xref: /openbmc/qemu/qapi/migration.json (revision 7f118b43)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4
5##
6# = Migration
7##
8
9{ 'include': 'common.json' }
10{ 'include': 'sockets.json' }
11
12##
13# @MigrationStats:
14#
15# Detailed migration status.
16#
17# @transferred: amount of bytes already transferred to the target VM
18#
19# @remaining: amount of bytes remaining to be transferred to the target VM
20#
21# @total: total amount of bytes involved in the migration process
22#
23# @duplicate: number of duplicate (zero) pages (since 1.2)
24#
25# @skipped: number of skipped zero pages (since 1.5)
26#
27# @normal: number of normal pages (since 1.2)
28#
29# @normal-bytes: number of normal bytes sent (since 1.2)
30#
31# @dirty-pages-rate: number of pages dirtied by second by the
32#                    guest (since 1.3)
33#
34# @mbps: throughput in megabits/sec. (since 1.6)
35#
36# @dirty-sync-count: number of times that dirty ram was synchronized (since 2.1)
37#
38# @postcopy-requests: The number of page requests received from the destination
39#                     (since 2.7)
40#
41# @page-size: The number of bytes per page for the various page-based
42#             statistics (since 2.10)
43#
44# @multifd-bytes: The number of bytes sent through multifd (since 3.0)
45#
46# @pages-per-second: the number of memory pages transferred per second
47#                    (Since 4.0)
48#
49# @precopy-bytes: The number of bytes sent in the pre-copy phase
50#                 (since 7.0).
51#
52# @downtime-bytes: The number of bytes sent while the guest is paused
53#                  (since 7.0).
54#
55# @postcopy-bytes: The number of bytes sent during the post-copy phase
56#                  (since 7.0).
57#
58# @dirty-sync-missed-zero-copy: Number of times dirty RAM synchronization could
59#                               not avoid copying dirty pages. This is between
60#                               0 and @dirty-sync-count * @multifd-channels.
61#                               (since 7.1)
62# Since: 0.14
63##
64{ 'struct': 'MigrationStats',
65  'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
66           'duplicate': 'int', 'skipped': 'int', 'normal': 'int',
67           'normal-bytes': 'int', 'dirty-pages-rate' : 'int',
68           'mbps' : 'number', 'dirty-sync-count' : 'int',
69           'postcopy-requests' : 'int', 'page-size' : 'int',
70           'multifd-bytes' : 'uint64', 'pages-per-second' : 'uint64',
71           'precopy-bytes' : 'uint64', 'downtime-bytes' : 'uint64',
72           'postcopy-bytes' : 'uint64',
73           'dirty-sync-missed-zero-copy' : 'uint64' } }
74
75##
76# @XBZRLECacheStats:
77#
78# Detailed XBZRLE migration cache statistics
79#
80# @cache-size: XBZRLE cache size
81#
82# @bytes: amount of bytes already transferred to the target VM
83#
84# @pages: amount of pages transferred to the target VM
85#
86# @cache-miss: number of cache miss
87#
88# @cache-miss-rate: rate of cache miss (since 2.1)
89#
90# @encoding-rate: rate of encoded bytes (since 5.1)
91#
92# @overflow: number of overflows
93#
94# Since: 1.2
95##
96{ 'struct': 'XBZRLECacheStats',
97  'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
98           'cache-miss': 'int', 'cache-miss-rate': 'number',
99           'encoding-rate': 'number', 'overflow': 'int' } }
100
101##
102# @CompressionStats:
103#
104# Detailed migration compression statistics
105#
106# @pages: amount of pages compressed and transferred to the target VM
107#
108# @busy: count of times that no free thread was available to compress data
109#
110# @busy-rate: rate of thread busy
111#
112# @compressed-size: amount of bytes after compression
113#
114# @compression-rate: rate of compressed size
115#
116# Since: 3.1
117##
118{ 'struct': 'CompressionStats',
119  'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
120           'compressed-size': 'int', 'compression-rate': 'number' } }
121
122##
123# @MigrationStatus:
124#
125# An enumeration of migration status.
126#
127# @none: no migration has ever happened.
128#
129# @setup: migration process has been initiated.
130#
131# @cancelling: in the process of cancelling migration.
132#
133# @cancelled: cancelling migration is finished.
134#
135# @active: in the process of doing migration.
136#
137# @postcopy-active: like active, but now in postcopy mode. (since 2.5)
138#
139# @postcopy-paused: during postcopy but paused. (since 3.0)
140#
141# @postcopy-recover: trying to recover from a paused postcopy. (since 3.0)
142#
143# @completed: migration is finished.
144#
145# @failed: some error occurred during migration process.
146#
147# @colo: VM is in the process of fault tolerance, VM can not get into this
148#        state unless colo capability is enabled for migration. (since 2.8)
149#
150# @pre-switchover: Paused before device serialisation. (since 2.11)
151#
152# @device: During device serialisation when pause-before-switchover is enabled
153#          (since 2.11)
154#
155# @wait-unplug: wait for device unplug request by guest OS to be completed.
156#               (since 4.2)
157#
158# Since: 2.3
159##
160{ 'enum': 'MigrationStatus',
161  'data': [ 'none', 'setup', 'cancelling', 'cancelled',
162            'active', 'postcopy-active', 'postcopy-paused',
163            'postcopy-recover', 'completed', 'failed', 'colo',
164            'pre-switchover', 'device', 'wait-unplug' ] }
165##
166# @VfioStats:
167#
168# Detailed VFIO devices migration statistics
169#
170# @transferred: amount of bytes transferred to the target VM by VFIO devices
171#
172# Since: 5.2
173##
174{ 'struct': 'VfioStats',
175  'data': {'transferred': 'int' } }
176
177##
178# @MigrationInfo:
179#
180# Information about current migration process.
181#
182# @status: @MigrationStatus describing the current migration status.
183#          If this field is not returned, no migration process
184#          has been initiated
185#
186# @ram: @MigrationStats containing detailed migration
187#       status, only returned if status is 'active' or
188#       'completed'(since 1.2)
189#
190# @disk: @MigrationStats containing detailed disk migration
191#        status, only returned if status is 'active' and it is a block
192#        migration
193#
194# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
195#                migration statistics, only returned if XBZRLE feature is on and
196#                status is 'active' or 'completed' (since 1.2)
197#
198# @total-time: total amount of milliseconds since migration started.
199#              If migration has ended, it returns the total migration
200#              time. (since 1.2)
201#
202# @downtime: only present when migration finishes correctly
203#            total downtime in milliseconds for the guest.
204#            (since 1.3)
205#
206# @expected-downtime: only present while migration is active
207#                     expected downtime in milliseconds for the guest in last walk
208#                     of the dirty bitmap. (since 1.3)
209#
210# @setup-time: amount of setup time in milliseconds *before* the
211#              iterations begin but *after* the QMP command is issued. This is designed
212#              to provide an accounting of any activities (such as RDMA pinning) which
213#              may be expensive, but do not actually occur during the iterative
214#              migration rounds themselves. (since 1.6)
215#
216# @cpu-throttle-percentage: percentage of time guest cpus are being
217#                           throttled during auto-converge. This is only present when auto-converge
218#                           has started throttling guest cpus. (Since 2.7)
219#
220# @error-desc: the human readable error description string, when
221#              @status is 'failed'. Clients should not attempt to parse the
222#              error strings. (Since 2.7)
223#
224# @postcopy-blocktime: total time when all vCPU were blocked during postcopy
225#                      live migration. This is only present when the postcopy-blocktime
226#                      migration capability is enabled. (Since 3.0)
227#
228# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU.  This is
229#                           only present when the postcopy-blocktime migration capability
230#                           is enabled. (Since 3.0)
231#
232# @compression: migration compression statistics, only returned if compression
233#               feature is on and status is 'active' or 'completed' (Since 3.1)
234#
235# @socket-address: Only used for tcp, to know what the real port is (Since 4.0)
236#
237# @vfio: @VfioStats containing detailed VFIO devices migration statistics,
238#        only returned if VFIO device is present, migration is supported by all
239#        VFIO devices and status is 'active' or 'completed' (since 5.2)
240#
241# @blocked-reasons: A list of reasons an outgoing migration is blocked.
242#                   Present and non-empty when migration is blocked.
243#                   (since 6.0)
244#
245# Since: 0.14
246##
247{ 'struct': 'MigrationInfo',
248  'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
249           '*disk': 'MigrationStats',
250           '*vfio': 'VfioStats',
251           '*xbzrle-cache': 'XBZRLECacheStats',
252           '*total-time': 'int',
253           '*expected-downtime': 'int',
254           '*downtime': 'int',
255           '*setup-time': 'int',
256           '*cpu-throttle-percentage': 'int',
257           '*error-desc': 'str',
258           '*blocked-reasons': ['str'],
259           '*postcopy-blocktime' : 'uint32',
260           '*postcopy-vcpu-blocktime': ['uint32'],
261           '*compression': 'CompressionStats',
262           '*socket-address': ['SocketAddress'] } }
263
264##
265# @query-migrate:
266#
267# Returns information about current migration process. If migration
268# is active there will be another json-object with RAM migration
269# status and if block migration is active another one with block
270# migration status.
271#
272# Returns: @MigrationInfo
273#
274# Since: 0.14
275#
276# Example:
277#
278# 1. Before the first migration
279#
280# -> { "execute": "query-migrate" }
281# <- { "return": {} }
282#
283# 2. Migration is done and has succeeded
284#
285# -> { "execute": "query-migrate" }
286# <- { "return": {
287#         "status": "completed",
288#         "total-time":12345,
289#         "setup-time":12345,
290#         "downtime":12345,
291#         "ram":{
292#           "transferred":123,
293#           "remaining":123,
294#           "total":246,
295#           "duplicate":123,
296#           "normal":123,
297#           "normal-bytes":123456,
298#           "dirty-sync-count":15
299#         }
300#      }
301#    }
302#
303# 3. Migration is done and has failed
304#
305# -> { "execute": "query-migrate" }
306# <- { "return": { "status": "failed" } }
307#
308# 4. Migration is being performed and is not a block migration:
309#
310# -> { "execute": "query-migrate" }
311# <- {
312#       "return":{
313#          "status":"active",
314#          "total-time":12345,
315#          "setup-time":12345,
316#          "expected-downtime":12345,
317#          "ram":{
318#             "transferred":123,
319#             "remaining":123,
320#             "total":246,
321#             "duplicate":123,
322#             "normal":123,
323#             "normal-bytes":123456,
324#             "dirty-sync-count":15
325#          }
326#       }
327#    }
328#
329# 5. Migration is being performed and is a block migration:
330#
331# -> { "execute": "query-migrate" }
332# <- {
333#       "return":{
334#          "status":"active",
335#          "total-time":12345,
336#          "setup-time":12345,
337#          "expected-downtime":12345,
338#          "ram":{
339#             "total":1057024,
340#             "remaining":1053304,
341#             "transferred":3720,
342#             "duplicate":123,
343#             "normal":123,
344#             "normal-bytes":123456,
345#             "dirty-sync-count":15
346#          },
347#          "disk":{
348#             "total":20971520,
349#             "remaining":20880384,
350#             "transferred":91136
351#          }
352#       }
353#    }
354#
355# 6. Migration is being performed and XBZRLE is active:
356#
357# -> { "execute": "query-migrate" }
358# <- {
359#       "return":{
360#          "status":"active",
361#          "total-time":12345,
362#          "setup-time":12345,
363#          "expected-downtime":12345,
364#          "ram":{
365#             "total":1057024,
366#             "remaining":1053304,
367#             "transferred":3720,
368#             "duplicate":10,
369#             "normal":3333,
370#             "normal-bytes":3412992,
371#             "dirty-sync-count":15
372#          },
373#          "xbzrle-cache":{
374#             "cache-size":67108864,
375#             "bytes":20971520,
376#             "pages":2444343,
377#             "cache-miss":2244,
378#             "cache-miss-rate":0.123,
379#             "encoding-rate":80.1,
380#             "overflow":34434
381#          }
382#       }
383#    }
384#
385##
386{ 'command': 'query-migrate', 'returns': 'MigrationInfo' }
387
388##
389# @MigrationCapability:
390#
391# Migration capabilities enumeration
392#
393# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length Encoding).
394#          This feature allows us to minimize migration traffic for certain work
395#          loads, by sending compressed difference of the pages
396#
397# @rdma-pin-all: Controls whether or not the entire VM memory footprint is
398#                mlock()'d on demand or all at once. Refer to docs/rdma.txt for usage.
399#                Disabled by default. (since 2.0)
400#
401# @zero-blocks: During storage migration encode blocks of zeroes efficiently. This
402#               essentially saves 1MB of zeroes per block on the wire. Enabling requires
403#               source and target VM to support this feature. To enable it is sufficient
404#               to enable the capability on the source VM. The feature is disabled by
405#               default. (since 1.6)
406#
407# @compress: Use multiple compression threads to accelerate live migration.
408#            This feature can help to reduce the migration traffic, by sending
409#            compressed pages. Please note that if compress and xbzrle are both
410#            on, compress only takes effect in the ram bulk stage, after that,
411#            it will be disabled and only xbzrle takes effect, this can help to
412#            minimize migration traffic. The feature is disabled by default.
413#            (since 2.4 )
414#
415# @events: generate events for each migration state change
416#          (since 2.4 )
417#
418# @auto-converge: If enabled, QEMU will automatically throttle down the guest
419#                 to speed up convergence of RAM migration. (since 1.6)
420#
421# @postcopy-ram: Start executing on the migration target before all of RAM has
422#                been migrated, pulling the remaining pages along as needed. The
423#                capacity must have the same setting on both source and target
424#                or migration will not even start. NOTE: If the migration fails during
425#                postcopy the VM will fail.  (since 2.6)
426#
427# @x-colo: If enabled, migration will never end, and the state of the VM on the
428#          primary side will be migrated continuously to the VM on secondary
429#          side, this process is called COarse-Grain LOck Stepping (COLO) for
430#          Non-stop Service. (since 2.8)
431#
432# @release-ram: if enabled, qemu will free the migrated ram pages on the source
433#               during postcopy-ram migration. (since 2.9)
434#
435# @block: If enabled, QEMU will also migrate the contents of all block
436#         devices.  Default is disabled.  A possible alternative uses
437#         mirror jobs to a builtin NBD server on the destination, which
438#         offers more flexibility.
439#         (Since 2.10)
440#
441# @return-path: If enabled, migration will use the return path even
442#               for precopy. (since 2.10)
443#
444# @pause-before-switchover: Pause outgoing migration before serialising device
445#                           state and before disabling block IO (since 2.11)
446#
447# @multifd: Use more than one fd for migration (since 4.0)
448#
449# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
450#                 (since 2.12)
451#
452# @postcopy-blocktime: Calculate downtime for postcopy live migration
453#                      (since 3.0)
454#
455# @late-block-activate: If enabled, the destination will not activate block
456#                       devices (and thus take locks) immediately at the end of migration.
457#                       (since 3.0)
458#
459# @x-ignore-shared: If enabled, QEMU will not migrate shared memory (since 4.0)
460#
461# @validate-uuid: Send the UUID of the source to allow the destination
462#                 to ensure it is the same. (since 4.2)
463#
464# @background-snapshot: If enabled, the migration stream will be a snapshot
465#                       of the VM exactly at the point when the migration
466#                       procedure starts. The VM RAM is saved with running VM.
467#                       (since 6.0)
468#
469# @zero-copy-send: Controls behavior on sending memory pages on migration.
470#                  When true, enables a zero-copy mechanism for sending
471#                  memory pages, if host supports it.
472#                  Requires that QEMU be permitted to use locked memory
473#                  for guest RAM pages.
474#                  (since 7.1)
475# @postcopy-preempt: If enabled, the migration process will allow postcopy
476#                    requests to preempt precopy stream, so postcopy requests
477#                    will be handled faster.  This is a performance feature and
478#                    should not affect the correctness of postcopy migration.
479#                    (since 7.1)
480#
481# Features:
482# @unstable: Members @x-colo and @x-ignore-shared are experimental.
483#
484# Since: 1.2
485##
486{ 'enum': 'MigrationCapability',
487  'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
488           'compress', 'events', 'postcopy-ram',
489           { 'name': 'x-colo', 'features': [ 'unstable' ] },
490           'release-ram',
491           'block', 'return-path', 'pause-before-switchover', 'multifd',
492           'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
493           { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
494           'validate-uuid', 'background-snapshot',
495           'zero-copy-send', 'postcopy-preempt'] }
496
497##
498# @MigrationCapabilityStatus:
499#
500# Migration capability information
501#
502# @capability: capability enum
503#
504# @state: capability state bool
505#
506# Since: 1.2
507##
508{ 'struct': 'MigrationCapabilityStatus',
509  'data': { 'capability' : 'MigrationCapability', 'state' : 'bool' } }
510
511##
512# @migrate-set-capabilities:
513#
514# Enable/Disable the following migration capabilities (like xbzrle)
515#
516# @capabilities: json array of capability modifications to make
517#
518# Since: 1.2
519#
520# Example:
521#
522# -> { "execute": "migrate-set-capabilities" , "arguments":
523#      { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
524#
525##
526{ 'command': 'migrate-set-capabilities',
527  'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
528
529##
530# @query-migrate-capabilities:
531#
532# Returns information about the current migration capabilities status
533#
534# Returns: @MigrationCapabilitiesStatus
535#
536# Since: 1.2
537#
538# Example:
539#
540# -> { "execute": "query-migrate-capabilities" }
541# <- { "return": [
542#       {"state": false, "capability": "xbzrle"},
543#       {"state": false, "capability": "rdma-pin-all"},
544#       {"state": false, "capability": "auto-converge"},
545#       {"state": false, "capability": "zero-blocks"},
546#       {"state": false, "capability": "compress"},
547#       {"state": true, "capability": "events"},
548#       {"state": false, "capability": "postcopy-ram"},
549#       {"state": false, "capability": "x-colo"}
550#    ]}
551#
552##
553{ 'command': 'query-migrate-capabilities', 'returns':   ['MigrationCapabilityStatus']}
554
555##
556# @MultiFDCompression:
557#
558# An enumeration of multifd compression methods.
559#
560# @none: no compression.
561# @zlib: use zlib compression method.
562# @zstd: use zstd compression method.
563#
564# Since: 5.0
565##
566{ 'enum': 'MultiFDCompression',
567  'data': [ 'none', 'zlib',
568            { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
569
570##
571# @BitmapMigrationBitmapAliasTransform:
572#
573# @persistent: If present, the bitmap will be made persistent
574#              or transient depending on this parameter.
575#
576# Since: 6.0
577##
578{ 'struct': 'BitmapMigrationBitmapAliasTransform',
579  'data': {
580      '*persistent': 'bool'
581  } }
582
583##
584# @BitmapMigrationBitmapAlias:
585#
586# @name: The name of the bitmap.
587#
588# @alias: An alias name for migration (for example the bitmap name on
589#         the opposite site).
590#
591# @transform: Allows the modification of the migrated bitmap.
592#             (since 6.0)
593#
594# Since: 5.2
595##
596{ 'struct': 'BitmapMigrationBitmapAlias',
597  'data': {
598      'name': 'str',
599      'alias': 'str',
600      '*transform': 'BitmapMigrationBitmapAliasTransform'
601  } }
602
603##
604# @BitmapMigrationNodeAlias:
605#
606# Maps a block node name and the bitmaps it has to aliases for dirty
607# bitmap migration.
608#
609# @node-name: A block node name.
610#
611# @alias: An alias block node name for migration (for example the
612#         node name on the opposite site).
613#
614# @bitmaps: Mappings for the bitmaps on this node.
615#
616# Since: 5.2
617##
618{ 'struct': 'BitmapMigrationNodeAlias',
619  'data': {
620      'node-name': 'str',
621      'alias': 'str',
622      'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
623  } }
624
625##
626# @MigrationParameter:
627#
628# Migration parameters enumeration
629#
630# @announce-initial: Initial delay (in milliseconds) before sending the first
631#                    announce (Since 4.0)
632#
633# @announce-max: Maximum delay (in milliseconds) between packets in the
634#                announcement (Since 4.0)
635#
636# @announce-rounds: Number of self-announce packets sent after migration
637#                   (Since 4.0)
638#
639# @announce-step: Increase in delay (in milliseconds) between subsequent
640#                 packets in the announcement (Since 4.0)
641#
642# @compress-level: Set the compression level to be used in live migration,
643#                  the compression level is an integer between 0 and 9, where 0 means
644#                  no compression, 1 means the best compression speed, and 9 means best
645#                  compression ratio which will consume more CPU.
646#
647# @compress-threads: Set compression thread count to be used in live migration,
648#                    the compression thread count is an integer between 1 and 255.
649#
650# @compress-wait-thread: Controls behavior when all compression threads are
651#                        currently busy. If true (default), wait for a free
652#                        compression thread to become available; otherwise,
653#                        send the page uncompressed. (Since 3.1)
654#
655# @decompress-threads: Set decompression thread count to be used in live
656#                      migration, the decompression thread count is an integer between 1
657#                      and 255. Usually, decompression is at least 4 times as fast as
658#                      compression, so set the decompress-threads to the number about 1/4
659#                      of compress-threads is adequate.
660#
661# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
662#                              to trigger throttling. It is expressed as percentage.
663#                              The default value is 50. (Since 5.0)
664#
665# @cpu-throttle-initial: Initial percentage of time guest cpus are throttled
666#                        when migration auto-converge is activated. The
667#                        default value is 20. (Since 2.7)
668#
669# @cpu-throttle-increment: throttle percentage increase each time
670#                          auto-converge detects that migration is not making
671#                          progress. The default value is 10. (Since 2.7)
672#
673# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
674#                         At the tail stage of throttling, the Guest is very
675#                         sensitive to CPU percentage while the @cpu-throttle
676#                         -increment is excessive usually at tail stage.
677#                         If this parameter is true, we will compute the ideal
678#                         CPU percentage used by the Guest, which may exactly make
679#                         the dirty rate match the dirty rate threshold. Then we
680#                         will choose a smaller throttle increment between the
681#                         one specified by @cpu-throttle-increment and the one
682#                         generated by ideal CPU percentage.
683#                         Therefore, it is compatible to traditional throttling,
684#                         meanwhile the throttle increment won't be excessive
685#                         at tail stage.
686#                         The default value is false. (Since 5.1)
687#
688# @tls-creds: ID of the 'tls-creds' object that provides credentials for
689#             establishing a TLS connection over the migration data channel.
690#             On the outgoing side of the migration, the credentials must
691#             be for a 'client' endpoint, while for the incoming side the
692#             credentials must be for a 'server' endpoint. Setting this
693#             will enable TLS for all migrations. The default is unset,
694#             resulting in unsecured migration at the QEMU level. (Since 2.7)
695#
696# @tls-hostname: hostname of the target host for the migration. This is
697#                required when using x509 based TLS credentials and the
698#                migration URI does not already include a hostname. For
699#                example if using fd: or exec: based migration, the
700#                hostname must be provided so that the server's x509
701#                certificate identity can be validated. (Since 2.7)
702#
703# @tls-authz: ID of the 'authz' object subclass that provides access control
704#             checking of the TLS x509 certificate distinguished name.
705#             This object is only resolved at time of use, so can be deleted
706#             and recreated on the fly while the migration server is active.
707#             If missing, it will default to denying access (Since 4.0)
708#
709# @max-bandwidth: to set maximum speed for migration. maximum speed in
710#                 bytes per second. (Since 2.8)
711#
712# @downtime-limit: set maximum tolerated downtime for migration. maximum
713#                  downtime in milliseconds (Since 2.8)
714#
715# @x-checkpoint-delay: The delay time (in ms) between two COLO checkpoints in
716#                      periodic mode. (Since 2.8)
717#
718# @block-incremental: Affects how much storage is migrated when the
719#                     block migration capability is enabled.  When false, the entire
720#                     storage backing chain is migrated into a flattened image at
721#                     the destination; when true, only the active qcow2 layer is
722#                     migrated and the destination must already have access to the
723#                     same backing chain as was used on the source.  (since 2.10)
724#
725# @multifd-channels: Number of channels used to migrate data in
726#                    parallel. This is the same number that the
727#                    number of sockets used for migration.  The
728#                    default value is 2 (since 4.0)
729#
730# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
731#                     needs to be a multiple of the target page size
732#                     and a power of 2
733#                     (Since 2.11)
734#
735# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
736#                          Defaults to 0 (unlimited).  In bytes per second.
737#                          (Since 3.0)
738#
739# @max-cpu-throttle: maximum cpu throttle percentage.
740#                    Defaults to 99. (Since 3.1)
741#
742# @multifd-compression: Which compression method to use.
743#                       Defaults to none. (Since 5.0)
744#
745# @multifd-zlib-level: Set the compression level to be used in live
746#                      migration, the compression level is an integer between 0
747#                      and 9, where 0 means no compression, 1 means the best
748#                      compression speed, and 9 means best compression ratio which
749#                      will consume more CPU.
750#                      Defaults to 1. (Since 5.0)
751#
752# @multifd-zstd-level: Set the compression level to be used in live
753#                      migration, the compression level is an integer between 0
754#                      and 20, where 0 means no compression, 1 means the best
755#                      compression speed, and 20 means best compression ratio which
756#                      will consume more CPU.
757#                      Defaults to 1. (Since 5.0)
758#
759#
760# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
761#                        aliases for the purpose of dirty bitmap migration.  Such
762#                        aliases may for example be the corresponding names on the
763#                        opposite site.
764#                        The mapping must be one-to-one, but not necessarily
765#                        complete: On the source, unmapped bitmaps and all bitmaps
766#                        on unmapped nodes will be ignored.  On the destination,
767#                        encountering an unmapped alias in the incoming migration
768#                        stream will result in a report, and all further bitmap
769#                        migration data will then be discarded.
770#                        Note that the destination does not know about bitmaps it
771#                        does not receive, so there is no limitation or requirement
772#                        regarding the number of bitmaps received, or how they are
773#                        named, or on which nodes they are placed.
774#                        By default (when this parameter has never been set), bitmap
775#                        names are mapped to themselves.  Nodes are mapped to their
776#                        block device name if there is one, and to their node name
777#                        otherwise. (Since 5.2)
778#
779# Features:
780# @unstable: Member @x-checkpoint-delay is experimental.
781#
782# Since: 2.4
783##
784{ 'enum': 'MigrationParameter',
785  'data': ['announce-initial', 'announce-max',
786           'announce-rounds', 'announce-step',
787           'compress-level', 'compress-threads', 'decompress-threads',
788           'compress-wait-thread', 'throttle-trigger-threshold',
789           'cpu-throttle-initial', 'cpu-throttle-increment',
790           'cpu-throttle-tailslow',
791           'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
792           'downtime-limit',
793           { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
794           'block-incremental',
795           'multifd-channels',
796           'xbzrle-cache-size', 'max-postcopy-bandwidth',
797           'max-cpu-throttle', 'multifd-compression',
798           'multifd-zlib-level' ,'multifd-zstd-level',
799           'block-bitmap-mapping' ] }
800
801##
802# @MigrateSetParameters:
803#
804# @announce-initial: Initial delay (in milliseconds) before sending the first
805#                    announce (Since 4.0)
806#
807# @announce-max: Maximum delay (in milliseconds) between packets in the
808#                announcement (Since 4.0)
809#
810# @announce-rounds: Number of self-announce packets sent after migration
811#                   (Since 4.0)
812#
813# @announce-step: Increase in delay (in milliseconds) between subsequent
814#                 packets in the announcement (Since 4.0)
815#
816# @compress-level: compression level
817#
818# @compress-threads: compression thread count
819#
820# @compress-wait-thread: Controls behavior when all compression threads are
821#                        currently busy. If true (default), wait for a free
822#                        compression thread to become available; otherwise,
823#                        send the page uncompressed. (Since 3.1)
824#
825# @decompress-threads: decompression thread count
826#
827# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
828#                              to trigger throttling. It is expressed as percentage.
829#                              The default value is 50. (Since 5.0)
830#
831# @cpu-throttle-initial: Initial percentage of time guest cpus are
832#                        throttled when migration auto-converge is activated.
833#                        The default value is 20. (Since 2.7)
834#
835# @cpu-throttle-increment: throttle percentage increase each time
836#                          auto-converge detects that migration is not making
837#                          progress. The default value is 10. (Since 2.7)
838#
839# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
840#                         At the tail stage of throttling, the Guest is very
841#                         sensitive to CPU percentage while the @cpu-throttle
842#                         -increment is excessive usually at tail stage.
843#                         If this parameter is true, we will compute the ideal
844#                         CPU percentage used by the Guest, which may exactly make
845#                         the dirty rate match the dirty rate threshold. Then we
846#                         will choose a smaller throttle increment between the
847#                         one specified by @cpu-throttle-increment and the one
848#                         generated by ideal CPU percentage.
849#                         Therefore, it is compatible to traditional throttling,
850#                         meanwhile the throttle increment won't be excessive
851#                         at tail stage.
852#                         The default value is false. (Since 5.1)
853#
854# @tls-creds: ID of the 'tls-creds' object that provides credentials
855#             for establishing a TLS connection over the migration data
856#             channel. On the outgoing side of the migration, the credentials
857#             must be for a 'client' endpoint, while for the incoming side the
858#             credentials must be for a 'server' endpoint. Setting this
859#             to a non-empty string enables TLS for all migrations.
860#             An empty string means that QEMU will use plain text mode for
861#             migration, rather than TLS (Since 2.9)
862#             Previously (since 2.7), this was reported by omitting
863#             tls-creds instead.
864#
865# @tls-hostname: hostname of the target host for the migration. This
866#                is required when using x509 based TLS credentials and the
867#                migration URI does not already include a hostname. For
868#                example if using fd: or exec: based migration, the
869#                hostname must be provided so that the server's x509
870#                certificate identity can be validated. (Since 2.7)
871#                An empty string means that QEMU will use the hostname
872#                associated with the migration URI, if any. (Since 2.9)
873#                Previously (since 2.7), this was reported by omitting
874#                tls-hostname instead.
875#
876# @max-bandwidth: to set maximum speed for migration. maximum speed in
877#                 bytes per second. (Since 2.8)
878#
879# @downtime-limit: set maximum tolerated downtime for migration. maximum
880#                  downtime in milliseconds (Since 2.8)
881#
882# @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8)
883#
884# @block-incremental: Affects how much storage is migrated when the
885#                     block migration capability is enabled.  When false, the entire
886#                     storage backing chain is migrated into a flattened image at
887#                     the destination; when true, only the active qcow2 layer is
888#                     migrated and the destination must already have access to the
889#                     same backing chain as was used on the source.  (since 2.10)
890#
891# @multifd-channels: Number of channels used to migrate data in
892#                    parallel. This is the same number that the
893#                    number of sockets used for migration.  The
894#                    default value is 2 (since 4.0)
895#
896# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
897#                     needs to be a multiple of the target page size
898#                     and a power of 2
899#                     (Since 2.11)
900#
901# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
902#                          Defaults to 0 (unlimited).  In bytes per second.
903#                          (Since 3.0)
904#
905# @max-cpu-throttle: maximum cpu throttle percentage.
906#                    The default value is 99. (Since 3.1)
907#
908# @multifd-compression: Which compression method to use.
909#                       Defaults to none. (Since 5.0)
910#
911# @multifd-zlib-level: Set the compression level to be used in live
912#                      migration, the compression level is an integer between 0
913#                      and 9, where 0 means no compression, 1 means the best
914#                      compression speed, and 9 means best compression ratio which
915#                      will consume more CPU.
916#                      Defaults to 1. (Since 5.0)
917#
918# @multifd-zstd-level: Set the compression level to be used in live
919#                      migration, the compression level is an integer between 0
920#                      and 20, where 0 means no compression, 1 means the best
921#                      compression speed, and 20 means best compression ratio which
922#                      will consume more CPU.
923#                      Defaults to 1. (Since 5.0)
924#
925# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
926#                        aliases for the purpose of dirty bitmap migration.  Such
927#                        aliases may for example be the corresponding names on the
928#                        opposite site.
929#                        The mapping must be one-to-one, but not necessarily
930#                        complete: On the source, unmapped bitmaps and all bitmaps
931#                        on unmapped nodes will be ignored.  On the destination,
932#                        encountering an unmapped alias in the incoming migration
933#                        stream will result in a report, and all further bitmap
934#                        migration data will then be discarded.
935#                        Note that the destination does not know about bitmaps it
936#                        does not receive, so there is no limitation or requirement
937#                        regarding the number of bitmaps received, or how they are
938#                        named, or on which nodes they are placed.
939#                        By default (when this parameter has never been set), bitmap
940#                        names are mapped to themselves.  Nodes are mapped to their
941#                        block device name if there is one, and to their node name
942#                        otherwise. (Since 5.2)
943#
944# Features:
945# @unstable: Member @x-checkpoint-delay is experimental.
946#
947# Since: 2.4
948##
949# TODO either fuse back into MigrationParameters, or make
950# MigrationParameters members mandatory
951{ 'struct': 'MigrateSetParameters',
952  'data': { '*announce-initial': 'size',
953            '*announce-max': 'size',
954            '*announce-rounds': 'size',
955            '*announce-step': 'size',
956            '*compress-level': 'uint8',
957            '*compress-threads': 'uint8',
958            '*compress-wait-thread': 'bool',
959            '*decompress-threads': 'uint8',
960            '*throttle-trigger-threshold': 'uint8',
961            '*cpu-throttle-initial': 'uint8',
962            '*cpu-throttle-increment': 'uint8',
963            '*cpu-throttle-tailslow': 'bool',
964            '*tls-creds': 'StrOrNull',
965            '*tls-hostname': 'StrOrNull',
966            '*tls-authz': 'StrOrNull',
967            '*max-bandwidth': 'size',
968            '*downtime-limit': 'uint64',
969            '*x-checkpoint-delay': { 'type': 'uint32',
970                                     'features': [ 'unstable' ] },
971            '*block-incremental': 'bool',
972            '*multifd-channels': 'uint8',
973            '*xbzrle-cache-size': 'size',
974            '*max-postcopy-bandwidth': 'size',
975            '*max-cpu-throttle': 'uint8',
976            '*multifd-compression': 'MultiFDCompression',
977            '*multifd-zlib-level': 'uint8',
978            '*multifd-zstd-level': 'uint8',
979            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } }
980
981##
982# @migrate-set-parameters:
983#
984# Set various migration parameters.
985#
986# Since: 2.4
987#
988# Example:
989#
990# -> { "execute": "migrate-set-parameters" ,
991#      "arguments": { "compress-level": 1 } }
992#
993##
994{ 'command': 'migrate-set-parameters', 'boxed': true,
995  'data': 'MigrateSetParameters' }
996
997##
998# @MigrationParameters:
999#
1000# The optional members aren't actually optional.
1001#
1002# @announce-initial: Initial delay (in milliseconds) before sending the
1003#                    first announce (Since 4.0)
1004#
1005# @announce-max: Maximum delay (in milliseconds) between packets in the
1006#                announcement (Since 4.0)
1007#
1008# @announce-rounds: Number of self-announce packets sent after migration
1009#                   (Since 4.0)
1010#
1011# @announce-step: Increase in delay (in milliseconds) between subsequent
1012#                 packets in the announcement (Since 4.0)
1013#
1014# @compress-level: compression level
1015#
1016# @compress-threads: compression thread count
1017#
1018# @compress-wait-thread: Controls behavior when all compression threads are
1019#                        currently busy. If true (default), wait for a free
1020#                        compression thread to become available; otherwise,
1021#                        send the page uncompressed. (Since 3.1)
1022#
1023# @decompress-threads: decompression thread count
1024#
1025# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
1026#                              to trigger throttling. It is expressed as percentage.
1027#                              The default value is 50. (Since 5.0)
1028#
1029# @cpu-throttle-initial: Initial percentage of time guest cpus are
1030#                        throttled when migration auto-converge is activated.
1031#                        (Since 2.7)
1032#
1033# @cpu-throttle-increment: throttle percentage increase each time
1034#                          auto-converge detects that migration is not making
1035#                          progress. (Since 2.7)
1036#
1037# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
1038#                         At the tail stage of throttling, the Guest is very
1039#                         sensitive to CPU percentage while the @cpu-throttle
1040#                         -increment is excessive usually at tail stage.
1041#                         If this parameter is true, we will compute the ideal
1042#                         CPU percentage used by the Guest, which may exactly make
1043#                         the dirty rate match the dirty rate threshold. Then we
1044#                         will choose a smaller throttle increment between the
1045#                         one specified by @cpu-throttle-increment and the one
1046#                         generated by ideal CPU percentage.
1047#                         Therefore, it is compatible to traditional throttling,
1048#                         meanwhile the throttle increment won't be excessive
1049#                         at tail stage.
1050#                         The default value is false. (Since 5.1)
1051#
1052# @tls-creds: ID of the 'tls-creds' object that provides credentials
1053#             for establishing a TLS connection over the migration data
1054#             channel. On the outgoing side of the migration, the credentials
1055#             must be for a 'client' endpoint, while for the incoming side the
1056#             credentials must be for a 'server' endpoint.
1057#             An empty string means that QEMU will use plain text mode for
1058#             migration, rather than TLS (Since 2.7)
1059#             Note: 2.8 reports this by omitting tls-creds instead.
1060#
1061# @tls-hostname: hostname of the target host for the migration. This
1062#                is required when using x509 based TLS credentials and the
1063#                migration URI does not already include a hostname. For
1064#                example if using fd: or exec: based migration, the
1065#                hostname must be provided so that the server's x509
1066#                certificate identity can be validated. (Since 2.7)
1067#                An empty string means that QEMU will use the hostname
1068#                associated with the migration URI, if any. (Since 2.9)
1069#                Note: 2.8 reports this by omitting tls-hostname instead.
1070#
1071# @tls-authz: ID of the 'authz' object subclass that provides access control
1072#             checking of the TLS x509 certificate distinguished name. (Since
1073#             4.0)
1074#
1075# @max-bandwidth: to set maximum speed for migration. maximum speed in
1076#                 bytes per second. (Since 2.8)
1077#
1078# @downtime-limit: set maximum tolerated downtime for migration. maximum
1079#                  downtime in milliseconds (Since 2.8)
1080#
1081# @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8)
1082#
1083# @block-incremental: Affects how much storage is migrated when the
1084#                     block migration capability is enabled.  When false, the entire
1085#                     storage backing chain is migrated into a flattened image at
1086#                     the destination; when true, only the active qcow2 layer is
1087#                     migrated and the destination must already have access to the
1088#                     same backing chain as was used on the source.  (since 2.10)
1089#
1090# @multifd-channels: Number of channels used to migrate data in
1091#                    parallel. This is the same number that the
1092#                    number of sockets used for migration.
1093#                    The default value is 2 (since 4.0)
1094#
1095# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
1096#                     needs to be a multiple of the target page size
1097#                     and a power of 2
1098#                     (Since 2.11)
1099#
1100# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
1101#                          Defaults to 0 (unlimited).  In bytes per second.
1102#                          (Since 3.0)
1103#
1104# @max-cpu-throttle: maximum cpu throttle percentage.
1105#                    Defaults to 99.
1106#                    (Since 3.1)
1107#
1108# @multifd-compression: Which compression method to use.
1109#                       Defaults to none. (Since 5.0)
1110#
1111# @multifd-zlib-level: Set the compression level to be used in live
1112#                      migration, the compression level is an integer between 0
1113#                      and 9, where 0 means no compression, 1 means the best
1114#                      compression speed, and 9 means best compression ratio which
1115#                      will consume more CPU.
1116#                      Defaults to 1. (Since 5.0)
1117#
1118# @multifd-zstd-level: Set the compression level to be used in live
1119#                      migration, the compression level is an integer between 0
1120#                      and 20, where 0 means no compression, 1 means the best
1121#                      compression speed, and 20 means best compression ratio which
1122#                      will consume more CPU.
1123#                      Defaults to 1. (Since 5.0)
1124#
1125# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1126#                        aliases for the purpose of dirty bitmap migration.  Such
1127#                        aliases may for example be the corresponding names on the
1128#                        opposite site.
1129#                        The mapping must be one-to-one, but not necessarily
1130#                        complete: On the source, unmapped bitmaps and all bitmaps
1131#                        on unmapped nodes will be ignored.  On the destination,
1132#                        encountering an unmapped alias in the incoming migration
1133#                        stream will result in a report, and all further bitmap
1134#                        migration data will then be discarded.
1135#                        Note that the destination does not know about bitmaps it
1136#                        does not receive, so there is no limitation or requirement
1137#                        regarding the number of bitmaps received, or how they are
1138#                        named, or on which nodes they are placed.
1139#                        By default (when this parameter has never been set), bitmap
1140#                        names are mapped to themselves.  Nodes are mapped to their
1141#                        block device name if there is one, and to their node name
1142#                        otherwise. (Since 5.2)
1143#
1144# Features:
1145# @unstable: Member @x-checkpoint-delay is experimental.
1146#
1147# Since: 2.4
1148##
1149{ 'struct': 'MigrationParameters',
1150  'data': { '*announce-initial': 'size',
1151            '*announce-max': 'size',
1152            '*announce-rounds': 'size',
1153            '*announce-step': 'size',
1154            '*compress-level': 'uint8',
1155            '*compress-threads': 'uint8',
1156            '*compress-wait-thread': 'bool',
1157            '*decompress-threads': 'uint8',
1158            '*throttle-trigger-threshold': 'uint8',
1159            '*cpu-throttle-initial': 'uint8',
1160            '*cpu-throttle-increment': 'uint8',
1161            '*cpu-throttle-tailslow': 'bool',
1162            '*tls-creds': 'str',
1163            '*tls-hostname': 'str',
1164            '*tls-authz': 'str',
1165            '*max-bandwidth': 'size',
1166            '*downtime-limit': 'uint64',
1167            '*x-checkpoint-delay': { 'type': 'uint32',
1168                                     'features': [ 'unstable' ] },
1169            '*block-incremental': 'bool',
1170            '*multifd-channels': 'uint8',
1171            '*xbzrle-cache-size': 'size',
1172            '*max-postcopy-bandwidth': 'size',
1173            '*max-cpu-throttle': 'uint8',
1174            '*multifd-compression': 'MultiFDCompression',
1175            '*multifd-zlib-level': 'uint8',
1176            '*multifd-zstd-level': 'uint8',
1177            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } }
1178
1179##
1180# @query-migrate-parameters:
1181#
1182# Returns information about the current migration parameters
1183#
1184# Returns: @MigrationParameters
1185#
1186# Since: 2.4
1187#
1188# Example:
1189#
1190# -> { "execute": "query-migrate-parameters" }
1191# <- { "return": {
1192#          "decompress-threads": 2,
1193#          "cpu-throttle-increment": 10,
1194#          "compress-threads": 8,
1195#          "compress-level": 1,
1196#          "cpu-throttle-initial": 20,
1197#          "max-bandwidth": 33554432,
1198#          "downtime-limit": 300
1199#       }
1200#    }
1201#
1202##
1203{ 'command': 'query-migrate-parameters',
1204  'returns': 'MigrationParameters' }
1205
1206##
1207# @client_migrate_info:
1208#
1209# Set migration information for remote display.  This makes the server
1210# ask the client to automatically reconnect using the new parameters
1211# once migration finished successfully.  Only implemented for SPICE.
1212#
1213# @protocol: must be "spice"
1214# @hostname: migration target hostname
1215# @port: spice tcp port for plaintext channels
1216# @tls-port: spice tcp port for tls-secured channels
1217# @cert-subject: server certificate subject
1218#
1219# Since: 0.14
1220#
1221# Example:
1222#
1223# -> { "execute": "client_migrate_info",
1224#      "arguments": { "protocol": "spice",
1225#                     "hostname": "virt42.lab.kraxel.org",
1226#                     "port": 1234 } }
1227# <- { "return": {} }
1228#
1229##
1230{ 'command': 'client_migrate_info',
1231  'data': { 'protocol': 'str', 'hostname': 'str', '*port': 'int',
1232            '*tls-port': 'int', '*cert-subject': 'str' } }
1233
1234##
1235# @migrate-start-postcopy:
1236#
1237# Followup to a migration command to switch the migration to postcopy mode.
1238# The postcopy-ram capability must be set on both source and destination
1239# before the original migration command.
1240#
1241# Since: 2.5
1242#
1243# Example:
1244#
1245# -> { "execute": "migrate-start-postcopy" }
1246# <- { "return": {} }
1247#
1248##
1249{ 'command': 'migrate-start-postcopy' }
1250
1251##
1252# @MIGRATION:
1253#
1254# Emitted when a migration event happens
1255#
1256# @status: @MigrationStatus describing the current migration status.
1257#
1258# Since: 2.4
1259#
1260# Example:
1261#
1262# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1263#     "event": "MIGRATION",
1264#     "data": {"status": "completed"} }
1265#
1266##
1267{ 'event': 'MIGRATION',
1268  'data': {'status': 'MigrationStatus'}}
1269
1270##
1271# @MIGRATION_PASS:
1272#
1273# Emitted from the source side of a migration at the start of each pass
1274# (when it syncs the dirty bitmap)
1275#
1276# @pass: An incrementing count (starting at 1 on the first pass)
1277#
1278# Since: 2.6
1279#
1280# Example:
1281#
1282# { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1283#   "event": "MIGRATION_PASS", "data": {"pass": 2} }
1284#
1285##
1286{ 'event': 'MIGRATION_PASS',
1287  'data': { 'pass': 'int' } }
1288
1289##
1290# @COLOMessage:
1291#
1292# The message transmission between Primary side and Secondary side.
1293#
1294# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1295#
1296# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for checkpointing
1297#
1298# @checkpoint-reply: SVM gets PVM's checkpoint request
1299#
1300# @vmstate-send: VM's state will be sent by PVM.
1301#
1302# @vmstate-size: The total size of VMstate.
1303#
1304# @vmstate-received: VM's state has been received by SVM.
1305#
1306# @vmstate-loaded: VM's state has been loaded by SVM.
1307#
1308# Since: 2.8
1309##
1310{ 'enum': 'COLOMessage',
1311  'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1312            'vmstate-send', 'vmstate-size', 'vmstate-received',
1313            'vmstate-loaded' ] }
1314
1315##
1316# @COLOMode:
1317#
1318# The COLO current mode.
1319#
1320# @none: COLO is disabled.
1321#
1322# @primary: COLO node in primary side.
1323#
1324# @secondary: COLO node in slave side.
1325#
1326# Since: 2.8
1327##
1328{ 'enum': 'COLOMode',
1329  'data': [ 'none', 'primary', 'secondary'] }
1330
1331##
1332# @FailoverStatus:
1333#
1334# An enumeration of COLO failover status
1335#
1336# @none: no failover has ever happened
1337#
1338# @require: got failover requirement but not handled
1339#
1340# @active: in the process of doing failover
1341#
1342# @completed: finish the process of failover
1343#
1344# @relaunch: restart the failover process, from 'none' -> 'completed' (Since 2.9)
1345#
1346# Since: 2.8
1347##
1348{ 'enum': 'FailoverStatus',
1349  'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1350
1351##
1352# @COLO_EXIT:
1353#
1354# Emitted when VM finishes COLO mode due to some errors happening or
1355# at the request of users.
1356#
1357# @mode: report COLO mode when COLO exited.
1358#
1359# @reason: describes the reason for the COLO exit.
1360#
1361# Since: 3.1
1362#
1363# Example:
1364#
1365# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1366#      "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1367#
1368##
1369{ 'event': 'COLO_EXIT',
1370  'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1371
1372##
1373# @COLOExitReason:
1374#
1375# The reason for a COLO exit.
1376#
1377# @none: failover has never happened. This state does not occur
1378#        in the COLO_EXIT event, and is only visible in the result of
1379#        query-colo-status.
1380#
1381# @request: COLO exit is due to an external request.
1382#
1383# @error: COLO exit is due to an internal error.
1384#
1385# @processing: COLO is currently handling a failover (since 4.0).
1386#
1387# Since: 3.1
1388##
1389{ 'enum': 'COLOExitReason',
1390  'data': [ 'none', 'request', 'error' , 'processing' ] }
1391
1392##
1393# @x-colo-lost-heartbeat:
1394#
1395# Tell qemu that heartbeat is lost, request it to do takeover procedures.
1396# If this command is sent to the PVM, the Primary side will exit COLO mode.
1397# If sent to the Secondary, the Secondary side will run failover work,
1398# then takes over server operation to become the service VM.
1399#
1400# Features:
1401# @unstable: This command is experimental.
1402#
1403# Since: 2.8
1404#
1405# Example:
1406#
1407# -> { "execute": "x-colo-lost-heartbeat" }
1408# <- { "return": {} }
1409#
1410##
1411{ 'command': 'x-colo-lost-heartbeat',
1412  'features': [ 'unstable' ] }
1413
1414##
1415# @migrate_cancel:
1416#
1417# Cancel the current executing migration process.
1418#
1419# Returns: nothing on success
1420#
1421# Notes: This command succeeds even if there is no migration process running.
1422#
1423# Since: 0.14
1424#
1425# Example:
1426#
1427# -> { "execute": "migrate_cancel" }
1428# <- { "return": {} }
1429#
1430##
1431{ 'command': 'migrate_cancel' }
1432
1433##
1434# @migrate-continue:
1435#
1436# Continue migration when it's in a paused state.
1437#
1438# @state: The state the migration is currently expected to be in
1439#
1440# Returns: nothing on success
1441#
1442# Since: 2.11
1443#
1444# Example:
1445#
1446# -> { "execute": "migrate-continue" , "arguments":
1447#      { "state": "pre-switchover" } }
1448# <- { "return": {} }
1449##
1450{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1451
1452##
1453# @migrate:
1454#
1455# Migrates the current running guest to another Virtual Machine.
1456#
1457# @uri: the Uniform Resource Identifier of the destination VM
1458#
1459# @blk: do block migration (full disk copy)
1460#
1461# @inc: incremental disk copy migration
1462#
1463# @detach: this argument exists only for compatibility reasons and
1464#          is ignored by QEMU
1465#
1466# @resume: resume one paused migration, default "off". (since 3.0)
1467#
1468# Returns: nothing on success
1469#
1470# Since: 0.14
1471#
1472# Notes:
1473#
1474# 1. The 'query-migrate' command should be used to check migration's progress
1475#    and final result (this information is provided by the 'status' member)
1476#
1477# 2. All boolean arguments default to false
1478#
1479# 3. The user Monitor's "detach" argument is invalid in QMP and should not
1480#    be used
1481#
1482# Example:
1483#
1484# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1485# <- { "return": {} }
1486#
1487##
1488{ 'command': 'migrate',
1489  'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool',
1490           '*detach': 'bool', '*resume': 'bool' } }
1491
1492##
1493# @migrate-incoming:
1494#
1495# Start an incoming migration, the qemu must have been started
1496# with -incoming defer
1497#
1498# @uri: The Uniform Resource Identifier identifying the source or
1499#       address to listen on
1500#
1501# Returns: nothing on success
1502#
1503# Since: 2.3
1504#
1505# Notes:
1506#
1507# 1. It's a bad idea to use a string for the uri, but it needs to stay
1508#    compatible with -incoming and the format of the uri is already exposed
1509#    above libvirt.
1510#
1511# 2. QEMU must be started with -incoming defer to allow migrate-incoming to
1512#    be used.
1513#
1514# 3. The uri format is the same as for -incoming
1515#
1516# Example:
1517#
1518# -> { "execute": "migrate-incoming",
1519#      "arguments": { "uri": "tcp::4446" } }
1520# <- { "return": {} }
1521#
1522##
1523{ 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
1524
1525##
1526# @xen-save-devices-state:
1527#
1528# Save the state of all devices to file. The RAM and the block devices
1529# of the VM are not saved by this command.
1530#
1531# @filename: the file to save the state of the devices to as binary
1532#            data. See xen-save-devices-state.txt for a description of the binary
1533#            format.
1534#
1535# @live: Optional argument to ask QEMU to treat this command as part of a live
1536#        migration. Default to true. (since 2.11)
1537#
1538# Returns: Nothing on success
1539#
1540# Since: 1.1
1541#
1542# Example:
1543#
1544# -> { "execute": "xen-save-devices-state",
1545#      "arguments": { "filename": "/tmp/save" } }
1546# <- { "return": {} }
1547#
1548##
1549{ 'command': 'xen-save-devices-state',
1550  'data': {'filename': 'str', '*live':'bool' } }
1551
1552##
1553# @xen-set-global-dirty-log:
1554#
1555# Enable or disable the global dirty log mode.
1556#
1557# @enable: true to enable, false to disable.
1558#
1559# Returns: nothing
1560#
1561# Since: 1.3
1562#
1563# Example:
1564#
1565# -> { "execute": "xen-set-global-dirty-log",
1566#      "arguments": { "enable": true } }
1567# <- { "return": {} }
1568#
1569##
1570{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1571
1572##
1573# @xen-load-devices-state:
1574#
1575# Load the state of all devices from file. The RAM and the block devices
1576# of the VM are not loaded by this command.
1577#
1578# @filename: the file to load the state of the devices from as binary
1579#            data. See xen-save-devices-state.txt for a description of the binary
1580#            format.
1581#
1582# Since: 2.7
1583#
1584# Example:
1585#
1586# -> { "execute": "xen-load-devices-state",
1587#      "arguments": { "filename": "/tmp/resume" } }
1588# <- { "return": {} }
1589#
1590##
1591{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1592
1593##
1594# @xen-set-replication:
1595#
1596# Enable or disable replication.
1597#
1598# @enable: true to enable, false to disable.
1599#
1600# @primary: true for primary or false for secondary.
1601#
1602# @failover: true to do failover, false to stop. but cannot be
1603#            specified if 'enable' is true. default value is false.
1604#
1605# Returns: nothing.
1606#
1607# Example:
1608#
1609# -> { "execute": "xen-set-replication",
1610#      "arguments": {"enable": true, "primary": false} }
1611# <- { "return": {} }
1612#
1613# Since: 2.9
1614##
1615{ 'command': 'xen-set-replication',
1616  'data': { 'enable': 'bool', 'primary': 'bool', '*failover' : 'bool' },
1617  'if': 'CONFIG_REPLICATION' }
1618
1619##
1620# @ReplicationStatus:
1621#
1622# The result format for 'query-xen-replication-status'.
1623#
1624# @error: true if an error happened, false if replication is normal.
1625#
1626# @desc: the human readable error description string, when
1627#        @error is 'true'.
1628#
1629# Since: 2.9
1630##
1631{ 'struct': 'ReplicationStatus',
1632  'data': { 'error': 'bool', '*desc': 'str' },
1633  'if': 'CONFIG_REPLICATION' }
1634
1635##
1636# @query-xen-replication-status:
1637#
1638# Query replication status while the vm is running.
1639#
1640# Returns: A @ReplicationStatus object showing the status.
1641#
1642# Example:
1643#
1644# -> { "execute": "query-xen-replication-status" }
1645# <- { "return": { "error": false } }
1646#
1647# Since: 2.9
1648##
1649{ 'command': 'query-xen-replication-status',
1650  'returns': 'ReplicationStatus',
1651  'if': 'CONFIG_REPLICATION' }
1652
1653##
1654# @xen-colo-do-checkpoint:
1655#
1656# Xen uses this command to notify replication to trigger a checkpoint.
1657#
1658# Returns: nothing.
1659#
1660# Example:
1661#
1662# -> { "execute": "xen-colo-do-checkpoint" }
1663# <- { "return": {} }
1664#
1665# Since: 2.9
1666##
1667{ 'command': 'xen-colo-do-checkpoint',
1668  'if': 'CONFIG_REPLICATION' }
1669
1670##
1671# @COLOStatus:
1672#
1673# The result format for 'query-colo-status'.
1674#
1675# @mode: COLO running mode. If COLO is running, this field will return
1676#        'primary' or 'secondary'.
1677#
1678# @last-mode: COLO last running mode. If COLO is running, this field
1679#             will return same like mode field, after failover we can
1680#             use this field to get last colo mode. (since 4.0)
1681#
1682# @reason: describes the reason for the COLO exit.
1683#
1684# Since: 3.1
1685##
1686{ 'struct': 'COLOStatus',
1687  'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
1688            'reason': 'COLOExitReason' } }
1689
1690##
1691# @query-colo-status:
1692#
1693# Query COLO status while the vm is running.
1694#
1695# Returns: A @COLOStatus object showing the status.
1696#
1697# Example:
1698#
1699# -> { "execute": "query-colo-status" }
1700# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
1701#
1702# Since: 3.1
1703##
1704{ 'command': 'query-colo-status',
1705  'returns': 'COLOStatus' }
1706
1707##
1708# @migrate-recover:
1709#
1710# Provide a recovery migration stream URI.
1711#
1712# @uri: the URI to be used for the recovery of migration stream.
1713#
1714# Returns: nothing.
1715#
1716# Example:
1717#
1718# -> { "execute": "migrate-recover",
1719#      "arguments": { "uri": "tcp:192.168.1.200:12345" } }
1720# <- { "return": {} }
1721#
1722# Since: 3.0
1723##
1724{ 'command': 'migrate-recover',
1725  'data': { 'uri': 'str' },
1726  'allow-oob': true }
1727
1728##
1729# @migrate-pause:
1730#
1731# Pause a migration.  Currently it only supports postcopy.
1732#
1733# Returns: nothing.
1734#
1735# Example:
1736#
1737# -> { "execute": "migrate-pause" }
1738# <- { "return": {} }
1739#
1740# Since: 3.0
1741##
1742{ 'command': 'migrate-pause', 'allow-oob': true }
1743
1744##
1745# @UNPLUG_PRIMARY:
1746#
1747# Emitted from source side of a migration when migration state is
1748# WAIT_UNPLUG. Device was unplugged by guest operating system.
1749# Device resources in QEMU are kept on standby to be able to re-plug it in case
1750# of migration failure.
1751#
1752# @device-id: QEMU device id of the unplugged device
1753#
1754# Since: 4.2
1755#
1756# Example:
1757#
1758# <- { "event": "UNPLUG_PRIMARY",
1759#      "data": { "device-id": "hostdev0" },
1760#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1761#
1762##
1763{ 'event': 'UNPLUG_PRIMARY',
1764  'data': { 'device-id': 'str' } }
1765
1766##
1767# @DirtyRateVcpu:
1768#
1769# Dirty rate of vcpu.
1770#
1771# @id: vcpu index.
1772#
1773# @dirty-rate: dirty rate.
1774#
1775# Since: 6.2
1776##
1777{ 'struct': 'DirtyRateVcpu',
1778  'data': { 'id': 'int', 'dirty-rate': 'int64' } }
1779
1780##
1781# @DirtyRateStatus:
1782#
1783# An enumeration of dirtyrate status.
1784#
1785# @unstarted: the dirtyrate thread has not been started.
1786#
1787# @measuring: the dirtyrate thread is measuring.
1788#
1789# @measured: the dirtyrate thread has measured and results are available.
1790#
1791# Since: 5.2
1792##
1793{ 'enum': 'DirtyRateStatus',
1794  'data': [ 'unstarted', 'measuring', 'measured'] }
1795
1796##
1797# @DirtyRateMeasureMode:
1798#
1799# An enumeration of mode of measuring dirtyrate.
1800#
1801# @page-sampling: calculate dirtyrate by sampling pages.
1802#
1803# @dirty-ring: calculate dirtyrate by dirty ring.
1804#
1805# @dirty-bitmap: calculate dirtyrate by dirty bitmap.
1806#
1807# Since: 6.2
1808##
1809{ 'enum': 'DirtyRateMeasureMode',
1810  'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
1811
1812##
1813# @DirtyRateInfo:
1814#
1815# Information about current dirty page rate of vm.
1816#
1817# @dirty-rate: an estimate of the dirty page rate of the VM in units of
1818#              MB/s, present only when estimating the rate has completed.
1819#
1820# @status: status containing dirtyrate query status includes
1821#          'unstarted' or 'measuring' or 'measured'
1822#
1823# @start-time: start time in units of second for calculation
1824#
1825# @calc-time: time in units of second for sample dirty pages
1826#
1827# @sample-pages: page count per GB for sample dirty pages
1828#                the default value is 512 (since 6.1)
1829#
1830# @mode: mode containing method of calculate dirtyrate includes
1831#        'page-sampling' and 'dirty-ring' (Since 6.2)
1832#
1833# @vcpu-dirty-rate: dirtyrate for each vcpu if dirty-ring
1834#                   mode specified (Since 6.2)
1835#
1836# Since: 5.2
1837##
1838{ 'struct': 'DirtyRateInfo',
1839  'data': {'*dirty-rate': 'int64',
1840           'status': 'DirtyRateStatus',
1841           'start-time': 'int64',
1842           'calc-time': 'int64',
1843           'sample-pages': 'uint64',
1844           'mode': 'DirtyRateMeasureMode',
1845           '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
1846
1847##
1848# @calc-dirty-rate:
1849#
1850# start calculating dirty page rate for vm
1851#
1852# @calc-time: time in units of second for sample dirty pages
1853#
1854# @sample-pages: page count per GB for sample dirty pages
1855#                the default value is 512 (since 6.1)
1856#
1857# @mode: mechanism of calculating dirtyrate includes
1858#        'page-sampling' and 'dirty-ring' (Since 6.1)
1859#
1860# Since: 5.2
1861#
1862# Example:
1863#
1864#   {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
1865#                                                'sample-pages': 512} }
1866#
1867##
1868{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
1869                                         '*sample-pages': 'int',
1870                                         '*mode': 'DirtyRateMeasureMode'} }
1871
1872##
1873# @query-dirty-rate:
1874#
1875# query dirty page rate in units of MB/s for vm
1876#
1877# Since: 5.2
1878##
1879{ 'command': 'query-dirty-rate', 'returns': 'DirtyRateInfo' }
1880
1881##
1882# @DirtyLimitInfo:
1883#
1884# Dirty page rate limit information of a virtual CPU.
1885#
1886# @cpu-index: index of a virtual CPU.
1887#
1888# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
1889#              CPU, 0 means unlimited.
1890#
1891# @current-rate: current dirty page rate (MB/s) for a virtual CPU.
1892#
1893# Since: 7.1
1894#
1895##
1896{ 'struct': 'DirtyLimitInfo',
1897  'data': { 'cpu-index': 'int',
1898            'limit-rate': 'uint64',
1899            'current-rate': 'uint64' } }
1900
1901##
1902# @set-vcpu-dirty-limit:
1903#
1904# Set the upper limit of dirty page rate for virtual CPUs.
1905#
1906# Requires KVM with accelerator property "dirty-ring-size" set.
1907# A virtual CPU's dirty page rate is a measure of its memory load.
1908# To observe dirty page rates, use @calc-dirty-rate.
1909#
1910# @cpu-index: index of a virtual CPU, default is all.
1911#
1912# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
1913#
1914# Since: 7.1
1915#
1916# Example:
1917#   {"execute": "set-vcpu-dirty-limit"}
1918#    "arguments": { "dirty-rate": 200,
1919#                   "cpu-index": 1 } }
1920#
1921##
1922{ 'command': 'set-vcpu-dirty-limit',
1923  'data': { '*cpu-index': 'int',
1924            'dirty-rate': 'uint64' } }
1925
1926##
1927# @cancel-vcpu-dirty-limit:
1928#
1929# Cancel the upper limit of dirty page rate for virtual CPUs.
1930#
1931# Cancel the dirty page limit for the vCPU which has been set with
1932# set-vcpu-dirty-limit command. Note that this command requires
1933# support from dirty ring, same as the "set-vcpu-dirty-limit".
1934#
1935# @cpu-index: index of a virtual CPU, default is all.
1936#
1937# Since: 7.1
1938#
1939# Example:
1940#   {"execute": "cancel-vcpu-dirty-limit"}
1941#    "arguments": { "cpu-index": 1 } }
1942#
1943##
1944{ 'command': 'cancel-vcpu-dirty-limit',
1945  'data': { '*cpu-index': 'int'} }
1946
1947##
1948# @query-vcpu-dirty-limit:
1949#
1950# Returns information about virtual CPU dirty page rate limits, if any.
1951#
1952# Since: 7.1
1953#
1954# Example:
1955#   {"execute": "query-vcpu-dirty-limit"}
1956#
1957##
1958{ 'command': 'query-vcpu-dirty-limit',
1959  'returns': [ 'DirtyLimitInfo' ] }
1960
1961##
1962# @snapshot-save:
1963#
1964# Save a VM snapshot
1965#
1966# @job-id: identifier for the newly created job
1967# @tag: name of the snapshot to create
1968# @vmstate: block device node name to save vmstate to
1969# @devices: list of block device node names to save a snapshot to
1970#
1971# Applications should not assume that the snapshot save is complete
1972# when this command returns. The job commands / events must be used
1973# to determine completion and to fetch details of any errors that arise.
1974#
1975# Note that execution of the guest CPUs may be stopped during the
1976# time it takes to save the snapshot. A future version of QEMU
1977# may ensure CPUs are executing continuously.
1978#
1979# It is strongly recommended that @devices contain all writable
1980# block device nodes if a consistent snapshot is required.
1981#
1982# If @tag already exists, an error will be reported
1983#
1984# Returns: nothing
1985#
1986# Example:
1987#
1988# -> { "execute": "snapshot-save",
1989#      "arguments": {
1990#         "job-id": "snapsave0",
1991#         "tag": "my-snap",
1992#         "vmstate": "disk0",
1993#         "devices": ["disk0", "disk1"]
1994#      }
1995#    }
1996# <- { "return": { } }
1997# <- {"event": "JOB_STATUS_CHANGE",
1998#     "timestamp": {"seconds": 1432121972, "microseconds": 744001},
1999#     "data": {"status": "created", "id": "snapsave0"}}
2000# <- {"event": "JOB_STATUS_CHANGE",
2001#     "timestamp": {"seconds": 1432122172, "microseconds": 744001},
2002#     "data": {"status": "running", "id": "snapsave0"}}
2003# <- {"event": "STOP",
2004#     "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2005# <- {"event": "RESUME",
2006#     "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
2007# <- {"event": "JOB_STATUS_CHANGE",
2008#     "timestamp": {"seconds": 1432122772, "microseconds": 744001},
2009#     "data": {"status": "waiting", "id": "snapsave0"}}
2010# <- {"event": "JOB_STATUS_CHANGE",
2011#     "timestamp": {"seconds": 1432122972, "microseconds": 744001},
2012#     "data": {"status": "pending", "id": "snapsave0"}}
2013# <- {"event": "JOB_STATUS_CHANGE",
2014#     "timestamp": {"seconds": 1432123172, "microseconds": 744001},
2015#     "data": {"status": "concluded", "id": "snapsave0"}}
2016# -> {"execute": "query-jobs"}
2017# <- {"return": [{"current-progress": 1,
2018#                 "status": "concluded",
2019#                 "total-progress": 1,
2020#                 "type": "snapshot-save",
2021#                 "id": "snapsave0"}]}
2022#
2023# Since: 6.0
2024##
2025{ 'command': 'snapshot-save',
2026  'data': { 'job-id': 'str',
2027            'tag': 'str',
2028            'vmstate': 'str',
2029            'devices': ['str'] } }
2030
2031##
2032# @snapshot-load:
2033#
2034# Load a VM snapshot
2035#
2036# @job-id: identifier for the newly created job
2037# @tag: name of the snapshot to load.
2038# @vmstate: block device node name to load vmstate from
2039# @devices: list of block device node names to load a snapshot from
2040#
2041# Applications should not assume that the snapshot load is complete
2042# when this command returns. The job commands / events must be used
2043# to determine completion and to fetch details of any errors that arise.
2044#
2045# Note that execution of the guest CPUs will be stopped during the
2046# time it takes to load the snapshot.
2047#
2048# It is strongly recommended that @devices contain all writable
2049# block device nodes that can have changed since the original
2050# @snapshot-save command execution.
2051#
2052# Returns: nothing
2053#
2054# Example:
2055#
2056# -> { "execute": "snapshot-load",
2057#      "arguments": {
2058#         "job-id": "snapload0",
2059#         "tag": "my-snap",
2060#         "vmstate": "disk0",
2061#         "devices": ["disk0", "disk1"]
2062#      }
2063#    }
2064# <- { "return": { } }
2065# <- {"event": "JOB_STATUS_CHANGE",
2066#     "timestamp": {"seconds": 1472124172, "microseconds": 744001},
2067#     "data": {"status": "created", "id": "snapload0"}}
2068# <- {"event": "JOB_STATUS_CHANGE",
2069#     "timestamp": {"seconds": 1472125172, "microseconds": 744001},
2070#     "data": {"status": "running", "id": "snapload0"}}
2071# <- {"event": "STOP",
2072#     "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2073# <- {"event": "RESUME",
2074#     "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
2075# <- {"event": "JOB_STATUS_CHANGE",
2076#     "timestamp": {"seconds": 1472126172, "microseconds": 744001},
2077#     "data": {"status": "waiting", "id": "snapload0"}}
2078# <- {"event": "JOB_STATUS_CHANGE",
2079#     "timestamp": {"seconds": 1472127172, "microseconds": 744001},
2080#     "data": {"status": "pending", "id": "snapload0"}}
2081# <- {"event": "JOB_STATUS_CHANGE",
2082#     "timestamp": {"seconds": 1472128172, "microseconds": 744001},
2083#     "data": {"status": "concluded", "id": "snapload0"}}
2084# -> {"execute": "query-jobs"}
2085# <- {"return": [{"current-progress": 1,
2086#                 "status": "concluded",
2087#                 "total-progress": 1,
2088#                 "type": "snapshot-load",
2089#                 "id": "snapload0"}]}
2090#
2091# Since: 6.0
2092##
2093{ 'command': 'snapshot-load',
2094  'data': { 'job-id': 'str',
2095            'tag': 'str',
2096            'vmstate': 'str',
2097            'devices': ['str'] } }
2098
2099##
2100# @snapshot-delete:
2101#
2102# Delete a VM snapshot
2103#
2104# @job-id: identifier for the newly created job
2105# @tag: name of the snapshot to delete.
2106# @devices: list of block device node names to delete a snapshot from
2107#
2108# Applications should not assume that the snapshot delete is complete
2109# when this command returns. The job commands / events must be used
2110# to determine completion and to fetch details of any errors that arise.
2111#
2112# Returns: nothing
2113#
2114# Example:
2115#
2116# -> { "execute": "snapshot-delete",
2117#      "arguments": {
2118#         "job-id": "snapdelete0",
2119#         "tag": "my-snap",
2120#         "devices": ["disk0", "disk1"]
2121#      }
2122#    }
2123# <- { "return": { } }
2124# <- {"event": "JOB_STATUS_CHANGE",
2125#     "timestamp": {"seconds": 1442124172, "microseconds": 744001},
2126#     "data": {"status": "created", "id": "snapdelete0"}}
2127# <- {"event": "JOB_STATUS_CHANGE",
2128#     "timestamp": {"seconds": 1442125172, "microseconds": 744001},
2129#     "data": {"status": "running", "id": "snapdelete0"}}
2130# <- {"event": "JOB_STATUS_CHANGE",
2131#     "timestamp": {"seconds": 1442126172, "microseconds": 744001},
2132#     "data": {"status": "waiting", "id": "snapdelete0"}}
2133# <- {"event": "JOB_STATUS_CHANGE",
2134#     "timestamp": {"seconds": 1442127172, "microseconds": 744001},
2135#     "data": {"status": "pending", "id": "snapdelete0"}}
2136# <- {"event": "JOB_STATUS_CHANGE",
2137#     "timestamp": {"seconds": 1442128172, "microseconds": 744001},
2138#     "data": {"status": "concluded", "id": "snapdelete0"}}
2139# -> {"execute": "query-jobs"}
2140# <- {"return": [{"current-progress": 1,
2141#                 "status": "concluded",
2142#                 "total-progress": 1,
2143#                 "type": "snapshot-delete",
2144#                 "id": "snapdelete0"}]}
2145#
2146# Since: 6.0
2147##
2148{ 'command': 'snapshot-delete',
2149  'data': { 'job-id': 'str',
2150            'tag': 'str',
2151            'devices': ['str'] } }
2152