1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4 5## 6# = Migration 7## 8 9{ 'include': 'common.json' } 10{ 'include': 'sockets.json' } 11 12## 13# @MigrationStats: 14# 15# Detailed migration status. 16# 17# @transferred: amount of bytes already transferred to the target VM 18# 19# @remaining: amount of bytes remaining to be transferred to the 20# target VM 21# 22# @total: total amount of bytes involved in the migration process 23# 24# @duplicate: number of duplicate (zero) pages (since 1.2) 25# 26# @skipped: number of skipped zero pages. Always zero, only provided for 27# compatibility (since 1.5) 28# 29# @normal: number of normal pages (since 1.2) 30# 31# @normal-bytes: number of normal bytes sent (since 1.2) 32# 33# @dirty-pages-rate: number of pages dirtied by second by the guest 34# (since 1.3) 35# 36# @mbps: throughput in megabits/sec. (since 1.6) 37# 38# @dirty-sync-count: number of times that dirty ram was synchronized 39# (since 2.1) 40# 41# @postcopy-requests: The number of page requests received from the 42# destination (since 2.7) 43# 44# @page-size: The number of bytes per page for the various page-based 45# statistics (since 2.10) 46# 47# @multifd-bytes: The number of bytes sent through multifd (since 3.0) 48# 49# @pages-per-second: the number of memory pages transferred per second 50# (Since 4.0) 51# 52# @precopy-bytes: The number of bytes sent in the pre-copy phase 53# (since 7.0). 54# 55# @downtime-bytes: The number of bytes sent while the guest is paused 56# (since 7.0). 57# 58# @postcopy-bytes: The number of bytes sent during the post-copy phase 59# (since 7.0). 60# 61# @dirty-sync-missed-zero-copy: Number of times dirty RAM 62# synchronization could not avoid copying dirty pages. This is 63# between 0 and @dirty-sync-count * @multifd-channels. (since 64# 7.1) 65# 66# Features: 67# 68# @deprecated: Member @skipped is always zero since 1.5.3 69# 70# Since: 0.14 71# 72## 73{ 'struct': 'MigrationStats', 74 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' , 75 'duplicate': 'int', 76 'skipped': { 'type': 'int', 'features': [ 'deprecated' ] }, 77 'normal': 'int', 78 'normal-bytes': 'int', 'dirty-pages-rate': 'int', 79 'mbps': 'number', 'dirty-sync-count': 'int', 80 'postcopy-requests': 'int', 'page-size': 'int', 81 'multifd-bytes': 'uint64', 'pages-per-second': 'uint64', 82 'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64', 83 'postcopy-bytes': 'uint64', 84 'dirty-sync-missed-zero-copy': 'uint64' } } 85 86## 87# @XBZRLECacheStats: 88# 89# Detailed XBZRLE migration cache statistics 90# 91# @cache-size: XBZRLE cache size 92# 93# @bytes: amount of bytes already transferred to the target VM 94# 95# @pages: amount of pages transferred to the target VM 96# 97# @cache-miss: number of cache miss 98# 99# @cache-miss-rate: rate of cache miss (since 2.1) 100# 101# @encoding-rate: rate of encoded bytes (since 5.1) 102# 103# @overflow: number of overflows 104# 105# Since: 1.2 106## 107{ 'struct': 'XBZRLECacheStats', 108 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int', 109 'cache-miss': 'int', 'cache-miss-rate': 'number', 110 'encoding-rate': 'number', 'overflow': 'int' } } 111 112## 113# @CompressionStats: 114# 115# Detailed migration compression statistics 116# 117# @pages: amount of pages compressed and transferred to the target VM 118# 119# @busy: count of times that no free thread was available to compress 120# data 121# 122# @busy-rate: rate of thread busy 123# 124# @compressed-size: amount of bytes after compression 125# 126# @compression-rate: rate of compressed size 127# 128# Since: 3.1 129## 130{ 'struct': 'CompressionStats', 131 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number', 132 'compressed-size': 'int', 'compression-rate': 'number' } } 133 134## 135# @MigrationStatus: 136# 137# An enumeration of migration status. 138# 139# @none: no migration has ever happened. 140# 141# @setup: migration process has been initiated. 142# 143# @cancelling: in the process of cancelling migration. 144# 145# @cancelled: cancelling migration is finished. 146# 147# @active: in the process of doing migration. 148# 149# @postcopy-active: like active, but now in postcopy mode. (since 150# 2.5) 151# 152# @postcopy-paused: during postcopy but paused. (since 3.0) 153# 154# @postcopy-recover: trying to recover from a paused postcopy. (since 155# 3.0) 156# 157# @completed: migration is finished. 158# 159# @failed: some error occurred during migration process. 160# 161# @colo: VM is in the process of fault tolerance, VM can not get into 162# this state unless colo capability is enabled for migration. 163# (since 2.8) 164# 165# @pre-switchover: Paused before device serialisation. (since 2.11) 166# 167# @device: During device serialisation when pause-before-switchover is 168# enabled (since 2.11) 169# 170# @wait-unplug: wait for device unplug request by guest OS to be 171# completed. (since 4.2) 172# 173# Since: 2.3 174## 175{ 'enum': 'MigrationStatus', 176 'data': [ 'none', 'setup', 'cancelling', 'cancelled', 177 'active', 'postcopy-active', 'postcopy-paused', 178 'postcopy-recover', 'completed', 'failed', 'colo', 179 'pre-switchover', 'device', 'wait-unplug' ] } 180## 181# @VfioStats: 182# 183# Detailed VFIO devices migration statistics 184# 185# @transferred: amount of bytes transferred to the target VM by VFIO 186# devices 187# 188# Since: 5.2 189## 190{ 'struct': 'VfioStats', 191 'data': {'transferred': 'int' } } 192 193## 194# @MigrationInfo: 195# 196# Information about current migration process. 197# 198# @status: @MigrationStatus describing the current migration status. 199# If this field is not returned, no migration process has been 200# initiated 201# 202# @ram: @MigrationStats containing detailed migration status, only 203# returned if status is 'active' or 'completed'(since 1.2) 204# 205# @disk: @MigrationStats containing detailed disk migration status, 206# only returned if status is 'active' and it is a block migration 207# 208# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE 209# migration statistics, only returned if XBZRLE feature is on and 210# status is 'active' or 'completed' (since 1.2) 211# 212# @total-time: total amount of milliseconds since migration started. 213# If migration has ended, it returns the total migration time. 214# (since 1.2) 215# 216# @downtime: only present when migration finishes correctly total 217# downtime in milliseconds for the guest. (since 1.3) 218# 219# @expected-downtime: only present while migration is active expected 220# downtime in milliseconds for the guest in last walk of the dirty 221# bitmap. (since 1.3) 222# 223# @setup-time: amount of setup time in milliseconds *before* the 224# iterations begin but *after* the QMP command is issued. This is 225# designed to provide an accounting of any activities (such as 226# RDMA pinning) which may be expensive, but do not actually occur 227# during the iterative migration rounds themselves. (since 1.6) 228# 229# @cpu-throttle-percentage: percentage of time guest cpus are being 230# throttled during auto-converge. This is only present when 231# auto-converge has started throttling guest cpus. (Since 2.7) 232# 233# @error-desc: the human readable error description string. Clients 234# should not attempt to parse the error strings. (Since 2.7) 235# 236# @postcopy-blocktime: total time when all vCPU were blocked during 237# postcopy live migration. This is only present when the 238# postcopy-blocktime migration capability is enabled. (Since 3.0) 239# 240# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. 241# This is only present when the postcopy-blocktime migration 242# capability is enabled. (Since 3.0) 243# 244# @compression: migration compression statistics, only returned if 245# compression feature is on and status is 'active' or 'completed' 246# (Since 3.1) 247# 248# @socket-address: Only used for tcp, to know what the real port is 249# (Since 4.0) 250# 251# @vfio: @VfioStats containing detailed VFIO devices migration 252# statistics, only returned if VFIO device is present, migration 253# is supported by all VFIO devices and status is 'active' or 254# 'completed' (since 5.2) 255# 256# @blocked-reasons: A list of reasons an outgoing migration is 257# blocked. Present and non-empty when migration is blocked. 258# (since 6.0) 259# 260# @dirty-limit-throttle-time-per-round: Maximum throttle time 261# (in microseconds) of virtual CPUs each dirty ring full round, 262# which shows how MigrationCapability dirty-limit affects the 263# guest during live migration. (Since 8.1) 264# 265# @dirty-limit-ring-full-time: Estimated average dirty ring full time 266# (in microseconds) for each dirty ring full round. The value 267# equals the dirty ring memory size divided by the average dirty 268# page rate of the virtual CPU, which can be used to observe the 269# average memory load of the virtual CPU indirectly. Note that 270# zero means guest doesn't dirty memory. (Since 8.1) 271# 272# Features: 273# 274# @deprecated: Member @disk is deprecated because block migration is. 275# Member @compression is deprecated because it is unreliable and 276# untested. It is recommended to use multifd migration, which 277# offers an alternative compression implementation that is 278# reliable and tested. 279# 280# Since: 0.14 281## 282{ 'struct': 'MigrationInfo', 283 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats', 284 '*disk': { 'type': 'MigrationStats', 'features': [ 'deprecated' ] }, 285 '*vfio': 'VfioStats', 286 '*xbzrle-cache': 'XBZRLECacheStats', 287 '*total-time': 'int', 288 '*expected-downtime': 'int', 289 '*downtime': 'int', 290 '*setup-time': 'int', 291 '*cpu-throttle-percentage': 'int', 292 '*error-desc': 'str', 293 '*blocked-reasons': ['str'], 294 '*postcopy-blocktime': 'uint32', 295 '*postcopy-vcpu-blocktime': ['uint32'], 296 '*compression': { 'type': 'CompressionStats', 'features': [ 'deprecated' ] }, 297 '*socket-address': ['SocketAddress'], 298 '*dirty-limit-throttle-time-per-round': 'uint64', 299 '*dirty-limit-ring-full-time': 'uint64'} } 300 301## 302# @query-migrate: 303# 304# Returns information about current migration process. If migration 305# is active there will be another json-object with RAM migration 306# status and if block migration is active another one with block 307# migration status. 308# 309# Returns: @MigrationInfo 310# 311# Since: 0.14 312# 313# Examples: 314# 315# 1. Before the first migration 316# 317# -> { "execute": "query-migrate" } 318# <- { "return": {} } 319# 320# 2. Migration is done and has succeeded 321# 322# -> { "execute": "query-migrate" } 323# <- { "return": { 324# "status": "completed", 325# "total-time":12345, 326# "setup-time":12345, 327# "downtime":12345, 328# "ram":{ 329# "transferred":123, 330# "remaining":123, 331# "total":246, 332# "duplicate":123, 333# "normal":123, 334# "normal-bytes":123456, 335# "dirty-sync-count":15 336# } 337# } 338# } 339# 340# 3. Migration is done and has failed 341# 342# -> { "execute": "query-migrate" } 343# <- { "return": { "status": "failed" } } 344# 345# 4. Migration is being performed and is not a block migration: 346# 347# -> { "execute": "query-migrate" } 348# <- { 349# "return":{ 350# "status":"active", 351# "total-time":12345, 352# "setup-time":12345, 353# "expected-downtime":12345, 354# "ram":{ 355# "transferred":123, 356# "remaining":123, 357# "total":246, 358# "duplicate":123, 359# "normal":123, 360# "normal-bytes":123456, 361# "dirty-sync-count":15 362# } 363# } 364# } 365# 366# 5. Migration is being performed and is a block migration: 367# 368# -> { "execute": "query-migrate" } 369# <- { 370# "return":{ 371# "status":"active", 372# "total-time":12345, 373# "setup-time":12345, 374# "expected-downtime":12345, 375# "ram":{ 376# "total":1057024, 377# "remaining":1053304, 378# "transferred":3720, 379# "duplicate":123, 380# "normal":123, 381# "normal-bytes":123456, 382# "dirty-sync-count":15 383# }, 384# "disk":{ 385# "total":20971520, 386# "remaining":20880384, 387# "transferred":91136 388# } 389# } 390# } 391# 392# 6. Migration is being performed and XBZRLE is active: 393# 394# -> { "execute": "query-migrate" } 395# <- { 396# "return":{ 397# "status":"active", 398# "total-time":12345, 399# "setup-time":12345, 400# "expected-downtime":12345, 401# "ram":{ 402# "total":1057024, 403# "remaining":1053304, 404# "transferred":3720, 405# "duplicate":10, 406# "normal":3333, 407# "normal-bytes":3412992, 408# "dirty-sync-count":15 409# }, 410# "xbzrle-cache":{ 411# "cache-size":67108864, 412# "bytes":20971520, 413# "pages":2444343, 414# "cache-miss":2244, 415# "cache-miss-rate":0.123, 416# "encoding-rate":80.1, 417# "overflow":34434 418# } 419# } 420# } 421## 422{ 'command': 'query-migrate', 'returns': 'MigrationInfo' } 423 424## 425# @MigrationCapability: 426# 427# Migration capabilities enumeration 428# 429# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length 430# Encoding). This feature allows us to minimize migration traffic 431# for certain work loads, by sending compressed difference of the 432# pages 433# 434# @rdma-pin-all: Controls whether or not the entire VM memory 435# footprint is mlock()'d on demand or all at once. Refer to 436# docs/rdma.txt for usage. Disabled by default. (since 2.0) 437# 438# @zero-blocks: During storage migration encode blocks of zeroes 439# efficiently. This essentially saves 1MB of zeroes per block on 440# the wire. Enabling requires source and target VM to support 441# this feature. To enable it is sufficient to enable the 442# capability on the source VM. The feature is disabled by default. 443# (since 1.6) 444# 445# @compress: Use multiple compression threads to accelerate live 446# migration. This feature can help to reduce the migration 447# traffic, by sending compressed pages. Please note that if 448# compress and xbzrle are both on, compress only takes effect in 449# the ram bulk stage, after that, it will be disabled and only 450# xbzrle takes effect, this can help to minimize migration 451# traffic. The feature is disabled by default. (since 2.4) 452# 453# @events: generate events for each migration state change (since 2.4) 454# 455# @auto-converge: If enabled, QEMU will automatically throttle down 456# the guest to speed up convergence of RAM migration. (since 1.6) 457# 458# @postcopy-ram: Start executing on the migration target before all of 459# RAM has been migrated, pulling the remaining pages along as 460# needed. The capacity must have the same setting on both source 461# and target or migration will not even start. NOTE: If the 462# migration fails during postcopy the VM will fail. (since 2.6) 463# 464# @x-colo: If enabled, migration will never end, and the state of the 465# VM on the primary side will be migrated continuously to the VM 466# on secondary side, this process is called COarse-Grain LOck 467# Stepping (COLO) for Non-stop Service. (since 2.8) 468# 469# @release-ram: if enabled, qemu will free the migrated ram pages on 470# the source during postcopy-ram migration. (since 2.9) 471# 472# @block: If enabled, QEMU will also migrate the contents of all block 473# devices. Default is disabled. A possible alternative uses 474# mirror jobs to a builtin NBD server on the destination, which 475# offers more flexibility. (Since 2.10) 476# 477# @return-path: If enabled, migration will use the return path even 478# for precopy. (since 2.10) 479# 480# @pause-before-switchover: Pause outgoing migration before 481# serialising device state and before disabling block IO (since 482# 2.11) 483# 484# @multifd: Use more than one fd for migration (since 4.0) 485# 486# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps. 487# (since 2.12) 488# 489# @postcopy-blocktime: Calculate downtime for postcopy live migration 490# (since 3.0) 491# 492# @late-block-activate: If enabled, the destination will not activate 493# block devices (and thus take locks) immediately at the end of 494# migration. (since 3.0) 495# 496# @x-ignore-shared: If enabled, QEMU will not migrate shared memory 497# that is accessible on the destination machine. (since 4.0) 498# 499# @validate-uuid: Send the UUID of the source to allow the destination 500# to ensure it is the same. (since 4.2) 501# 502# @background-snapshot: If enabled, the migration stream will be a 503# snapshot of the VM exactly at the point when the migration 504# procedure starts. The VM RAM is saved with running VM. (since 505# 6.0) 506# 507# @zero-copy-send: Controls behavior on sending memory pages on 508# migration. When true, enables a zero-copy mechanism for sending 509# memory pages, if host supports it. Requires that QEMU be 510# permitted to use locked memory for guest RAM pages. (since 7.1) 511# 512# @postcopy-preempt: If enabled, the migration process will allow 513# postcopy requests to preempt precopy stream, so postcopy 514# requests will be handled faster. This is a performance feature 515# and should not affect the correctness of postcopy migration. 516# (since 7.1) 517# 518# @switchover-ack: If enabled, migration will not stop the source VM 519# and complete the migration until an ACK is received from the 520# destination that it's OK to do so. Exactly when this ACK is 521# sent depends on the migrated devices that use this feature. For 522# example, a device can use it to make sure some of its data is 523# sent and loaded in the destination before doing switchover. 524# This can reduce downtime if devices that support this capability 525# are present. 'return-path' capability must be enabled to use 526# it. (since 8.1) 527# 528# @dirty-limit: If enabled, migration will throttle vCPUs as needed to 529# keep their dirty page rate within @vcpu-dirty-limit. This can 530# improve responsiveness of large guests during live migration, 531# and can result in more stable read performance. Requires KVM 532# with accelerator property "dirty-ring-size" set. (Since 8.1) 533# 534# Features: 535# 536# @deprecated: Member @block is deprecated. Use blockdev-mirror with 537# NBD instead. Member @compression is deprecated because it is 538# unreliable and untested. It is recommended to use multifd 539# migration, which offers an alternative compression 540# implementation that is reliable and tested. 541# 542# @unstable: Members @x-colo and @x-ignore-shared are experimental. 543# 544# Since: 1.2 545## 546{ 'enum': 'MigrationCapability', 547 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks', 548 { 'name': 'compress', 'features': [ 'deprecated' ] }, 549 'events', 'postcopy-ram', 550 { 'name': 'x-colo', 'features': [ 'unstable' ] }, 551 'release-ram', 552 { 'name': 'block', 'features': [ 'deprecated' ] }, 553 'return-path', 'pause-before-switchover', 'multifd', 554 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate', 555 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] }, 556 'validate-uuid', 'background-snapshot', 557 'zero-copy-send', 'postcopy-preempt', 'switchover-ack', 558 'dirty-limit'] } 559 560## 561# @MigrationCapabilityStatus: 562# 563# Migration capability information 564# 565# @capability: capability enum 566# 567# @state: capability state bool 568# 569# Since: 1.2 570## 571{ 'struct': 'MigrationCapabilityStatus', 572 'data': { 'capability': 'MigrationCapability', 'state': 'bool' } } 573 574## 575# @migrate-set-capabilities: 576# 577# Enable/Disable the following migration capabilities (like xbzrle) 578# 579# @capabilities: json array of capability modifications to make 580# 581# Since: 1.2 582# 583# Example: 584# 585# -> { "execute": "migrate-set-capabilities" , "arguments": 586# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } } 587# <- { "return": {} } 588## 589{ 'command': 'migrate-set-capabilities', 590 'data': { 'capabilities': ['MigrationCapabilityStatus'] } } 591 592## 593# @query-migrate-capabilities: 594# 595# Returns information about the current migration capabilities status 596# 597# Returns: @MigrationCapabilityStatus 598# 599# Since: 1.2 600# 601# Example: 602# 603# -> { "execute": "query-migrate-capabilities" } 604# <- { "return": [ 605# {"state": false, "capability": "xbzrle"}, 606# {"state": false, "capability": "rdma-pin-all"}, 607# {"state": false, "capability": "auto-converge"}, 608# {"state": false, "capability": "zero-blocks"}, 609# {"state": false, "capability": "compress"}, 610# {"state": true, "capability": "events"}, 611# {"state": false, "capability": "postcopy-ram"}, 612# {"state": false, "capability": "x-colo"} 613# ]} 614## 615{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']} 616 617## 618# @MultiFDCompression: 619# 620# An enumeration of multifd compression methods. 621# 622# @none: no compression. 623# 624# @zlib: use zlib compression method. 625# 626# @zstd: use zstd compression method. 627# 628# Since: 5.0 629## 630{ 'enum': 'MultiFDCompression', 631 'data': [ 'none', 'zlib', 632 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] } 633 634## 635# @BitmapMigrationBitmapAliasTransform: 636# 637# @persistent: If present, the bitmap will be made persistent or 638# transient depending on this parameter. 639# 640# Since: 6.0 641## 642{ 'struct': 'BitmapMigrationBitmapAliasTransform', 643 'data': { 644 '*persistent': 'bool' 645 } } 646 647## 648# @BitmapMigrationBitmapAlias: 649# 650# @name: The name of the bitmap. 651# 652# @alias: An alias name for migration (for example the bitmap name on 653# the opposite site). 654# 655# @transform: Allows the modification of the migrated bitmap. (since 656# 6.0) 657# 658# Since: 5.2 659## 660{ 'struct': 'BitmapMigrationBitmapAlias', 661 'data': { 662 'name': 'str', 663 'alias': 'str', 664 '*transform': 'BitmapMigrationBitmapAliasTransform' 665 } } 666 667## 668# @BitmapMigrationNodeAlias: 669# 670# Maps a block node name and the bitmaps it has to aliases for dirty 671# bitmap migration. 672# 673# @node-name: A block node name. 674# 675# @alias: An alias block node name for migration (for example the node 676# name on the opposite site). 677# 678# @bitmaps: Mappings for the bitmaps on this node. 679# 680# Since: 5.2 681## 682{ 'struct': 'BitmapMigrationNodeAlias', 683 'data': { 684 'node-name': 'str', 685 'alias': 'str', 686 'bitmaps': [ 'BitmapMigrationBitmapAlias' ] 687 } } 688 689## 690# @MigrationParameter: 691# 692# Migration parameters enumeration 693# 694# @announce-initial: Initial delay (in milliseconds) before sending 695# the first announce (Since 4.0) 696# 697# @announce-max: Maximum delay (in milliseconds) between packets in 698# the announcement (Since 4.0) 699# 700# @announce-rounds: Number of self-announce packets sent after 701# migration (Since 4.0) 702# 703# @announce-step: Increase in delay (in milliseconds) between 704# subsequent packets in the announcement (Since 4.0) 705# 706# @compress-level: Set the compression level to be used in live 707# migration, the compression level is an integer between 0 and 9, 708# where 0 means no compression, 1 means the best compression 709# speed, and 9 means best compression ratio which will consume 710# more CPU. 711# 712# @compress-threads: Set compression thread count to be used in live 713# migration, the compression thread count is an integer between 1 714# and 255. 715# 716# @compress-wait-thread: Controls behavior when all compression 717# threads are currently busy. If true (default), wait for a free 718# compression thread to become available; otherwise, send the page 719# uncompressed. (Since 3.1) 720# 721# @decompress-threads: Set decompression thread count to be used in 722# live migration, the decompression thread count is an integer 723# between 1 and 255. Usually, decompression is at least 4 times as 724# fast as compression, so set the decompress-threads to the number 725# about 1/4 of compress-threads is adequate. 726# 727# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 728# bytes_xfer_period to trigger throttling. It is expressed as 729# percentage. The default value is 50. (Since 5.0) 730# 731# @cpu-throttle-initial: Initial percentage of time guest cpus are 732# throttled when migration auto-converge is activated. The 733# default value is 20. (Since 2.7) 734# 735# @cpu-throttle-increment: throttle percentage increase each time 736# auto-converge detects that migration is not making progress. 737# The default value is 10. (Since 2.7) 738# 739# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 740# the tail stage of throttling, the Guest is very sensitive to CPU 741# percentage while the @cpu-throttle -increment is excessive 742# usually at tail stage. If this parameter is true, we will 743# compute the ideal CPU percentage used by the Guest, which may 744# exactly make the dirty rate match the dirty rate threshold. 745# Then we will choose a smaller throttle increment between the one 746# specified by @cpu-throttle-increment and the one generated by 747# ideal CPU percentage. Therefore, it is compatible to 748# traditional throttling, meanwhile the throttle increment won't 749# be excessive at tail stage. The default value is false. (Since 750# 5.1) 751# 752# @tls-creds: ID of the 'tls-creds' object that provides credentials 753# for establishing a TLS connection over the migration data 754# channel. On the outgoing side of the migration, the credentials 755# must be for a 'client' endpoint, while for the incoming side the 756# credentials must be for a 'server' endpoint. Setting this will 757# enable TLS for all migrations. The default is unset, resulting 758# in unsecured migration at the QEMU level. (Since 2.7) 759# 760# @tls-hostname: hostname of the target host for the migration. This 761# is required when using x509 based TLS credentials and the 762# migration URI does not already include a hostname. For example 763# if using fd: or exec: based migration, the hostname must be 764# provided so that the server's x509 certificate identity can be 765# validated. (Since 2.7) 766# 767# @tls-authz: ID of the 'authz' object subclass that provides access 768# control checking of the TLS x509 certificate distinguished name. 769# This object is only resolved at time of use, so can be deleted 770# and recreated on the fly while the migration server is active. 771# If missing, it will default to denying access (Since 4.0) 772# 773# @max-bandwidth: to set maximum speed for migration. maximum speed 774# in bytes per second. (Since 2.8) 775# 776# @avail-switchover-bandwidth: to set the available bandwidth that 777# migration can use during switchover phase. NOTE! This does not 778# limit the bandwidth during switchover, but only for calculations when 779# making decisions to switchover. By default, this value is zero, 780# which means QEMU will estimate the bandwidth automatically. This can 781# be set when the estimated value is not accurate, while the user is 782# able to guarantee such bandwidth is available when switching over. 783# When specified correctly, this can make the switchover decision much 784# more accurate. (Since 8.2) 785# 786# @downtime-limit: set maximum tolerated downtime for migration. 787# maximum downtime in milliseconds (Since 2.8) 788# 789# @x-checkpoint-delay: The delay time (in ms) between two COLO 790# checkpoints in periodic mode. (Since 2.8) 791# 792# @block-incremental: Affects how much storage is migrated when the 793# block migration capability is enabled. When false, the entire 794# storage backing chain is migrated into a flattened image at the 795# destination; when true, only the active qcow2 layer is migrated 796# and the destination must already have access to the same backing 797# chain as was used on the source. (since 2.10) 798# 799# @multifd-channels: Number of channels used to migrate data in 800# parallel. This is the same number that the number of sockets 801# used for migration. The default value is 2 (since 4.0) 802# 803# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 804# needs to be a multiple of the target page size and a power of 2 805# (Since 2.11) 806# 807# @max-postcopy-bandwidth: Background transfer bandwidth during 808# postcopy. Defaults to 0 (unlimited). In bytes per second. 809# (Since 3.0) 810# 811# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 812# (Since 3.1) 813# 814# @multifd-compression: Which compression method to use. Defaults to 815# none. (Since 5.0) 816# 817# @multifd-zlib-level: Set the compression level to be used in live 818# migration, the compression level is an integer between 0 and 9, 819# where 0 means no compression, 1 means the best compression 820# speed, and 9 means best compression ratio which will consume 821# more CPU. Defaults to 1. (Since 5.0) 822# 823# @multifd-zstd-level: Set the compression level to be used in live 824# migration, the compression level is an integer between 0 and 20, 825# where 0 means no compression, 1 means the best compression 826# speed, and 20 means best compression ratio which will consume 827# more CPU. Defaults to 1. (Since 5.0) 828# 829# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 830# aliases for the purpose of dirty bitmap migration. Such aliases 831# may for example be the corresponding names on the opposite site. 832# The mapping must be one-to-one, but not necessarily complete: On 833# the source, unmapped bitmaps and all bitmaps on unmapped nodes 834# will be ignored. On the destination, encountering an unmapped 835# alias in the incoming migration stream will result in a report, 836# and all further bitmap migration data will then be discarded. 837# Note that the destination does not know about bitmaps it does 838# not receive, so there is no limitation or requirement regarding 839# the number of bitmaps received, or how they are named, or on 840# which nodes they are placed. By default (when this parameter 841# has never been set), bitmap names are mapped to themselves. 842# Nodes are mapped to their block device name if there is one, and 843# to their node name otherwise. (Since 5.2) 844# 845# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 846# limit during live migration. Should be in the range 1 to 1000ms. 847# Defaults to 1000ms. (Since 8.1) 848# 849# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 850# Defaults to 1. (Since 8.1) 851# 852# Features: 853# 854# @deprecated: Member @block-incremental is deprecated. Use 855# blockdev-mirror with NBD instead. Members @compress-level, 856# @compress-threads, @decompress-threads and @compress-wait-thread 857# are deprecated because @compression is deprecated. 858# 859# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period 860# are experimental. 861# 862# Since: 2.4 863## 864{ 'enum': 'MigrationParameter', 865 'data': ['announce-initial', 'announce-max', 866 'announce-rounds', 'announce-step', 867 { 'name': 'compress-level', 'features': [ 'deprecated' ] }, 868 { 'name': 'compress-threads', 'features': [ 'deprecated' ] }, 869 { 'name': 'decompress-threads', 'features': [ 'deprecated' ] }, 870 { 'name': 'compress-wait-thread', 'features': [ 'deprecated' ] }, 871 'throttle-trigger-threshold', 872 'cpu-throttle-initial', 'cpu-throttle-increment', 873 'cpu-throttle-tailslow', 874 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth', 875 'avail-switchover-bandwidth', 'downtime-limit', 876 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] }, 877 { 'name': 'block-incremental', 'features': [ 'deprecated' ] }, 878 'multifd-channels', 879 'xbzrle-cache-size', 'max-postcopy-bandwidth', 880 'max-cpu-throttle', 'multifd-compression', 881 'multifd-zlib-level', 'multifd-zstd-level', 882 'block-bitmap-mapping', 883 { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] }, 884 'vcpu-dirty-limit'] } 885 886## 887# @MigrateSetParameters: 888# 889# @announce-initial: Initial delay (in milliseconds) before sending 890# the first announce (Since 4.0) 891# 892# @announce-max: Maximum delay (in milliseconds) between packets in 893# the announcement (Since 4.0) 894# 895# @announce-rounds: Number of self-announce packets sent after 896# migration (Since 4.0) 897# 898# @announce-step: Increase in delay (in milliseconds) between 899# subsequent packets in the announcement (Since 4.0) 900# 901# @compress-level: compression level 902# 903# @compress-threads: compression thread count 904# 905# @compress-wait-thread: Controls behavior when all compression 906# threads are currently busy. If true (default), wait for a free 907# compression thread to become available; otherwise, send the page 908# uncompressed. (Since 3.1) 909# 910# @decompress-threads: decompression thread count 911# 912# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 913# bytes_xfer_period to trigger throttling. It is expressed as 914# percentage. The default value is 50. (Since 5.0) 915# 916# @cpu-throttle-initial: Initial percentage of time guest cpus are 917# throttled when migration auto-converge is activated. The 918# default value is 20. (Since 2.7) 919# 920# @cpu-throttle-increment: throttle percentage increase each time 921# auto-converge detects that migration is not making progress. 922# The default value is 10. (Since 2.7) 923# 924# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 925# the tail stage of throttling, the Guest is very sensitive to CPU 926# percentage while the @cpu-throttle -increment is excessive 927# usually at tail stage. If this parameter is true, we will 928# compute the ideal CPU percentage used by the Guest, which may 929# exactly make the dirty rate match the dirty rate threshold. 930# Then we will choose a smaller throttle increment between the one 931# specified by @cpu-throttle-increment and the one generated by 932# ideal CPU percentage. Therefore, it is compatible to 933# traditional throttling, meanwhile the throttle increment won't 934# be excessive at tail stage. The default value is false. (Since 935# 5.1) 936# 937# @tls-creds: ID of the 'tls-creds' object that provides credentials 938# for establishing a TLS connection over the migration data 939# channel. On the outgoing side of the migration, the credentials 940# must be for a 'client' endpoint, while for the incoming side the 941# credentials must be for a 'server' endpoint. Setting this to a 942# non-empty string enables TLS for all migrations. An empty 943# string means that QEMU will use plain text mode for migration, 944# rather than TLS (Since 2.9) Previously (since 2.7), this was 945# reported by omitting tls-creds instead. 946# 947# @tls-hostname: hostname of the target host for the migration. This 948# is required when using x509 based TLS credentials and the 949# migration URI does not already include a hostname. For example 950# if using fd: or exec: based migration, the hostname must be 951# provided so that the server's x509 certificate identity can be 952# validated. (Since 2.7) An empty string means that QEMU will use 953# the hostname associated with the migration URI, if any. (Since 954# 2.9) Previously (since 2.7), this was reported by omitting 955# tls-hostname instead. 956# 957# @max-bandwidth: to set maximum speed for migration. maximum speed 958# in bytes per second. (Since 2.8) 959# 960# @avail-switchover-bandwidth: to set the available bandwidth that 961# migration can use during switchover phase. NOTE! This does not 962# limit the bandwidth during switchover, but only for calculations when 963# making decisions to switchover. By default, this value is zero, 964# which means QEMU will estimate the bandwidth automatically. This can 965# be set when the estimated value is not accurate, while the user is 966# able to guarantee such bandwidth is available when switching over. 967# When specified correctly, this can make the switchover decision much 968# more accurate. (Since 8.2) 969# 970# @downtime-limit: set maximum tolerated downtime for migration. 971# maximum downtime in milliseconds (Since 2.8) 972# 973# @x-checkpoint-delay: the delay time between two COLO checkpoints. 974# (Since 2.8) 975# 976# @block-incremental: Affects how much storage is migrated when the 977# block migration capability is enabled. When false, the entire 978# storage backing chain is migrated into a flattened image at the 979# destination; when true, only the active qcow2 layer is migrated 980# and the destination must already have access to the same backing 981# chain as was used on the source. (since 2.10) 982# 983# @multifd-channels: Number of channels used to migrate data in 984# parallel. This is the same number that the number of sockets 985# used for migration. The default value is 2 (since 4.0) 986# 987# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 988# needs to be a multiple of the target page size and a power of 2 989# (Since 2.11) 990# 991# @max-postcopy-bandwidth: Background transfer bandwidth during 992# postcopy. Defaults to 0 (unlimited). In bytes per second. 993# (Since 3.0) 994# 995# @max-cpu-throttle: maximum cpu throttle percentage. The default 996# value is 99. (Since 3.1) 997# 998# @multifd-compression: Which compression method to use. Defaults to 999# none. (Since 5.0) 1000# 1001# @multifd-zlib-level: Set the compression level to be used in live 1002# migration, the compression level is an integer between 0 and 9, 1003# where 0 means no compression, 1 means the best compression 1004# speed, and 9 means best compression ratio which will consume 1005# more CPU. Defaults to 1. (Since 5.0) 1006# 1007# @multifd-zstd-level: Set the compression level to be used in live 1008# migration, the compression level is an integer between 0 and 20, 1009# where 0 means no compression, 1 means the best compression 1010# speed, and 20 means best compression ratio which will consume 1011# more CPU. Defaults to 1. (Since 5.0) 1012# 1013# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1014# aliases for the purpose of dirty bitmap migration. Such aliases 1015# may for example be the corresponding names on the opposite site. 1016# The mapping must be one-to-one, but not necessarily complete: On 1017# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1018# will be ignored. On the destination, encountering an unmapped 1019# alias in the incoming migration stream will result in a report, 1020# and all further bitmap migration data will then be discarded. 1021# Note that the destination does not know about bitmaps it does 1022# not receive, so there is no limitation or requirement regarding 1023# the number of bitmaps received, or how they are named, or on 1024# which nodes they are placed. By default (when this parameter 1025# has never been set), bitmap names are mapped to themselves. 1026# Nodes are mapped to their block device name if there is one, and 1027# to their node name otherwise. (Since 5.2) 1028# 1029# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 1030# limit during live migration. Should be in the range 1 to 1000ms. 1031# Defaults to 1000ms. (Since 8.1) 1032# 1033# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1034# Defaults to 1. (Since 8.1) 1035# 1036# Features: 1037# 1038# @deprecated: Member @block-incremental is deprecated. Use 1039# blockdev-mirror with NBD instead. Members @compress-level, 1040# @compress-threads, @decompress-threads and @compress-wait-thread 1041# are deprecated because @compression is deprecated. 1042# 1043# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period 1044# are experimental. 1045# 1046# TODO: either fuse back into MigrationParameters, or make 1047# MigrationParameters members mandatory 1048# 1049# Since: 2.4 1050## 1051{ 'struct': 'MigrateSetParameters', 1052 'data': { '*announce-initial': 'size', 1053 '*announce-max': 'size', 1054 '*announce-rounds': 'size', 1055 '*announce-step': 'size', 1056 '*compress-level': { 'type': 'uint8', 1057 'features': [ 'deprecated' ] }, 1058 '*compress-threads': { 'type': 'uint8', 1059 'features': [ 'deprecated' ] }, 1060 '*compress-wait-thread': { 'type': 'bool', 1061 'features': [ 'deprecated' ] }, 1062 '*decompress-threads': { 'type': 'uint8', 1063 'features': [ 'deprecated' ] }, 1064 '*throttle-trigger-threshold': 'uint8', 1065 '*cpu-throttle-initial': 'uint8', 1066 '*cpu-throttle-increment': 'uint8', 1067 '*cpu-throttle-tailslow': 'bool', 1068 '*tls-creds': 'StrOrNull', 1069 '*tls-hostname': 'StrOrNull', 1070 '*tls-authz': 'StrOrNull', 1071 '*max-bandwidth': 'size', 1072 '*avail-switchover-bandwidth': 'size', 1073 '*downtime-limit': 'uint64', 1074 '*x-checkpoint-delay': { 'type': 'uint32', 1075 'features': [ 'unstable' ] }, 1076 '*block-incremental': { 'type': 'bool', 1077 'features': [ 'deprecated' ] }, 1078 '*multifd-channels': 'uint8', 1079 '*xbzrle-cache-size': 'size', 1080 '*max-postcopy-bandwidth': 'size', 1081 '*max-cpu-throttle': 'uint8', 1082 '*multifd-compression': 'MultiFDCompression', 1083 '*multifd-zlib-level': 'uint8', 1084 '*multifd-zstd-level': 'uint8', 1085 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1086 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1087 'features': [ 'unstable' ] }, 1088 '*vcpu-dirty-limit': 'uint64'} } 1089 1090## 1091# @migrate-set-parameters: 1092# 1093# Set various migration parameters. 1094# 1095# Since: 2.4 1096# 1097# Example: 1098# 1099# -> { "execute": "migrate-set-parameters" , 1100# "arguments": { "multifd-channels": 5 } } 1101# <- { "return": {} } 1102## 1103{ 'command': 'migrate-set-parameters', 'boxed': true, 1104 'data': 'MigrateSetParameters' } 1105 1106## 1107# @MigrationParameters: 1108# 1109# The optional members aren't actually optional. 1110# 1111# @announce-initial: Initial delay (in milliseconds) before sending 1112# the first announce (Since 4.0) 1113# 1114# @announce-max: Maximum delay (in milliseconds) between packets in 1115# the announcement (Since 4.0) 1116# 1117# @announce-rounds: Number of self-announce packets sent after 1118# migration (Since 4.0) 1119# 1120# @announce-step: Increase in delay (in milliseconds) between 1121# subsequent packets in the announcement (Since 4.0) 1122# 1123# @compress-level: compression level 1124# 1125# @compress-threads: compression thread count 1126# 1127# @compress-wait-thread: Controls behavior when all compression 1128# threads are currently busy. If true (default), wait for a free 1129# compression thread to become available; otherwise, send the page 1130# uncompressed. (Since 3.1) 1131# 1132# @decompress-threads: decompression thread count 1133# 1134# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 1135# bytes_xfer_period to trigger throttling. It is expressed as 1136# percentage. The default value is 50. (Since 5.0) 1137# 1138# @cpu-throttle-initial: Initial percentage of time guest cpus are 1139# throttled when migration auto-converge is activated. (Since 1140# 2.7) 1141# 1142# @cpu-throttle-increment: throttle percentage increase each time 1143# auto-converge detects that migration is not making progress. 1144# (Since 2.7) 1145# 1146# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 1147# the tail stage of throttling, the Guest is very sensitive to CPU 1148# percentage while the @cpu-throttle -increment is excessive 1149# usually at tail stage. If this parameter is true, we will 1150# compute the ideal CPU percentage used by the Guest, which may 1151# exactly make the dirty rate match the dirty rate threshold. 1152# Then we will choose a smaller throttle increment between the one 1153# specified by @cpu-throttle-increment and the one generated by 1154# ideal CPU percentage. Therefore, it is compatible to 1155# traditional throttling, meanwhile the throttle increment won't 1156# be excessive at tail stage. The default value is false. (Since 1157# 5.1) 1158# 1159# @tls-creds: ID of the 'tls-creds' object that provides credentials 1160# for establishing a TLS connection over the migration data 1161# channel. On the outgoing side of the migration, the credentials 1162# must be for a 'client' endpoint, while for the incoming side the 1163# credentials must be for a 'server' endpoint. An empty string 1164# means that QEMU will use plain text mode for migration, rather 1165# than TLS (Since 2.7) Note: 2.8 reports this by omitting 1166# tls-creds instead. 1167# 1168# @tls-hostname: hostname of the target host for the migration. This 1169# is required when using x509 based TLS credentials and the 1170# migration URI does not already include a hostname. For example 1171# if using fd: or exec: based migration, the hostname must be 1172# provided so that the server's x509 certificate identity can be 1173# validated. (Since 2.7) An empty string means that QEMU will use 1174# the hostname associated with the migration URI, if any. (Since 1175# 2.9) Note: 2.8 reports this by omitting tls-hostname instead. 1176# 1177# @tls-authz: ID of the 'authz' object subclass that provides access 1178# control checking of the TLS x509 certificate distinguished name. 1179# (Since 4.0) 1180# 1181# @max-bandwidth: to set maximum speed for migration. maximum speed 1182# in bytes per second. (Since 2.8) 1183# 1184# @avail-switchover-bandwidth: to set the available bandwidth that 1185# migration can use during switchover phase. NOTE! This does not 1186# limit the bandwidth during switchover, but only for calculations when 1187# making decisions to switchover. By default, this value is zero, 1188# which means QEMU will estimate the bandwidth automatically. This can 1189# be set when the estimated value is not accurate, while the user is 1190# able to guarantee such bandwidth is available when switching over. 1191# When specified correctly, this can make the switchover decision much 1192# more accurate. (Since 8.2) 1193# 1194# @downtime-limit: set maximum tolerated downtime for migration. 1195# maximum downtime in milliseconds (Since 2.8) 1196# 1197# @x-checkpoint-delay: the delay time between two COLO checkpoints. 1198# (Since 2.8) 1199# 1200# @block-incremental: Affects how much storage is migrated when the 1201# block migration capability is enabled. When false, the entire 1202# storage backing chain is migrated into a flattened image at the 1203# destination; when true, only the active qcow2 layer is migrated 1204# and the destination must already have access to the same backing 1205# chain as was used on the source. (since 2.10) 1206# 1207# @multifd-channels: Number of channels used to migrate data in 1208# parallel. This is the same number that the number of sockets 1209# used for migration. The default value is 2 (since 4.0) 1210# 1211# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1212# needs to be a multiple of the target page size and a power of 2 1213# (Since 2.11) 1214# 1215# @max-postcopy-bandwidth: Background transfer bandwidth during 1216# postcopy. Defaults to 0 (unlimited). In bytes per second. 1217# (Since 3.0) 1218# 1219# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 1220# (Since 3.1) 1221# 1222# @multifd-compression: Which compression method to use. Defaults to 1223# none. (Since 5.0) 1224# 1225# @multifd-zlib-level: Set the compression level to be used in live 1226# migration, the compression level is an integer between 0 and 9, 1227# where 0 means no compression, 1 means the best compression 1228# speed, and 9 means best compression ratio which will consume 1229# more CPU. Defaults to 1. (Since 5.0) 1230# 1231# @multifd-zstd-level: Set the compression level to be used in live 1232# migration, the compression level is an integer between 0 and 20, 1233# where 0 means no compression, 1 means the best compression 1234# speed, and 20 means best compression ratio which will consume 1235# more CPU. Defaults to 1. (Since 5.0) 1236# 1237# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1238# aliases for the purpose of dirty bitmap migration. Such aliases 1239# may for example be the corresponding names on the opposite site. 1240# The mapping must be one-to-one, but not necessarily complete: On 1241# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1242# will be ignored. On the destination, encountering an unmapped 1243# alias in the incoming migration stream will result in a report, 1244# and all further bitmap migration data will then be discarded. 1245# Note that the destination does not know about bitmaps it does 1246# not receive, so there is no limitation or requirement regarding 1247# the number of bitmaps received, or how they are named, or on 1248# which nodes they are placed. By default (when this parameter 1249# has never been set), bitmap names are mapped to themselves. 1250# Nodes are mapped to their block device name if there is one, and 1251# to their node name otherwise. (Since 5.2) 1252# 1253# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 1254# limit during live migration. Should be in the range 1 to 1000ms. 1255# Defaults to 1000ms. (Since 8.1) 1256# 1257# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1258# Defaults to 1. (Since 8.1) 1259# 1260# Features: 1261# 1262# @deprecated: Member @block-incremental is deprecated. Use 1263# blockdev-mirror with NBD instead. Members @compress-level, 1264# @compress-threads, @decompress-threads and @compress-wait-thread 1265# are deprecated because @compression is deprecated. 1266# 1267# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period 1268# are experimental. 1269# 1270# Since: 2.4 1271## 1272{ 'struct': 'MigrationParameters', 1273 'data': { '*announce-initial': 'size', 1274 '*announce-max': 'size', 1275 '*announce-rounds': 'size', 1276 '*announce-step': 'size', 1277 '*compress-level': { 'type': 'uint8', 1278 'features': [ 'deprecated' ] }, 1279 '*compress-threads': { 'type': 'uint8', 1280 'features': [ 'deprecated' ] }, 1281 '*compress-wait-thread': { 'type': 'bool', 1282 'features': [ 'deprecated' ] }, 1283 '*decompress-threads': { 'type': 'uint8', 1284 'features': [ 'deprecated' ] }, 1285 '*throttle-trigger-threshold': 'uint8', 1286 '*cpu-throttle-initial': 'uint8', 1287 '*cpu-throttle-increment': 'uint8', 1288 '*cpu-throttle-tailslow': 'bool', 1289 '*tls-creds': 'str', 1290 '*tls-hostname': 'str', 1291 '*tls-authz': 'str', 1292 '*max-bandwidth': 'size', 1293 '*avail-switchover-bandwidth': 'size', 1294 '*downtime-limit': 'uint64', 1295 '*x-checkpoint-delay': { 'type': 'uint32', 1296 'features': [ 'unstable' ] }, 1297 '*block-incremental': { 'type': 'bool', 1298 'features': [ 'deprecated' ] }, 1299 '*multifd-channels': 'uint8', 1300 '*xbzrle-cache-size': 'size', 1301 '*max-postcopy-bandwidth': 'size', 1302 '*max-cpu-throttle': 'uint8', 1303 '*multifd-compression': 'MultiFDCompression', 1304 '*multifd-zlib-level': 'uint8', 1305 '*multifd-zstd-level': 'uint8', 1306 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1307 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1308 'features': [ 'unstable' ] }, 1309 '*vcpu-dirty-limit': 'uint64'} } 1310 1311## 1312# @query-migrate-parameters: 1313# 1314# Returns information about the current migration parameters 1315# 1316# Returns: @MigrationParameters 1317# 1318# Since: 2.4 1319# 1320# Example: 1321# 1322# -> { "execute": "query-migrate-parameters" } 1323# <- { "return": { 1324# "multifd-channels": 2, 1325# "cpu-throttle-increment": 10, 1326# "cpu-throttle-initial": 20, 1327# "max-bandwidth": 33554432, 1328# "downtime-limit": 300 1329# } 1330# } 1331## 1332{ 'command': 'query-migrate-parameters', 1333 'returns': 'MigrationParameters' } 1334 1335## 1336# @migrate-start-postcopy: 1337# 1338# Followup to a migration command to switch the migration to postcopy 1339# mode. The postcopy-ram capability must be set on both source and 1340# destination before the original migration command. 1341# 1342# Since: 2.5 1343# 1344# Example: 1345# 1346# -> { "execute": "migrate-start-postcopy" } 1347# <- { "return": {} } 1348## 1349{ 'command': 'migrate-start-postcopy' } 1350 1351## 1352# @MIGRATION: 1353# 1354# Emitted when a migration event happens 1355# 1356# @status: @MigrationStatus describing the current migration status. 1357# 1358# Since: 2.4 1359# 1360# Example: 1361# 1362# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001}, 1363# "event": "MIGRATION", 1364# "data": {"status": "completed"} } 1365## 1366{ 'event': 'MIGRATION', 1367 'data': {'status': 'MigrationStatus'}} 1368 1369## 1370# @MIGRATION_PASS: 1371# 1372# Emitted from the source side of a migration at the start of each 1373# pass (when it syncs the dirty bitmap) 1374# 1375# @pass: An incrementing count (starting at 1 on the first pass) 1376# 1377# Since: 2.6 1378# 1379# Example: 1380# 1381# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225}, 1382# "event": "MIGRATION_PASS", "data": {"pass": 2} } 1383## 1384{ 'event': 'MIGRATION_PASS', 1385 'data': { 'pass': 'int' } } 1386 1387## 1388# @COLOMessage: 1389# 1390# The message transmission between Primary side and Secondary side. 1391# 1392# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing 1393# 1394# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for 1395# checkpointing 1396# 1397# @checkpoint-reply: SVM gets PVM's checkpoint request 1398# 1399# @vmstate-send: VM's state will be sent by PVM. 1400# 1401# @vmstate-size: The total size of VMstate. 1402# 1403# @vmstate-received: VM's state has been received by SVM. 1404# 1405# @vmstate-loaded: VM's state has been loaded by SVM. 1406# 1407# Since: 2.8 1408## 1409{ 'enum': 'COLOMessage', 1410 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply', 1411 'vmstate-send', 'vmstate-size', 'vmstate-received', 1412 'vmstate-loaded' ] } 1413 1414## 1415# @COLOMode: 1416# 1417# The COLO current mode. 1418# 1419# @none: COLO is disabled. 1420# 1421# @primary: COLO node in primary side. 1422# 1423# @secondary: COLO node in slave side. 1424# 1425# Since: 2.8 1426## 1427{ 'enum': 'COLOMode', 1428 'data': [ 'none', 'primary', 'secondary'] } 1429 1430## 1431# @FailoverStatus: 1432# 1433# An enumeration of COLO failover status 1434# 1435# @none: no failover has ever happened 1436# 1437# @require: got failover requirement but not handled 1438# 1439# @active: in the process of doing failover 1440# 1441# @completed: finish the process of failover 1442# 1443# @relaunch: restart the failover process, from 'none' -> 'completed' 1444# (Since 2.9) 1445# 1446# Since: 2.8 1447## 1448{ 'enum': 'FailoverStatus', 1449 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] } 1450 1451## 1452# @COLO_EXIT: 1453# 1454# Emitted when VM finishes COLO mode due to some errors happening or 1455# at the request of users. 1456# 1457# @mode: report COLO mode when COLO exited. 1458# 1459# @reason: describes the reason for the COLO exit. 1460# 1461# Since: 3.1 1462# 1463# Example: 1464# 1465# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172}, 1466# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } } 1467## 1468{ 'event': 'COLO_EXIT', 1469 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } } 1470 1471## 1472# @COLOExitReason: 1473# 1474# The reason for a COLO exit. 1475# 1476# @none: failover has never happened. This state does not occur in 1477# the COLO_EXIT event, and is only visible in the result of 1478# query-colo-status. 1479# 1480# @request: COLO exit is due to an external request. 1481# 1482# @error: COLO exit is due to an internal error. 1483# 1484# @processing: COLO is currently handling a failover (since 4.0). 1485# 1486# Since: 3.1 1487## 1488{ 'enum': 'COLOExitReason', 1489 'data': [ 'none', 'request', 'error' , 'processing' ] } 1490 1491## 1492# @x-colo-lost-heartbeat: 1493# 1494# Tell qemu that heartbeat is lost, request it to do takeover 1495# procedures. If this command is sent to the PVM, the Primary side 1496# will exit COLO mode. If sent to the Secondary, the Secondary side 1497# will run failover work, then takes over server operation to become 1498# the service VM. 1499# 1500# Features: 1501# 1502# @unstable: This command is experimental. 1503# 1504# Since: 2.8 1505# 1506# Example: 1507# 1508# -> { "execute": "x-colo-lost-heartbeat" } 1509# <- { "return": {} } 1510## 1511{ 'command': 'x-colo-lost-heartbeat', 1512 'features': [ 'unstable' ], 1513 'if': 'CONFIG_REPLICATION' } 1514 1515## 1516# @migrate_cancel: 1517# 1518# Cancel the current executing migration process. 1519# 1520# Returns: nothing on success 1521# 1522# Notes: This command succeeds even if there is no migration process 1523# running. 1524# 1525# Since: 0.14 1526# 1527# Example: 1528# 1529# -> { "execute": "migrate_cancel" } 1530# <- { "return": {} } 1531## 1532{ 'command': 'migrate_cancel' } 1533 1534## 1535# @migrate-continue: 1536# 1537# Continue migration when it's in a paused state. 1538# 1539# @state: The state the migration is currently expected to be in 1540# 1541# Returns: nothing on success 1542# 1543# Since: 2.11 1544# 1545# Example: 1546# 1547# -> { "execute": "migrate-continue" , "arguments": 1548# { "state": "pre-switchover" } } 1549# <- { "return": {} } 1550## 1551{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} } 1552 1553## 1554# @migrate: 1555# 1556# Migrates the current running guest to another Virtual Machine. 1557# 1558# @uri: the Uniform Resource Identifier of the destination VM 1559# 1560# @blk: do block migration (full disk copy) 1561# 1562# @inc: incremental disk copy migration 1563# 1564# @detach: this argument exists only for compatibility reasons and is 1565# ignored by QEMU 1566# 1567# @resume: resume one paused migration, default "off". (since 3.0) 1568# 1569# Features: 1570# 1571# @deprecated: Members @inc and @blk are deprecated. Use 1572# blockdev-mirror with NBD instead. 1573# 1574# Returns: nothing on success 1575# 1576# Since: 0.14 1577# 1578# Notes: 1579# 1580# 1. The 'query-migrate' command should be used to check migration's 1581# progress and final result (this information is provided by the 1582# 'status' member) 1583# 1584# 2. All boolean arguments default to false 1585# 1586# 3. The user Monitor's "detach" argument is invalid in QMP and should 1587# not be used 1588# 1589# Example: 1590# 1591# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } } 1592# <- { "return": {} } 1593## 1594{ 'command': 'migrate', 1595 'data': {'uri': 'str', 1596 '*blk': { 'type': 'bool', 'features': [ 'deprecated' ] }, 1597 '*inc': { 'type': 'bool', 'features': [ 'deprecated' ] }, 1598 '*detach': 'bool', '*resume': 'bool' } } 1599 1600## 1601# @migrate-incoming: 1602# 1603# Start an incoming migration, the qemu must have been started with 1604# -incoming defer 1605# 1606# @uri: The Uniform Resource Identifier identifying the source or 1607# address to listen on 1608# 1609# Returns: nothing on success 1610# 1611# Since: 2.3 1612# 1613# Notes: 1614# 1615# 1. It's a bad idea to use a string for the uri, but it needs 1616# to stay compatible with -incoming and the format of the uri 1617# is already exposed above libvirt. 1618# 1619# 2. QEMU must be started with -incoming defer to allow 1620# migrate-incoming to be used. 1621# 1622# 3. The uri format is the same as for -incoming 1623# 1624# Example: 1625# 1626# -> { "execute": "migrate-incoming", 1627# "arguments": { "uri": "tcp::4446" } } 1628# <- { "return": {} } 1629## 1630{ 'command': 'migrate-incoming', 'data': {'uri': 'str' } } 1631 1632## 1633# @xen-save-devices-state: 1634# 1635# Save the state of all devices to file. The RAM and the block 1636# devices of the VM are not saved by this command. 1637# 1638# @filename: the file to save the state of the devices to as binary 1639# data. See xen-save-devices-state.txt for a description of the 1640# binary format. 1641# 1642# @live: Optional argument to ask QEMU to treat this command as part 1643# of a live migration. Default to true. (since 2.11) 1644# 1645# Returns: Nothing on success 1646# 1647# Since: 1.1 1648# 1649# Example: 1650# 1651# -> { "execute": "xen-save-devices-state", 1652# "arguments": { "filename": "/tmp/save" } } 1653# <- { "return": {} } 1654## 1655{ 'command': 'xen-save-devices-state', 1656 'data': {'filename': 'str', '*live':'bool' } } 1657 1658## 1659# @xen-set-global-dirty-log: 1660# 1661# Enable or disable the global dirty log mode. 1662# 1663# @enable: true to enable, false to disable. 1664# 1665# Returns: nothing 1666# 1667# Since: 1.3 1668# 1669# Example: 1670# 1671# -> { "execute": "xen-set-global-dirty-log", 1672# "arguments": { "enable": true } } 1673# <- { "return": {} } 1674## 1675{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1676 1677## 1678# @xen-load-devices-state: 1679# 1680# Load the state of all devices from file. The RAM and the block 1681# devices of the VM are not loaded by this command. 1682# 1683# @filename: the file to load the state of the devices from as binary 1684# data. See xen-save-devices-state.txt for a description of the 1685# binary format. 1686# 1687# Since: 2.7 1688# 1689# Example: 1690# 1691# -> { "execute": "xen-load-devices-state", 1692# "arguments": { "filename": "/tmp/resume" } } 1693# <- { "return": {} } 1694## 1695{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 1696 1697## 1698# @xen-set-replication: 1699# 1700# Enable or disable replication. 1701# 1702# @enable: true to enable, false to disable. 1703# 1704# @primary: true for primary or false for secondary. 1705# 1706# @failover: true to do failover, false to stop. but cannot be 1707# specified if 'enable' is true. default value is false. 1708# 1709# Returns: nothing. 1710# 1711# Example: 1712# 1713# -> { "execute": "xen-set-replication", 1714# "arguments": {"enable": true, "primary": false} } 1715# <- { "return": {} } 1716# 1717# Since: 2.9 1718## 1719{ 'command': 'xen-set-replication', 1720 'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' }, 1721 'if': 'CONFIG_REPLICATION' } 1722 1723## 1724# @ReplicationStatus: 1725# 1726# The result format for 'query-xen-replication-status'. 1727# 1728# @error: true if an error happened, false if replication is normal. 1729# 1730# @desc: the human readable error description string, when @error is 1731# 'true'. 1732# 1733# Since: 2.9 1734## 1735{ 'struct': 'ReplicationStatus', 1736 'data': { 'error': 'bool', '*desc': 'str' }, 1737 'if': 'CONFIG_REPLICATION' } 1738 1739## 1740# @query-xen-replication-status: 1741# 1742# Query replication status while the vm is running. 1743# 1744# Returns: A @ReplicationStatus object showing the status. 1745# 1746# Example: 1747# 1748# -> { "execute": "query-xen-replication-status" } 1749# <- { "return": { "error": false } } 1750# 1751# Since: 2.9 1752## 1753{ 'command': 'query-xen-replication-status', 1754 'returns': 'ReplicationStatus', 1755 'if': 'CONFIG_REPLICATION' } 1756 1757## 1758# @xen-colo-do-checkpoint: 1759# 1760# Xen uses this command to notify replication to trigger a checkpoint. 1761# 1762# Returns: nothing. 1763# 1764# Example: 1765# 1766# -> { "execute": "xen-colo-do-checkpoint" } 1767# <- { "return": {} } 1768# 1769# Since: 2.9 1770## 1771{ 'command': 'xen-colo-do-checkpoint', 1772 'if': 'CONFIG_REPLICATION' } 1773 1774## 1775# @COLOStatus: 1776# 1777# The result format for 'query-colo-status'. 1778# 1779# @mode: COLO running mode. If COLO is running, this field will 1780# return 'primary' or 'secondary'. 1781# 1782# @last-mode: COLO last running mode. If COLO is running, this field 1783# will return same like mode field, after failover we can use this 1784# field to get last colo mode. (since 4.0) 1785# 1786# @reason: describes the reason for the COLO exit. 1787# 1788# Since: 3.1 1789## 1790{ 'struct': 'COLOStatus', 1791 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode', 1792 'reason': 'COLOExitReason' }, 1793 'if': 'CONFIG_REPLICATION' } 1794 1795## 1796# @query-colo-status: 1797# 1798# Query COLO status while the vm is running. 1799# 1800# Returns: A @COLOStatus object showing the status. 1801# 1802# Example: 1803# 1804# -> { "execute": "query-colo-status" } 1805# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } } 1806# 1807# Since: 3.1 1808## 1809{ 'command': 'query-colo-status', 1810 'returns': 'COLOStatus', 1811 'if': 'CONFIG_REPLICATION' } 1812 1813## 1814# @migrate-recover: 1815# 1816# Provide a recovery migration stream URI. 1817# 1818# @uri: the URI to be used for the recovery of migration stream. 1819# 1820# Returns: nothing. 1821# 1822# Example: 1823# 1824# -> { "execute": "migrate-recover", 1825# "arguments": { "uri": "tcp:192.168.1.200:12345" } } 1826# <- { "return": {} } 1827# 1828# Since: 3.0 1829## 1830{ 'command': 'migrate-recover', 1831 'data': { 'uri': 'str' }, 1832 'allow-oob': true } 1833 1834## 1835# @migrate-pause: 1836# 1837# Pause a migration. Currently it only supports postcopy. 1838# 1839# Returns: nothing. 1840# 1841# Example: 1842# 1843# -> { "execute": "migrate-pause" } 1844# <- { "return": {} } 1845# 1846# Since: 3.0 1847## 1848{ 'command': 'migrate-pause', 'allow-oob': true } 1849 1850## 1851# @UNPLUG_PRIMARY: 1852# 1853# Emitted from source side of a migration when migration state is 1854# WAIT_UNPLUG. Device was unplugged by guest operating system. Device 1855# resources in QEMU are kept on standby to be able to re-plug it in 1856# case of migration failure. 1857# 1858# @device-id: QEMU device id of the unplugged device 1859# 1860# Since: 4.2 1861# 1862# Example: 1863# 1864# <- { "event": "UNPLUG_PRIMARY", 1865# "data": { "device-id": "hostdev0" }, 1866# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 1867## 1868{ 'event': 'UNPLUG_PRIMARY', 1869 'data': { 'device-id': 'str' } } 1870 1871## 1872# @DirtyRateVcpu: 1873# 1874# Dirty rate of vcpu. 1875# 1876# @id: vcpu index. 1877# 1878# @dirty-rate: dirty rate. 1879# 1880# Since: 6.2 1881## 1882{ 'struct': 'DirtyRateVcpu', 1883 'data': { 'id': 'int', 'dirty-rate': 'int64' } } 1884 1885## 1886# @DirtyRateStatus: 1887# 1888# Dirty page rate measurement status. 1889# 1890# @unstarted: measuring thread has not been started yet 1891# 1892# @measuring: measuring thread is running 1893# 1894# @measured: dirty page rate is measured and the results are available 1895# 1896# Since: 5.2 1897## 1898{ 'enum': 'DirtyRateStatus', 1899 'data': [ 'unstarted', 'measuring', 'measured'] } 1900 1901## 1902# @DirtyRateMeasureMode: 1903# 1904# Method used to measure dirty page rate. Differences between 1905# available methods are explained in @calc-dirty-rate. 1906# 1907# @page-sampling: use page sampling 1908# 1909# @dirty-ring: use dirty ring 1910# 1911# @dirty-bitmap: use dirty bitmap 1912# 1913# Since: 6.2 1914## 1915{ 'enum': 'DirtyRateMeasureMode', 1916 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] } 1917 1918## 1919# @TimeUnit: 1920# 1921# Specifies unit in which time-related value is specified. 1922# 1923# @second: value is in seconds 1924# 1925# @millisecond: value is in milliseconds 1926# 1927# Since 8.2 1928# 1929## 1930{ 'enum': 'TimeUnit', 1931 'data': ['second', 'millisecond'] } 1932 1933## 1934# @DirtyRateInfo: 1935# 1936# Information about measured dirty page rate. 1937# 1938# @dirty-rate: an estimate of the dirty page rate of the VM in units 1939# of MiB/s. Value is present only when @status is 'measured'. 1940# 1941# @status: current status of dirty page rate measurements 1942# 1943# @start-time: start time in units of second for calculation 1944# 1945# @calc-time: time period for which dirty page rate was measured, 1946# expressed and rounded down to @calc-time-unit. 1947# 1948# @calc-time-unit: time unit of @calc-time (Since 8.2) 1949# 1950# @sample-pages: number of sampled pages per GiB of guest memory. 1951# Valid only in page-sampling mode (Since 6.1) 1952# 1953# @mode: mode that was used to measure dirty page rate (Since 6.2) 1954# 1955# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was 1956# specified (Since 6.2) 1957# 1958# Since: 5.2 1959## 1960{ 'struct': 'DirtyRateInfo', 1961 'data': {'*dirty-rate': 'int64', 1962 'status': 'DirtyRateStatus', 1963 'start-time': 'int64', 1964 'calc-time': 'int64', 1965 'calc-time-unit': 'TimeUnit', 1966 'sample-pages': 'uint64', 1967 'mode': 'DirtyRateMeasureMode', 1968 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } } 1969 1970## 1971# @calc-dirty-rate: 1972# 1973# Start measuring dirty page rate of the VM. Results can be retrieved 1974# with @query-dirty-rate after measurements are completed. 1975# 1976# Dirty page rate is the number of pages changed in a given time 1977# period expressed in MiB/s. The following methods of calculation are 1978# available: 1979# 1980# 1. In page sampling mode, a random subset of pages are selected and 1981# hashed twice: once at the beginning of measurement time period, 1982# and once again at the end. If two hashes for some page are 1983# different, the page is counted as changed. Since this method 1984# relies on sampling and hashing, calculated dirty page rate is 1985# only an estimate of its true value. Increasing @sample-pages 1986# improves estimation quality at the cost of higher computational 1987# overhead. 1988# 1989# 2. Dirty bitmap mode captures writes to memory (for example by 1990# temporarily revoking write access to all pages) and counting page 1991# faults. Information about modified pages is collected into a 1992# bitmap, where each bit corresponds to one guest page. This mode 1993# requires that KVM accelerator property "dirty-ring-size" is *not* 1994# set. 1995# 1996# 3. Dirty ring mode is similar to dirty bitmap mode, but the 1997# information about modified pages is collected into ring buffer. 1998# This mode tracks page modification per each vCPU separately. It 1999# requires that KVM accelerator property "dirty-ring-size" is set. 2000# 2001# @calc-time: time period for which dirty page rate is calculated. 2002# By default it is specified in seconds, but the unit can be set 2003# explicitly with @calc-time-unit. Note that larger @calc-time 2004# values will typically result in smaller dirty page rates because 2005# page dirtying is a one-time event. Once some page is counted 2006# as dirty during @calc-time period, further writes to this page 2007# will not increase dirty page rate anymore. 2008# 2009# @calc-time-unit: time unit in which @calc-time is specified. 2010# By default it is seconds. (Since 8.2) 2011# 2012# @sample-pages: number of sampled pages per each GiB of guest memory. 2013# Default value is 512. For 4KiB guest pages this corresponds to 2014# sampling ratio of 0.2%. This argument is used only in page 2015# sampling mode. (Since 6.1) 2016# 2017# @mode: mechanism for tracking dirty pages. Default value is 2018# 'page-sampling'. Others are 'dirty-bitmap' and 'dirty-ring'. 2019# (Since 6.1) 2020# 2021# Since: 5.2 2022# 2023# Example: 2024# 2025# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1, 2026# 'sample-pages': 512} } 2027# <- { "return": {} } 2028# 2029# Measure dirty rate using dirty bitmap for 500 milliseconds: 2030# 2031# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500, 2032# "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} } 2033# 2034# <- { "return": {} } 2035## 2036{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64', 2037 '*calc-time-unit': 'TimeUnit', 2038 '*sample-pages': 'int', 2039 '*mode': 'DirtyRateMeasureMode'} } 2040 2041## 2042# @query-dirty-rate: 2043# 2044# Query results of the most recent invocation of @calc-dirty-rate. 2045# 2046# @calc-time-unit: time unit in which to report calculation time. 2047# By default it is reported in seconds. (Since 8.2) 2048# 2049# Since: 5.2 2050# 2051# Examples: 2052# 2053# 1. Measurement is in progress: 2054# 2055# <- {"status": "measuring", "sample-pages": 512, 2056# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2057# "calc-time-unit": "second"} 2058# 2059# 2. Measurement has been completed: 2060# 2061# <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108, 2062# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2063# "calc-time-unit": "second"} 2064## 2065{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' }, 2066 'returns': 'DirtyRateInfo' } 2067 2068## 2069# @DirtyLimitInfo: 2070# 2071# Dirty page rate limit information of a virtual CPU. 2072# 2073# @cpu-index: index of a virtual CPU. 2074# 2075# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual 2076# CPU, 0 means unlimited. 2077# 2078# @current-rate: current dirty page rate (MB/s) for a virtual CPU. 2079# 2080# Since: 7.1 2081## 2082{ 'struct': 'DirtyLimitInfo', 2083 'data': { 'cpu-index': 'int', 2084 'limit-rate': 'uint64', 2085 'current-rate': 'uint64' } } 2086 2087## 2088# @set-vcpu-dirty-limit: 2089# 2090# Set the upper limit of dirty page rate for virtual CPUs. 2091# 2092# Requires KVM with accelerator property "dirty-ring-size" set. A 2093# virtual CPU's dirty page rate is a measure of its memory load. To 2094# observe dirty page rates, use @calc-dirty-rate. 2095# 2096# @cpu-index: index of a virtual CPU, default is all. 2097# 2098# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs. 2099# 2100# Since: 7.1 2101# 2102# Example: 2103# 2104# -> {"execute": "set-vcpu-dirty-limit"} 2105# "arguments": { "dirty-rate": 200, 2106# "cpu-index": 1 } } 2107# <- { "return": {} } 2108## 2109{ 'command': 'set-vcpu-dirty-limit', 2110 'data': { '*cpu-index': 'int', 2111 'dirty-rate': 'uint64' } } 2112 2113## 2114# @cancel-vcpu-dirty-limit: 2115# 2116# Cancel the upper limit of dirty page rate for virtual CPUs. 2117# 2118# Cancel the dirty page limit for the vCPU which has been set with 2119# set-vcpu-dirty-limit command. Note that this command requires 2120# support from dirty ring, same as the "set-vcpu-dirty-limit". 2121# 2122# @cpu-index: index of a virtual CPU, default is all. 2123# 2124# Since: 7.1 2125# 2126# Example: 2127# 2128# -> {"execute": "cancel-vcpu-dirty-limit"}, 2129# "arguments": { "cpu-index": 1 } } 2130# <- { "return": {} } 2131## 2132{ 'command': 'cancel-vcpu-dirty-limit', 2133 'data': { '*cpu-index': 'int'} } 2134 2135## 2136# @query-vcpu-dirty-limit: 2137# 2138# Returns information about virtual CPU dirty page rate limits, if 2139# any. 2140# 2141# Since: 7.1 2142# 2143# Example: 2144# 2145# -> {"execute": "query-vcpu-dirty-limit"} 2146# <- {"return": [ 2147# { "limit-rate": 60, "current-rate": 3, "cpu-index": 0}, 2148# { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]} 2149## 2150{ 'command': 'query-vcpu-dirty-limit', 2151 'returns': [ 'DirtyLimitInfo' ] } 2152 2153## 2154# @MigrationThreadInfo: 2155# 2156# Information about migrationthreads 2157# 2158# @name: the name of migration thread 2159# 2160# @thread-id: ID of the underlying host thread 2161# 2162# Since: 7.2 2163## 2164{ 'struct': 'MigrationThreadInfo', 2165 'data': {'name': 'str', 2166 'thread-id': 'int'} } 2167 2168## 2169# @query-migrationthreads: 2170# 2171# Returns information of migration threads 2172# 2173# data: migration thread name 2174# 2175# Returns: information about migration threads 2176# 2177# Since: 7.2 2178## 2179{ 'command': 'query-migrationthreads', 2180 'returns': ['MigrationThreadInfo'] } 2181 2182## 2183# @snapshot-save: 2184# 2185# Save a VM snapshot 2186# 2187# @job-id: identifier for the newly created job 2188# 2189# @tag: name of the snapshot to create 2190# 2191# @vmstate: block device node name to save vmstate to 2192# 2193# @devices: list of block device node names to save a snapshot to 2194# 2195# Applications should not assume that the snapshot save is complete 2196# when this command returns. The job commands / events must be used 2197# to determine completion and to fetch details of any errors that 2198# arise. 2199# 2200# Note that execution of the guest CPUs may be stopped during the time 2201# it takes to save the snapshot. A future version of QEMU may ensure 2202# CPUs are executing continuously. 2203# 2204# It is strongly recommended that @devices contain all writable block 2205# device nodes if a consistent snapshot is required. 2206# 2207# If @tag already exists, an error will be reported 2208# 2209# Returns: nothing 2210# 2211# Example: 2212# 2213# -> { "execute": "snapshot-save", 2214# "arguments": { 2215# "job-id": "snapsave0", 2216# "tag": "my-snap", 2217# "vmstate": "disk0", 2218# "devices": ["disk0", "disk1"] 2219# } 2220# } 2221# <- { "return": { } } 2222# <- {"event": "JOB_STATUS_CHANGE", 2223# "timestamp": {"seconds": 1432121972, "microseconds": 744001}, 2224# "data": {"status": "created", "id": "snapsave0"}} 2225# <- {"event": "JOB_STATUS_CHANGE", 2226# "timestamp": {"seconds": 1432122172, "microseconds": 744001}, 2227# "data": {"status": "running", "id": "snapsave0"}} 2228# <- {"event": "STOP", 2229# "timestamp": {"seconds": 1432122372, "microseconds": 744001} } 2230# <- {"event": "RESUME", 2231# "timestamp": {"seconds": 1432122572, "microseconds": 744001} } 2232# <- {"event": "JOB_STATUS_CHANGE", 2233# "timestamp": {"seconds": 1432122772, "microseconds": 744001}, 2234# "data": {"status": "waiting", "id": "snapsave0"}} 2235# <- {"event": "JOB_STATUS_CHANGE", 2236# "timestamp": {"seconds": 1432122972, "microseconds": 744001}, 2237# "data": {"status": "pending", "id": "snapsave0"}} 2238# <- {"event": "JOB_STATUS_CHANGE", 2239# "timestamp": {"seconds": 1432123172, "microseconds": 744001}, 2240# "data": {"status": "concluded", "id": "snapsave0"}} 2241# -> {"execute": "query-jobs"} 2242# <- {"return": [{"current-progress": 1, 2243# "status": "concluded", 2244# "total-progress": 1, 2245# "type": "snapshot-save", 2246# "id": "snapsave0"}]} 2247# 2248# Since: 6.0 2249## 2250{ 'command': 'snapshot-save', 2251 'data': { 'job-id': 'str', 2252 'tag': 'str', 2253 'vmstate': 'str', 2254 'devices': ['str'] } } 2255 2256## 2257# @snapshot-load: 2258# 2259# Load a VM snapshot 2260# 2261# @job-id: identifier for the newly created job 2262# 2263# @tag: name of the snapshot to load. 2264# 2265# @vmstate: block device node name to load vmstate from 2266# 2267# @devices: list of block device node names to load a snapshot from 2268# 2269# Applications should not assume that the snapshot load is complete 2270# when this command returns. The job commands / events must be used 2271# to determine completion and to fetch details of any errors that 2272# arise. 2273# 2274# Note that execution of the guest CPUs will be stopped during the 2275# time it takes to load the snapshot. 2276# 2277# It is strongly recommended that @devices contain all writable block 2278# device nodes that can have changed since the original @snapshot-save 2279# command execution. 2280# 2281# Returns: nothing 2282# 2283# Example: 2284# 2285# -> { "execute": "snapshot-load", 2286# "arguments": { 2287# "job-id": "snapload0", 2288# "tag": "my-snap", 2289# "vmstate": "disk0", 2290# "devices": ["disk0", "disk1"] 2291# } 2292# } 2293# <- { "return": { } } 2294# <- {"event": "JOB_STATUS_CHANGE", 2295# "timestamp": {"seconds": 1472124172, "microseconds": 744001}, 2296# "data": {"status": "created", "id": "snapload0"}} 2297# <- {"event": "JOB_STATUS_CHANGE", 2298# "timestamp": {"seconds": 1472125172, "microseconds": 744001}, 2299# "data": {"status": "running", "id": "snapload0"}} 2300# <- {"event": "STOP", 2301# "timestamp": {"seconds": 1472125472, "microseconds": 744001} } 2302# <- {"event": "RESUME", 2303# "timestamp": {"seconds": 1472125872, "microseconds": 744001} } 2304# <- {"event": "JOB_STATUS_CHANGE", 2305# "timestamp": {"seconds": 1472126172, "microseconds": 744001}, 2306# "data": {"status": "waiting", "id": "snapload0"}} 2307# <- {"event": "JOB_STATUS_CHANGE", 2308# "timestamp": {"seconds": 1472127172, "microseconds": 744001}, 2309# "data": {"status": "pending", "id": "snapload0"}} 2310# <- {"event": "JOB_STATUS_CHANGE", 2311# "timestamp": {"seconds": 1472128172, "microseconds": 744001}, 2312# "data": {"status": "concluded", "id": "snapload0"}} 2313# -> {"execute": "query-jobs"} 2314# <- {"return": [{"current-progress": 1, 2315# "status": "concluded", 2316# "total-progress": 1, 2317# "type": "snapshot-load", 2318# "id": "snapload0"}]} 2319# 2320# Since: 6.0 2321## 2322{ 'command': 'snapshot-load', 2323 'data': { 'job-id': 'str', 2324 'tag': 'str', 2325 'vmstate': 'str', 2326 'devices': ['str'] } } 2327 2328## 2329# @snapshot-delete: 2330# 2331# Delete a VM snapshot 2332# 2333# @job-id: identifier for the newly created job 2334# 2335# @tag: name of the snapshot to delete. 2336# 2337# @devices: list of block device node names to delete a snapshot from 2338# 2339# Applications should not assume that the snapshot delete is complete 2340# when this command returns. The job commands / events must be used 2341# to determine completion and to fetch details of any errors that 2342# arise. 2343# 2344# Returns: nothing 2345# 2346# Example: 2347# 2348# -> { "execute": "snapshot-delete", 2349# "arguments": { 2350# "job-id": "snapdelete0", 2351# "tag": "my-snap", 2352# "devices": ["disk0", "disk1"] 2353# } 2354# } 2355# <- { "return": { } } 2356# <- {"event": "JOB_STATUS_CHANGE", 2357# "timestamp": {"seconds": 1442124172, "microseconds": 744001}, 2358# "data": {"status": "created", "id": "snapdelete0"}} 2359# <- {"event": "JOB_STATUS_CHANGE", 2360# "timestamp": {"seconds": 1442125172, "microseconds": 744001}, 2361# "data": {"status": "running", "id": "snapdelete0"}} 2362# <- {"event": "JOB_STATUS_CHANGE", 2363# "timestamp": {"seconds": 1442126172, "microseconds": 744001}, 2364# "data": {"status": "waiting", "id": "snapdelete0"}} 2365# <- {"event": "JOB_STATUS_CHANGE", 2366# "timestamp": {"seconds": 1442127172, "microseconds": 744001}, 2367# "data": {"status": "pending", "id": "snapdelete0"}} 2368# <- {"event": "JOB_STATUS_CHANGE", 2369# "timestamp": {"seconds": 1442128172, "microseconds": 744001}, 2370# "data": {"status": "concluded", "id": "snapdelete0"}} 2371# -> {"execute": "query-jobs"} 2372# <- {"return": [{"current-progress": 1, 2373# "status": "concluded", 2374# "total-progress": 1, 2375# "type": "snapshot-delete", 2376# "id": "snapdelete0"}]} 2377# 2378# Since: 6.0 2379## 2380{ 'command': 'snapshot-delete', 2381 'data': { 'job-id': 'str', 2382 'tag': 'str', 2383 'devices': ['str'] } } 2384