xref: /openbmc/qemu/qapi/migration.json (revision 759bac67)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4
5##
6# = Migration
7##
8
9{ 'include': 'common.json' }
10{ 'include': 'sockets.json' }
11
12##
13# @MigrationStats:
14#
15# Detailed migration status.
16#
17# @transferred: amount of bytes already transferred to the target VM
18#
19# @remaining: amount of bytes remaining to be transferred to the
20#     target VM
21#
22# @total: total amount of bytes involved in the migration process
23#
24# @duplicate: number of duplicate (zero) pages (since 1.2)
25#
26# @skipped: number of skipped zero pages. Always zero, only provided for
27#     compatibility (since 1.5)
28#
29# @normal: number of normal pages (since 1.2)
30#
31# @normal-bytes: number of normal bytes sent (since 1.2)
32#
33# @dirty-pages-rate: number of pages dirtied by second by the guest
34#     (since 1.3)
35#
36# @mbps: throughput in megabits/sec.  (since 1.6)
37#
38# @dirty-sync-count: number of times that dirty ram was synchronized
39#     (since 2.1)
40#
41# @postcopy-requests: The number of page requests received from the
42#     destination (since 2.7)
43#
44# @page-size: The number of bytes per page for the various page-based
45#     statistics (since 2.10)
46#
47# @multifd-bytes: The number of bytes sent through multifd (since 3.0)
48#
49# @pages-per-second: the number of memory pages transferred per second
50#     (Since 4.0)
51#
52# @precopy-bytes: The number of bytes sent in the pre-copy phase
53#     (since 7.0).
54#
55# @downtime-bytes: The number of bytes sent while the guest is paused
56#     (since 7.0).
57#
58# @postcopy-bytes: The number of bytes sent during the post-copy phase
59#     (since 7.0).
60#
61# @dirty-sync-missed-zero-copy: Number of times dirty RAM
62#     synchronization could not avoid copying dirty pages.  This is
63#     between 0 and @dirty-sync-count * @multifd-channels.  (since
64#     7.1)
65#
66# Features:
67#
68# @deprecated: Member @skipped is always zero since 1.5.3
69#
70# Since: 0.14
71#
72##
73{ 'struct': 'MigrationStats',
74  'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
75           'duplicate': 'int',
76           'skipped': { 'type': 'int', 'features': ['deprecated'] },
77           'normal': 'int',
78           'normal-bytes': 'int', 'dirty-pages-rate': 'int',
79           'mbps': 'number', 'dirty-sync-count': 'int',
80           'postcopy-requests': 'int', 'page-size': 'int',
81           'multifd-bytes': 'uint64', 'pages-per-second': 'uint64',
82           'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64',
83           'postcopy-bytes': 'uint64',
84           'dirty-sync-missed-zero-copy': 'uint64' } }
85
86##
87# @XBZRLECacheStats:
88#
89# Detailed XBZRLE migration cache statistics
90#
91# @cache-size: XBZRLE cache size
92#
93# @bytes: amount of bytes already transferred to the target VM
94#
95# @pages: amount of pages transferred to the target VM
96#
97# @cache-miss: number of cache miss
98#
99# @cache-miss-rate: rate of cache miss (since 2.1)
100#
101# @encoding-rate: rate of encoded bytes (since 5.1)
102#
103# @overflow: number of overflows
104#
105# Since: 1.2
106##
107{ 'struct': 'XBZRLECacheStats',
108  'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
109           'cache-miss': 'int', 'cache-miss-rate': 'number',
110           'encoding-rate': 'number', 'overflow': 'int' } }
111
112##
113# @CompressionStats:
114#
115# Detailed migration compression statistics
116#
117# @pages: amount of pages compressed and transferred to the target VM
118#
119# @busy: count of times that no free thread was available to compress
120#     data
121#
122# @busy-rate: rate of thread busy
123#
124# @compressed-size: amount of bytes after compression
125#
126# @compression-rate: rate of compressed size
127#
128# Since: 3.1
129##
130{ 'struct': 'CompressionStats',
131  'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
132           'compressed-size': 'int', 'compression-rate': 'number' } }
133
134##
135# @MigrationStatus:
136#
137# An enumeration of migration status.
138#
139# @none: no migration has ever happened.
140#
141# @setup: migration process has been initiated.
142#
143# @cancelling: in the process of cancelling migration.
144#
145# @cancelled: cancelling migration is finished.
146#
147# @active: in the process of doing migration.
148#
149# @postcopy-active: like active, but now in postcopy mode.  (since
150#     2.5)
151#
152# @postcopy-paused: during postcopy but paused.  (since 3.0)
153#
154# @postcopy-recover: trying to recover from a paused postcopy.  (since
155#     3.0)
156#
157# @completed: migration is finished.
158#
159# @failed: some error occurred during migration process.
160#
161# @colo: VM is in the process of fault tolerance, VM can not get into
162#     this state unless colo capability is enabled for migration.
163#     (since 2.8)
164#
165# @pre-switchover: Paused before device serialisation.  (since 2.11)
166#
167# @device: During device serialisation when pause-before-switchover is
168#     enabled (since 2.11)
169#
170# @wait-unplug: wait for device unplug request by guest OS to be
171#     completed.  (since 4.2)
172#
173# Since: 2.3
174##
175{ 'enum': 'MigrationStatus',
176  'data': [ 'none', 'setup', 'cancelling', 'cancelled',
177            'active', 'postcopy-active', 'postcopy-paused',
178            'postcopy-recover', 'completed', 'failed', 'colo',
179            'pre-switchover', 'device', 'wait-unplug' ] }
180##
181# @VfioStats:
182#
183# Detailed VFIO devices migration statistics
184#
185# @transferred: amount of bytes transferred to the target VM by VFIO
186#     devices
187#
188# Since: 5.2
189##
190{ 'struct': 'VfioStats',
191  'data': {'transferred': 'int' } }
192
193##
194# @MigrationInfo:
195#
196# Information about current migration process.
197#
198# @status: @MigrationStatus describing the current migration status.
199#     If this field is not returned, no migration process has been
200#     initiated
201#
202# @ram: @MigrationStats containing detailed migration status, only
203#     returned if status is 'active' or 'completed'(since 1.2)
204#
205# @disk: @MigrationStats containing detailed disk migration status,
206#     only returned if status is 'active' and it is a block migration
207#
208# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
209#     migration statistics, only returned if XBZRLE feature is on and
210#     status is 'active' or 'completed' (since 1.2)
211#
212# @total-time: total amount of milliseconds since migration started.
213#     If migration has ended, it returns the total migration time.
214#     (since 1.2)
215#
216# @downtime: only present when migration finishes correctly total
217#     downtime in milliseconds for the guest.  (since 1.3)
218#
219# @expected-downtime: only present while migration is active expected
220#     downtime in milliseconds for the guest in last walk of the dirty
221#     bitmap.  (since 1.3)
222#
223# @setup-time: amount of setup time in milliseconds *before* the
224#     iterations begin but *after* the QMP command is issued.  This is
225#     designed to provide an accounting of any activities (such as
226#     RDMA pinning) which may be expensive, but do not actually occur
227#     during the iterative migration rounds themselves.  (since 1.6)
228#
229# @cpu-throttle-percentage: percentage of time guest cpus are being
230#     throttled during auto-converge.  This is only present when
231#     auto-converge has started throttling guest cpus.  (Since 2.7)
232#
233# @error-desc: the human readable error description string. Clients
234#     should not attempt to parse the error strings.  (Since 2.7)
235#
236# @postcopy-blocktime: total time when all vCPU were blocked during
237#     postcopy live migration.  This is only present when the
238#     postcopy-blocktime migration capability is enabled.  (Since 3.0)
239#
240# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU.
241#     This is only present when the postcopy-blocktime migration
242#     capability is enabled.  (Since 3.0)
243#
244# @compression: migration compression statistics, only returned if
245#     compression feature is on and status is 'active' or 'completed'
246#     (Since 3.1)
247#
248# @socket-address: Only used for tcp, to know what the real port is
249#     (Since 4.0)
250#
251# @vfio: @VfioStats containing detailed VFIO devices migration
252#     statistics, only returned if VFIO device is present, migration
253#     is supported by all VFIO devices and status is 'active' or
254#     'completed' (since 5.2)
255#
256# @blocked-reasons: A list of reasons an outgoing migration is
257#     blocked.  Present and non-empty when migration is blocked.
258#     (since 6.0)
259#
260# @dirty-limit-throttle-time-per-round: Maximum throttle time
261#     (in microseconds) of virtual CPUs each dirty ring full round,
262#     which shows how MigrationCapability dirty-limit affects the
263#     guest during live migration.  (Since 8.1)
264#
265# @dirty-limit-ring-full-time: Estimated average dirty ring full time
266#     (in microseconds) for each dirty ring full round.  The value
267#     equals the dirty ring memory size divided by the average dirty
268#     page rate of the virtual CPU, which can be used to observe the
269#     average memory load of the virtual CPU indirectly.  Note that
270#     zero means guest doesn't dirty memory.  (Since 8.1)
271#
272# Since: 0.14
273##
274{ 'struct': 'MigrationInfo',
275  'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
276           '*disk': 'MigrationStats',
277           '*vfio': 'VfioStats',
278           '*xbzrle-cache': 'XBZRLECacheStats',
279           '*total-time': 'int',
280           '*expected-downtime': 'int',
281           '*downtime': 'int',
282           '*setup-time': 'int',
283           '*cpu-throttle-percentage': 'int',
284           '*error-desc': 'str',
285           '*blocked-reasons': ['str'],
286           '*postcopy-blocktime': 'uint32',
287           '*postcopy-vcpu-blocktime': ['uint32'],
288           '*compression': 'CompressionStats',
289           '*socket-address': ['SocketAddress'],
290           '*dirty-limit-throttle-time-per-round': 'uint64',
291           '*dirty-limit-ring-full-time': 'uint64'} }
292
293##
294# @query-migrate:
295#
296# Returns information about current migration process.  If migration
297# is active there will be another json-object with RAM migration
298# status and if block migration is active another one with block
299# migration status.
300#
301# Returns: @MigrationInfo
302#
303# Since: 0.14
304#
305# Examples:
306#
307# 1. Before the first migration
308#
309# -> { "execute": "query-migrate" }
310# <- { "return": {} }
311#
312# 2. Migration is done and has succeeded
313#
314# -> { "execute": "query-migrate" }
315# <- { "return": {
316#         "status": "completed",
317#         "total-time":12345,
318#         "setup-time":12345,
319#         "downtime":12345,
320#         "ram":{
321#           "transferred":123,
322#           "remaining":123,
323#           "total":246,
324#           "duplicate":123,
325#           "normal":123,
326#           "normal-bytes":123456,
327#           "dirty-sync-count":15
328#         }
329#      }
330#    }
331#
332# 3. Migration is done and has failed
333#
334# -> { "execute": "query-migrate" }
335# <- { "return": { "status": "failed" } }
336#
337# 4. Migration is being performed and is not a block migration:
338#
339# -> { "execute": "query-migrate" }
340# <- {
341#       "return":{
342#          "status":"active",
343#          "total-time":12345,
344#          "setup-time":12345,
345#          "expected-downtime":12345,
346#          "ram":{
347#             "transferred":123,
348#             "remaining":123,
349#             "total":246,
350#             "duplicate":123,
351#             "normal":123,
352#             "normal-bytes":123456,
353#             "dirty-sync-count":15
354#          }
355#       }
356#    }
357#
358# 5. Migration is being performed and is a block migration:
359#
360# -> { "execute": "query-migrate" }
361# <- {
362#       "return":{
363#          "status":"active",
364#          "total-time":12345,
365#          "setup-time":12345,
366#          "expected-downtime":12345,
367#          "ram":{
368#             "total":1057024,
369#             "remaining":1053304,
370#             "transferred":3720,
371#             "duplicate":123,
372#             "normal":123,
373#             "normal-bytes":123456,
374#             "dirty-sync-count":15
375#          },
376#          "disk":{
377#             "total":20971520,
378#             "remaining":20880384,
379#             "transferred":91136
380#          }
381#       }
382#    }
383#
384# 6. Migration is being performed and XBZRLE is active:
385#
386# -> { "execute": "query-migrate" }
387# <- {
388#       "return":{
389#          "status":"active",
390#          "total-time":12345,
391#          "setup-time":12345,
392#          "expected-downtime":12345,
393#          "ram":{
394#             "total":1057024,
395#             "remaining":1053304,
396#             "transferred":3720,
397#             "duplicate":10,
398#             "normal":3333,
399#             "normal-bytes":3412992,
400#             "dirty-sync-count":15
401#          },
402#          "xbzrle-cache":{
403#             "cache-size":67108864,
404#             "bytes":20971520,
405#             "pages":2444343,
406#             "cache-miss":2244,
407#             "cache-miss-rate":0.123,
408#             "encoding-rate":80.1,
409#             "overflow":34434
410#          }
411#       }
412#    }
413##
414{ 'command': 'query-migrate', 'returns': 'MigrationInfo' }
415
416##
417# @MigrationCapability:
418#
419# Migration capabilities enumeration
420#
421# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length
422#     Encoding). This feature allows us to minimize migration traffic
423#     for certain work loads, by sending compressed difference of the
424#     pages
425#
426# @rdma-pin-all: Controls whether or not the entire VM memory
427#     footprint is mlock()'d on demand or all at once.  Refer to
428#     docs/rdma.txt for usage.  Disabled by default.  (since 2.0)
429#
430# @zero-blocks: During storage migration encode blocks of zeroes
431#     efficiently.  This essentially saves 1MB of zeroes per block on
432#     the wire.  Enabling requires source and target VM to support
433#     this feature.  To enable it is sufficient to enable the
434#     capability on the source VM. The feature is disabled by default.
435#     (since 1.6)
436#
437# @compress: Use multiple compression threads to accelerate live
438#     migration.  This feature can help to reduce the migration
439#     traffic, by sending compressed pages.  Please note that if
440#     compress and xbzrle are both on, compress only takes effect in
441#     the ram bulk stage, after that, it will be disabled and only
442#     xbzrle takes effect, this can help to minimize migration
443#     traffic.  The feature is disabled by default.  (since 2.4 )
444#
445# @events: generate events for each migration state change (since 2.4
446#     )
447#
448# @auto-converge: If enabled, QEMU will automatically throttle down
449#     the guest to speed up convergence of RAM migration.  (since 1.6)
450#
451# @postcopy-ram: Start executing on the migration target before all of
452#     RAM has been migrated, pulling the remaining pages along as
453#     needed.  The capacity must have the same setting on both source
454#     and target or migration will not even start.  NOTE: If the
455#     migration fails during postcopy the VM will fail.  (since 2.6)
456#
457# @x-colo: If enabled, migration will never end, and the state of the
458#     VM on the primary side will be migrated continuously to the VM
459#     on secondary side, this process is called COarse-Grain LOck
460#     Stepping (COLO) for Non-stop Service.  (since 2.8)
461#
462# @release-ram: if enabled, qemu will free the migrated ram pages on
463#     the source during postcopy-ram migration.  (since 2.9)
464#
465# @block: If enabled, QEMU will also migrate the contents of all block
466#     devices.  Default is disabled.  A possible alternative uses
467#     mirror jobs to a builtin NBD server on the destination, which
468#     offers more flexibility.  (Since 2.10)
469#
470# @return-path: If enabled, migration will use the return path even
471#     for precopy.  (since 2.10)
472#
473# @pause-before-switchover: Pause outgoing migration before
474#     serialising device state and before disabling block IO (since
475#     2.11)
476#
477# @multifd: Use more than one fd for migration (since 4.0)
478#
479# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
480#     (since 2.12)
481#
482# @postcopy-blocktime: Calculate downtime for postcopy live migration
483#     (since 3.0)
484#
485# @late-block-activate: If enabled, the destination will not activate
486#     block devices (and thus take locks) immediately at the end of
487#     migration.  (since 3.0)
488#
489# @x-ignore-shared: If enabled, QEMU will not migrate shared memory
490#     that is accessible on the destination machine.  (since 4.0)
491#
492# @validate-uuid: Send the UUID of the source to allow the destination
493#     to ensure it is the same.  (since 4.2)
494#
495# @background-snapshot: If enabled, the migration stream will be a
496#     snapshot of the VM exactly at the point when the migration
497#     procedure starts.  The VM RAM is saved with running VM. (since
498#     6.0)
499#
500# @zero-copy-send: Controls behavior on sending memory pages on
501#     migration.  When true, enables a zero-copy mechanism for sending
502#     memory pages, if host supports it.  Requires that QEMU be
503#     permitted to use locked memory for guest RAM pages.  (since 7.1)
504#
505# @postcopy-preempt: If enabled, the migration process will allow
506#     postcopy requests to preempt precopy stream, so postcopy
507#     requests will be handled faster.  This is a performance feature
508#     and should not affect the correctness of postcopy migration.
509#     (since 7.1)
510#
511# @switchover-ack: If enabled, migration will not stop the source VM
512#     and complete the migration until an ACK is received from the
513#     destination that it's OK to do so.  Exactly when this ACK is
514#     sent depends on the migrated devices that use this feature.  For
515#     example, a device can use it to make sure some of its data is
516#     sent and loaded in the destination before doing switchover.
517#     This can reduce downtime if devices that support this capability
518#     are present.  'return-path' capability must be enabled to use
519#     it.  (since 8.1)
520#
521# @dirty-limit: If enabled, migration will throttle vCPUs as needed to
522#     keep their dirty page rate within @vcpu-dirty-limit.  This can
523#     improve responsiveness of large guests during live migration,
524#     and can result in more stable read performance.  Requires KVM
525#     with accelerator property "dirty-ring-size" set.  (Since 8.1)
526#
527# Features:
528#
529# @unstable: Members @x-colo and @x-ignore-shared are experimental.
530#
531# Since: 1.2
532##
533{ 'enum': 'MigrationCapability',
534  'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
535           'compress', 'events', 'postcopy-ram',
536           { 'name': 'x-colo', 'features': [ 'unstable' ] },
537           'release-ram',
538           'block', 'return-path', 'pause-before-switchover', 'multifd',
539           'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
540           { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
541           'validate-uuid', 'background-snapshot',
542           'zero-copy-send', 'postcopy-preempt', 'switchover-ack',
543           'dirty-limit'] }
544
545##
546# @MigrationCapabilityStatus:
547#
548# Migration capability information
549#
550# @capability: capability enum
551#
552# @state: capability state bool
553#
554# Since: 1.2
555##
556{ 'struct': 'MigrationCapabilityStatus',
557  'data': { 'capability': 'MigrationCapability', 'state': 'bool' } }
558
559##
560# @migrate-set-capabilities:
561#
562# Enable/Disable the following migration capabilities (like xbzrle)
563#
564# @capabilities: json array of capability modifications to make
565#
566# Since: 1.2
567#
568# Example:
569#
570# -> { "execute": "migrate-set-capabilities" , "arguments":
571#      { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
572# <- { "return": {} }
573##
574{ 'command': 'migrate-set-capabilities',
575  'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
576
577##
578# @query-migrate-capabilities:
579#
580# Returns information about the current migration capabilities status
581#
582# Returns: @MigrationCapabilityStatus
583#
584# Since: 1.2
585#
586# Example:
587#
588# -> { "execute": "query-migrate-capabilities" }
589# <- { "return": [
590#       {"state": false, "capability": "xbzrle"},
591#       {"state": false, "capability": "rdma-pin-all"},
592#       {"state": false, "capability": "auto-converge"},
593#       {"state": false, "capability": "zero-blocks"},
594#       {"state": false, "capability": "compress"},
595#       {"state": true, "capability": "events"},
596#       {"state": false, "capability": "postcopy-ram"},
597#       {"state": false, "capability": "x-colo"}
598#    ]}
599##
600{ 'command': 'query-migrate-capabilities', 'returns':   ['MigrationCapabilityStatus']}
601
602##
603# @MultiFDCompression:
604#
605# An enumeration of multifd compression methods.
606#
607# @none: no compression.
608#
609# @zlib: use zlib compression method.
610#
611# @zstd: use zstd compression method.
612#
613# Since: 5.0
614##
615{ 'enum': 'MultiFDCompression',
616  'data': [ 'none', 'zlib',
617            { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
618
619##
620# @BitmapMigrationBitmapAliasTransform:
621#
622# @persistent: If present, the bitmap will be made persistent or
623#     transient depending on this parameter.
624#
625# Since: 6.0
626##
627{ 'struct': 'BitmapMigrationBitmapAliasTransform',
628  'data': {
629      '*persistent': 'bool'
630  } }
631
632##
633# @BitmapMigrationBitmapAlias:
634#
635# @name: The name of the bitmap.
636#
637# @alias: An alias name for migration (for example the bitmap name on
638#     the opposite site).
639#
640# @transform: Allows the modification of the migrated bitmap.  (since
641#     6.0)
642#
643# Since: 5.2
644##
645{ 'struct': 'BitmapMigrationBitmapAlias',
646  'data': {
647      'name': 'str',
648      'alias': 'str',
649      '*transform': 'BitmapMigrationBitmapAliasTransform'
650  } }
651
652##
653# @BitmapMigrationNodeAlias:
654#
655# Maps a block node name and the bitmaps it has to aliases for dirty
656# bitmap migration.
657#
658# @node-name: A block node name.
659#
660# @alias: An alias block node name for migration (for example the node
661#     name on the opposite site).
662#
663# @bitmaps: Mappings for the bitmaps on this node.
664#
665# Since: 5.2
666##
667{ 'struct': 'BitmapMigrationNodeAlias',
668  'data': {
669      'node-name': 'str',
670      'alias': 'str',
671      'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
672  } }
673
674##
675# @MigrationParameter:
676#
677# Migration parameters enumeration
678#
679# @announce-initial: Initial delay (in milliseconds) before sending
680#     the first announce (Since 4.0)
681#
682# @announce-max: Maximum delay (in milliseconds) between packets in
683#     the announcement (Since 4.0)
684#
685# @announce-rounds: Number of self-announce packets sent after
686#     migration (Since 4.0)
687#
688# @announce-step: Increase in delay (in milliseconds) between
689#     subsequent packets in the announcement (Since 4.0)
690#
691# @compress-level: Set the compression level to be used in live
692#     migration, the compression level is an integer between 0 and 9,
693#     where 0 means no compression, 1 means the best compression
694#     speed, and 9 means best compression ratio which will consume
695#     more CPU.
696#
697# @compress-threads: Set compression thread count to be used in live
698#     migration, the compression thread count is an integer between 1
699#     and 255.
700#
701# @compress-wait-thread: Controls behavior when all compression
702#     threads are currently busy.  If true (default), wait for a free
703#     compression thread to become available; otherwise, send the page
704#     uncompressed.  (Since 3.1)
705#
706# @decompress-threads: Set decompression thread count to be used in
707#     live migration, the decompression thread count is an integer
708#     between 1 and 255. Usually, decompression is at least 4 times as
709#     fast as compression, so set the decompress-threads to the number
710#     about 1/4 of compress-threads is adequate.
711#
712# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
713#     bytes_xfer_period to trigger throttling.  It is expressed as
714#     percentage.  The default value is 50. (Since 5.0)
715#
716# @cpu-throttle-initial: Initial percentage of time guest cpus are
717#     throttled when migration auto-converge is activated.  The
718#     default value is 20. (Since 2.7)
719#
720# @cpu-throttle-increment: throttle percentage increase each time
721#     auto-converge detects that migration is not making progress.
722#     The default value is 10. (Since 2.7)
723#
724# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
725#     the tail stage of throttling, the Guest is very sensitive to CPU
726#     percentage while the @cpu-throttle -increment is excessive
727#     usually at tail stage.  If this parameter is true, we will
728#     compute the ideal CPU percentage used by the Guest, which may
729#     exactly make the dirty rate match the dirty rate threshold.
730#     Then we will choose a smaller throttle increment between the one
731#     specified by @cpu-throttle-increment and the one generated by
732#     ideal CPU percentage.  Therefore, it is compatible to
733#     traditional throttling, meanwhile the throttle increment won't
734#     be excessive at tail stage.  The default value is false.  (Since
735#     5.1)
736#
737# @tls-creds: ID of the 'tls-creds' object that provides credentials
738#     for establishing a TLS connection over the migration data
739#     channel.  On the outgoing side of the migration, the credentials
740#     must be for a 'client' endpoint, while for the incoming side the
741#     credentials must be for a 'server' endpoint.  Setting this will
742#     enable TLS for all migrations.  The default is unset, resulting
743#     in unsecured migration at the QEMU level.  (Since 2.7)
744#
745# @tls-hostname: hostname of the target host for the migration.  This
746#     is required when using x509 based TLS credentials and the
747#     migration URI does not already include a hostname.  For example
748#     if using fd: or exec: based migration, the hostname must be
749#     provided so that the server's x509 certificate identity can be
750#     validated.  (Since 2.7)
751#
752# @tls-authz: ID of the 'authz' object subclass that provides access
753#     control checking of the TLS x509 certificate distinguished name.
754#     This object is only resolved at time of use, so can be deleted
755#     and recreated on the fly while the migration server is active.
756#     If missing, it will default to denying access (Since 4.0)
757#
758# @max-bandwidth: to set maximum speed for migration.  maximum speed
759#     in bytes per second.  (Since 2.8)
760#
761# @downtime-limit: set maximum tolerated downtime for migration.
762#     maximum downtime in milliseconds (Since 2.8)
763#
764# @x-checkpoint-delay: The delay time (in ms) between two COLO
765#     checkpoints in periodic mode.  (Since 2.8)
766#
767# @block-incremental: Affects how much storage is migrated when the
768#     block migration capability is enabled.  When false, the entire
769#     storage backing chain is migrated into a flattened image at the
770#     destination; when true, only the active qcow2 layer is migrated
771#     and the destination must already have access to the same backing
772#     chain as was used on the source.  (since 2.10)
773#
774# @multifd-channels: Number of channels used to migrate data in
775#     parallel.  This is the same number that the number of sockets
776#     used for migration.  The default value is 2 (since 4.0)
777#
778# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
779#     needs to be a multiple of the target page size and a power of 2
780#     (Since 2.11)
781#
782# @max-postcopy-bandwidth: Background transfer bandwidth during
783#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
784#     (Since 3.0)
785#
786# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
787#     (Since 3.1)
788#
789# @multifd-compression: Which compression method to use.  Defaults to
790#     none.  (Since 5.0)
791#
792# @multifd-zlib-level: Set the compression level to be used in live
793#     migration, the compression level is an integer between 0 and 9,
794#     where 0 means no compression, 1 means the best compression
795#     speed, and 9 means best compression ratio which will consume
796#     more CPU. Defaults to 1. (Since 5.0)
797#
798# @multifd-zstd-level: Set the compression level to be used in live
799#     migration, the compression level is an integer between 0 and 20,
800#     where 0 means no compression, 1 means the best compression
801#     speed, and 20 means best compression ratio which will consume
802#     more CPU. Defaults to 1. (Since 5.0)
803#
804# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
805#     aliases for the purpose of dirty bitmap migration.  Such aliases
806#     may for example be the corresponding names on the opposite site.
807#     The mapping must be one-to-one, but not necessarily complete: On
808#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
809#     will be ignored.  On the destination, encountering an unmapped
810#     alias in the incoming migration stream will result in a report,
811#     and all further bitmap migration data will then be discarded.
812#     Note that the destination does not know about bitmaps it does
813#     not receive, so there is no limitation or requirement regarding
814#     the number of bitmaps received, or how they are named, or on
815#     which nodes they are placed.  By default (when this parameter
816#     has never been set), bitmap names are mapped to themselves.
817#     Nodes are mapped to their block device name if there is one, and
818#     to their node name otherwise.  (Since 5.2)
819#
820# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
821#     limit during live migration.  Should be in the range 1 to 1000ms.
822#     Defaults to 1000ms.  (Since 8.1)
823#
824# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
825#     Defaults to 1.  (Since 8.1)
826#
827# Features:
828#
829# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
830#     are experimental.
831#
832# Since: 2.4
833##
834{ 'enum': 'MigrationParameter',
835  'data': ['announce-initial', 'announce-max',
836           'announce-rounds', 'announce-step',
837           'compress-level', 'compress-threads', 'decompress-threads',
838           'compress-wait-thread', 'throttle-trigger-threshold',
839           'cpu-throttle-initial', 'cpu-throttle-increment',
840           'cpu-throttle-tailslow',
841           'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
842           'downtime-limit',
843           { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
844           'block-incremental',
845           'multifd-channels',
846           'xbzrle-cache-size', 'max-postcopy-bandwidth',
847           'max-cpu-throttle', 'multifd-compression',
848           'multifd-zlib-level', 'multifd-zstd-level',
849           'block-bitmap-mapping',
850           { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] },
851           'vcpu-dirty-limit'] }
852
853##
854# @MigrateSetParameters:
855#
856# @announce-initial: Initial delay (in milliseconds) before sending
857#     the first announce (Since 4.0)
858#
859# @announce-max: Maximum delay (in milliseconds) between packets in
860#     the announcement (Since 4.0)
861#
862# @announce-rounds: Number of self-announce packets sent after
863#     migration (Since 4.0)
864#
865# @announce-step: Increase in delay (in milliseconds) between
866#     subsequent packets in the announcement (Since 4.0)
867#
868# @compress-level: compression level
869#
870# @compress-threads: compression thread count
871#
872# @compress-wait-thread: Controls behavior when all compression
873#     threads are currently busy.  If true (default), wait for a free
874#     compression thread to become available; otherwise, send the page
875#     uncompressed.  (Since 3.1)
876#
877# @decompress-threads: decompression thread count
878#
879# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
880#     bytes_xfer_period to trigger throttling.  It is expressed as
881#     percentage.  The default value is 50. (Since 5.0)
882#
883# @cpu-throttle-initial: Initial percentage of time guest cpus are
884#     throttled when migration auto-converge is activated.  The
885#     default value is 20. (Since 2.7)
886#
887# @cpu-throttle-increment: throttle percentage increase each time
888#     auto-converge detects that migration is not making progress.
889#     The default value is 10. (Since 2.7)
890#
891# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
892#     the tail stage of throttling, the Guest is very sensitive to CPU
893#     percentage while the @cpu-throttle -increment is excessive
894#     usually at tail stage.  If this parameter is true, we will
895#     compute the ideal CPU percentage used by the Guest, which may
896#     exactly make the dirty rate match the dirty rate threshold.
897#     Then we will choose a smaller throttle increment between the one
898#     specified by @cpu-throttle-increment and the one generated by
899#     ideal CPU percentage.  Therefore, it is compatible to
900#     traditional throttling, meanwhile the throttle increment won't
901#     be excessive at tail stage.  The default value is false.  (Since
902#     5.1)
903#
904# @tls-creds: ID of the 'tls-creds' object that provides credentials
905#     for establishing a TLS connection over the migration data
906#     channel.  On the outgoing side of the migration, the credentials
907#     must be for a 'client' endpoint, while for the incoming side the
908#     credentials must be for a 'server' endpoint.  Setting this to a
909#     non-empty string enables TLS for all migrations.  An empty
910#     string means that QEMU will use plain text mode for migration,
911#     rather than TLS (Since 2.9) Previously (since 2.7), this was
912#     reported by omitting tls-creds instead.
913#
914# @tls-hostname: hostname of the target host for the migration.  This
915#     is required when using x509 based TLS credentials and the
916#     migration URI does not already include a hostname.  For example
917#     if using fd: or exec: based migration, the hostname must be
918#     provided so that the server's x509 certificate identity can be
919#     validated.  (Since 2.7) An empty string means that QEMU will use
920#     the hostname associated with the migration URI, if any.  (Since
921#     2.9) Previously (since 2.7), this was reported by omitting
922#     tls-hostname instead.
923#
924# @max-bandwidth: to set maximum speed for migration.  maximum speed
925#     in bytes per second.  (Since 2.8)
926#
927# @downtime-limit: set maximum tolerated downtime for migration.
928#     maximum downtime in milliseconds (Since 2.8)
929#
930# @x-checkpoint-delay: the delay time between two COLO checkpoints.
931#     (Since 2.8)
932#
933# @block-incremental: Affects how much storage is migrated when the
934#     block migration capability is enabled.  When false, the entire
935#     storage backing chain is migrated into a flattened image at the
936#     destination; when true, only the active qcow2 layer is migrated
937#     and the destination must already have access to the same backing
938#     chain as was used on the source.  (since 2.10)
939#
940# @multifd-channels: Number of channels used to migrate data in
941#     parallel.  This is the same number that the number of sockets
942#     used for migration.  The default value is 2 (since 4.0)
943#
944# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
945#     needs to be a multiple of the target page size and a power of 2
946#     (Since 2.11)
947#
948# @max-postcopy-bandwidth: Background transfer bandwidth during
949#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
950#     (Since 3.0)
951#
952# @max-cpu-throttle: maximum cpu throttle percentage.  The default
953#     value is 99. (Since 3.1)
954#
955# @multifd-compression: Which compression method to use.  Defaults to
956#     none.  (Since 5.0)
957#
958# @multifd-zlib-level: Set the compression level to be used in live
959#     migration, the compression level is an integer between 0 and 9,
960#     where 0 means no compression, 1 means the best compression
961#     speed, and 9 means best compression ratio which will consume
962#     more CPU. Defaults to 1. (Since 5.0)
963#
964# @multifd-zstd-level: Set the compression level to be used in live
965#     migration, the compression level is an integer between 0 and 20,
966#     where 0 means no compression, 1 means the best compression
967#     speed, and 20 means best compression ratio which will consume
968#     more CPU. Defaults to 1. (Since 5.0)
969#
970# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
971#     aliases for the purpose of dirty bitmap migration.  Such aliases
972#     may for example be the corresponding names on the opposite site.
973#     The mapping must be one-to-one, but not necessarily complete: On
974#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
975#     will be ignored.  On the destination, encountering an unmapped
976#     alias in the incoming migration stream will result in a report,
977#     and all further bitmap migration data will then be discarded.
978#     Note that the destination does not know about bitmaps it does
979#     not receive, so there is no limitation or requirement regarding
980#     the number of bitmaps received, or how they are named, or on
981#     which nodes they are placed.  By default (when this parameter
982#     has never been set), bitmap names are mapped to themselves.
983#     Nodes are mapped to their block device name if there is one, and
984#     to their node name otherwise.  (Since 5.2)
985#
986# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
987#     limit during live migration.  Should be in the range 1 to 1000ms.
988#     Defaults to 1000ms.  (Since 8.1)
989#
990# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
991#     Defaults to 1.  (Since 8.1)
992#
993# Features:
994#
995# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
996#     are experimental.
997#
998# TODO: either fuse back into MigrationParameters, or make
999#     MigrationParameters members mandatory
1000#
1001# Since: 2.4
1002##
1003{ 'struct': 'MigrateSetParameters',
1004  'data': { '*announce-initial': 'size',
1005            '*announce-max': 'size',
1006            '*announce-rounds': 'size',
1007            '*announce-step': 'size',
1008            '*compress-level': 'uint8',
1009            '*compress-threads': 'uint8',
1010            '*compress-wait-thread': 'bool',
1011            '*decompress-threads': 'uint8',
1012            '*throttle-trigger-threshold': 'uint8',
1013            '*cpu-throttle-initial': 'uint8',
1014            '*cpu-throttle-increment': 'uint8',
1015            '*cpu-throttle-tailslow': 'bool',
1016            '*tls-creds': 'StrOrNull',
1017            '*tls-hostname': 'StrOrNull',
1018            '*tls-authz': 'StrOrNull',
1019            '*max-bandwidth': 'size',
1020            '*downtime-limit': 'uint64',
1021            '*x-checkpoint-delay': { 'type': 'uint32',
1022                                     'features': [ 'unstable' ] },
1023            '*block-incremental': 'bool',
1024            '*multifd-channels': 'uint8',
1025            '*xbzrle-cache-size': 'size',
1026            '*max-postcopy-bandwidth': 'size',
1027            '*max-cpu-throttle': 'uint8',
1028            '*multifd-compression': 'MultiFDCompression',
1029            '*multifd-zlib-level': 'uint8',
1030            '*multifd-zstd-level': 'uint8',
1031            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1032            '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1033                                            'features': [ 'unstable' ] },
1034            '*vcpu-dirty-limit': 'uint64'} }
1035
1036##
1037# @migrate-set-parameters:
1038#
1039# Set various migration parameters.
1040#
1041# Since: 2.4
1042#
1043# Example:
1044#
1045# -> { "execute": "migrate-set-parameters" ,
1046#      "arguments": { "compress-level": 1 } }
1047# <- { "return": {} }
1048##
1049{ 'command': 'migrate-set-parameters', 'boxed': true,
1050  'data': 'MigrateSetParameters' }
1051
1052##
1053# @MigrationParameters:
1054#
1055# The optional members aren't actually optional.
1056#
1057# @announce-initial: Initial delay (in milliseconds) before sending
1058#     the first announce (Since 4.0)
1059#
1060# @announce-max: Maximum delay (in milliseconds) between packets in
1061#     the announcement (Since 4.0)
1062#
1063# @announce-rounds: Number of self-announce packets sent after
1064#     migration (Since 4.0)
1065#
1066# @announce-step: Increase in delay (in milliseconds) between
1067#     subsequent packets in the announcement (Since 4.0)
1068#
1069# @compress-level: compression level
1070#
1071# @compress-threads: compression thread count
1072#
1073# @compress-wait-thread: Controls behavior when all compression
1074#     threads are currently busy.  If true (default), wait for a free
1075#     compression thread to become available; otherwise, send the page
1076#     uncompressed.  (Since 3.1)
1077#
1078# @decompress-threads: decompression thread count
1079#
1080# @throttle-trigger-threshold: The ratio of bytes_dirty_period and
1081#     bytes_xfer_period to trigger throttling.  It is expressed as
1082#     percentage.  The default value is 50. (Since 5.0)
1083#
1084# @cpu-throttle-initial: Initial percentage of time guest cpus are
1085#     throttled when migration auto-converge is activated.  (Since
1086#     2.7)
1087#
1088# @cpu-throttle-increment: throttle percentage increase each time
1089#     auto-converge detects that migration is not making progress.
1090#     (Since 2.7)
1091#
1092# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At
1093#     the tail stage of throttling, the Guest is very sensitive to CPU
1094#     percentage while the @cpu-throttle -increment is excessive
1095#     usually at tail stage.  If this parameter is true, we will
1096#     compute the ideal CPU percentage used by the Guest, which may
1097#     exactly make the dirty rate match the dirty rate threshold.
1098#     Then we will choose a smaller throttle increment between the one
1099#     specified by @cpu-throttle-increment and the one generated by
1100#     ideal CPU percentage.  Therefore, it is compatible to
1101#     traditional throttling, meanwhile the throttle increment won't
1102#     be excessive at tail stage.  The default value is false.  (Since
1103#     5.1)
1104#
1105# @tls-creds: ID of the 'tls-creds' object that provides credentials
1106#     for establishing a TLS connection over the migration data
1107#     channel.  On the outgoing side of the migration, the credentials
1108#     must be for a 'client' endpoint, while for the incoming side the
1109#     credentials must be for a 'server' endpoint.  An empty string
1110#     means that QEMU will use plain text mode for migration, rather
1111#     than TLS (Since 2.7) Note: 2.8 reports this by omitting
1112#     tls-creds instead.
1113#
1114# @tls-hostname: hostname of the target host for the migration.  This
1115#     is required when using x509 based TLS credentials and the
1116#     migration URI does not already include a hostname.  For example
1117#     if using fd: or exec: based migration, the hostname must be
1118#     provided so that the server's x509 certificate identity can be
1119#     validated.  (Since 2.7) An empty string means that QEMU will use
1120#     the hostname associated with the migration URI, if any.  (Since
1121#     2.9) Note: 2.8 reports this by omitting tls-hostname instead.
1122#
1123# @tls-authz: ID of the 'authz' object subclass that provides access
1124#     control checking of the TLS x509 certificate distinguished name.
1125#     (Since 4.0)
1126#
1127# @max-bandwidth: to set maximum speed for migration.  maximum speed
1128#     in bytes per second.  (Since 2.8)
1129#
1130# @downtime-limit: set maximum tolerated downtime for migration.
1131#     maximum downtime in milliseconds (Since 2.8)
1132#
1133# @x-checkpoint-delay: the delay time between two COLO checkpoints.
1134#     (Since 2.8)
1135#
1136# @block-incremental: Affects how much storage is migrated when the
1137#     block migration capability is enabled.  When false, the entire
1138#     storage backing chain is migrated into a flattened image at the
1139#     destination; when true, only the active qcow2 layer is migrated
1140#     and the destination must already have access to the same backing
1141#     chain as was used on the source.  (since 2.10)
1142#
1143# @multifd-channels: Number of channels used to migrate data in
1144#     parallel.  This is the same number that the number of sockets
1145#     used for migration.  The default value is 2 (since 4.0)
1146#
1147# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
1148#     needs to be a multiple of the target page size and a power of 2
1149#     (Since 2.11)
1150#
1151# @max-postcopy-bandwidth: Background transfer bandwidth during
1152#     postcopy.  Defaults to 0 (unlimited).  In bytes per second.
1153#     (Since 3.0)
1154#
1155# @max-cpu-throttle: maximum cpu throttle percentage.  Defaults to 99.
1156#     (Since 3.1)
1157#
1158# @multifd-compression: Which compression method to use.  Defaults to
1159#     none.  (Since 5.0)
1160#
1161# @multifd-zlib-level: Set the compression level to be used in live
1162#     migration, the compression level is an integer between 0 and 9,
1163#     where 0 means no compression, 1 means the best compression
1164#     speed, and 9 means best compression ratio which will consume
1165#     more CPU. Defaults to 1. (Since 5.0)
1166#
1167# @multifd-zstd-level: Set the compression level to be used in live
1168#     migration, the compression level is an integer between 0 and 20,
1169#     where 0 means no compression, 1 means the best compression
1170#     speed, and 20 means best compression ratio which will consume
1171#     more CPU. Defaults to 1. (Since 5.0)
1172#
1173# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1174#     aliases for the purpose of dirty bitmap migration.  Such aliases
1175#     may for example be the corresponding names on the opposite site.
1176#     The mapping must be one-to-one, but not necessarily complete: On
1177#     the source, unmapped bitmaps and all bitmaps on unmapped nodes
1178#     will be ignored.  On the destination, encountering an unmapped
1179#     alias in the incoming migration stream will result in a report,
1180#     and all further bitmap migration data will then be discarded.
1181#     Note that the destination does not know about bitmaps it does
1182#     not receive, so there is no limitation or requirement regarding
1183#     the number of bitmaps received, or how they are named, or on
1184#     which nodes they are placed.  By default (when this parameter
1185#     has never been set), bitmap names are mapped to themselves.
1186#     Nodes are mapped to their block device name if there is one, and
1187#     to their node name otherwise.  (Since 5.2)
1188#
1189# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty
1190#     limit during live migration.  Should be in the range 1 to 1000ms.
1191#     Defaults to 1000ms.  (Since 8.1)
1192#
1193# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration.
1194#     Defaults to 1.  (Since 8.1)
1195#
1196# Features:
1197#
1198# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period
1199#     are experimental.
1200#
1201# Since: 2.4
1202##
1203{ 'struct': 'MigrationParameters',
1204  'data': { '*announce-initial': 'size',
1205            '*announce-max': 'size',
1206            '*announce-rounds': 'size',
1207            '*announce-step': 'size',
1208            '*compress-level': 'uint8',
1209            '*compress-threads': 'uint8',
1210            '*compress-wait-thread': 'bool',
1211            '*decompress-threads': 'uint8',
1212            '*throttle-trigger-threshold': 'uint8',
1213            '*cpu-throttle-initial': 'uint8',
1214            '*cpu-throttle-increment': 'uint8',
1215            '*cpu-throttle-tailslow': 'bool',
1216            '*tls-creds': 'str',
1217            '*tls-hostname': 'str',
1218            '*tls-authz': 'str',
1219            '*max-bandwidth': 'size',
1220            '*downtime-limit': 'uint64',
1221            '*x-checkpoint-delay': { 'type': 'uint32',
1222                                     'features': [ 'unstable' ] },
1223            '*block-incremental': 'bool',
1224            '*multifd-channels': 'uint8',
1225            '*xbzrle-cache-size': 'size',
1226            '*max-postcopy-bandwidth': 'size',
1227            '*max-cpu-throttle': 'uint8',
1228            '*multifd-compression': 'MultiFDCompression',
1229            '*multifd-zlib-level': 'uint8',
1230            '*multifd-zstd-level': 'uint8',
1231            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ],
1232            '*x-vcpu-dirty-limit-period': { 'type': 'uint64',
1233                                            'features': [ 'unstable' ] },
1234            '*vcpu-dirty-limit': 'uint64'} }
1235
1236##
1237# @query-migrate-parameters:
1238#
1239# Returns information about the current migration parameters
1240#
1241# Returns: @MigrationParameters
1242#
1243# Since: 2.4
1244#
1245# Example:
1246#
1247# -> { "execute": "query-migrate-parameters" }
1248# <- { "return": {
1249#          "decompress-threads": 2,
1250#          "cpu-throttle-increment": 10,
1251#          "compress-threads": 8,
1252#          "compress-level": 1,
1253#          "cpu-throttle-initial": 20,
1254#          "max-bandwidth": 33554432,
1255#          "downtime-limit": 300
1256#       }
1257#    }
1258##
1259{ 'command': 'query-migrate-parameters',
1260  'returns': 'MigrationParameters' }
1261
1262##
1263# @migrate-start-postcopy:
1264#
1265# Followup to a migration command to switch the migration to postcopy
1266# mode.  The postcopy-ram capability must be set on both source and
1267# destination before the original migration command.
1268#
1269# Since: 2.5
1270#
1271# Example:
1272#
1273# -> { "execute": "migrate-start-postcopy" }
1274# <- { "return": {} }
1275##
1276{ 'command': 'migrate-start-postcopy' }
1277
1278##
1279# @MIGRATION:
1280#
1281# Emitted when a migration event happens
1282#
1283# @status: @MigrationStatus describing the current migration status.
1284#
1285# Since: 2.4
1286#
1287# Example:
1288#
1289# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1290#     "event": "MIGRATION",
1291#     "data": {"status": "completed"} }
1292##
1293{ 'event': 'MIGRATION',
1294  'data': {'status': 'MigrationStatus'}}
1295
1296##
1297# @MIGRATION_PASS:
1298#
1299# Emitted from the source side of a migration at the start of each
1300# pass (when it syncs the dirty bitmap)
1301#
1302# @pass: An incrementing count (starting at 1 on the first pass)
1303#
1304# Since: 2.6
1305#
1306# Example:
1307#
1308# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1309#       "event": "MIGRATION_PASS", "data": {"pass": 2} }
1310##
1311{ 'event': 'MIGRATION_PASS',
1312  'data': { 'pass': 'int' } }
1313
1314##
1315# @COLOMessage:
1316#
1317# The message transmission between Primary side and Secondary side.
1318#
1319# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1320#
1321# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for
1322#     checkpointing
1323#
1324# @checkpoint-reply: SVM gets PVM's checkpoint request
1325#
1326# @vmstate-send: VM's state will be sent by PVM.
1327#
1328# @vmstate-size: The total size of VMstate.
1329#
1330# @vmstate-received: VM's state has been received by SVM.
1331#
1332# @vmstate-loaded: VM's state has been loaded by SVM.
1333#
1334# Since: 2.8
1335##
1336{ 'enum': 'COLOMessage',
1337  'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1338            'vmstate-send', 'vmstate-size', 'vmstate-received',
1339            'vmstate-loaded' ] }
1340
1341##
1342# @COLOMode:
1343#
1344# The COLO current mode.
1345#
1346# @none: COLO is disabled.
1347#
1348# @primary: COLO node in primary side.
1349#
1350# @secondary: COLO node in slave side.
1351#
1352# Since: 2.8
1353##
1354{ 'enum': 'COLOMode',
1355  'data': [ 'none', 'primary', 'secondary'] }
1356
1357##
1358# @FailoverStatus:
1359#
1360# An enumeration of COLO failover status
1361#
1362# @none: no failover has ever happened
1363#
1364# @require: got failover requirement but not handled
1365#
1366# @active: in the process of doing failover
1367#
1368# @completed: finish the process of failover
1369#
1370# @relaunch: restart the failover process, from 'none' -> 'completed'
1371#     (Since 2.9)
1372#
1373# Since: 2.8
1374##
1375{ 'enum': 'FailoverStatus',
1376  'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1377
1378##
1379# @COLO_EXIT:
1380#
1381# Emitted when VM finishes COLO mode due to some errors happening or
1382# at the request of users.
1383#
1384# @mode: report COLO mode when COLO exited.
1385#
1386# @reason: describes the reason for the COLO exit.
1387#
1388# Since: 3.1
1389#
1390# Example:
1391#
1392# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1393#      "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1394##
1395{ 'event': 'COLO_EXIT',
1396  'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1397
1398##
1399# @COLOExitReason:
1400#
1401# The reason for a COLO exit.
1402#
1403# @none: failover has never happened.  This state does not occur in
1404#     the COLO_EXIT event, and is only visible in the result of
1405#     query-colo-status.
1406#
1407# @request: COLO exit is due to an external request.
1408#
1409# @error: COLO exit is due to an internal error.
1410#
1411# @processing: COLO is currently handling a failover (since 4.0).
1412#
1413# Since: 3.1
1414##
1415{ 'enum': 'COLOExitReason',
1416  'data': [ 'none', 'request', 'error' , 'processing' ] }
1417
1418##
1419# @x-colo-lost-heartbeat:
1420#
1421# Tell qemu that heartbeat is lost, request it to do takeover
1422# procedures.  If this command is sent to the PVM, the Primary side
1423# will exit COLO mode.  If sent to the Secondary, the Secondary side
1424# will run failover work, then takes over server operation to become
1425# the service VM.
1426#
1427# Features:
1428#
1429# @unstable: This command is experimental.
1430#
1431# Since: 2.8
1432#
1433# Example:
1434#
1435# -> { "execute": "x-colo-lost-heartbeat" }
1436# <- { "return": {} }
1437##
1438{ 'command': 'x-colo-lost-heartbeat',
1439  'features': [ 'unstable' ],
1440  'if': 'CONFIG_REPLICATION' }
1441
1442##
1443# @migrate_cancel:
1444#
1445# Cancel the current executing migration process.
1446#
1447# Returns: nothing on success
1448#
1449# Notes: This command succeeds even if there is no migration process
1450#     running.
1451#
1452# Since: 0.14
1453#
1454# Example:
1455#
1456# -> { "execute": "migrate_cancel" }
1457# <- { "return": {} }
1458##
1459{ 'command': 'migrate_cancel' }
1460
1461##
1462# @migrate-continue:
1463#
1464# Continue migration when it's in a paused state.
1465#
1466# @state: The state the migration is currently expected to be in
1467#
1468# Returns: nothing on success
1469#
1470# Since: 2.11
1471#
1472# Example:
1473#
1474# -> { "execute": "migrate-continue" , "arguments":
1475#      { "state": "pre-switchover" } }
1476# <- { "return": {} }
1477##
1478{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1479
1480##
1481# @migrate:
1482#
1483# Migrates the current running guest to another Virtual Machine.
1484#
1485# @uri: the Uniform Resource Identifier of the destination VM
1486#
1487# @blk: do block migration (full disk copy)
1488#
1489# @inc: incremental disk copy migration
1490#
1491# @detach: this argument exists only for compatibility reasons and is
1492#     ignored by QEMU
1493#
1494# @resume: resume one paused migration, default "off". (since 3.0)
1495#
1496# Returns: nothing on success
1497#
1498# Since: 0.14
1499#
1500# Notes:
1501#
1502# 1. The 'query-migrate' command should be used to check migration's
1503#    progress and final result (this information is provided by the
1504#    'status' member)
1505#
1506# 2. All boolean arguments default to false
1507#
1508# 3. The user Monitor's "detach" argument is invalid in QMP and should
1509#    not be used
1510#
1511# Example:
1512#
1513# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1514# <- { "return": {} }
1515##
1516{ 'command': 'migrate',
1517  'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool',
1518           '*detach': 'bool', '*resume': 'bool' } }
1519
1520##
1521# @migrate-incoming:
1522#
1523# Start an incoming migration, the qemu must have been started with
1524# -incoming defer
1525#
1526# @uri: The Uniform Resource Identifier identifying the source or
1527#     address to listen on
1528#
1529# Returns: nothing on success
1530#
1531# Since: 2.3
1532#
1533# Notes:
1534#
1535# 1. It's a bad idea to use a string for the uri, but it needs
1536#    to stay compatible with -incoming and the format of the uri
1537#    is already exposed above libvirt.
1538#
1539# 2. QEMU must be started with -incoming defer to allow
1540#    migrate-incoming to be used.
1541#
1542# 3. The uri format is the same as for -incoming
1543#
1544# Example:
1545#
1546# -> { "execute": "migrate-incoming",
1547#      "arguments": { "uri": "tcp::4446" } }
1548# <- { "return": {} }
1549##
1550{ 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
1551
1552##
1553# @xen-save-devices-state:
1554#
1555# Save the state of all devices to file.  The RAM and the block
1556# devices of the VM are not saved by this command.
1557#
1558# @filename: the file to save the state of the devices to as binary
1559#     data.  See xen-save-devices-state.txt for a description of the
1560#     binary format.
1561#
1562# @live: Optional argument to ask QEMU to treat this command as part
1563#     of a live migration.  Default to true.  (since 2.11)
1564#
1565# Returns: Nothing on success
1566#
1567# Since: 1.1
1568#
1569# Example:
1570#
1571# -> { "execute": "xen-save-devices-state",
1572#      "arguments": { "filename": "/tmp/save" } }
1573# <- { "return": {} }
1574##
1575{ 'command': 'xen-save-devices-state',
1576  'data': {'filename': 'str', '*live':'bool' } }
1577
1578##
1579# @xen-set-global-dirty-log:
1580#
1581# Enable or disable the global dirty log mode.
1582#
1583# @enable: true to enable, false to disable.
1584#
1585# Returns: nothing
1586#
1587# Since: 1.3
1588#
1589# Example:
1590#
1591# -> { "execute": "xen-set-global-dirty-log",
1592#      "arguments": { "enable": true } }
1593# <- { "return": {} }
1594##
1595{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1596
1597##
1598# @xen-load-devices-state:
1599#
1600# Load the state of all devices from file.  The RAM and the block
1601# devices of the VM are not loaded by this command.
1602#
1603# @filename: the file to load the state of the devices from as binary
1604#     data.  See xen-save-devices-state.txt for a description of the
1605#     binary format.
1606#
1607# Since: 2.7
1608#
1609# Example:
1610#
1611# -> { "execute": "xen-load-devices-state",
1612#      "arguments": { "filename": "/tmp/resume" } }
1613# <- { "return": {} }
1614##
1615{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1616
1617##
1618# @xen-set-replication:
1619#
1620# Enable or disable replication.
1621#
1622# @enable: true to enable, false to disable.
1623#
1624# @primary: true for primary or false for secondary.
1625#
1626# @failover: true to do failover, false to stop.  but cannot be
1627#     specified if 'enable' is true.  default value is false.
1628#
1629# Returns: nothing.
1630#
1631# Example:
1632#
1633# -> { "execute": "xen-set-replication",
1634#      "arguments": {"enable": true, "primary": false} }
1635# <- { "return": {} }
1636#
1637# Since: 2.9
1638##
1639{ 'command': 'xen-set-replication',
1640  'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' },
1641  'if': 'CONFIG_REPLICATION' }
1642
1643##
1644# @ReplicationStatus:
1645#
1646# The result format for 'query-xen-replication-status'.
1647#
1648# @error: true if an error happened, false if replication is normal.
1649#
1650# @desc: the human readable error description string, when @error is
1651#     'true'.
1652#
1653# Since: 2.9
1654##
1655{ 'struct': 'ReplicationStatus',
1656  'data': { 'error': 'bool', '*desc': 'str' },
1657  'if': 'CONFIG_REPLICATION' }
1658
1659##
1660# @query-xen-replication-status:
1661#
1662# Query replication status while the vm is running.
1663#
1664# Returns: A @ReplicationStatus object showing the status.
1665#
1666# Example:
1667#
1668# -> { "execute": "query-xen-replication-status" }
1669# <- { "return": { "error": false } }
1670#
1671# Since: 2.9
1672##
1673{ 'command': 'query-xen-replication-status',
1674  'returns': 'ReplicationStatus',
1675  'if': 'CONFIG_REPLICATION' }
1676
1677##
1678# @xen-colo-do-checkpoint:
1679#
1680# Xen uses this command to notify replication to trigger a checkpoint.
1681#
1682# Returns: nothing.
1683#
1684# Example:
1685#
1686# -> { "execute": "xen-colo-do-checkpoint" }
1687# <- { "return": {} }
1688#
1689# Since: 2.9
1690##
1691{ 'command': 'xen-colo-do-checkpoint',
1692  'if': 'CONFIG_REPLICATION' }
1693
1694##
1695# @COLOStatus:
1696#
1697# The result format for 'query-colo-status'.
1698#
1699# @mode: COLO running mode.  If COLO is running, this field will
1700#     return 'primary' or 'secondary'.
1701#
1702# @last-mode: COLO last running mode.  If COLO is running, this field
1703#     will return same like mode field, after failover we can use this
1704#     field to get last colo mode.  (since 4.0)
1705#
1706# @reason: describes the reason for the COLO exit.
1707#
1708# Since: 3.1
1709##
1710{ 'struct': 'COLOStatus',
1711  'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
1712            'reason': 'COLOExitReason' },
1713  'if': 'CONFIG_REPLICATION' }
1714
1715##
1716# @query-colo-status:
1717#
1718# Query COLO status while the vm is running.
1719#
1720# Returns: A @COLOStatus object showing the status.
1721#
1722# Example:
1723#
1724# -> { "execute": "query-colo-status" }
1725# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
1726#
1727# Since: 3.1
1728##
1729{ 'command': 'query-colo-status',
1730  'returns': 'COLOStatus',
1731  'if': 'CONFIG_REPLICATION' }
1732
1733##
1734# @migrate-recover:
1735#
1736# Provide a recovery migration stream URI.
1737#
1738# @uri: the URI to be used for the recovery of migration stream.
1739#
1740# Returns: nothing.
1741#
1742# Example:
1743#
1744# -> { "execute": "migrate-recover",
1745#      "arguments": { "uri": "tcp:192.168.1.200:12345" } }
1746# <- { "return": {} }
1747#
1748# Since: 3.0
1749##
1750{ 'command': 'migrate-recover',
1751  'data': { 'uri': 'str' },
1752  'allow-oob': true }
1753
1754##
1755# @migrate-pause:
1756#
1757# Pause a migration.  Currently it only supports postcopy.
1758#
1759# Returns: nothing.
1760#
1761# Example:
1762#
1763# -> { "execute": "migrate-pause" }
1764# <- { "return": {} }
1765#
1766# Since: 3.0
1767##
1768{ 'command': 'migrate-pause', 'allow-oob': true }
1769
1770##
1771# @UNPLUG_PRIMARY:
1772#
1773# Emitted from source side of a migration when migration state is
1774# WAIT_UNPLUG. Device was unplugged by guest operating system.  Device
1775# resources in QEMU are kept on standby to be able to re-plug it in
1776# case of migration failure.
1777#
1778# @device-id: QEMU device id of the unplugged device
1779#
1780# Since: 4.2
1781#
1782# Example:
1783#
1784# <- { "event": "UNPLUG_PRIMARY",
1785#      "data": { "device-id": "hostdev0" },
1786#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1787##
1788{ 'event': 'UNPLUG_PRIMARY',
1789  'data': { 'device-id': 'str' } }
1790
1791##
1792# @DirtyRateVcpu:
1793#
1794# Dirty rate of vcpu.
1795#
1796# @id: vcpu index.
1797#
1798# @dirty-rate: dirty rate.
1799#
1800# Since: 6.2
1801##
1802{ 'struct': 'DirtyRateVcpu',
1803  'data': { 'id': 'int', 'dirty-rate': 'int64' } }
1804
1805##
1806# @DirtyRateStatus:
1807#
1808# Dirty page rate measurement status.
1809#
1810# @unstarted: measuring thread has not been started yet
1811#
1812# @measuring: measuring thread is running
1813#
1814# @measured: dirty page rate is measured and the results are available
1815#
1816# Since: 5.2
1817##
1818{ 'enum': 'DirtyRateStatus',
1819  'data': [ 'unstarted', 'measuring', 'measured'] }
1820
1821##
1822# @DirtyRateMeasureMode:
1823#
1824# Method used to measure dirty page rate.  Differences between
1825# available methods are explained in @calc-dirty-rate.
1826#
1827# @page-sampling: use page sampling
1828#
1829# @dirty-ring: use dirty ring
1830#
1831# @dirty-bitmap: use dirty bitmap
1832#
1833# Since: 6.2
1834##
1835{ 'enum': 'DirtyRateMeasureMode',
1836  'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
1837
1838##
1839# @TimeUnit:
1840#
1841# Specifies unit in which time-related value is specified.
1842#
1843# @second: value is in seconds
1844#
1845# @millisecond: value is in milliseconds
1846#
1847# Since 8.2
1848#
1849##
1850{ 'enum': 'TimeUnit',
1851  'data': ['second', 'millisecond'] }
1852
1853##
1854# @DirtyRateInfo:
1855#
1856# Information about measured dirty page rate.
1857#
1858# @dirty-rate: an estimate of the dirty page rate of the VM in units
1859#     of MiB/s.  Value is present only when @status is 'measured'.
1860#
1861# @status: current status of dirty page rate measurements
1862#
1863# @start-time: start time in units of second for calculation
1864#
1865# @calc-time: time period for which dirty page rate was measured,
1866#     expressed and rounded down to @calc-time-unit.
1867#
1868# @calc-time-unit: time unit of @calc-time  (Since 8.2)
1869#
1870# @sample-pages: number of sampled pages per GiB of guest memory.
1871#     Valid only in page-sampling mode (Since 6.1)
1872#
1873# @mode: mode that was used to measure dirty page rate (Since 6.2)
1874#
1875# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was
1876#     specified (Since 6.2)
1877#
1878# Since: 5.2
1879##
1880{ 'struct': 'DirtyRateInfo',
1881  'data': {'*dirty-rate': 'int64',
1882           'status': 'DirtyRateStatus',
1883           'start-time': 'int64',
1884           'calc-time': 'int64',
1885           'calc-time-unit': 'TimeUnit',
1886           'sample-pages': 'uint64',
1887           'mode': 'DirtyRateMeasureMode',
1888           '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
1889
1890##
1891# @calc-dirty-rate:
1892#
1893# Start measuring dirty page rate of the VM.  Results can be retrieved
1894# with @query-dirty-rate after measurements are completed.
1895#
1896# Dirty page rate is the number of pages changed in a given time
1897# period expressed in MiB/s.  The following methods of calculation are
1898# available:
1899#
1900# 1. In page sampling mode, a random subset of pages are selected and
1901#    hashed twice: once at the beginning of measurement time period,
1902#    and once again at the end.  If two hashes for some page are
1903#    different, the page is counted as changed.  Since this method
1904#    relies on sampling and hashing, calculated dirty page rate is
1905#    only an estimate of its true value.  Increasing @sample-pages
1906#    improves estimation quality at the cost of higher computational
1907#    overhead.
1908#
1909# 2. Dirty bitmap mode captures writes to memory (for example by
1910#    temporarily revoking write access to all pages) and counting page
1911#    faults.  Information about modified pages is collected into a
1912#    bitmap, where each bit corresponds to one guest page.  This mode
1913#    requires that KVM accelerator property "dirty-ring-size" is *not*
1914#    set.
1915#
1916# 3. Dirty ring mode is similar to dirty bitmap mode, but the
1917#    information about modified pages is collected into ring buffer.
1918#    This mode tracks page modification per each vCPU separately.  It
1919#    requires that KVM accelerator property "dirty-ring-size" is set.
1920#
1921# @calc-time: time period for which dirty page rate is calculated.
1922#     By default it is specified in seconds, but the unit can be set
1923#     explicitly with @calc-time-unit.  Note that larger @calc-time
1924#     values will typically result in smaller dirty page rates because
1925#     page dirtying is a one-time event.  Once some page is counted
1926#     as dirty during @calc-time period, further writes to this page
1927#     will not increase dirty page rate anymore.
1928#
1929# @calc-time-unit: time unit in which @calc-time is specified.
1930#     By default it is seconds. (Since 8.2)
1931#
1932# @sample-pages: number of sampled pages per each GiB of guest memory.
1933#     Default value is 512.  For 4KiB guest pages this corresponds to
1934#     sampling ratio of 0.2%.  This argument is used only in page
1935#     sampling mode.  (Since 6.1)
1936#
1937# @mode: mechanism for tracking dirty pages.  Default value is
1938#     'page-sampling'.  Others are 'dirty-bitmap' and 'dirty-ring'.
1939#     (Since 6.1)
1940#
1941# Since: 5.2
1942#
1943# Example:
1944#
1945# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
1946#                                                 'sample-pages': 512} }
1947# <- { "return": {} }
1948#
1949# Measure dirty rate using dirty bitmap for 500 milliseconds:
1950#
1951# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500,
1952#     "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} }
1953#
1954# <- { "return": {} }
1955##
1956{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
1957                                         '*calc-time-unit': 'TimeUnit',
1958                                         '*sample-pages': 'int',
1959                                         '*mode': 'DirtyRateMeasureMode'} }
1960
1961##
1962# @query-dirty-rate:
1963#
1964# Query results of the most recent invocation of @calc-dirty-rate.
1965#
1966# @calc-time-unit: time unit in which to report calculation time.
1967#     By default it is reported in seconds. (Since 8.2)
1968#
1969# Since: 5.2
1970#
1971# Examples:
1972#
1973# 1. Measurement is in progress:
1974#
1975# <- {"status": "measuring", "sample-pages": 512,
1976#     "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
1977#     "calc-time-unit": "second"}
1978#
1979# 2. Measurement has been completed:
1980#
1981# <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108,
1982#     "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10,
1983#     "calc-time-unit": "second"}
1984##
1985{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' },
1986                                 'returns': 'DirtyRateInfo' }
1987
1988##
1989# @DirtyLimitInfo:
1990#
1991# Dirty page rate limit information of a virtual CPU.
1992#
1993# @cpu-index: index of a virtual CPU.
1994#
1995# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
1996#     CPU, 0 means unlimited.
1997#
1998# @current-rate: current dirty page rate (MB/s) for a virtual CPU.
1999#
2000# Since: 7.1
2001##
2002{ 'struct': 'DirtyLimitInfo',
2003  'data': { 'cpu-index': 'int',
2004            'limit-rate': 'uint64',
2005            'current-rate': 'uint64' } }
2006
2007##
2008# @set-vcpu-dirty-limit:
2009#
2010# Set the upper limit of dirty page rate for virtual CPUs.
2011#
2012# Requires KVM with accelerator property "dirty-ring-size" set.  A
2013# virtual CPU's dirty page rate is a measure of its memory load.  To
2014# observe dirty page rates, use @calc-dirty-rate.
2015#
2016# @cpu-index: index of a virtual CPU, default is all.
2017#
2018# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
2019#
2020# Since: 7.1
2021#
2022# Example:
2023#
2024# -> {"execute": "set-vcpu-dirty-limit"}
2025#     "arguments": { "dirty-rate": 200,
2026#                    "cpu-index": 1 } }
2027# <- { "return": {} }
2028##
2029{ 'command': 'set-vcpu-dirty-limit',
2030  'data': { '*cpu-index': 'int',
2031            'dirty-rate': 'uint64' } }
2032
2033##
2034# @cancel-vcpu-dirty-limit:
2035#
2036# Cancel the upper limit of dirty page rate for virtual CPUs.
2037#
2038# Cancel the dirty page limit for the vCPU which has been set with
2039# set-vcpu-dirty-limit command.  Note that this command requires
2040# support from dirty ring, same as the "set-vcpu-dirty-limit".
2041#
2042# @cpu-index: index of a virtual CPU, default is all.
2043#
2044# Since: 7.1
2045#
2046# Example:
2047#
2048# -> {"execute": "cancel-vcpu-dirty-limit"},
2049#     "arguments": { "cpu-index": 1 } }
2050# <- { "return": {} }
2051##
2052{ 'command': 'cancel-vcpu-dirty-limit',
2053  'data': { '*cpu-index': 'int'} }
2054
2055##
2056# @query-vcpu-dirty-limit:
2057#
2058# Returns information about virtual CPU dirty page rate limits, if
2059# any.
2060#
2061# Since: 7.1
2062#
2063# Example:
2064#
2065# -> {"execute": "query-vcpu-dirty-limit"}
2066# <- {"return": [
2067#        { "limit-rate": 60, "current-rate": 3, "cpu-index": 0},
2068#        { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]}
2069##
2070{ 'command': 'query-vcpu-dirty-limit',
2071  'returns': [ 'DirtyLimitInfo' ] }
2072
2073##
2074# @MigrationThreadInfo:
2075#
2076# Information about migrationthreads
2077#
2078# @name: the name of migration thread
2079#
2080# @thread-id: ID of the underlying host thread
2081#
2082# Since: 7.2
2083##
2084{ 'struct': 'MigrationThreadInfo',
2085  'data': {'name': 'str',
2086           'thread-id': 'int'} }
2087
2088##
2089# @query-migrationthreads:
2090#
2091# Returns information of migration threads
2092#
2093# data: migration thread name
2094#
2095# Returns: information about migration threads
2096#
2097# Since: 7.2
2098##
2099{ 'command': 'query-migrationthreads',
2100  'returns': ['MigrationThreadInfo'] }
2101
2102##
2103# @snapshot-save:
2104#
2105# Save a VM snapshot
2106#
2107# @job-id: identifier for the newly created job
2108#
2109# @tag: name of the snapshot to create
2110#
2111# @vmstate: block device node name to save vmstate to
2112#
2113# @devices: list of block device node names to save a snapshot to
2114#
2115# Applications should not assume that the snapshot save is complete
2116# when this command returns.  The job commands / events must be used
2117# to determine completion and to fetch details of any errors that
2118# arise.
2119#
2120# Note that execution of the guest CPUs may be stopped during the time
2121# it takes to save the snapshot.  A future version of QEMU may ensure
2122# CPUs are executing continuously.
2123#
2124# It is strongly recommended that @devices contain all writable block
2125# device nodes if a consistent snapshot is required.
2126#
2127# If @tag already exists, an error will be reported
2128#
2129# Returns: nothing
2130#
2131# Example:
2132#
2133# -> { "execute": "snapshot-save",
2134#      "arguments": {
2135#         "job-id": "snapsave0",
2136#         "tag": "my-snap",
2137#         "vmstate": "disk0",
2138#         "devices": ["disk0", "disk1"]
2139#      }
2140#    }
2141# <- { "return": { } }
2142# <- {"event": "JOB_STATUS_CHANGE",
2143#     "timestamp": {"seconds": 1432121972, "microseconds": 744001},
2144#     "data": {"status": "created", "id": "snapsave0"}}
2145# <- {"event": "JOB_STATUS_CHANGE",
2146#     "timestamp": {"seconds": 1432122172, "microseconds": 744001},
2147#     "data": {"status": "running", "id": "snapsave0"}}
2148# <- {"event": "STOP",
2149#     "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2150# <- {"event": "RESUME",
2151#     "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
2152# <- {"event": "JOB_STATUS_CHANGE",
2153#     "timestamp": {"seconds": 1432122772, "microseconds": 744001},
2154#     "data": {"status": "waiting", "id": "snapsave0"}}
2155# <- {"event": "JOB_STATUS_CHANGE",
2156#     "timestamp": {"seconds": 1432122972, "microseconds": 744001},
2157#     "data": {"status": "pending", "id": "snapsave0"}}
2158# <- {"event": "JOB_STATUS_CHANGE",
2159#     "timestamp": {"seconds": 1432123172, "microseconds": 744001},
2160#     "data": {"status": "concluded", "id": "snapsave0"}}
2161# -> {"execute": "query-jobs"}
2162# <- {"return": [{"current-progress": 1,
2163#                 "status": "concluded",
2164#                 "total-progress": 1,
2165#                 "type": "snapshot-save",
2166#                 "id": "snapsave0"}]}
2167#
2168# Since: 6.0
2169##
2170{ 'command': 'snapshot-save',
2171  'data': { 'job-id': 'str',
2172            'tag': 'str',
2173            'vmstate': 'str',
2174            'devices': ['str'] } }
2175
2176##
2177# @snapshot-load:
2178#
2179# Load a VM snapshot
2180#
2181# @job-id: identifier for the newly created job
2182#
2183# @tag: name of the snapshot to load.
2184#
2185# @vmstate: block device node name to load vmstate from
2186#
2187# @devices: list of block device node names to load a snapshot from
2188#
2189# Applications should not assume that the snapshot load is complete
2190# when this command returns.  The job commands / events must be used
2191# to determine completion and to fetch details of any errors that
2192# arise.
2193#
2194# Note that execution of the guest CPUs will be stopped during the
2195# time it takes to load the snapshot.
2196#
2197# It is strongly recommended that @devices contain all writable block
2198# device nodes that can have changed since the original @snapshot-save
2199# command execution.
2200#
2201# Returns: nothing
2202#
2203# Example:
2204#
2205# -> { "execute": "snapshot-load",
2206#      "arguments": {
2207#         "job-id": "snapload0",
2208#         "tag": "my-snap",
2209#         "vmstate": "disk0",
2210#         "devices": ["disk0", "disk1"]
2211#      }
2212#    }
2213# <- { "return": { } }
2214# <- {"event": "JOB_STATUS_CHANGE",
2215#     "timestamp": {"seconds": 1472124172, "microseconds": 744001},
2216#     "data": {"status": "created", "id": "snapload0"}}
2217# <- {"event": "JOB_STATUS_CHANGE",
2218#     "timestamp": {"seconds": 1472125172, "microseconds": 744001},
2219#     "data": {"status": "running", "id": "snapload0"}}
2220# <- {"event": "STOP",
2221#     "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2222# <- {"event": "RESUME",
2223#     "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
2224# <- {"event": "JOB_STATUS_CHANGE",
2225#     "timestamp": {"seconds": 1472126172, "microseconds": 744001},
2226#     "data": {"status": "waiting", "id": "snapload0"}}
2227# <- {"event": "JOB_STATUS_CHANGE",
2228#     "timestamp": {"seconds": 1472127172, "microseconds": 744001},
2229#     "data": {"status": "pending", "id": "snapload0"}}
2230# <- {"event": "JOB_STATUS_CHANGE",
2231#     "timestamp": {"seconds": 1472128172, "microseconds": 744001},
2232#     "data": {"status": "concluded", "id": "snapload0"}}
2233# -> {"execute": "query-jobs"}
2234# <- {"return": [{"current-progress": 1,
2235#                 "status": "concluded",
2236#                 "total-progress": 1,
2237#                 "type": "snapshot-load",
2238#                 "id": "snapload0"}]}
2239#
2240# Since: 6.0
2241##
2242{ 'command': 'snapshot-load',
2243  'data': { 'job-id': 'str',
2244            'tag': 'str',
2245            'vmstate': 'str',
2246            'devices': ['str'] } }
2247
2248##
2249# @snapshot-delete:
2250#
2251# Delete a VM snapshot
2252#
2253# @job-id: identifier for the newly created job
2254#
2255# @tag: name of the snapshot to delete.
2256#
2257# @devices: list of block device node names to delete a snapshot from
2258#
2259# Applications should not assume that the snapshot delete is complete
2260# when this command returns.  The job commands / events must be used
2261# to determine completion and to fetch details of any errors that
2262# arise.
2263#
2264# Returns: nothing
2265#
2266# Example:
2267#
2268# -> { "execute": "snapshot-delete",
2269#      "arguments": {
2270#         "job-id": "snapdelete0",
2271#         "tag": "my-snap",
2272#         "devices": ["disk0", "disk1"]
2273#      }
2274#    }
2275# <- { "return": { } }
2276# <- {"event": "JOB_STATUS_CHANGE",
2277#     "timestamp": {"seconds": 1442124172, "microseconds": 744001},
2278#     "data": {"status": "created", "id": "snapdelete0"}}
2279# <- {"event": "JOB_STATUS_CHANGE",
2280#     "timestamp": {"seconds": 1442125172, "microseconds": 744001},
2281#     "data": {"status": "running", "id": "snapdelete0"}}
2282# <- {"event": "JOB_STATUS_CHANGE",
2283#     "timestamp": {"seconds": 1442126172, "microseconds": 744001},
2284#     "data": {"status": "waiting", "id": "snapdelete0"}}
2285# <- {"event": "JOB_STATUS_CHANGE",
2286#     "timestamp": {"seconds": 1442127172, "microseconds": 744001},
2287#     "data": {"status": "pending", "id": "snapdelete0"}}
2288# <- {"event": "JOB_STATUS_CHANGE",
2289#     "timestamp": {"seconds": 1442128172, "microseconds": 744001},
2290#     "data": {"status": "concluded", "id": "snapdelete0"}}
2291# -> {"execute": "query-jobs"}
2292# <- {"return": [{"current-progress": 1,
2293#                 "status": "concluded",
2294#                 "total-progress": 1,
2295#                 "type": "snapshot-delete",
2296#                 "id": "snapdelete0"}]}
2297#
2298# Since: 6.0
2299##
2300{ 'command': 'snapshot-delete',
2301  'data': { 'job-id': 'str',
2302            'tag': 'str',
2303            'devices': ['str'] } }
2304