
384#          "disk":{
385#             "total":20971520,
386#             "remaining":20880384,
387#             "transferred":91136
388#          }
389#       }
390#    }
391#
392# 6. Migration is being performed and XBZRLE is active:
393#
394# -> { "execute": "query-migrate" }
395# <- {
396#       "return":{
397#          "status":"active",
398#          "total-time":12345,
399#          "setup-time":12345,
400#          "expected-downtime":12345,
401#          "ram":{
402#             "total":1057024,
403#             "remaining":1053304,
404#             "transferred":3720,
405#             "duplicate":10,
406#             "normal":3333,
407#             "normal-bytes":3412992,
408#             "dirty-sync-count":15
409#          },
410#          "xbzrle-cache":{
411#             "cache-size":67108864,
412#             "bytes":20971520,
413#             "pages":2444343,
414#             "cache-miss":2244,
415#             "cache-miss-rate":0.123,
416#             "encoding-rate":80.1,
417#             "overflow":34434
418#          }
419#       }
420#    }
421##
422{ 'command': 'query-migrate', 'returns': 'MigrationInfo' }
423
424##
425# @MigrationCapability:
426#
427# Migration capabilities enumeration
428#
429# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length
430#     Encoding). This feature allows us to minimize migration traffic
431#     for certain work loads, by sending compressed difference of the
432#     pages
433#
434# @rdma-pin-all: Controls whether or not the entire VM memory
435#     footprint is mlock()'d on demand or all at once.  Refer to
436#     docs/rdma.txt for usage.  Disabled by default.  (since 2.0)
437#
438# @zero-blocks: During storage migration encode blocks of zeroes
439#     efficiently.  This essentially saves 1MB of zeroes per block on
440#     the wire.  Enabling requires source and target VM to support
441#     this feature.  To enable it is sufficient to enable the
442#     capability on the source VM. The feature is disabled by default.
443#     (since 1.6)
444#
445# @compress: Use multiple compression threads to accelerate live
446#     migration.  This feature can help to reduce the migration
447#     traffic, by sending compressed pages.  Please note that if
448#     compress and xbzrle are both on, compress only takes effect in
449#     the ram bulk stage, after that, it will be disabled and only
450#     xbzrle takes effect, this can help to minimize migration
451#     traffic.  The feature is disabled by default.  (since 2.4)
452#
453# @events: generate events for each migration state change (since 2.4)
454#
455# @auto-converge: If enabled, QEMU will automatically throttle down
456#     the guest to speed up convergence of RAM migration.  (since 1.6)
457#
458# @postcopy-ram: Start executing on the migration target before all of
459#     RAM has been migrated, pulling the remaining pages along as
460#     needed.  The capacity must have the same setting on both source
461#     and target or migration will not even start.  NOTE: If the
462#     migration fails during postcopy the VM will fail.  (since 2.6)
463#
464# @x-colo: If enabled, migration will never end, and the state of the
465#     VM on the primary side will be migrated continuously to the VM
466#     on secondary side, this process is called COarse-Grain LOck
467#     Stepping (COLO) for Non-stop Service.  (since 2.8)
468#
469# @release-ram: if enabled, qemu will free the migrated ram pages on
470#     the source during postcopy-ram migration.  (since 2.9)
471#
472# @block: If enabled, QEMU will also migrate the contents of all block
473#     devices.  Default is disabled.  A possible alternative uses
474#     mirror jobs to a builtin NBD server on the destination, which
475#     offers more flexibility.  (Since 2.10)
476#
477# @return-path: If enabled, migration will use the return path even
478#     for precopy.  (since 2.10)
479#
480# @pause-before-switchover: Pause outgoing migration before
481#     serialising device state and before disabling block IO (since
482#     2.11)
483#
484# @multifd: Use more than one fd for migration (since 4.0)
485#
486# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
487#     (since 2.12)
488#
489# @postcopy-blocktime: Calculate downtime for postcopy live migration
490#     (since 3.0)
491#
492# @late-block-activate: If enabled, the destination will not activate
493#     block devices (and thus take locks) immediately at the end of
494#     migration.  (since 3.0)
495#
496# @x-ignore-shared: If enabled, QEMU will not migrate shared memory
497#     that is accessible on the destination machine.  (since 4.0)
498#
499# @validate-uuid: Send the UUID of the source to allow the destination
500#     to ensure it is the same.  (since 4.2)
501#
502# @background-snapshot: If enabled, the migration stream will be a
503#     snapshot of the VM exactly at the point when the migration
504#     procedure starts.  The VM RAM is saved with running VM. (since
505#     6.0)
506#
507# @zero-copy-send: Controls behavior on sending memory pages on
508#     migration.  When true, enables a zero-copy mechanism for sending
509#     memory pages, if host supports it.  Requires that QEMU be
510#     permitted to use locked memory for guest RAM pages.  (since 7.1)
511#
512# @postcopy-preempt: If enabled, the migration process will allow
513#     postcopy requests to preempt precopy stream, so postcopy
514#     requests will be handled faster.  This is a performance feature
515#     and should not affect the correctness of postcopy migration.
516#     (since 7.1)
517#
518# @switchover-ack: If enabled, migration will not stop the source VM
519#     and complete the migration until an ACK is received from the
520#     destination that it's OK to do so.  Exactly when this ACK is
521#     sent depends on the migrated devices that use this feature.  For
522#     example, a device can use it to make sure some of its data is
523#     sent and loaded in the destination before doing switchover.
524#     This can reduce downtime if devices that support this capability
525#     are present.  'return-path' capability must be enabled to use
526#     it.  (since 8.1)
527#
528# @dirty-limit: If enabled, migration will throttle vCPUs as needed to
529#     keep their dirty page rate within @vcpu-dirty-limit.  This can
530#     improve responsiveness of large guests during live migration,
531#     and can result in more stable read performance.  Requires KVM
532#     with accelerator property "dirty-ring-size" set.  (Since 8.1)
533#
534# Features:
535#
536# @deprecated: Member @block is deprecated.  Use blockdev-mirror with
537#     NBD instead.  Member @compression is deprecated because it is
538#     unreliable and untested.  It is recommended to use multifd
539#     migration, which offers an alternative compression
540#     implementation that is reliable and tested.
541#
542# @unstable: Members @x-colo and @x-ignore-shared are experimental.
543#
544# Since: 1.2
545##
546{ 'enum': 'MigrationCapability',
547  'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
548           { 'name': 'compress', 'features': [ 'deprecated' ] },
549           'events', 'postcopy-ram',
550           { 'name': 'x-colo', 'features': [ 'unstable' ] },
551           'release-ram',
552           { 'name': 'block', 'features': [ 'deprecated' ] },
553           'return-path', 'pause-before-switchover', 'multifd',
554           'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
555           { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
556           'validate-uuid', 'background-snapshot',
557           'zero-copy-send', 'postcopy-preempt', 'switchover-ack',
558           'dirty-limit'] }
559
560##
561# @MigrationCapabilityStatus:
562#
563# Migration capability information
564#
565# @capability: capability enum
566#
567# @state: capability state bool
568#
569# Since: 1.2
570##
571{ 'struct': 'MigrationCapabilityStatus',
572  'data': { 'capability': 'MigrationCapability', 'state': 'bool' } }
573
574##
575# @migrate-set-capabilities:
576#
577# Enable/Disable the following migration capabilities (like xbzrle)
578#
579# @capabilities: json array of capability modifications to make
580#
581# Since: 1.2
582#
583# Example:
584#
585# -> { "execute": "migrate-set-capabilities" , "arguments":
586#      { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
587# <- { "return": {} }
588##
589{ 'command': 'migrate-set-capabilities',
590  'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
591
592##
593# @query-migrate-capabilities:
594#
595# Returns information about the current migration capabilities status
596#
597# Returns: @MigrationCapabilityStatus
598#
599# Since: 1.2
600#
601# Example:
602#
603# -> { "execute": "query-migrate-capabilities" }
604# <- { "return": [
605#       {"state": false, "capability": "xbzrle"},
606#       {"state": false, "capability": "rdma-pin-all"},
607#       {"state": false, "capability": "auto-converge"},
608#       {"state": false, "capability": "zero-blocks"},
609#       {"state": false, "capability": "compress"},
610#       {"state": true, "capability": "events"},
611#       {"state": false, "capability": "postcopy-ram"},
612#       {"state": false, "capability": "x-colo"}
613#    ]}
614##
615{ 'command': 'query-migrate-capabilities', 'returns':   ['MigrationCapabilityStatus']}
616
617##
618# @MultiFDCompression:
619#
620# An enumeration of multifd compression methods.
621#
622# @none: no compression.
623#
624# @zlib: use zlib compression method.
625#
626# @zstd: use zstd compression method.
627#
628# Since: 5.0
629##
630{ 'enum': 'MultiFDCompression',
631  'data': [ 'none', 'zlib',
632            { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
633
634##
635# @BitmapMigrationBitmapAliasTransform:
636#
637# @persistent: If present, the bitmap will be made persistent or
638#     transient depending on this parameter.
639#
640# Since: 6.0
641##
642{ 'struct': 'BitmapMigrationBitmapAliasTransform',
643  'data': {
644      '*persistent': 'bool'
645  } }
646
647##
648# @BitmapMigrationBitmapAlias:
649#
650# @name: The name of the bitmap.
651#
652# @alias: An alias name for migration (for example the bitmap name on
653#     the opposite site).
654#
655# @transform: Allows the modification of the migrated bitmap.  (since
656#     6.0)
657#
658# Since: 5.2
659##
660{ 'struct': 'BitmapMigrationBitmapAlias',
661  'data': {
662      'name': 'str',
663      'alias': 'str',
664      '*transform': 'BitmapMigrationBitmapAliasTransform'
665  } }
666
667##
668# @BitmapMigrationNodeAlias:
669#
670# Maps a block node name and the bitmaps it has to aliases for dirty
671# bitmap migration.
672#
673# @node-name: A block node name.
674#
675# @alias: An alias block node name for migration (for example the node
676#     name on the opposite site).
677#
678# @bitmaps: Mappings for the bitmaps on this node.
679#
680# Since: 5.2
681##
682{ 'struct': 'BitmapMigrationNodeAlias',
683  'data': {
684      'node-name': 'str',
685      'alias': 'str',
686      'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
687  } }
688
689##
690# @MigrationParameter:
691#
692# Migration parameters enumeration
693#
694# @announce-initial: Initial delay (in milliseconds) before sending
695#     the first announce (Since 4.0)
696#
697# @announce-max: Maximum delay (in milliseconds) between packets in
698#     the announcement (Since 4.0)
699#
700# @announce-rounds: Number of self-announce packets sent after
701#     migration (Since 4.0)
702#
703# @announce-step: Increase in delay (in milliseconds) between
704#     subsequent packets in the announcement (Since 4.0)
705#
706# @compress-level: Set the compression level to be used in live
707#     migration, the compression level is an integer between 0 and 9,
708#     where 0 means no compression, 1 means the best compression
709#     speed, and 9 means best compression ratio which will consume
710#     more CPU.
711#
712# @compress-threads: Set compression thread count to be used in live
713#     migration, the compression thread count is an integer between 1
714#     and 255.
715#
716# @compress-wait-thread: Controls behavior when all compression
717#     threads are currently busy.  If true (default), wait for a free
718#     compression thread to become available; otherwise, send the page
719#     uncompressed.  (Since 3.1)
720#
721# @decompress-threads: Set decompression thread count to be used in
722#     live migration, the decompression thread count is an integer
723#     between 1 and 255. Usually, decompression is at least 4 times as
724#     fast as compression, so set the decompress-threads to the number
725#     about 1/4 of compress-threads is adequate.
726#
727# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
728#     bytes_xfer_period to trigger throttling.  It is expressed as
729#     percentage.  The default value is 50. (Since 5.0)
730#
731# @cpu-throttle-initial: Initial percentage of time guest cpus are
732#     throttled when migration auto-converge is activated.  The
733#     default value is 20. (Since 2.7)
734#
735# @cpu-throttle-increment: throttle percentage increase each time
736#     auto-converge detects that migration is not making progress.
737#     The default value is 10. (Since 2.7)
738#
739# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
740#     the tail stage of throttling, the Guest is very sensitive to CPU
741#     percentage while the @cpu-throttle -increment is excessive
742#     usually at tail stage.  If this parameter is true, we will
743#     compute the ideal CPU percentage used by the Guest, which may
744#     exactly make the dirty rate match the dirty rate threshold.
745#     Then we will choose a smaller throttle increment between the one
746#     specified by @cpu-throttle-increment and the one generated by
747#     ideal CPU percentage.  Therefore, it is compatible to
748#     traditional throttling, meanwhile the throttle increment won't
749#     be excessive at tail stage.  The default value is false.  (Since
750#     5.1)
751#
752# @tls-creds: ID of the 'tls-creds' object that provides credentials
753#     for establishing a TLS connection over the migration data
754#     channel.  On the outgoing side of the migration, the credentials
755#     must be for a 'client' endpoint, while for the incoming side the
756#     credentials must be for a 'server' endpoint.  Setting this will
757#     enable TLS for all migrations.  The default is unset, resulting
758#     in unsecured migration at the QEMU level.  (Since 2.7)
759#
760# @tls-hostname: hostname of the target host for the migration.  This
761#     is required when using x509 based TLS credentials and the
762#     migration URI does not already include a hostname.  For example
763#     if using fd: or exec: based migration, the hostname must be
764#     provided so that the server's x509 certificate identity can be
765#     validated.  (Since 2.7)
766#
767# @tls-authz: ID of the 'authz' object subclass that provides access
768#     control checking of the TLS x509 certificate distinguished name.
769#     This object is only resolved at time of use, so can be deleted
770#     and recreated on the fly while the migration server is active.
771#     If missing, it will default to denying access (Since 4.0)
772#
773# @max-bandwidth: to set maximum speed for migration.  maximum speed
774#     in bytes per second.  (Since 2.8)
775#
776# @avail-switchover-bandwidth: to set the available bandwidth that
777#     migration can use during switchover phase.  NOTE!  This does not
778#     limit the bandwidth during switchover, but only for calculations when
779#     making decisions to switchover.  By default, this value is zero,
780#     which means QEMU will estimate the bandwidth automatically.  This can
781#     be set when the estimated value is not accurate, while the user is
782#     able to guarantee such bandwidth is available when switching over.
783#     When specified correctly, this can make the switchover decision much
784#     more accurate.  (Since 8.2)
785#
786# @downtime-limit: set maximum tolerated downtime for migration.
787#     maximum downtime in milliseconds (Since 2.8)
788#
789# @x-checkpoint-delay: The delay time (in ms) between two COLO
790#     checkpoints in periodic mode.  (Since 2.8)
791#
792# @block-incremental: Affects how much storage is migrated when the
793#     block migration capability is enabled.  When false, the entire
794#     storage backing chain is migrated into a flattened image at the
795#     destination; when true, only the active qcow2 layer is migrated
796#     and the destination must already have access to the same backing
797#     chain as was used on the source.  (since 2.10)
798#
799# @multifd-channels: Number of channels used to migrate data in
800#     parallel.  This is the same number that the number of sockets
801#     used for migration.  The default value is 2 (since 4.0)
802#
803# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
804#     needs to be a multiple of the target page size and a power of 2
805#     (Since 2.11)
806#
807# @max-postcopy-bandwidth: Background transfer bandwidth during
808#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
809#     (Since 3.0)
810#
811# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
812#     (Since 3.1)
813#
814# @multifd-compression: Which compression method to use.  Defaults to
815#     none.  (Since 5.0)
816#
817# @multifd-zlib-level: Set the compression level to be used in live
818#     migration, the compression level is an integer between 0 and 9,
819#     where 0 means no compression, 1 means the best compression
820#     speed, and 9 means best compression ratio which will consume
821#     more CPU. Defaults to 1. (Since 5.0)
822#
823# @multifd-zstd-level: Set the compression level to be used in live
824#     migration, the compression level is an integer between 0 and 20,
825#     where 0 means no compression, 1 means the best compression
826#     speed, and 20 means best compression ratio which will consume
827#     more CPU. Defaults to 1. (Since 5.0)
828#
829# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
830#     aliases for the purpose of dirty bitmap migration.  Such aliases
831#     may for example be the corresponding names on the opposite site.
832#     The mapping must be one-to-one, but not necessarily complete: On
833#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
834#     will be ignored.  On the destination, encountering an unmapped
835#     alias in the incoming migration stream will result in a report,
836#     and all further bitmap migration data will then be discarded.
837#     Note that the destination does not know about bitmaps it does
838#     not receive, so there is no limitation or requirement regarding
839#     the number of bitmaps received, or how they are named, or on
840#     which nodes they are placed.  By default (when this parameter
841#     has never been set), bitmap names are mapped to themselves.
842#     Nodes are mapped to their block device name if there is one, and
843#     to their node name otherwise.  (Since 5.2)
844#
845# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
846#     limit during live migration.  Should be in the range 1 to 1000ms.
847#     Defaults to 1000ms.  (Since 8.1)
848#
849# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
850#     Defaults to 1.  (Since 8.1)
851#
852# Features:
853#
854# @deprecated: Member @block-incremental is deprecated.  Use
855#     blockdev-mirror with NBD instead.  Members @compress-level,
856#     @compress-threads, @decompress-threads and @compress-wait-thread
857#     are deprecated because @compression is deprecated.
858#
859# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
860#     are experimental.
861#
862# Since: 2.4
863##
864{ 'enum': 'MigrationParameter',
865  'data': ['announce-initial', 'announce-max',
866           'announce-rounds', 'announce-step',
867           { 'name': 'compress-level', 'features': [ 'deprecated' ] },
868           { 'name': 'compress-threads', 'features': [ 'deprecated' ] },
869           { 'name': 'decompress-threads', 'features': [ 'deprecated' ] },
870           { 'name': 'compress-wait-thread', 'features': [ 'deprecated' ] },
871           'throttle-trigger-threshold',
872           'cpu-throttle-initial', 'cpu-throttle-increment',
873           'cpu-throttle-tailslow',
874           'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
875           'avail-switchover-bandwidth', 'downtime-limit',
876           { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
877           { 'name': 'block-incremental', 'features': [ 'deprecated' ] },
878           'multifd-channels',
879           'xbzrle-cache-size', 'max-postcopy-bandwidth',
880           'max-cpu-throttle', 'multifd-compression',
881           'multifd-zlib-level', 'multifd-zstd-level',
882           'block-bitmap-mapping',
883           { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] },
884           'vcpu-dirty-limit'] }
885
886##
887# @MigrateSetParameters:
888#
889# @announce-initial: Initial delay (in milliseconds) before sending
890#     the first announce (Since 4.0)
891#
892# @announce-max: Maximum delay (in milliseconds) between packets in
893#     the announcement (Since 4.0)
894#
895# @announce-rounds: Number of self-announce packets sent after
896#     migration (Since 4.0)
897#
898# @announce-step: Increase in delay (in milliseconds) between
899#     subsequent packets in the announcement (Since 4.0)
900#
901# @compress-level: compression level
902#
903# @compress-threads: compression thread count
904#
905# @compress-wait-thread: Controls behavior when all compression
906#     threads are currently busy.  If true (default), wait for a free
907#     compression thread to become available; otherwise, send the page
908#     uncompressed.  (Since 3.1)
909#
910# @decompress-threads: decompression thread count
911#
912# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
913#     bytes_xfer_period to trigger throttling.  It is expressed as
914#     percentage.  The default value is 50. (Since 5.0)
915#
916# @cpu-throttle-initial: Initial percentage of time guest cpus are
917#     throttled when migration auto-converge is activated.  The
918#     default value is 20. (Since 2.7)
919#
920# @cpu-throttle-increment: throttle percentage increase each time
921#     auto-converge detects that migration is not making progress.
922#     The default value is 10. (Since 2.7)
923#
924# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
925#     the tail stage of throttling, the Guest is very sensitive to CPU
926#     percentage while the @cpu-throttle -increment is excessive
927#     usually at tail stage.  If this parameter is true, we will
928#     compute the ideal CPU percentage used by the Guest, which may
929#     exactly make the dirty rate match the dirty rate threshold.
930#     Then we will choose a smaller throttle increment between the one
931#     specified by @cpu-throttle-increment and the one generated by
932#     ideal CPU percentage.  Therefore, it is compatible to
933#     traditional throttling, meanwhile the throttle increment won't
934#     be excessive at tail stage.  The default value is false.  (Since
935#     5.1)
936#
937# @tls-creds: ID of the 'tls-creds' object that provides credentials
938#     for establishing a TLS connection over the migration data
939#     channel.  On the outgoing side of the migration, the credentials
940#     must be for a 'client' endpoint, while for the incoming side the
941#     credentials must be for a 'server' endpoint.  Setting this to a
942#     non-empty string enables TLS for all migrations.  An empty
943#     string means that QEMU will use plain text mode for migration,
944#     rather than TLS (Since 2.9) Previously (since 2.7), this was
945#     reported by omitting tls-creds instead.
946#
947# @tls-hostname: hostname of the target host for the migration.  This
948#     is required when using x509 based TLS credentials and the
949#     migration URI does not already include a hostname.  For example
950#     if using fd: or exec: based migration, the hostname must be
951#     provided so that the server's x509 certificate identity can be
952#     validated.  (Since 2.7) An empty string means that QEMU will use
953#     the hostname associated with the migration URI, if any.  (Since
954#     2.9) Previously (since 2.7), this was reported by omitting
955#     tls-hostname instead.
956#
957# @max-bandwidth: to set maximum speed for migration.  maximum speed
958#     in bytes per second.  (Since 2.8)
959#
960# @avail-switchover-bandwidth: to set the available bandwidth that
961#     migration can use during switchover phase.  NOTE!  This does not
962#     limit the bandwidth during switchover, but only for calculations when
963#     making decisions to switchover.  By default, this value is zero,
964#     which means QEMU will estimate the bandwidth automatically.  This can
965#     be set when the estimated value is not accurate, while the user is
966#     able to guarantee such bandwidth is available when switching over.
967#     When specified correctly, this can make the switchover decision much
968#     more accurate.  (Since 8.2)
969#
970# @downtime-limit: set maximum tolerated downtime for migration.
971#     maximum downtime in milliseconds (Since 2.8)
972#
973# @x-checkpoint-delay: the delay time between two COLO checkpoints.
974#     (Since 2.8)
975#
976# @block-incremental: Affects how much storage is migrated when the
977#     block migration capability is enabled.  When false, the entire
978#     storage backing chain is migrated into a flattened image at the
979#     destination; when true, only the active qcow2 layer is migrated
980#     and the destination must already have access to the same backing
981#     chain as was used on the source.  (since 2.10)
982#
983# @multifd-channels: Number of channels used to migrate data in
984#     parallel.  This is the same number that the number of sockets
985#     used for migration.  The default value is 2 (since 4.0)
986#
987# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
988#     needs to be a multiple of the target page size and a power of 2
989#     (Since 2.11)
990#
991# @max-postcopy-bandwidth: Background transfer bandwidth during
992#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
993#     (Since 3.0)
994#
995# @max-cpu-throttle: maximum cpu throttle percentage.  The default
996#     value is 99. (Since 3.1)
997#
998# @multifd-compression: Which compression method to use.  Defaults to
999#     none.  (Since 5.0)
1000#
1001# @multifd-zlib-level: Set the compression level to be used in live
1002#     migration, the compression level is an integer between 0 and 9,
1003#     where 0 means no compression, 1 means the best compression
1004#     speed, and 9 means best compression ratio which will consume
1005#     more CPU. Defaults to 1. (Since 5.0)
1006#
1007# @multifd-zstd-level: Set the compression level to be used in live
1008#     migration, the compression level is an integer between 0 and 20,
1009#     where 0 means no compression, 1 means the best compression
1010#     speed, and 20 means best compression ratio which will consume
1011#     more CPU. Defaults to 1. (Since 5.0)
1012#
1013# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1014#     aliases for the purpose of dirty bitmap migration.  Such aliases
1015#     may for example be the corresponding names on the opposite site.
1016#     The mapping must be one-to-one, but not necessarily complete: On
1017#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
1018#     will be ignored.  On the destination, encountering an unmapped
1019#     alias in the incoming migration stream will result in a report,
1020#     and all further bitmap migration data will then be discarded.
1021#     Note that the destination does not know about bitmaps it does
1022#     not receive, so there is no limitation or requirement regarding
1023#     the number of bitmaps received, or how they are named, or on
1024#     which nodes they are placed.  By default (when this parameter
1025#     has never been set), bitmap names are mapped to themselves.
1026#     Nodes are mapped to their block device name if there is one, and
1027#     to their node name otherwise.  (Since 5.2)
1028#
1029# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1030#     limit during live migration.  Should be in the range 1 to 1000ms.
1031#     Defaults to 1000ms.  (Since 8.1)
1032#
1033# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1034#     Defaults to 1.  (Since 8.1)
1035#
1036# Features:
1037#
1038# @deprecated: Member @block-incremental is deprecated.  Use
1039#     blockdev-mirror with NBD instead.  Members @compress-level,
1040#     @compress-threads, @decompress-threads and @compress-wait-thread
1041#     are deprecated because @compression is deprecated.
1042#
1043# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
1044#     are experimental.
1045#
1046# TODO: either fuse back into MigrationParameters, or make
1047#     MigrationParameters members mandatory
1048#
1049# Since: 2.4
1050##
1051{ 'struct': 'MigrateSetParameters',
1052  'data': { '*announce-initial': 'size',
1053            '*announce-max': 'size',
1054            '*announce-rounds': 'size',
1055            '*announce-step': 'size',
1056            '*compress-level': { 'type': 'uint8',
1057                                 'features': [ 'deprecated' ] },
1058            '*compress-threads':  { 'type': 'uint8',
1059                                    'features': [ 'deprecated' ] },
1060            '*compress-wait-thread':  { 'type': 'bool',
1061                                        'features': [ 'deprecated' ] },
1062            '*decompress-threads':  { 'type': 'uint8',
1063                                      'features': [ 'deprecated' ] },
1064            '*throttle-trigger-threshold': 'uint8',
1065            '*cpu-throttle-initial': 'uint8',
1066            '*cpu-throttle-increment': 'uint8',
1067            '*cpu-throttle-tailslow': 'bool',
1068            '*tls-creds': 'StrOrNull',
1069            '*tls-hostname': 'StrOrNull',
1070            '*tls-authz': 'StrOrNull',
1071            '*max-bandwidth': 'size',
1072            '*avail-switchover-bandwidth': 'size',
1073            '*downtime-limit': 'uint64',
1074            '*x-checkpoint-delay': { 'type': 'uint32',
1075                                     'features': [ 'unstable' ] },
1076            '*block-incremental': { 'type': 'bool',
1077                                    'features': [ 'deprecated' ] },
1078            '*multifd-channels': 'uint8',
1079            '*xbzrle-cache-size': 'size',
1080            '*max-postcopy-bandwidth': 'size',
1081            '*max-cpu-throttle': 'uint8',
1082            '*multifd-compression': 'MultiFDCompression',
1083            '*multifd-zlib-level': 'uint8',
1084            '*multifd-zstd-level': 'uint8',
1085            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1086            '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1087                                            'features': [ 'unstable' ] },
1088            '*vcpu-dirty-limit': 'uint64'} }
1089
1090##
1091# @migrate-set-parameters:
1092#
1093# Set various migration parameters.
1094#
1095# Since: 2.4
1096#
1097# Example:
1098#
1099# -> { "execute": "migrate-set-parameters" ,
1100#      "arguments": { "multifd-channels": 5 } }
1101# <- { "return": {} }
1102##
1103{ 'command': 'migrate-set-parameters', 'boxed': true,
1104  'data': 'MigrateSetParameters' }
1105
1106##
1107# @MigrationParameters:
1108#
1109# The optional members aren't actually optional.
1110#
1111# @announce-initial: Initial delay (in milliseconds) before sending
1112#     the first announce (Since 4.0)
1113#
1114# @announce-max: Maximum delay (in milliseconds) between packets in
1115#     the announcement (Since 4.0)
1116#
1117# @announce-rounds: Number of self-announce packets sent after
1118#     migration (Since 4.0)
1119#
1120# @announce-step: Increase in delay (in milliseconds) between
1121#     subsequent packets in the announcement (Since 4.0)
1122#
1123# @compress-level: compression level
1124#
1125# @compress-threads: compression thread count
1126#
1127# @compress-wait-thread: Controls behavior when all compression
1128#     threads are currently busy.  If true (default), wait for a free
1129#     compression thread to become available; otherwise, send the page
1130#     uncompressed.  (Since 3.1)
1131#
1132# @decompress-threads: decompression thread count
1133#
1134# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
1135#     bytes_xfer_period to trigger throttling.  It is expressed as
1136#     percentage.  The default value is 50. (Since 5.0)
1137#
1138# @cpu-throttle-initial: Initial percentage of time guest cpus are
1139#     throttled when migration auto-converge is activated.  (Since
1140#     2.7)
1141#
1142# @cpu-throttle-increment: throttle percentage increase each time
1143#     auto-converge detects that migration is not making progress.
1144#     (Since 2.7)
1145#
1146# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
1147#     the tail stage of throttling, the Guest is very sensitive to CPU
1148#     percentage while the @cpu-throttle -increment is excessive
1149#     usually at tail stage.  If this parameter is true, we will
1150#     compute the ideal CPU percentage used by the Guest, which may
1151#     exactly make the dirty rate match the dirty rate threshold.
1152#     Then we will choose a smaller throttle increment between the one
1153#     specified by @cpu-throttle-increment and the one generated by
1154#     ideal CPU percentage.  Therefore, it is compatible to
1155#     traditional throttling, meanwhile the throttle increment won't
1156#     be excessive at tail stage.  The default value is false.  (Since
1157#     5.1)
1158#
1159# @tls-creds: ID of the 'tls-creds' object that provides credentials
1160#     for establishing a TLS connection over the migration data
1161#     channel.  On the outgoing side of the migration, the credentials
1162#     must be for a 'client' endpoint, while for the incoming side the
1163#     credentials must be for a 'server' endpoint.  An empty string
1164#     means that QEMU will use plain text mode for migration, rather
1165#     than TLS (Since 2.7) Note: 2.8 reports this by omitting
1166#     tls-creds instead.
1167#
1168# @tls-hostname: hostname of the target host for the migration.  This
1169#     is required when using x509 based TLS credentials and the
1170#     migration URI does not already include a hostname.  For example
1171#     if using fd: or exec: based migration, the hostname must be
1172#     provided so that the server's x509 certificate identity can be
1173#     validated.  (Since 2.7) An empty string means that QEMU will use
1174#     the hostname associated with the migration URI, if any.  (Since
1175#     2.9) Note: 2.8 reports this by omitting tls-hostname instead.
1176#
1177# @tls-authz: ID of the 'authz' object subclass that provides access
1178#     control checking of the TLS x509 certificate distinguished name.
1179#     (Since 4.0)
1180#
1181# @max-bandwidth: to set maximum speed for migration.  maximum speed
1182#     in bytes per second.  (Since 2.8)
1183#
1184# @avail-switchover-bandwidth: to set the available bandwidth that
1185#     migration can use during switchover phase.  NOTE!  This does not
1186#     limit the bandwidth during switchover, but only for calculations when
1187#     making decisions to switchover.  By default, this value is zero,
1188#     which means QEMU will estimate the bandwidth automatically.  This can
1189#     be set when the estimated value is not accurate, while the user is
1190#     able to guarantee such bandwidth is available when switching over.
1191#     When specified correctly, this can make the switchover decision much
1192#     more accurate.  (Since 8.2)
1193#
1194# @downtime-limit: set maximum tolerated downtime for migration.
1195#     maximum downtime in milliseconds (Since 2.8)
1196#
1197# @x-checkpoint-delay: the delay time between two COLO checkpoints.
1198#     (Since 2.8)
1199#
1200# @block-incremental: Affects how much storage is migrated when the
1201#     block migration capability is enabled.  When false, the entire
1202#     storage backing chain is migrated into a flattened image at the
1203#     destination; when true, only the active qcow2 layer is migrated
1204#     and the destination must already have access to the same backing
1205#     chain as was used on the source.  (since 2.10)
1206#
1207# @multifd-channels: Number of channels used to migrate data in
1208#     parallel.  This is the same number that the number of sockets
1209#     used for migration.  The default value is 2 (since 4.0)
1210#
1211# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
1212#     needs to be a multiple of the target page size and a power of 2
1213#     (Since 2.11)
1214#
1215# @max-postcopy-bandwidth: Background transfer bandwidth during
1216#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
1217#     (Since 3.0)
1218#
1219# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
1220#     (Since 3.1)
1221#
1222# @multifd-compression: Which compression method to use.  Defaults to
1223#     none.  (Since 5.0)
1224#
1225# @multifd-zlib-level: Set the compression level to be used in live
1226#     migration, the compression level is an integer between 0 and 9,
1227#     where 0 means no compression, 1 means the best compression
1228#     speed, and 9 means best compression ratio which will consume
1229#     more CPU. Defaults to 1. (Since 5.0)
1230#
1231# @multifd-zstd-level: Set the compression level to be used in live
1232#     migration, the compression level is an integer between 0 and 20,
1233#     where 0 means no compression, 1 means the best compression
1234#     speed, and 20 means best compression ratio which will consume
1235#     more CPU. Defaults to 1. (Since 5.0)
1236#
1237# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1238#     aliases for the purpose of dirty bitmap migration.  Such aliases
1239#     may for example be the corresponding names on the opposite site.
1240#     The mapping must be one-to-one, but not necessarily complete: On
1241#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
1242#     will be ignored.  On the destination, encountering an unmapped
1243#     alias in the incoming migration stream will result in a report,
1244#     and all further bitmap migration data will then be discarded.
1245#     Note that the destination does not know about bitmaps it does
1246#     not receive, so there is no limitation or requirement regarding
1247#     the number of bitmaps received, or how they are named, or on
1248#     which nodes they are placed.  By default (when this parameter
1249#     has never been set), bitmap names are mapped to themselves.
1250#     Nodes are mapped to their block device name if there is one, and
1251#     to their node name otherwise.  (Since 5.2)
1252#
1253# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1254#     limit during live migration.  Should be in the range 1 to 1000ms.
1255#     Defaults to 1000ms.  (Since 8.1)
1256#
1257# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1258#     Defaults to 1.  (Since 8.1)
1259#
1260# Features:
1261#
1262# @deprecated: Member @block-incremental is deprecated.  Use
1263#     blockdev-mirror with NBD instead.  Members @compress-level,
1264#     @compress-threads, @decompress-threads and @compress-wait-thread
1265#     are deprecated because @compression is deprecated.
1266#
1267# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
1268#     are experimental.
1269#
1270# Since: 2.4
1271##
1272{ 'struct': 'MigrationParameters',
1273  'data': { '*announce-initial': 'size',
1274            '*announce-max': 'size',
1275            '*announce-rounds': 'size',
1276            '*announce-step': 'size',
1277            '*compress-level': { 'type': 'uint8',
1278                                 'features': [ 'deprecated' ] },
1279            '*compress-threads': { 'type': 'uint8',
1280                                   'features': [ 'deprecated' ] },
1281            '*compress-wait-thread': { 'type': 'bool',
1282                                       'features': [ 'deprecated' ] },
1283            '*decompress-threads': { 'type': 'uint8',
1284                                     'features': [ 'deprecated' ] },
1285            '*throttle-trigger-threshold': 'uint8',
1286            '*cpu-throttle-initial': 'uint8',
1287            '*cpu-throttle-increment': 'uint8',
1288            '*cpu-throttle-tailslow': 'bool',
1289            '*tls-creds': 'str',
1290            '*tls-hostname': 'str',
1291            '*tls-authz': 'str',
1292            '*max-bandwidth': 'size',
1293            '*avail-switchover-bandwidth': 'size',
1294            '*downtime-limit': 'uint64',
1295            '*x-checkpoint-delay': { 'type': 'uint32',
1296                                     'features': [ 'unstable' ] },
1297            '*block-incremental': { 'type': 'bool',
1298                                    'features': [ 'deprecated' ] },
1299            '*multifd-channels': 'uint8',
1300            '*xbzrle-cache-size': 'size',
1301            '*max-postcopy-bandwidth': 'size',
1302            '*max-cpu-throttle': 'uint8',
1303            '*multifd-compression': 'MultiFDCompression',
1304            '*multifd-zlib-level': 'uint8',
1305            '*multifd-zstd-level': 'uint8',
1306            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1307            '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1308                                            'features': [ 'unstable' ] },
1309            '*vcpu-dirty-limit': 'uint64'} }
1310
1311##
1312# @query-migrate-parameters:
1313#
1314# Returns information about the current migration parameters
1315#
1316# Returns: @MigrationParameters
1317#
1318# Since: 2.4
1319#
1320# Example:
1321#
1322# -> { "execute": "query-migrate-parameters" }
1323# <- { "return": {
1324#          "multifd-channels": 2,
1325#          "cpu-throttle-increment": 10,
1326#          "cpu-throttle-initial": 20,
1327#          "max-bandwidth": 33554432,
1328#          "downtime-limit": 300
1329#       }
1330#    }
1331##
1332{ 'command': 'query-migrate-parameters',
1333  'returns': 'MigrationParameters' }
1334
1335##
1336# @migrate-start-postcopy:
1337#
1338# Followup to a migration command to switch the migration to postcopy
1339# mode.  The postcopy-ram capability must be set on both source and
1340# destination before the original migration command.
1341#
1342# Since: 2.5
1343#
1344# Example:
1345#
1346# -> { "execute": "migrate-start-postcopy" }
1347# <- { "return": {} }
1348##
1349{ 'command': 'migrate-start-postcopy' }
1350
1351##
1352# @MIGRATION:
1353#
1354# Emitted when a migration event happens
1355#
1356# @status: @MigrationStatus describing the current migration status.
1357#
1358# Since: 2.4
1359#
1360# Example:
1361#
1362# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1363#     "event": "MIGRATION",
1364#     "data": {"status": "completed"} }
1365##
1366{ 'event': 'MIGRATION',
1367  'data': {'status': 'MigrationStatus'}}
1368
1369##
1370# @MIGRATION_PASS:
1371#
1372# Emitted from the source side of a migration at the start of each
1373# pass (when it syncs the dirty bitmap)
1374#
1375# @pass: An incrementing count (starting at 1 on the first pass)
1376#
1377# Since: 2.6
1378#
1379# Example:
1380#
1381# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1382#       "event": "MIGRATION_PASS", "data": {"pass": 2} }
1383##
1384{ 'event': 'MIGRATION_PASS',
1385  'data': { 'pass': 'int' } }
1386
1387##
1388# @COLOMessage:
1389#
1390# The message transmission between Primary side and Secondary side.
1391#
1392# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1393#
1394# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for
1395#     checkpointing
1396#
1397# @checkpoint-reply: SVM gets PVM's checkpoint request
1398#
1399# @vmstate-send: VM's state will be sent by PVM.
1400#
1401# @vmstate-size: The total size of VMstate.
1402#
1403# @vmstate-received: VM's state has been received by SVM.
1404#
1405# @vmstate-loaded: VM's state has been loaded by SVM.
1406#
1407# Since: 2.8
1408##
1409{ 'enum': 'COLOMessage',
1410  'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1411            'vmstate-send', 'vmstate-size', 'vmstate-received',
1412            'vmstate-loaded' ] }
1413
1414##
1415# @COLOMode:
1416#
1417# The COLO current mode.
1418#
1419# @none: COLO is disabled.
1420#
1421# @primary: COLO node in primary side.
1422#
1423# @secondary: COLO node in slave side.
1424#
1425# Since: 2.8
1426##
1427{ 'enum': 'COLOMode',
1428  'data': [ 'none', 'primary', 'secondary'] }
1429
1430##
1431# @FailoverStatus:
1432#
1433# An enumeration of COLO failover status
1434#
1435# @none: no failover has ever happened
1436#
1437# @require: got failover requirement but not handled
1438#
1439# @active: in the process of doing failover
1440#
1441# @completed: finish the process of failover
1442#
1443# @relaunch: restart the failover process, from 'none' -> 'completed'
1444#     (Since 2.9)
1445#
1446# Since: 2.8
1447##
1448{ 'enum': 'FailoverStatus',
1449  'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1450
1451##
1452# @COLO_EXIT:
1453#
1454# Emitted when VM finishes COLO mode due to some errors happening or
1455# at the request of users.
1456#
1457# @mode: report COLO mode when COLO exited.
1458#
1459# @reason: describes the reason for the COLO exit.
1460#
1461# Since: 3.1
1462#
1463# Example:
1464#
1465# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1466#      "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1467##
1468{ 'event': 'COLO_EXIT',
1469  'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1470
1471##
1472# @COLOExitReason:
1473#
1474# The reason for a COLO exit.
1475#
1476# @none: failover has never happened.  This state does not occur in
1477#     the COLO_EXIT event, and is only visible in the result of
1478#     query-colo-status.
1479#
1480# @request: COLO exit is due to an external request.
1481#
1482# @error: COLO exit is due to an internal error.
1483#
1484# @processing: COLO is currently handling a failover (since 4.0).
1485#
1486# Since: 3.1
1487##
1488{ 'enum': 'COLOExitReason',
1489  'data': [ 'none', 'request', 'error' , 'processing' ] }
1490
1491##
1492# @x-colo-lost-heartbeat:
1493#
1494# Tell qemu that heartbeat is lost, request it to do takeover
1495# procedures.  If this command is sent to the PVM, the Primary side
1496# will exit COLO mode.  If sent to the Secondary, the Secondary side
1497# will run failover work, then takes over server operation to become
1498# the service VM.
1499#
1500# Features:
1501#
1502# @unstable: This command is experimental.
1503#
1504# Since: 2.8
1505#
1506# Example:
1507#
1508# -> { "execute": "x-colo-lost-heartbeat" }
1509# <- { "return": {} }
1510##
1511{ 'command': 'x-colo-lost-heartbeat',
1512  'features': [ 'unstable' ],
1513  'if': 'CONFIG_REPLICATION' }
1514
1515##
1516# @migrate_cancel:
1517#
1518# Cancel the current executing migration process.
1519#
1520# Returns: nothing on success
1521#
1522# Notes: This command succeeds even if there is no migration process
1523#     running.
1524#
1525# Since: 0.14
1526#
1527# Example:
1528#
1529# -> { "execute": "migrate_cancel" }
1530# <- { "return": {} }
1531##
1532{ 'command': 'migrate_cancel' }
1533
1534##
1535# @migrate-continue:
1536#
1537# Continue migration when it's in a paused state.
1538#
1539# @state: The state the migration is currently expected to be in
1540#
1541# Returns: nothing on success
1542#
1543# Since: 2.11
1544#
1545# Example:
1546#
1547# -> { "execute": "migrate-continue" , "arguments":
1548#      { "state": "pre-switchover" } }
1549# <- { "return": {} }
1550##
1551{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1552
1553##
1554# @migrate:
1555#
1556# Migrates the current running guest to another Virtual Machine.
1557#
1558# @uri: the Uniform Resource Identifier of the destination VM
1559#
1560# @blk: do block migration (full disk copy)
1561#
1562# @inc: incremental disk copy migration
1563#
1564# @detach: this argument exists only for compatibility reasons and is
1565#     ignored by QEMU
1566#
1567# @resume: resume one paused migration, default "off". (since 3.0)
1568#
1569# Features:
1570#
1571# @deprecated: Members @inc and @blk are deprecated.  Use
1572#     blockdev-mirror with NBD instead.
1573#
1574# Returns: nothing on success
1575#
1576# Since: 0.14
1577#
1578# Notes:
1579#
1580# 1. The 'query-migrate' command should be used to check migration's
1581#    progress and final result (this information is provided by the
1582#    'status' member)
1583#
1584# 2. All boolean arguments default to false
1585#
1586# 3. The user Monitor's "detach" argument is invalid in QMP and should
1587#    not be used
1588#
1589# Example:
1590#
1591# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1592# <- { "return": {} }
1593##
1594{ 'command': 'migrate',
1595  'data': {'uri': 'str',
1596           '*blk': { 'type': 'bool', 'features': [ 'deprecated' ] },
1597           '*inc': { 'type': 'bool', 'features': [ 'deprecated' ] },
1598           '*detach': 'bool', '*resume': 'bool' } }
1599
1600##
1601# @migrate-incoming:
1602#
1603# Start an incoming migration, the qemu must have been started with
1604# -incoming defer
1605#
1606# @uri: The Uniform Resource Identifier identifying the source or
1607#     address to listen on
1608#
1609# Returns: nothing on success
1610#
1611# Since: 2.3
1612#
1613# Notes:
1614#
1615# 1. It's a bad idea to use a string for the uri, but it needs
1616#    to stay compatible with -incoming and the format of the uri
1617#    is already exposed above libvirt.
1618#
1619# 2. QEMU must be started with -incoming defer to allow
1620#    migrate-incoming to be used.
1621#
1622# 3. The uri format is the same as for -incoming
1623#
1624# Example:
1625#
1626# -> { "execute": "migrate-incoming",
1627#      "arguments": { "uri": "tcp::4446" } }
1628# <- { "return": {} }
1629##
1630{ 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
1631
1632##
1633# @xen-save-devices-state:
1634#
1635# Save the state of all devices to file.  The RAM and the block
1636# devices of the VM are not saved by this command.
1637#
1638# @filename: the file to save the state of the devices to as binary
1639#     data.  See xen-save-devices-state.txt for a description of the
1640#     binary format.
1641#
1642# @live: Optional argument to ask QEMU to treat this command as part
1643#     of a live migration.  Default to true.  (since 2.11)
1644#
1645# Returns: Nothing on success
1646#
1647# Since: 1.1
1648#
1649# Example:
1650#
1651# -> { "execute": "xen-save-devices-state",
1652#      "arguments": { "filename": "/tmp/save" } }
1653# <- { "return": {} }
1654##
1655{ 'command': 'xen-save-devices-state',
1656  'data': {'filename': 'str', '*live':'bool' } }
1657
1658##
1659# @xen-set-global-dirty-log:
1660#
1661# Enable or disable the global dirty log mode.
1662#
1663# @enable: true to enable, false to disable.
1664#
1665# Returns: nothing
1666#
1667# Since: 1.3
1668#
1669# Example:
1670#
1671# -> { "execute": "xen-set-global-dirty-log",
1672#      "arguments": { "enable": true } }
1673# <- { "return": {} }
1674##
1675{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1676
1677##
1678# @xen-load-devices-state:
1679#
1680# Load the state of all devices from file.  The RAM and the block
1681# devices of the VM are not loaded by this command.
1682#
1683# @filename: the file to load the state of the devices from as binary
1684#     data.  See xen-save-devices-state.txt for a description of the
1685#     binary format.
1686#
1687# Since: 2.7
1688#
1689# Example:
1690#
1691# -> { "execute": "xen-load-devices-state",
1692#      "arguments": { "filename": "/tmp/resume" } }
1693# <- { "return": {} }
1694##
1695{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1696
1697##
1698# @xen-set-replication:
1699#
1700# Enable or disable replication.
1701#
1702# @enable: true to enable, false to disable.
1703#
1704# @primary: true for primary or false for secondary.
1705#
1706# @failover: true to do failover, false to stop.  but cannot be
1707#     specified if 'enable' is true.  default value is false.
1708#
1709# Returns: nothing.
1710#
1711# Example:
1712#
1713# -> { "execute": "xen-set-replication",
1714#      "arguments": {"enable": true, "primary": false} }
1715# <- { "return": {} }
1716#
1717# Since: 2.9
1718##
1719{ 'command': 'xen-set-replication',
1720  'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' },
1721  'if': 'CONFIG_REPLICATION' }
1722
1723##
1724# @ReplicationStatus:
1725#
1726# The result format for 'query-xen-replication-status'.
1727#
1728# @error: true if an error happened, false if replication is normal.
1729#
1730# @desc: the human readable error description string, when @error is
1731#     'true'.
1732#
1733# Since: 2.9
1734##
1735{ 'struct': 'ReplicationStatus',
1736  'data': { 'error': 'bool', '*desc': 'str' },
1737  'if': 'CONFIG_REPLICATION' }
1738
1739##
1740# @query-xen-replication-status:
1741#
1742# Query replication status while the vm is running.
1743#
1744# Returns: A @ReplicationStatus object showing the status.
1745#
1746# Example:
1747#
1748# -> { "execute": "query-xen-replication-status" }
1749# <- { "return": { "error": false } }
1750#
1751# Since: 2.9
1752##
1753{ 'command': 'query-xen-replication-status',
1754  'returns': 'ReplicationStatus',
1755  'if': 'CONFIG_REPLICATION' }
1756
1757##
1758# @xen-colo-do-checkpoint:
1759#
1760# Xen uses this command to notify replication to trigger a checkpoint.
1761#
1762# Returns: nothing.
1763#
1764# Example:
1765#
1766# -> { "execute": "xen-colo-do-checkpoint" }
1767# <- { "return": {} }
1768#
1769# Since: 2.9
1770##
1771{ 'command': 'xen-colo-do-checkpoint',
1772  'if': 'CONFIG_REPLICATION' }
1773
1774##
1775# @COLOStatus:
1776#
1777# The result format for 'query-colo-status'.
1778#
1779# @mode: COLO running mode.  If COLO is running, this field will
1780#     return 'primary' or 'secondary'.
1781#
1782# @last-mode: COLO last running mode.  If COLO is running, this field
1783#     will return same like mode field, after failover we can use this
1784#     field to get last colo mode.  (since 4.0)
1785#
1786# @reason: describes the reason for the COLO exit.
1787#
1788# Since: 3.1
1789##
1790{ 'struct': 'COLOStatus',
1791  'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
1792            'reason': 'COLOExitReason' },
1793  'if': 'CONFIG_REPLICATION' }
1794
1795##
1796# @query-colo-status:
1797#
1798# Query COLO status while the vm is running.
1799#
1800# Returns: A @COLOStatus object showing the status.
1801#
1802# Example:
1803#
1804# -> { "execute": "query-colo-status" }
1805# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
1806#
1807# Since: 3.1
1808##
1809{ 'command': 'query-colo-status',
1810  'returns': 'COLOStatus',
1811  'if': 'CONFIG_REPLICATION' }
1812
1813##
1814# @migrate-recover:
1815#
1816# Provide a recovery migration stream URI.
1817#
1818# @uri: the URI to be used for the recovery of migration stream.
1819#
1820# Returns: nothing.
1821#
1822# Example:
1823#
1824# -> { "execute": "migrate-recover",
1825#      "arguments": { "uri": "tcp:192.168.1.200:12345" } }
1826# <- { "return": {} }
1827#
1828# Since: 3.0
1829##
1830{ 'command': 'migrate-recover',
1831  'data': { 'uri': 'str' },
1832  'allow-oob': true }
1833
1834##
1835# @migrate-pause:
1836#
1837# Pause a migration.  Currently it only supports postcopy.
1838#
1839# Returns: nothing.
1840#
1841# Example:
1842#
1843# -> { "execute": "migrate-pause" }
1844# <- { "return": {} }
1845#
1846# Since: 3.0
1847##
1848{ 'command': 'migrate-pause', 'allow-oob': true }
1849
1850##
1851# @UNPLUG_PRIMARY:
1852#
1853# Emitted from source side of a migration when migration state is
1854# WAIT_UNPLUG. Device was unplugged by guest operating system.  Device
1855# resources in QEMU are kept on standby to be able to re-plug it in
1856# case of migration failure.
1857#
1858# @device-id: QEMU device id of the unplugged device
1859#
1860# Since: 4.2
1861#
1862# Example:
1863#
1864# <- { "event": "UNPLUG_PRIMARY",
1865#      "data": { "device-id": "hostdev0" },
1866#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1867##
1868{ 'event': 'UNPLUG_PRIMARY',
1869  'data': { 'device-id': 'str' } }
1870
1871##
1872# @DirtyRateVcpu:
1873#
1874# Dirty rate of vcpu.
1875#
1876# @id: vcpu index.
1877#
1878# @dirty-rate: dirty rate.
1879#
1880# Since: 6.2
1881##
1882{ 'struct': 'DirtyRateVcpu',
1883  'data': { 'id': 'int', 'dirty-rate': 'int64' } }
1884
1885##
1886# @DirtyRateStatus:
1887#
1888# Dirty page rate measurement status.
1889#
1890# @unstarted: measuring thread has not been started yet
1891#
1892# @measuring: measuring thread is running
1893#
1894# @measured: dirty page rate is measured and the results are available
1895#
1896# Since: 5.2
1897##
1898{ 'enum': 'DirtyRateStatus',
1899  'data': [ 'unstarted', 'measuring', 'measured'] }
1900
1901##
1902# @DirtyRateMeasureMode:
1903#
1904# Method used to measure dirty page rate.  Differences between
1905# available methods are explained in @calc-dirty-rate.
1906#
1907# @page-sampling: use page sampling
1908#
1909# @dirty-ring: use dirty ring
1910#
1911# @dirty-bitmap: use dirty bitmap
1912#
1913# Since: 6.2
1914##
1915{ 'enum': 'DirtyRateMeasureMode',
1916  'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
1917
1918##
1919# @TimeUnit:
1920#
1921# Specifies unit in which time-related value is specified.
1922#
1923# @second: value is in seconds
1924#
1925# @millisecond: value is in milliseconds
1926#
1927# Since 8.2
1928#
1929##
1930{ 'enum': 'TimeUnit',
1931  'data': ['second', 'millisecond'] }
1932
1933##
1934# @DirtyRateInfo:
1935#
1936# Information about measured dirty page rate.
1937#
1938# @dirty-rate: an estimate of the dirty page rate of the VM in units
1939#     of MiB/s.  Value is present only when @status is 'measured'.
1940#
1941# @status: current status of dirty page rate measurements
1942#
1943# @start-time: start time in units of second for calculation
1944#
1945# @calc-time: time period for which dirty page rate was measured,
1946#     expressed and rounded down to @calc-time-unit.
1947#
1948# @calc-time-unit: time unit of @calc-time  (Since 8.2)
1949#
1950# @sample-pages: number of sampled pages per GiB of guest memory.
1951#     Valid only in page-sampling mode (Since 6.1)
1952#
1953# @mode: mode that was used to measure dirty page rate (Since 6.2)
1954#
1955# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was
1956#     specified (Since 6.2)
1957#
1958# Since: 5.2
1959##
1960{ 'struct': 'DirtyRateInfo',
1961  'data': {'*dirty-rate': 'int64',
1962           'status': 'DirtyRateStatus',
1963           'start-time': 'int64',
1964           'calc-time': 'int64',
1965           'calc-time-unit': 'TimeUnit',
1966           'sample-pages': 'uint64',
1967           'mode': 'DirtyRateMeasureMode',
1968           '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
1969
1970##
1971# @calc-dirty-rate:
1972#
1973# Start measuring dirty page rate of the VM.  Results can be retrieved
1974# with @query-dirty-rate after measurements are completed.
1975#
1976# Dirty page rate is the number of pages changed in a given time
1977# period expressed in MiB/s.  The following methods of calculation are
1978# available:
1979#
1980# 1. In page sampling mode, a random subset of pages are selected and
1981#    hashed twice: once at the beginning of measurement time period,
1982#    and once again at the end.  If two hashes for some page are
1983#    different, the page is counted as changed.  Since this method
1984#    relies on sampling and hashing, calculated dirty page rate is
1985#    only an estimate of its true value.  Increasing @sample-pages
1986#    improves estimation quality at the cost of higher computational
1987#    overhead.
1988#
1989# 2. Dirty bitmap mode captures writes to memory (for example by
1990#    temporarily revoking write access to all pages) and counting page
1991#    faults.  Information about modified pages is collected into a
1992#    bitmap, where each bit corresponds to one guest page.  This mode
1993#    requires that KVM accelerator property "dirty-ring-size" is *not*
1994#    set.
1995#
1996# 3. Dirty ring mode is similar to dirty bitmap mode, but the
1997#    information about modified pages is collected into ring buffer.
1998#    This mode tracks page modification per each vCPU separately.  It
1999#    requires that KVM accelerator property "dirty-ring-size" is set.
2000#
2001# @calc-time: time period for which dirty page rate is calculated.
2002#     By default it is specified in seconds, but the unit can be set
2003#     explicitly with @calc-time-unit.  Note that larger @calc-time
2004#     values will typically result in smaller dirty page rates because
2005#     page dirtying is a one-time event.  Once some page is counted
2006#     as dirty during @calc-time period, further writes to this page
2007#     will not increase dirty page rate anymore.
2008#
2009# @calc-time-unit: time unit in which @calc-time is specified.
2010#     By default it is seconds. (Since 8.2)
2011#
2012# @sample-pages: number of sampled pages per each GiB of guest memory.
2013#     Default value is 512.  For 4KiB guest pages this corresponds to
2014#     sampling ratio of 0.2%.  This argument is used only in page
2015#     sampling mode.  (Since 6.1)
2016#
2017# @mode: mechanism for tracking dirty pages.  Default value is
2018#     'page-sampling'.  Others are 'dirty-bitmap' and 'dirty-ring'.
2019#     (Since 6.1)
2020#
2021# Since: 5.2
2022#
2023# Example:
2024#
2025# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
2026#                                                 'sample-pages': 512} }
2027# <- { "return": {} }
2028#
2029# Measure dirty rate using dirty bitmap for 500 milliseconds:
2030#
2031# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500,
2032#     "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} }
2033#
2034# <- { "return": {} }
2035##
2036{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
2037                                         '*calc-time-unit': 'TimeUnit',
2038                                         '*sample-pages': 'int',
2039                                         '*mode': 'DirtyRateMeasureMode'} }
2040
2041##
2042# @query-dirty-rate:
2043#
2044# Query results of the most recent invocation of @calc-dirty-rate.
2045#
2046# @calc-time-unit: time unit in which to report calculation time.
2047#     By default it is reported in seconds. (Since 8.2)
2048#
2049# Since: 5.2
2050#
2051# Examples:
2052#
2053# 1. Measurement is in progress:
2054#
2055# <- {"status": "measuring", "sample-pages": 512,
2056#     "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
2057#     "calc-time-unit": "second"}
2058#
2059# 2. Measurement has been completed:
2060#
2061# <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108,
2062#     "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
2063#     "calc-time-unit": "second"}
2064##
2065{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' },
2066                                 'returns': 'DirtyRateInfo' }
2067
2068##
2069# @DirtyLimitInfo:
2070#
2071# Dirty page rate limit information of a virtual CPU.
2072#
2073# @cpu-index: index of a virtual CPU.
2074#
2075# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
2076#     CPU, 0 means unlimited.
2077#
2078# @current-rate: current dirty page rate (MB/s) for a virtual CPU.
2079#
2080# Since: 7.1
2081##
2082{ 'struct': 'DirtyLimitInfo',
2083  'data': { 'cpu-index': 'int',
2084            'limit-rate': 'uint64',
2085            'current-rate': 'uint64' } }
2086
2087##
2088# @set-vcpu-dirty-limit:
2089#
2090# Set the upper limit of dirty page rate for virtual CPUs.
2091#
2092# Requires KVM with accelerator property "dirty-ring-size" set.  A
2093# virtual CPU's dirty page rate is a measure of its memory load.  To
2094# observe dirty page rates, use @calc-dirty-rate.
2095#
2096# @cpu-index: index of a virtual CPU, default is all.
2097#
2098# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
2099#
2100# Since: 7.1
2101#
2102# Example:
2103#
2104# -> {"execute": "set-vcpu-dirty-limit"}
2105#     "arguments": { "dirty-rate": 200,
2106#                    "cpu-index": 1 } }
2107# <- { "return": {} }
2108##
2109{ 'command': 'set-vcpu-dirty-limit',
2110  'data': { '*cpu-index': 'int',
2111            'dirty-rate': 'uint64' } }
2112
2113##
2114# @cancel-vcpu-dirty-limit:
2115#
2116# Cancel the upper limit of dirty page rate for virtual CPUs.
2117#
2118# Cancel the dirty page limit for the vCPU which has been set with
2119# set-vcpu-dirty-limit command.  Note that this command requires
2120# support from dirty ring, same as the "set-vcpu-dirty-limit".
2121#
2122# @cpu-index: index of a virtual CPU, default is all.
2123#
2124# Since: 7.1
2125#
2126# Example:
2127#
2128# -> {"execute": "cancel-vcpu-dirty-limit"},
2129#     "arguments": { "cpu-index": 1 } }
2130# <- { "return": {} }
2131##
2132{ 'command': 'cancel-vcpu-dirty-limit',
2133  'data': { '*cpu-index': 'int'} }
2134
2135##
2136# @query-vcpu-dirty-limit:
2137#
2138# Returns information about virtual CPU dirty page rate limits, if
2139# any.
2140#
2141# Since: 7.1
2142#
2143# Example:
2144#
2145# -> {"execute": "query-vcpu-dirty-limit"}
2146# <- {"return": [
2147#        { "limit-rate": 60, "current-rate": 3, "cpu-index": 0},
2148#        { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]}
2149##
2150{ 'command': 'query-vcpu-dirty-limit',
2151  'returns': [ 'DirtyLimitInfo' ] }
2152
2153##
2154# @MigrationThreadInfo:
2155#
2156# Information about migrationthreads
2157#
2158# @name: the name of migration thread
2159#
2160# @thread-id: ID of the underlying host thread
2161#
2162# Since: 7.2
2163##
2164{ 'struct': 'MigrationThreadInfo',
2165  'data': {'name': 'str',
2166           'thread-id': 'int'} }
2167
2168##
2169# @query-migrationthreads:
2170#
2171# Returns information of migration threads
2172#
2173# data: migration thread name
2174#
2175# Returns: information about migration threads
2176#
2177# Since: 7.2
2178##
2179{ 'command': 'query-migrationthreads',
2180  'returns': ['MigrationThreadInfo'] }
2181
2182##
2183# @snapshot-save:
2184#
2185# Save a VM snapshot
2186#
2187# @job-id: identifier for the newly created job
2188#
2189# @tag: name of the snapshot to create
2190#
2191# @vmstate: block device node name to save vmstate to
2192#
2193# @devices: list of block device node names to save a snapshot to
2194#
2195# Applications should not assume that the snapshot save is complete
2196# when this command returns.  The job commands / events must be used
2197# to determine completion and to fetch details of any errors that
2198# arise.
2199#
2200# Note that execution of the guest CPUs may be stopped during the time
2201# it takes to save the snapshot.  A future version of QEMU may ensure
2202# CPUs are executing continuously.
2203#
2204# It is strongly recommended that @devices contain all writable block
2205# device nodes if a consistent snapshot is required.
2206#
2207# If @tag already exists, an error will be reported
2208#
2209# Returns: nothing
2210#
2211# Example:
2212#
2213# -> { "execute": "snapshot-save",
2214#      "arguments": {
2215#         "job-id": "snapsave0",
2216#         "tag": "my-snap",
2217#         "vmstate": "disk0",
2218#         "devices": ["disk0", "disk1"]
2219#      }
2220#    }
2221# <- { "return": { } }
2222# <- {"event": "JOB_STATUS_CHANGE",
2223#     "timestamp": {"seconds": 1432121972, "microseconds": 744001},
2224#     "data": {"status": "created", "id": "snapsave0"}}
2225# <- {"event": "JOB_STATUS_CHANGE",
2226#     "timestamp": {"seconds": 1432122172, "microseconds": 744001},
2227#     "data": {"status": "running", "id": "snapsave0"}}
2228# <- {"event": "STOP",
2229#     "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2230# <- {"event": "RESUME",
2231#     "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
2232# <- {"event": "JOB_STATUS_CHANGE",
2233#     "timestamp": {"seconds": 1432122772, "microseconds": 744001},
2234#     "data": {"status": "waiting", "id": "snapsave0"}}
2235# <- {"event": "JOB_STATUS_CHANGE",
2236#     "timestamp": {"seconds": 1432122972, "microseconds": 744001},
2237#     "data": {"status": "pending", "id": "snapsave0"}}
2238# <- {"event": "JOB_STATUS_CHANGE",
2239#     "timestamp": {"seconds": 1432123172, "microseconds": 744001},
2240#     "data": {"status": "concluded", "id": "snapsave0"}}
2241# -> {"execute": "query-jobs"}
2242# <- {"return": [{"current-progress": 1,
2243#                 "status": "concluded",
2244#                 "total-progress": 1,
2245#                 "type": "snapshot-save",
2246#                 "id": "snapsave0"}]}
2247#
2248# Since: 6.0
2249##
2250{ 'command': 'snapshot-save',
2251  'data': { 'job-id': 'str',
2252            'tag': 'str',
2253            'vmstate': 'str',
2254            'devices': ['str'] } }
2255
2256##
2257# @snapshot-load:
2258#
2259# Load a VM snapshot
2260#
2261# @job-id: identifier for the newly created job
2262#
2263# @tag: name of the snapshot to load.
2264#
2265# @vmstate: block device node name to load vmstate from
2266#
2267# @devices: list of block device node names to load a snapshot from
2268#
2269# Applications should not assume that the snapshot load is complete
2270# when this command returns.  The job commands / events must be used
2271# to determine completion and to fetch details of any errors that
2272# arise.
2273#
2274# Note that execution of the guest CPUs will be stopped during the
2275# time it takes to load the snapshot.
2276#
2277# It is strongly recommended that @devices contain all writable block
2278# device nodes that can have changed since the original @snapshot-save
2279# command execution.
2280#
2281# Returns: nothing
2282#
2283# Example:
2284#
2285# -> { "execute": "snapshot-load",
2286#      "arguments": {
2287#         "job-id": "snapload0",
2288#         "tag": "my-snap",
2289#         "vmstate": "disk0",
2290#         "devices": ["disk0", "disk1"]
2291#      }
2292#    }
2293# <- { "return": { } }
2294# <- {"event": "JOB_STATUS_CHANGE",
2295#     "timestamp": {"seconds": 1472124172, "microseconds": 744001},
2296#     "data": {"status": "created", "id": "snapload0"}}
2297# <- {"event": "JOB_STATUS_CHANGE",
2298#     "timestamp": {"seconds": 1472125172, "microseconds": 744001},
2299#     "data": {"status": "running", "id": "snapload0"}}
2300# <- {"event": "STOP",
2301#     "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2302# <- {"event": "RESUME",
2303#     "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
2304# <- {"event": "JOB_STATUS_CHANGE",
2305#     "timestamp": {"seconds": 1472126172, "microseconds": 744001},
2306#     "data": {"status": "waiting", "id": "snapload0"}}
2307# <- {"event": "JOB_STATUS_CHANGE",
2308#     "timestamp": {"seconds": 1472127172, "microseconds": 744001},
2309#     "data": {"status": "pending", "id": "snapload0"}}
2310# <- {"event": "JOB_STATUS_CHANGE",
2311#     "timestamp": {"seconds": 1472128172, "microseconds": 744001},
2312#     "data": {"status": "concluded", "id": "snapload0"}}
2313# -> {"execute": "query-jobs"}
2314# <- {"return": [{"current-progress": 1,
2315#                 "status": "concluded",
2316#                 "total-progress": 1,
2317#                 "type": "snapshot-load",
2318#                 "id": "snapload0"}]}
2319#
2320# Since: 6.0
2321##
2322{ 'command': 'snapshot-load',
2323  'data': { 'job-id': 'str',
2324            'tag': 'str',
2325            'vmstate': 'str',
2326            'devices': ['str'] } }
2327
2328##
2329# @snapshot-delete:
2330#
2331# Delete a VM snapshot
2332#
2333# @job-id: identifier for the newly created job
2334#
2335# @tag: name of the snapshot to delete.
2336#
2337# @devices: list of block device node names to delete a snapshot from
2338#
2339# Applications should not assume that the snapshot delete is complete
2340# when this command returns.  The job commands / events must be used
2341# to determine completion and to fetch details of any errors that
2342# arise.
2343#
2344# Returns: nothing
2345#
2346# Example:
2347#
2348# -> { "execute": "snapshot-delete",
2349#      "arguments": {
2350#         "job-id": "snapdelete0",
2351#         "tag": "my-snap",
2352#         "devices": ["disk0", "disk1"]
2353#      }
2354#    }
2355# <- { "return": { } }
2356# <- {"event": "JOB_STATUS_CHANGE",
2357#     "timestamp": {"seconds": 1442124172, "microseconds": 744001},
2358#     "data": {"status": "created", "id": "snapdelete0"}}
2359# <- {"event": "JOB_STATUS_CHANGE",
2360#     "timestamp": {"seconds": 1442125172, "microseconds": 744001},
2361#     "data": {"status": "running", "id": "snapdelete0"}}
2362# <- {"event": "JOB_STATUS_CHANGE",
2363#     "timestamp": {"seconds": 1442126172, "microseconds": 744001},
2364#     "data": {"status": "waiting", "id": "snapdelete0"}}
2365# <- {"event": "JOB_STATUS_CHANGE",
2366#     "timestamp": {"seconds": 1442127172, "microseconds": 744001},
2367#     "data": {"status": "pending", "id": "snapdelete0"}}
2368# <- {"event": "JOB_STATUS_CHANGE",
2369#     "timestamp": {"seconds": 1442128172, "microseconds": 744001},
2370#     "data": {"status": "concluded", "id": "snapdelete0"}}
2371# -> {"execute": "query-jobs"}
2372# <- {"return": [{"current-progress": 1,
2373#                 "status": "concluded",
2374#                 "total-progress": 1,
2375#                 "type": "snapshot-delete",
2376#                 "id": "snapdelete0"}]}
2377#
2378# Since: 6.0
2379##
2380{ 'command': 'snapshot-delete',
2381  'data': { 'job-id': 'str',
2382            'tag': 'str',
2383            'devices': ['str'] } }
2384