1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4 5## 6# = Migration 7## 8 9{ 'include': 'common.json' } 10{ 'include': 'sockets.json' } 11 12## 13# @MigrationStats: 14# 15# Detailed migration status. 16# 17# @transferred: amount of bytes already transferred to the target VM 18# 19# @remaining: amount of bytes remaining to be transferred to the 20# target VM 21# 22# @total: total amount of bytes involved in the migration process 23# 24# @duplicate: number of duplicate (zero) pages (since 1.2) 25# 26# @normal: number of normal pages (since 1.2) 27# 28# @normal-bytes: number of normal bytes sent (since 1.2) 29# 30# @dirty-pages-rate: number of pages dirtied by second by the guest 31# (since 1.3) 32# 33# @mbps: throughput in megabits/sec. (since 1.6) 34# 35# @dirty-sync-count: number of times that dirty ram was synchronized 36# (since 2.1) 37# 38# @postcopy-requests: The number of page requests received from the 39# destination (since 2.7) 40# 41# @page-size: The number of bytes per page for the various page-based 42# statistics (since 2.10) 43# 44# @multifd-bytes: The number of bytes sent through multifd (since 3.0) 45# 46# @pages-per-second: the number of memory pages transferred per second 47# (Since 4.0) 48# 49# @precopy-bytes: The number of bytes sent in the pre-copy phase 50# (since 7.0). 51# 52# @downtime-bytes: The number of bytes sent while the guest is paused 53# (since 7.0). 54# 55# @postcopy-bytes: The number of bytes sent during the post-copy phase 56# (since 7.0). 57# 58# @dirty-sync-missed-zero-copy: Number of times dirty RAM 59# synchronization could not avoid copying dirty pages. This is 60# between 0 and @dirty-sync-count * @multifd-channels. 61# (since 7.1) 62# 63# Since: 0.14 64## 65{ 'struct': 'MigrationStats', 66 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' , 67 'duplicate': 'int', 68 'normal': 'int', 69 'normal-bytes': 'int', 'dirty-pages-rate': 'int', 70 'mbps': 'number', 'dirty-sync-count': 'int', 71 'postcopy-requests': 'int', 'page-size': 'int', 72 'multifd-bytes': 'uint64', 'pages-per-second': 'uint64', 73 'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64', 74 'postcopy-bytes': 'uint64', 75 'dirty-sync-missed-zero-copy': 'uint64' } } 76 77## 78# @XBZRLECacheStats: 79# 80# Detailed XBZRLE migration cache statistics 81# 82# @cache-size: XBZRLE cache size 83# 84# @bytes: amount of bytes already transferred to the target VM 85# 86# @pages: amount of pages transferred to the target VM 87# 88# @cache-miss: number of cache miss 89# 90# @cache-miss-rate: rate of cache miss (since 2.1) 91# 92# @encoding-rate: rate of encoded bytes (since 5.1) 93# 94# @overflow: number of overflows 95# 96# Since: 1.2 97## 98{ 'struct': 'XBZRLECacheStats', 99 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int', 100 'cache-miss': 'int', 'cache-miss-rate': 'number', 101 'encoding-rate': 'number', 'overflow': 'int' } } 102 103## 104# @CompressionStats: 105# 106# Detailed migration compression statistics 107# 108# @pages: amount of pages compressed and transferred to the target VM 109# 110# @busy: count of times that no free thread was available to compress 111# data 112# 113# @busy-rate: rate of thread busy 114# 115# @compressed-size: amount of bytes after compression 116# 117# @compression-rate: rate of compressed size 118# 119# Since: 3.1 120## 121{ 'struct': 'CompressionStats', 122 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number', 123 'compressed-size': 'int', 'compression-rate': 'number' } } 124 125## 126# @MigrationStatus: 127# 128# An enumeration of migration status. 129# 130# @none: no migration has ever happened. 131# 132# @setup: migration process has been initiated. 133# 134# @cancelling: in the process of cancelling migration. 135# 136# @cancelled: cancelling migration is finished. 137# 138# @active: in the process of doing migration. 139# 140# @postcopy-active: like active, but now in postcopy mode. 141# (since 2.5) 142# 143# @postcopy-paused: during postcopy but paused. (since 3.0) 144# 145# @postcopy-recover-setup: setup phase for a postcopy recovery 146# process, preparing for a recovery phase to start. (since 9.1) 147# 148# @postcopy-recover: trying to recover from a paused postcopy. 149# (since 3.0) 150# 151# @completed: migration is finished. 152# 153# @failed: some error occurred during migration process. 154# 155# @colo: VM is in the process of fault tolerance, VM can not get into 156# this state unless colo capability is enabled for migration. 157# (since 2.8) 158# 159# @pre-switchover: Paused before device serialisation. (since 2.11) 160# 161# @device: During device serialisation (also known as switchover phase). 162# Before 9.2, this is only used when (1) in precopy, and (2) when 163# pre-switchover capability is enabled. After 10.0, this state will 164# always be present for every migration procedure as the switchover 165# phase. (since 2.11) 166# 167# @wait-unplug: wait for device unplug request by guest OS to be 168# completed. (since 4.2) 169# 170# Since: 2.3 171## 172{ 'enum': 'MigrationStatus', 173 'data': [ 'none', 'setup', 'cancelling', 'cancelled', 174 'active', 'postcopy-active', 'postcopy-paused', 175 'postcopy-recover-setup', 176 'postcopy-recover', 'completed', 'failed', 'colo', 177 'pre-switchover', 'device', 'wait-unplug' ] } 178## 179# @VfioStats: 180# 181# Detailed VFIO devices migration statistics 182# 183# @transferred: amount of bytes transferred to the target VM by VFIO 184# devices 185# 186# Since: 5.2 187## 188{ 'struct': 'VfioStats', 189 'data': {'transferred': 'int' } } 190 191## 192# @MigrationInfo: 193# 194# Information about current migration process. 195# 196# @status: @MigrationStatus describing the current migration status. 197# If this field is not returned, no migration process has been 198# initiated 199# 200# @ram: @MigrationStats containing detailed migration status, only 201# returned if status is 'active' or 'completed'(since 1.2) 202# 203# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE 204# migration statistics, only returned if XBZRLE feature is on and 205# status is 'active' or 'completed' (since 1.2) 206# 207# @total-time: total amount of milliseconds since migration started. 208# If migration has ended, it returns the total migration time. 209# (since 1.2) 210# 211# @downtime: only present when migration finishes correctly total 212# downtime in milliseconds for the guest. (since 1.3) 213# 214# @expected-downtime: only present while migration is active expected 215# downtime in milliseconds for the guest in last walk of the dirty 216# bitmap. (since 1.3) 217# 218# @setup-time: amount of setup time in milliseconds *before* the 219# iterations begin but *after* the QMP command is issued. This is 220# designed to provide an accounting of any activities (such as 221# RDMA pinning) which may be expensive, but do not actually occur 222# during the iterative migration rounds themselves. (since 1.6) 223# 224# @cpu-throttle-percentage: percentage of time guest cpus are being 225# throttled during auto-converge. This is only present when 226# auto-converge has started throttling guest cpus. (Since 2.7) 227# 228# @error-desc: the human readable error description string. Clients 229# should not attempt to parse the error strings. (Since 2.7) 230# 231# @postcopy-blocktime: total time when all vCPU were blocked during 232# postcopy live migration. This is only present when the 233# postcopy-blocktime migration capability is enabled. (Since 3.0) 234# 235# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. 236# This is only present when the postcopy-blocktime migration 237# capability is enabled. (Since 3.0) 238# 239# @postcopy-latency: average remote page fault latency (in ns). Note that 240# this doesn't include all faults, but only the ones that require a 241# remote page request. So it should be always bigger than the real 242# average page fault latency. This is only present when the 243# postcopy-blocktime migration capability is enabled. (Since 10.1) 244# 245# @postcopy-latency-dist: remote page fault latency distributions. Each 246# element of the array is the number of faults that fall into the 247# bucket period. For the N-th bucket (N>=0), the latency window is 248# [2^Nus, 2^(N+1)us). For example, the 8th element stores how many 249# remote faults got resolved within [256us, 512us) window. This is only 250# present when the postcopy-blocktime migration capability is enabled. 251# (Since 10.1) 252# 253# @postcopy-vcpu-latency: average remote page fault latency per vCPU (in 254# ns). It has the same definition of @postcopy-latency, but instead 255# this is the per-vCPU statistics. This is only present when the 256# postcopy-blocktime migration capability is enabled. (Since 10.1) 257# 258# @postcopy-non-vcpu-latency: average remote page fault latency for all 259# faults happend in non-vCPU threads (in ns). It has the same 260# definition of @postcopy-latency but this only provides statistics to 261# non-vCPU faults. This is only present when the postcopy-blocktime 262# migration capability is enabled. (Since 10.1) 263# 264# @socket-address: Only used for tcp, to know what the real port is 265# (Since 4.0) 266# 267# @vfio: @VfioStats containing detailed VFIO devices migration 268# statistics, only returned if VFIO device is present, migration 269# is supported by all VFIO devices and status is 'active' or 270# 'completed' (since 5.2) 271# 272# @blocked-reasons: A list of reasons an outgoing migration is 273# blocked. Present and non-empty when migration is blocked. 274# (since 6.0) 275# 276# @dirty-limit-throttle-time-per-round: Maximum throttle time (in 277# microseconds) of virtual CPUs each dirty ring full round, which 278# shows how MigrationCapability dirty-limit affects the guest 279# during live migration. (Since 8.1) 280# 281# @dirty-limit-ring-full-time: Estimated average dirty ring full time 282# (in microseconds) for each dirty ring full round. The value 283# equals the dirty ring memory size divided by the average dirty 284# page rate of the virtual CPU, which can be used to observe the 285# average memory load of the virtual CPU indirectly. Note that 286# zero means guest doesn't dirty memory. (Since 8.1) 287# 288# Features: 289# 290# @unstable: Members @postcopy-latency, @postcopy-vcpu-latency, 291# @postcopy-latency-dist, @postcopy-non-vcpu-latency are experimental. 292# 293# Since: 0.14 294## 295{ 'struct': 'MigrationInfo', 296 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats', 297 '*vfio': 'VfioStats', 298 '*xbzrle-cache': 'XBZRLECacheStats', 299 '*total-time': 'int', 300 '*expected-downtime': 'int', 301 '*downtime': 'int', 302 '*setup-time': 'int', 303 '*cpu-throttle-percentage': 'int', 304 '*error-desc': 'str', 305 '*blocked-reasons': ['str'], 306 '*postcopy-blocktime': 'uint32', 307 '*postcopy-vcpu-blocktime': ['uint32'], 308 '*postcopy-latency': { 309 'type': 'uint64', 'features': [ 'unstable' ] }, 310 '*postcopy-latency-dist': { 311 'type': ['uint64'], 'features': [ 'unstable' ] }, 312 '*postcopy-vcpu-latency': { 313 'type': ['uint64'], 'features': [ 'unstable' ] }, 314 '*postcopy-non-vcpu-latency': { 315 'type': 'uint64', 'features': [ 'unstable' ] }, 316 '*socket-address': ['SocketAddress'], 317 '*dirty-limit-throttle-time-per-round': 'uint64', 318 '*dirty-limit-ring-full-time': 'uint64'} } 319 320## 321# @query-migrate: 322# 323# Return information about current migration process. If migration 324# is active there will be another json-object with RAM migration 325# status. 326# 327# Returns: @MigrationInfo 328# 329# Since: 0.14 330# 331# .. qmp-example:: 332# :title: Before the first migration 333# 334# -> { "execute": "query-migrate" } 335# <- { "return": {} } 336# 337# .. qmp-example:: 338# :title: Migration is done and has succeeded 339# 340# -> { "execute": "query-migrate" } 341# <- { "return": { 342# "status": "completed", 343# "total-time":12345, 344# "setup-time":12345, 345# "downtime":12345, 346# "ram":{ 347# "transferred":123, 348# "remaining":123, 349# "total":246, 350# "duplicate":123, 351# "normal":123, 352# "normal-bytes":123456, 353# "dirty-sync-count":15 354# } 355# } 356# } 357# 358# .. qmp-example:: 359# :title: Migration is done and has failed 360# 361# -> { "execute": "query-migrate" } 362# <- { "return": { "status": "failed" } } 363# 364# .. qmp-example:: 365# :title: Migration is being performed 366# 367# -> { "execute": "query-migrate" } 368# <- { 369# "return":{ 370# "status":"active", 371# "total-time":12345, 372# "setup-time":12345, 373# "expected-downtime":12345, 374# "ram":{ 375# "transferred":123, 376# "remaining":123, 377# "total":246, 378# "duplicate":123, 379# "normal":123, 380# "normal-bytes":123456, 381# "dirty-sync-count":15 382# } 383# } 384# } 385# 386# .. qmp-example:: 387# :title: Migration is being performed and XBZRLE is active 388# 389# -> { "execute": "query-migrate" } 390# <- { 391# "return":{ 392# "status":"active", 393# "total-time":12345, 394# "setup-time":12345, 395# "expected-downtime":12345, 396# "ram":{ 397# "total":1057024, 398# "remaining":1053304, 399# "transferred":3720, 400# "duplicate":10, 401# "normal":3333, 402# "normal-bytes":3412992, 403# "dirty-sync-count":15 404# }, 405# "xbzrle-cache":{ 406# "cache-size":67108864, 407# "bytes":20971520, 408# "pages":2444343, 409# "cache-miss":2244, 410# "cache-miss-rate":0.123, 411# "encoding-rate":80.1, 412# "overflow":34434 413# } 414# } 415# } 416## 417{ 'command': 'query-migrate', 'returns': 'MigrationInfo' } 418 419## 420# @MigrationCapability: 421# 422# Migration capabilities enumeration 423# 424# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length 425# Encoding). This feature allows us to minimize migration traffic 426# for certain work loads, by sending compressed difference of the 427# pages 428# 429# @rdma-pin-all: Controls whether or not the entire VM memory 430# footprint is mlock()'d on demand or all at once. Refer to 431# docs/rdma.txt for usage. Disabled by default. (since 2.0) 432# 433# @zero-blocks: During storage migration encode blocks of zeroes 434# efficiently. This essentially saves 1MB of zeroes per block on 435# the wire. Enabling requires source and target VM to support 436# this feature. To enable it is sufficient to enable the 437# capability on the source VM. The feature is disabled by 438# default. (since 1.6) 439# 440# @events: generate events for each migration state change (since 2.4) 441# 442# @auto-converge: If enabled, QEMU will automatically throttle down 443# the guest to speed up convergence of RAM migration. (since 1.6) 444# 445# @postcopy-ram: Start executing on the migration target before all of 446# RAM has been migrated, pulling the remaining pages along as 447# needed. The capacity must have the same setting on both source 448# and target or migration will not even start. **Note:** if the 449# migration fails during postcopy the VM will fail. (since 2.6) 450# 451# @x-colo: If enabled, migration will never end, and the state of the 452# VM on the primary side will be migrated continuously to the VM 453# on secondary side, this process is called COarse-Grain LOck 454# Stepping (COLO) for Non-stop Service. (since 2.8) 455# 456# @release-ram: if enabled, QEMU will free the migrated ram pages on 457# the source during postcopy-ram migration. (since 2.9) 458# 459# @return-path: If enabled, migration will use the return path even 460# for precopy. (since 2.10) 461# 462# @pause-before-switchover: Pause outgoing migration before 463# serialising device state and before disabling block IO 464# (since 2.11) 465# 466# @multifd: Use more than one fd for migration (since 4.0) 467# 468# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps. 469# (since 2.12) 470# 471# @postcopy-blocktime: Calculate downtime for postcopy live migration 472# (since 3.0) 473# 474# @late-block-activate: If enabled, the destination will not activate 475# block devices (and thus take locks) immediately at the end of 476# migration. (since 3.0) 477# 478# @x-ignore-shared: If enabled, QEMU will not migrate shared memory 479# that is accessible on the destination machine. (since 4.0) 480# 481# @validate-uuid: Send the UUID of the source to allow the destination 482# to ensure it is the same. (since 4.2) 483# 484# @background-snapshot: If enabled, the migration stream will be a 485# snapshot of the VM exactly at the point when the migration 486# procedure starts. The VM RAM is saved with running VM. 487# (since 6.0) 488# 489# @zero-copy-send: Controls behavior on sending memory pages on 490# migration. When true, enables a zero-copy mechanism for sending 491# memory pages, if host supports it. Requires that QEMU be 492# permitted to use locked memory for guest RAM pages. (since 7.1) 493# 494# @postcopy-preempt: If enabled, the migration process will allow 495# postcopy requests to preempt precopy stream, so postcopy 496# requests will be handled faster. This is a performance feature 497# and should not affect the correctness of postcopy migration. 498# (since 7.1) 499# 500# @switchover-ack: If enabled, migration will not stop the source VM 501# and complete the migration until an ACK is received from the 502# destination that it's OK to do so. Exactly when this ACK is 503# sent depends on the migrated devices that use this feature. For 504# example, a device can use it to make sure some of its data is 505# sent and loaded in the destination before doing switchover. 506# This can reduce downtime if devices that support this capability 507# are present. 'return-path' capability must be enabled to use 508# it. (since 8.1) 509# 510# @dirty-limit: If enabled, migration will throttle vCPUs as needed to 511# keep their dirty page rate within @vcpu-dirty-limit. This can 512# improve responsiveness of large guests during live migration, 513# and can result in more stable read performance. Requires KVM 514# with accelerator property "dirty-ring-size" set. (Since 8.1) 515# 516# @mapped-ram: Migrate using fixed offsets in the migration file for 517# each RAM page. Requires a migration URI that supports seeking, 518# such as a file. (since 9.0) 519# 520# Features: 521# 522# @unstable: Members @x-colo and @x-ignore-shared are experimental. 523# @deprecated: Member @zero-blocks is deprecated as being part of 524# block migration which was already removed. 525# 526# Since: 1.2 527## 528{ 'enum': 'MigrationCapability', 529 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 530 { 'name': 'zero-blocks', 'features': [ 'deprecated' ] }, 531 'events', 'postcopy-ram', 532 { 'name': 'x-colo', 'features': [ 'unstable' ] }, 533 'release-ram', 534 'return-path', 'pause-before-switchover', 'multifd', 535 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate', 536 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] }, 537 'validate-uuid', 'background-snapshot', 538 'zero-copy-send', 'postcopy-preempt', 'switchover-ack', 539 'dirty-limit', 'mapped-ram'] } 540 541## 542# @MigrationCapabilityStatus: 543# 544# Migration capability information 545# 546# @capability: capability enum 547# 548# @state: capability state bool 549# 550# Since: 1.2 551## 552{ 'struct': 'MigrationCapabilityStatus', 553 'data': { 'capability': 'MigrationCapability', 'state': 'bool' } } 554 555## 556# @migrate-set-capabilities: 557# 558# Enable/Disable the following migration capabilities (like xbzrle) 559# 560# @capabilities: json array of capability modifications to make 561# 562# Since: 1.2 563# 564# .. qmp-example:: 565# 566# -> { "execute": "migrate-set-capabilities" , "arguments": 567# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } } 568# <- { "return": {} } 569## 570{ 'command': 'migrate-set-capabilities', 571 'data': { 'capabilities': ['MigrationCapabilityStatus'] } } 572 573## 574# @query-migrate-capabilities: 575# 576# Return information about the current migration capabilities status 577# 578# Returns: @MigrationCapabilityStatus 579# 580# Since: 1.2 581# 582# .. qmp-example:: 583# 584# -> { "execute": "query-migrate-capabilities" } 585# <- { "return": [ 586# {"state": false, "capability": "xbzrle"}, 587# {"state": false, "capability": "rdma-pin-all"}, 588# {"state": false, "capability": "auto-converge"}, 589# {"state": false, "capability": "zero-blocks"}, 590# {"state": true, "capability": "events"}, 591# {"state": false, "capability": "postcopy-ram"}, 592# {"state": false, "capability": "x-colo"} 593# ]} 594## 595{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']} 596 597## 598# @MultiFDCompression: 599# 600# An enumeration of multifd compression methods. 601# 602# @none: no compression. 603# 604# @zlib: use zlib compression method. 605# 606# @zstd: use zstd compression method. 607# 608# @qatzip: use qatzip compression method. (Since 9.2) 609# 610# @qpl: use qpl compression method. Query Processing Library(qpl) is 611# based on the deflate compression algorithm and use the Intel 612# In-Memory Analytics Accelerator(IAA) accelerated compression and 613# decompression. (Since 9.1) 614# 615# @uadk: use UADK library compression method. (Since 9.1) 616# 617# Since: 5.0 618## 619{ 'enum': 'MultiFDCompression', 620 'prefix': 'MULTIFD_COMPRESSION', 621 'data': [ 'none', 'zlib', 622 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' }, 623 { 'name': 'qatzip', 'if': 'CONFIG_QATZIP'}, 624 { 'name': 'qpl', 'if': 'CONFIG_QPL' }, 625 { 'name': 'uadk', 'if': 'CONFIG_UADK' } ] } 626 627## 628# @MigMode: 629# 630# @normal: the original form of migration. (since 8.2) 631# 632# @cpr-reboot: The migrate command stops the VM and saves state to the 633# URI. After quitting QEMU, the user resumes by running QEMU 634# -incoming. 635# 636# This mode allows the user to quit QEMU, optionally update and 637# reboot the OS, and restart QEMU. If the user reboots, the URI 638# must persist across the reboot, such as by using a file. 639# 640# Unlike normal mode, the use of certain local storage options 641# does not block the migration, but the user must not modify the 642# contents of guest block devices between the quit and restart. 643# 644# This mode supports VFIO devices provided the user first puts the 645# guest in the suspended runstate, such as by issuing 646# guest-suspend-ram to the QEMU guest agent. 647# 648# Best performance is achieved when the memory backend is shared 649# and the @x-ignore-shared migration capability is set, but this 650# is not required. Further, if the user reboots before restarting 651# such a configuration, the shared memory must persist across the 652# reboot, such as by backing it with a dax device. 653# 654# @cpr-reboot may not be used with postcopy, background-snapshot, 655# or COLO. 656# 657# (since 8.2) 658# 659# @cpr-transfer: This mode allows the user to transfer a guest to a 660# new QEMU instance on the same host with minimal guest pause 661# time by preserving guest RAM in place. 662# 663# Devices and their pinned pages are also preserved for VFIO and 664# IOMMUFD. (since 10.1) 665# 666# The user starts new QEMU on the same host as old QEMU, with 667# command-line arguments to create the same machine, plus the 668# -incoming option for the main migration channel, like normal 669# live migration. In addition, the user adds a second -incoming 670# option with channel type "cpr". This CPR channel must support 671# file descriptor transfer with SCM_RIGHTS, i.e. it must be a 672# UNIX domain socket. 673# 674# To initiate CPR, the user issues a migrate command to old QEMU, 675# adding a second migration channel of type "cpr" in the channels 676# argument. Old QEMU stops the VM, saves state to the migration 677# channels, and enters the postmigrate state. Execution resumes 678# in new QEMU. 679# 680# New QEMU reads the CPR channel before opening a monitor, hence 681# the CPR channel cannot be specified in the list of channels for 682# a migrate-incoming command. It may only be specified on the 683# command line. 684# 685# The main channel address cannot be a file type, and for an 686# inet socket, the port cannot be 0 (meaning dynamically choose 687# a port). 688# 689# Memory-backend objects must have the share=on attribute, but 690# memory-backend-epc is not supported. The VM must be started 691# with the '-machine aux-ram-share=on' option. 692# 693# When using -incoming defer, you must issue the migrate command 694# to old QEMU before issuing any monitor commands to new QEMU. 695# However, new QEMU does not open and read the migration stream 696# until you issue the migrate incoming command. 697# 698# (since 10.0) 699## 700{ 'enum': 'MigMode', 701 'data': [ 'normal', 'cpr-reboot', 'cpr-transfer' ] } 702 703## 704# @ZeroPageDetection: 705# 706# @none: Do not perform zero page checking. 707# 708# @legacy: Perform zero page checking in main migration thread. 709# 710# @multifd: Perform zero page checking in multifd sender thread if 711# multifd migration is enabled, else in the main migration thread 712# as for @legacy. 713# 714# Since: 9.0 715## 716{ 'enum': 'ZeroPageDetection', 717 'data': [ 'none', 'legacy', 'multifd' ] } 718 719## 720# @BitmapMigrationBitmapAliasTransform: 721# 722# @persistent: If present, the bitmap will be made persistent or 723# transient depending on this parameter. 724# 725# Since: 6.0 726## 727{ 'struct': 'BitmapMigrationBitmapAliasTransform', 728 'data': { 729 '*persistent': 'bool' 730 } } 731 732## 733# @BitmapMigrationBitmapAlias: 734# 735# @name: The name of the bitmap. 736# 737# @alias: An alias name for migration (for example the bitmap name on 738# the opposite site). 739# 740# @transform: Allows the modification of the migrated bitmap. 741# (since 6.0) 742# 743# Since: 5.2 744## 745{ 'struct': 'BitmapMigrationBitmapAlias', 746 'data': { 747 'name': 'str', 748 'alias': 'str', 749 '*transform': 'BitmapMigrationBitmapAliasTransform' 750 } } 751 752## 753# @BitmapMigrationNodeAlias: 754# 755# Maps a block node name and the bitmaps it has to aliases for dirty 756# bitmap migration. 757# 758# @node-name: A block node name. 759# 760# @alias: An alias block node name for migration (for example the node 761# name on the opposite site). 762# 763# @bitmaps: Mappings for the bitmaps on this node. 764# 765# Since: 5.2 766## 767{ 'struct': 'BitmapMigrationNodeAlias', 768 'data': { 769 'node-name': 'str', 770 'alias': 'str', 771 'bitmaps': [ 'BitmapMigrationBitmapAlias' ] 772 } } 773 774## 775# @MigrationParameter: 776# 777# Migration parameters enumeration 778# 779# @announce-initial: Initial delay (in milliseconds) before sending 780# the first announce (Since 4.0) 781# 782# @announce-max: Maximum delay (in milliseconds) between packets in 783# the announcement (Since 4.0) 784# 785# @announce-rounds: Number of self-announce packets sent after 786# migration (Since 4.0) 787# 788# @announce-step: Increase in delay (in milliseconds) between 789# subsequent packets in the announcement (Since 4.0) 790# 791# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 792# bytes_xfer_period to trigger throttling. It is expressed as 793# percentage. The default value is 50. (Since 5.0) 794# 795# @cpu-throttle-initial: Initial percentage of time guest cpus are 796# throttled when migration auto-converge is activated. The 797# default value is 20. (Since 2.7) 798# 799# @cpu-throttle-increment: throttle percentage increase each time 800# auto-converge detects that migration is not making progress. 801# The default value is 10. (Since 2.7) 802# 803# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage. 804# At the tail stage of throttling, the Guest is very sensitive to 805# CPU percentage while the @cpu-throttle -increment is excessive 806# usually at tail stage. If this parameter is true, we will 807# compute the ideal CPU percentage used by the Guest, which may 808# exactly make the dirty rate match the dirty rate threshold. 809# Then we will choose a smaller throttle increment between the one 810# specified by @cpu-throttle-increment and the one generated by 811# ideal CPU percentage. Therefore, it is compatible to 812# traditional throttling, meanwhile the throttle increment won't 813# be excessive at tail stage. The default value is false. 814# (Since 5.1) 815# 816# @tls-creds: ID of the 'tls-creds' object that provides credentials 817# for establishing a TLS connection over the migration data 818# channel. On the outgoing side of the migration, the credentials 819# must be for a 'client' endpoint, while for the incoming side the 820# credentials must be for a 'server' endpoint. Setting this to a 821# non-empty string enables TLS for all migrations. An empty 822# string means that QEMU will use plain text mode for migration, 823# rather than TLS. (Since 2.7) 824# 825# @tls-hostname: migration target's hostname for validating the 826# server's x509 certificate identity. If empty, QEMU will use the 827# hostname from the migration URI, if any. A non-empty value is 828# required when using x509 based TLS credentials and the migration 829# URI does not include a hostname, such as fd: or exec: based 830# migration. (Since 2.7) 831# 832# Note: empty value works only since 2.9. 833# 834# @tls-authz: ID of the 'authz' object subclass that provides access 835# control checking of the TLS x509 certificate distinguished name. 836# This object is only resolved at time of use, so can be deleted 837# and recreated on the fly while the migration server is active. 838# If missing, it will default to denying access (Since 4.0) 839# 840# @max-bandwidth: maximum speed for migration, in bytes per second. 841# (Since 2.8) 842# 843# @avail-switchover-bandwidth: to set the available bandwidth that 844# migration can use during switchover phase. **Note:** this does 845# not limit the bandwidth during switchover, but only for 846# calculations when making decisions to switchover. By default, 847# this value is zero, which means QEMU will estimate the bandwidth 848# automatically. This can be set when the estimated value is not 849# accurate, while the user is able to guarantee such bandwidth is 850# available when switching over. When specified correctly, this 851# can make the switchover decision much more accurate. 852# (Since 8.2) 853# 854# @downtime-limit: set maximum tolerated downtime for migration. 855# maximum downtime in milliseconds (Since 2.8) 856# 857# @x-checkpoint-delay: The delay time (in ms) between two COLO 858# checkpoints in periodic mode. (Since 2.8) 859# 860# @multifd-channels: Number of channels used to migrate data in 861# parallel. This is the same number that the number of sockets 862# used for migration. The default value is 2 (since 4.0) 863# 864# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 865# needs to be a multiple of the target page size and a power of 2 866# (Since 2.11) 867# 868# @max-postcopy-bandwidth: Background transfer bandwidth during 869# postcopy. Defaults to 0 (unlimited). In bytes per second. 870# (Since 3.0) 871# 872# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 873# (Since 3.1) 874# 875# @multifd-compression: Which compression method to use. Defaults to 876# none. (Since 5.0) 877# 878# @multifd-zlib-level: Set the compression level to be used in live 879# migration, the compression level is an integer between 0 and 9, 880# where 0 means no compression, 1 means the best compression 881# speed, and 9 means best compression ratio which will consume 882# more CPU. Defaults to 1. (Since 5.0) 883# 884# @multifd-qatzip-level: Set the compression level to be used in live 885# migration. The level is an integer between 1 and 9, where 1 means 886# the best compression speed, and 9 means the best compression 887# ratio which will consume more CPU. Defaults to 1. (Since 9.2) 888# 889# @multifd-zstd-level: Set the compression level to be used in live 890# migration, the compression level is an integer between 0 and 20, 891# where 0 means no compression, 1 means the best compression 892# speed, and 20 means best compression ratio which will consume 893# more CPU. Defaults to 1. (Since 5.0) 894# 895# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 896# aliases for the purpose of dirty bitmap migration. Such aliases 897# may for example be the corresponding names on the opposite site. 898# The mapping must be one-to-one, but not necessarily complete: On 899# the source, unmapped bitmaps and all bitmaps on unmapped nodes 900# will be ignored. On the destination, encountering an unmapped 901# alias in the incoming migration stream will result in a report, 902# and all further bitmap migration data will then be discarded. 903# Note that the destination does not know about bitmaps it does 904# not receive, so there is no limitation or requirement regarding 905# the number of bitmaps received, or how they are named, or on 906# which nodes they are placed. By default (when this parameter 907# has never been set), bitmap names are mapped to themselves. 908# Nodes are mapped to their block device name if there is one, and 909# to their node name otherwise. (Since 5.2) 910# 911# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 912# limit during live migration. Should be in the range 1 to 913# 1000ms. Defaults to 1000ms. (Since 8.1) 914# 915# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 916# Defaults to 1. (Since 8.1) 917# 918# @mode: Migration mode. See description in @MigMode. Default is 919# 'normal'. (Since 8.2) 920# 921# @zero-page-detection: Whether and how to detect zero pages. 922# See description in @ZeroPageDetection. Default is 'multifd'. 923# (since 9.0) 924# 925# @direct-io: Open migration files with O_DIRECT when possible. This 926# only has effect if the @mapped-ram capability is enabled. 927# (Since 9.1) 928# 929# Features: 930# 931# @unstable: Members @x-checkpoint-delay and 932# @x-vcpu-dirty-limit-period are experimental. 933# 934# Since: 2.4 935## 936{ 'enum': 'MigrationParameter', 937 'data': ['announce-initial', 'announce-max', 938 'announce-rounds', 'announce-step', 939 'throttle-trigger-threshold', 940 'cpu-throttle-initial', 'cpu-throttle-increment', 941 'cpu-throttle-tailslow', 942 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth', 943 'avail-switchover-bandwidth', 'downtime-limit', 944 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] }, 945 'multifd-channels', 946 'xbzrle-cache-size', 'max-postcopy-bandwidth', 947 'max-cpu-throttle', 'multifd-compression', 948 'multifd-zlib-level', 'multifd-zstd-level', 949 'multifd-qatzip-level', 950 'block-bitmap-mapping', 951 { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] }, 952 'vcpu-dirty-limit', 953 'mode', 954 'zero-page-detection', 955 'direct-io'] } 956 957## 958# @MigrateSetParameters: 959# 960# @announce-initial: Initial delay (in milliseconds) before sending 961# the first announce (Since 4.0) 962# 963# @announce-max: Maximum delay (in milliseconds) between packets in 964# the announcement (Since 4.0) 965# 966# @announce-rounds: Number of self-announce packets sent after 967# migration (Since 4.0) 968# 969# @announce-step: Increase in delay (in milliseconds) between 970# subsequent packets in the announcement (Since 4.0) 971# 972# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 973# bytes_xfer_period to trigger throttling. It is expressed as 974# percentage. The default value is 50. (Since 5.0) 975# 976# @cpu-throttle-initial: Initial percentage of time guest cpus are 977# throttled when migration auto-converge is activated. The 978# default value is 20. (Since 2.7) 979# 980# @cpu-throttle-increment: throttle percentage increase each time 981# auto-converge detects that migration is not making progress. 982# The default value is 10. (Since 2.7) 983# 984# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage. 985# At the tail stage of throttling, the Guest is very sensitive to 986# CPU percentage while the @cpu-throttle -increment is excessive 987# usually at tail stage. If this parameter is true, we will 988# compute the ideal CPU percentage used by the Guest, which may 989# exactly make the dirty rate match the dirty rate threshold. 990# Then we will choose a smaller throttle increment between the one 991# specified by @cpu-throttle-increment and the one generated by 992# ideal CPU percentage. Therefore, it is compatible to 993# traditional throttling, meanwhile the throttle increment won't 994# be excessive at tail stage. The default value is false. 995# (Since 5.1) 996# 997# @tls-creds: ID of the 'tls-creds' object that provides credentials 998# for establishing a TLS connection over the migration data 999# channel. On the outgoing side of the migration, the credentials 1000# must be for a 'client' endpoint, while for the incoming side the 1001# credentials must be for a 'server' endpoint. Setting this to a 1002# non-empty string enables TLS for all migrations. An empty 1003# string means that QEMU will use plain text mode for migration, 1004# rather than TLS. This is the default. (Since 2.7) 1005# 1006# @tls-hostname: migration target's hostname for validating the 1007# server's x509 certificate identity. If empty, QEMU will use the 1008# hostname from the migration URI, if any. A non-empty value is 1009# required when using x509 based TLS credentials and the migration 1010# URI does not include a hostname, such as fd: or exec: based 1011# migration. (Since 2.7) 1012# 1013# Note: empty value works only since 2.9. 1014# 1015# @tls-authz: ID of the 'authz' object subclass that provides access 1016# control checking of the TLS x509 certificate distinguished name. 1017# This object is only resolved at time of use, so can be deleted 1018# and recreated on the fly while the migration server is active. 1019# If missing, it will default to denying access (Since 4.0) 1020# 1021# @max-bandwidth: maximum speed for migration, in bytes per second. 1022# (Since 2.8) 1023# 1024# @avail-switchover-bandwidth: to set the available bandwidth that 1025# migration can use during switchover phase. **Note:** this does 1026# not limit the bandwidth during switchover, but only for 1027# calculations when making decisions to switchover. By default, 1028# this value is zero, which means QEMU will estimate the bandwidth 1029# automatically. This can be set when the estimated value is not 1030# accurate, while the user is able to guarantee such bandwidth is 1031# available when switching over. When specified correctly, this 1032# can make the switchover decision much more accurate. 1033# (Since 8.2) 1034# 1035# @downtime-limit: set maximum tolerated downtime for migration. 1036# maximum downtime in milliseconds (Since 2.8) 1037# 1038# @x-checkpoint-delay: The delay time (in ms) between two COLO 1039# checkpoints in periodic mode. (Since 2.8) 1040# 1041# @multifd-channels: Number of channels used to migrate data in 1042# parallel. This is the same number that the number of sockets 1043# used for migration. The default value is 2 (since 4.0) 1044# 1045# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1046# needs to be a multiple of the target page size and a power of 2 1047# (Since 2.11) 1048# 1049# @max-postcopy-bandwidth: Background transfer bandwidth during 1050# postcopy. Defaults to 0 (unlimited). In bytes per second. 1051# (Since 3.0) 1052# 1053# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 1054# (Since 3.1) 1055# 1056# @multifd-compression: Which compression method to use. Defaults to 1057# none. (Since 5.0) 1058# 1059# @multifd-zlib-level: Set the compression level to be used in live 1060# migration, the compression level is an integer between 0 and 9, 1061# where 0 means no compression, 1 means the best compression 1062# speed, and 9 means best compression ratio which will consume 1063# more CPU. Defaults to 1. (Since 5.0) 1064# 1065# @multifd-qatzip-level: Set the compression level to be used in live 1066# migration. The level is an integer between 1 and 9, where 1 means 1067# the best compression speed, and 9 means the best compression 1068# ratio which will consume more CPU. Defaults to 1. (Since 9.2) 1069# 1070# @multifd-zstd-level: Set the compression level to be used in live 1071# migration, the compression level is an integer between 0 and 20, 1072# where 0 means no compression, 1 means the best compression 1073# speed, and 20 means best compression ratio which will consume 1074# more CPU. Defaults to 1. (Since 5.0) 1075# 1076# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1077# aliases for the purpose of dirty bitmap migration. Such aliases 1078# may for example be the corresponding names on the opposite site. 1079# The mapping must be one-to-one, but not necessarily complete: On 1080# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1081# will be ignored. On the destination, encountering an unmapped 1082# alias in the incoming migration stream will result in a report, 1083# and all further bitmap migration data will then be discarded. 1084# Note that the destination does not know about bitmaps it does 1085# not receive, so there is no limitation or requirement regarding 1086# the number of bitmaps received, or how they are named, or on 1087# which nodes they are placed. By default (when this parameter 1088# has never been set), bitmap names are mapped to themselves. 1089# Nodes are mapped to their block device name if there is one, and 1090# to their node name otherwise. (Since 5.2) 1091# 1092# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 1093# limit during live migration. Should be in the range 1 to 1094# 1000ms. Defaults to 1000ms. (Since 8.1) 1095# 1096# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1097# Defaults to 1. (Since 8.1) 1098# 1099# @mode: Migration mode. See description in @MigMode. Default is 1100# 'normal'. (Since 8.2) 1101# 1102# @zero-page-detection: Whether and how to detect zero pages. 1103# See description in @ZeroPageDetection. Default is 'multifd'. 1104# (since 9.0) 1105# 1106# @direct-io: Open migration files with O_DIRECT when possible. This 1107# only has effect if the @mapped-ram capability is enabled. 1108# (Since 9.1) 1109# 1110# Features: 1111# 1112# @unstable: Members @x-checkpoint-delay and 1113# @x-vcpu-dirty-limit-period are experimental. 1114# 1115# TODO: either fuse back into MigrationParameters, or make 1116# MigrationParameters members mandatory 1117# 1118# Since: 2.4 1119## 1120{ 'struct': 'MigrateSetParameters', 1121 'data': { '*announce-initial': 'size', 1122 '*announce-max': 'size', 1123 '*announce-rounds': 'size', 1124 '*announce-step': 'size', 1125 '*throttle-trigger-threshold': 'uint8', 1126 '*cpu-throttle-initial': 'uint8', 1127 '*cpu-throttle-increment': 'uint8', 1128 '*cpu-throttle-tailslow': 'bool', 1129 '*tls-creds': 'StrOrNull', 1130 '*tls-hostname': 'StrOrNull', 1131 '*tls-authz': 'StrOrNull', 1132 '*max-bandwidth': 'size', 1133 '*avail-switchover-bandwidth': 'size', 1134 '*downtime-limit': 'uint64', 1135 '*x-checkpoint-delay': { 'type': 'uint32', 1136 'features': [ 'unstable' ] }, 1137 '*multifd-channels': 'uint8', 1138 '*xbzrle-cache-size': 'size', 1139 '*max-postcopy-bandwidth': 'size', 1140 '*max-cpu-throttle': 'uint8', 1141 '*multifd-compression': 'MultiFDCompression', 1142 '*multifd-zlib-level': 'uint8', 1143 '*multifd-qatzip-level': 'uint8', 1144 '*multifd-zstd-level': 'uint8', 1145 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1146 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1147 'features': [ 'unstable' ] }, 1148 '*vcpu-dirty-limit': 'uint64', 1149 '*mode': 'MigMode', 1150 '*zero-page-detection': 'ZeroPageDetection', 1151 '*direct-io': 'bool' } } 1152 1153## 1154# @migrate-set-parameters: 1155# 1156# Set various migration parameters. 1157# 1158# Since: 2.4 1159# 1160# .. qmp-example:: 1161# 1162# -> { "execute": "migrate-set-parameters" , 1163# "arguments": { "multifd-channels": 5 } } 1164# <- { "return": {} } 1165## 1166{ 'command': 'migrate-set-parameters', 'boxed': true, 1167 'data': 'MigrateSetParameters' } 1168 1169## 1170# @MigrationParameters: 1171# 1172# The optional members aren't actually optional. 1173# 1174# @announce-initial: Initial delay (in milliseconds) before sending 1175# the first announce (Since 4.0) 1176# 1177# @announce-max: Maximum delay (in milliseconds) between packets in 1178# the announcement (Since 4.0) 1179# 1180# @announce-rounds: Number of self-announce packets sent after 1181# migration (Since 4.0) 1182# 1183# @announce-step: Increase in delay (in milliseconds) between 1184# subsequent packets in the announcement (Since 4.0) 1185# 1186# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 1187# bytes_xfer_period to trigger throttling. It is expressed as 1188# percentage. The default value is 50. (Since 5.0) 1189# 1190# @cpu-throttle-initial: Initial percentage of time guest cpus are 1191# throttled when migration auto-converge is activated. 1192# (Since 2.7) 1193# 1194# @cpu-throttle-increment: throttle percentage increase each time 1195# auto-converge detects that migration is not making progress. 1196# (Since 2.7) 1197# 1198# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage. 1199# At the tail stage of throttling, the Guest is very sensitive to 1200# CPU percentage while the @cpu-throttle -increment is excessive 1201# usually at tail stage. If this parameter is true, we will 1202# compute the ideal CPU percentage used by the Guest, which may 1203# exactly make the dirty rate match the dirty rate threshold. 1204# Then we will choose a smaller throttle increment between the one 1205# specified by @cpu-throttle-increment and the one generated by 1206# ideal CPU percentage. Therefore, it is compatible to 1207# traditional throttling, meanwhile the throttle increment won't 1208# be excessive at tail stage. The default value is false. 1209# (Since 5.1) 1210# 1211# @tls-creds: ID of the 'tls-creds' object that provides credentials 1212# for establishing a TLS connection over the migration data 1213# channel. On the outgoing side of the migration, the credentials 1214# must be for a 'client' endpoint, while for the incoming side the 1215# credentials must be for a 'server' endpoint. An empty string 1216# means that QEMU will use plain text mode for migration, rather 1217# than TLS. (Since 2.7) 1218# 1219# Note: 2.8 omits empty @tls-creds instead. 1220# 1221# @tls-hostname: migration target's hostname for validating the 1222# server's x509 certificate identity. If empty, QEMU will use the 1223# hostname from the migration URI, if any. (Since 2.7) 1224# 1225# Note: 2.8 omits empty @tls-hostname instead. 1226# 1227# @tls-authz: ID of the 'authz' object subclass that provides access 1228# control checking of the TLS x509 certificate distinguished name. 1229# (Since 4.0) 1230# 1231# @max-bandwidth: maximum speed for migration, in bytes per second. 1232# (Since 2.8) 1233# 1234# @avail-switchover-bandwidth: to set the available bandwidth that 1235# migration can use during switchover phase. **Note:** this does 1236# not limit the bandwidth during switchover, but only for 1237# calculations when making decisions to switchover. By default, 1238# this value is zero, which means QEMU will estimate the bandwidth 1239# automatically. This can be set when the estimated value is not 1240# accurate, while the user is able to guarantee such bandwidth is 1241# available when switching over. When specified correctly, this 1242# can make the switchover decision much more accurate. 1243# (Since 8.2) 1244# 1245# @downtime-limit: set maximum tolerated downtime for migration. 1246# maximum downtime in milliseconds (Since 2.8) 1247# 1248# @x-checkpoint-delay: the delay time between two COLO checkpoints. 1249# (Since 2.8) 1250# 1251# @multifd-channels: Number of channels used to migrate data in 1252# parallel. This is the same number that the number of sockets 1253# used for migration. The default value is 2 (since 4.0) 1254# 1255# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1256# needs to be a multiple of the target page size and a power of 2 1257# (Since 2.11) 1258# 1259# @max-postcopy-bandwidth: Background transfer bandwidth during 1260# postcopy. Defaults to 0 (unlimited). In bytes per second. 1261# (Since 3.0) 1262# 1263# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 1264# (Since 3.1) 1265# 1266# @multifd-compression: Which compression method to use. Defaults to 1267# none. (Since 5.0) 1268# 1269# @multifd-zlib-level: Set the compression level to be used in live 1270# migration, the compression level is an integer between 0 and 9, 1271# where 0 means no compression, 1 means the best compression 1272# speed, and 9 means best compression ratio which will consume 1273# more CPU. Defaults to 1. (Since 5.0) 1274# 1275# @multifd-qatzip-level: Set the compression level to be used in live 1276# migration. The level is an integer between 1 and 9, where 1 means 1277# the best compression speed, and 9 means the best compression 1278# ratio which will consume more CPU. Defaults to 1. (Since 9.2) 1279# 1280# @multifd-zstd-level: Set the compression level to be used in live 1281# migration, the compression level is an integer between 0 and 20, 1282# where 0 means no compression, 1 means the best compression 1283# speed, and 20 means best compression ratio which will consume 1284# more CPU. Defaults to 1. (Since 5.0) 1285# 1286# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1287# aliases for the purpose of dirty bitmap migration. Such aliases 1288# may for example be the corresponding names on the opposite site. 1289# The mapping must be one-to-one, but not necessarily complete: On 1290# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1291# will be ignored. On the destination, encountering an unmapped 1292# alias in the incoming migration stream will result in a report, 1293# and all further bitmap migration data will then be discarded. 1294# Note that the destination does not know about bitmaps it does 1295# not receive, so there is no limitation or requirement regarding 1296# the number of bitmaps received, or how they are named, or on 1297# which nodes they are placed. By default (when this parameter 1298# has never been set), bitmap names are mapped to themselves. 1299# Nodes are mapped to their block device name if there is one, and 1300# to their node name otherwise. (Since 5.2) 1301# 1302# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 1303# limit during live migration. Should be in the range 1 to 1304# 1000ms. Defaults to 1000ms. (Since 8.1) 1305# 1306# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1307# Defaults to 1. (Since 8.1) 1308# 1309# @mode: Migration mode. See description in @MigMode. Default is 1310# 'normal'. (Since 8.2) 1311# 1312# @zero-page-detection: Whether and how to detect zero pages. 1313# See description in @ZeroPageDetection. Default is 'multifd'. 1314# (since 9.0) 1315# 1316# @direct-io: Open migration files with O_DIRECT when possible. This 1317# only has effect if the @mapped-ram capability is enabled. 1318# (Since 9.1) 1319# 1320# Features: 1321# 1322# @unstable: Members @x-checkpoint-delay and 1323# @x-vcpu-dirty-limit-period are experimental. 1324# 1325# Since: 2.4 1326## 1327{ 'struct': 'MigrationParameters', 1328 'data': { '*announce-initial': 'size', 1329 '*announce-max': 'size', 1330 '*announce-rounds': 'size', 1331 '*announce-step': 'size', 1332 '*throttle-trigger-threshold': 'uint8', 1333 '*cpu-throttle-initial': 'uint8', 1334 '*cpu-throttle-increment': 'uint8', 1335 '*cpu-throttle-tailslow': 'bool', 1336 '*tls-creds': 'str', 1337 '*tls-hostname': 'str', 1338 '*tls-authz': 'str', 1339 '*max-bandwidth': 'size', 1340 '*avail-switchover-bandwidth': 'size', 1341 '*downtime-limit': 'uint64', 1342 '*x-checkpoint-delay': { 'type': 'uint32', 1343 'features': [ 'unstable' ] }, 1344 '*multifd-channels': 'uint8', 1345 '*xbzrle-cache-size': 'size', 1346 '*max-postcopy-bandwidth': 'size', 1347 '*max-cpu-throttle': 'uint8', 1348 '*multifd-compression': 'MultiFDCompression', 1349 '*multifd-zlib-level': 'uint8', 1350 '*multifd-qatzip-level': 'uint8', 1351 '*multifd-zstd-level': 'uint8', 1352 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1353 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1354 'features': [ 'unstable' ] }, 1355 '*vcpu-dirty-limit': 'uint64', 1356 '*mode': 'MigMode', 1357 '*zero-page-detection': 'ZeroPageDetection', 1358 '*direct-io': 'bool' } } 1359 1360## 1361# @query-migrate-parameters: 1362# 1363# Return information about the current migration parameters 1364# 1365# Returns: @MigrationParameters 1366# 1367# Since: 2.4 1368# 1369# .. qmp-example:: 1370# 1371# -> { "execute": "query-migrate-parameters" } 1372# <- { "return": { 1373# "multifd-channels": 2, 1374# "cpu-throttle-increment": 10, 1375# "cpu-throttle-initial": 20, 1376# "max-bandwidth": 33554432, 1377# "downtime-limit": 300 1378# } 1379# } 1380## 1381{ 'command': 'query-migrate-parameters', 1382 'returns': 'MigrationParameters' } 1383 1384## 1385# @migrate-start-postcopy: 1386# 1387# Followup to a migration command to switch the migration to postcopy 1388# mode. The postcopy-ram capability must be set on both source and 1389# destination before the original migration command. 1390# 1391# Since: 2.5 1392# 1393# .. qmp-example:: 1394# 1395# -> { "execute": "migrate-start-postcopy" } 1396# <- { "return": {} } 1397## 1398{ 'command': 'migrate-start-postcopy' } 1399 1400## 1401# @MIGRATION: 1402# 1403# Emitted when a migration event happens 1404# 1405# @status: @MigrationStatus describing the current migration status. 1406# 1407# Since: 2.4 1408# 1409# .. qmp-example:: 1410# 1411# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001}, 1412# "event": "MIGRATION", 1413# "data": {"status": "completed"} } 1414## 1415{ 'event': 'MIGRATION', 1416 'data': {'status': 'MigrationStatus'}} 1417 1418## 1419# @MIGRATION_PASS: 1420# 1421# Emitted from the source side of a migration at the start of each 1422# pass (when it syncs the dirty bitmap) 1423# 1424# @pass: An incrementing count (starting at 1 on the first pass) 1425# 1426# Since: 2.6 1427# 1428# .. qmp-example:: 1429# 1430# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225}, 1431# "event": "MIGRATION_PASS", "data": {"pass": 2} } 1432## 1433{ 'event': 'MIGRATION_PASS', 1434 'data': { 'pass': 'int' } } 1435 1436## 1437# @COLOMessage: 1438# 1439# The message transmission between Primary side and Secondary side. 1440# 1441# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing 1442# 1443# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for 1444# checkpointing 1445# 1446# @checkpoint-reply: SVM gets PVM's checkpoint request 1447# 1448# @vmstate-send: VM's state will be sent by PVM. 1449# 1450# @vmstate-size: The total size of VMstate. 1451# 1452# @vmstate-received: VM's state has been received by SVM. 1453# 1454# @vmstate-loaded: VM's state has been loaded by SVM. 1455# 1456# Since: 2.8 1457## 1458{ 'enum': 'COLOMessage', 1459 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply', 1460 'vmstate-send', 'vmstate-size', 'vmstate-received', 1461 'vmstate-loaded' ] } 1462 1463## 1464# @COLOMode: 1465# 1466# The COLO current mode. 1467# 1468# @none: COLO is disabled. 1469# 1470# @primary: COLO node in primary side. 1471# 1472# @secondary: COLO node in slave side. 1473# 1474# Since: 2.8 1475## 1476{ 'enum': 'COLOMode', 1477 'data': [ 'none', 'primary', 'secondary'] } 1478 1479## 1480# @FailoverStatus: 1481# 1482# An enumeration of COLO failover status 1483# 1484# @none: no failover has ever happened 1485# 1486# @require: got failover requirement but not handled 1487# 1488# @active: in the process of doing failover 1489# 1490# @completed: finish the process of failover 1491# 1492# @relaunch: restart the failover process, from 'none' -> 'completed' 1493# (Since 2.9) 1494# 1495# Since: 2.8 1496## 1497{ 'enum': 'FailoverStatus', 1498 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] } 1499 1500## 1501# @COLO_EXIT: 1502# 1503# Emitted when VM finishes COLO mode due to some errors happening or 1504# at the request of users. 1505# 1506# @mode: report COLO mode when COLO exited. 1507# 1508# @reason: describes the reason for the COLO exit. 1509# 1510# Since: 3.1 1511# 1512# .. qmp-example:: 1513# 1514# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172}, 1515# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } } 1516## 1517{ 'event': 'COLO_EXIT', 1518 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } } 1519 1520## 1521# @COLOExitReason: 1522# 1523# The reason for a COLO exit. 1524# 1525# @none: failover has never happened. This state does not occur in 1526# the COLO_EXIT event, and is only visible in the result of 1527# query-colo-status. 1528# 1529# @request: COLO exit is due to an external request. 1530# 1531# @error: COLO exit is due to an internal error. 1532# 1533# @processing: COLO is currently handling a failover (since 4.0). 1534# 1535# Since: 3.1 1536## 1537{ 'enum': 'COLOExitReason', 1538 'data': [ 'none', 'request', 'error' , 'processing' ] } 1539 1540## 1541# @x-colo-lost-heartbeat: 1542# 1543# Tell QEMU that heartbeat is lost, request it to do takeover 1544# procedures. If this command is sent to the PVM, the Primary side 1545# will exit COLO mode. If sent to the Secondary, the Secondary side 1546# will run failover work, then takes over server operation to become 1547# the service VM. 1548# 1549# Features: 1550# 1551# @unstable: This command is experimental. 1552# 1553# Since: 2.8 1554# 1555# .. qmp-example:: 1556# 1557# -> { "execute": "x-colo-lost-heartbeat" } 1558# <- { "return": {} } 1559## 1560{ 'command': 'x-colo-lost-heartbeat', 1561 'features': [ 'unstable' ], 1562 'if': 'CONFIG_REPLICATION' } 1563 1564## 1565# @migrate_cancel: 1566# 1567# Cancel the currently executing migration process. Allows a new 1568# migration to be started right after. When postcopy-ram is in use, 1569# cancelling is not allowed after the postcopy phase has started. 1570# 1571# .. note:: This command succeeds even if there is no migration 1572# process running. 1573# 1574# Since: 0.14 1575# 1576# .. qmp-example:: 1577# 1578# -> { "execute": "migrate_cancel" } 1579# <- { "return": {} } 1580## 1581{ 'command': 'migrate_cancel' } 1582 1583## 1584# @migrate-continue: 1585# 1586# Continue migration when it's in a paused state. 1587# 1588# @state: The state the migration is currently expected to be in 1589# 1590# Since: 2.11 1591# 1592# .. qmp-example:: 1593# 1594# -> { "execute": "migrate-continue" , "arguments": 1595# { "state": "pre-switchover" } } 1596# <- { "return": {} } 1597## 1598{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} } 1599 1600## 1601# @MigrationAddressType: 1602# 1603# The migration stream transport mechanisms. 1604# 1605# @socket: Migrate via socket. 1606# 1607# @exec: Direct the migration stream to another process. 1608# 1609# @rdma: Migrate via RDMA. 1610# 1611# @file: Direct the migration stream to a file. 1612# 1613# Since: 8.2 1614## 1615{ 'enum': 'MigrationAddressType', 1616 'data': [ 'socket', 'exec', 'rdma', 'file' ] } 1617 1618## 1619# @FileMigrationArgs: 1620# 1621# @filename: The file to receive the migration stream 1622# 1623# @offset: The file offset where the migration stream will start 1624# 1625# Since: 8.2 1626## 1627{ 'struct': 'FileMigrationArgs', 1628 'data': { 'filename': 'str', 1629 'offset': 'uint64' } } 1630 1631## 1632# @MigrationExecCommand: 1633# 1634# @args: command (list head) and arguments to execute. 1635# 1636# Since: 8.2 1637## 1638{ 'struct': 'MigrationExecCommand', 1639 'data': {'args': [ 'str' ] } } 1640 1641## 1642# @MigrationAddress: 1643# 1644# Migration endpoint configuration. 1645# 1646# @transport: The migration stream transport mechanism 1647# 1648# Since: 8.2 1649## 1650{ 'union': 'MigrationAddress', 1651 'base': { 'transport' : 'MigrationAddressType'}, 1652 'discriminator': 'transport', 1653 'data': { 1654 'socket': 'SocketAddress', 1655 'exec': 'MigrationExecCommand', 1656 'rdma': 'InetSocketAddress', 1657 'file': 'FileMigrationArgs' } } 1658 1659## 1660# @MigrationChannelType: 1661# 1662# The migration channel-type request options. 1663# 1664# @main: Main outbound migration channel. 1665# @cpr: Checkpoint and restart state channel. 1666# 1667# Since: 8.1 1668## 1669{ 'enum': 'MigrationChannelType', 1670 'data': [ 'main', 'cpr' ] } 1671 1672## 1673# @MigrationChannel: 1674# 1675# Migration stream channel parameters. 1676# 1677# @channel-type: Channel type for transferring packet information. 1678# 1679# @addr: Migration endpoint configuration on destination interface. 1680# 1681# Since: 8.1 1682## 1683{ 'struct': 'MigrationChannel', 1684 'data': { 1685 'channel-type': 'MigrationChannelType', 1686 'addr': 'MigrationAddress' } } 1687 1688## 1689# @migrate: 1690# 1691# Migrates the current running guest to another Virtual Machine. 1692# 1693# @uri: the Uniform Resource Identifier of the destination VM 1694# 1695# @channels: list of migration stream channels with each stream in the 1696# list connected to a destination interface endpoint. 1697# 1698# @detach: this argument exists only for compatibility reasons and is 1699# ignored by QEMU 1700# 1701# @resume: resume one paused migration, default "off". (since 3.0) 1702# 1703# Features: 1704# 1705# @deprecated: Argument @detach is deprecated. 1706# 1707# Since: 0.14 1708# 1709# .. admonition:: Notes 1710# 1711# 1. The 'query-migrate' command should be used to check 1712# migration's progress and final result (this information is 1713# provided by the 'status' member). 1714# 1715# 2. The uri argument should have the Uniform Resource Identifier 1716# of default destination VM. This connection will be bound to 1717# default network. 1718# 1719# 3. For now, number of migration streams is restricted to one, 1720# i.e. number of items in 'channels' list is just 1. 1721# 1722# 4. The 'uri' and 'channels' arguments are mutually exclusive; 1723# exactly one of the two should be present. 1724# 1725# .. qmp-example:: 1726# 1727# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } } 1728# <- { "return": {} } 1729# 1730# -> { "execute": "migrate", 1731# "arguments": { 1732# "channels": [ { "channel-type": "main", 1733# "addr": { "transport": "socket", 1734# "type": "inet", 1735# "host": "10.12.34.9", 1736# "port": "1050" } } ] } } 1737# <- { "return": {} } 1738# 1739# -> { "execute": "migrate", 1740# "arguments": { 1741# "channels": [ { "channel-type": "main", 1742# "addr": { "transport": "exec", 1743# "args": [ "/bin/nc", "-p", "6000", 1744# "/some/sock" ] } } ] } } 1745# <- { "return": {} } 1746# 1747# -> { "execute": "migrate", 1748# "arguments": { 1749# "channels": [ { "channel-type": "main", 1750# "addr": { "transport": "rdma", 1751# "host": "10.12.34.9", 1752# "port": "1050" } } ] } } 1753# <- { "return": {} } 1754# 1755# -> { "execute": "migrate", 1756# "arguments": { 1757# "channels": [ { "channel-type": "main", 1758# "addr": { "transport": "file", 1759# "filename": "/tmp/migfile", 1760# "offset": "0x1000" } } ] } } 1761# <- { "return": {} } 1762## 1763{ 'command': 'migrate', 1764 'data': {'*uri': 'str', 1765 '*channels': [ 'MigrationChannel' ], 1766 '*detach': { 'type': 'bool', 'features': [ 'deprecated' ] }, 1767 '*resume': 'bool' } } 1768 1769## 1770# @migrate-incoming: 1771# 1772# Start an incoming migration. QEMU must have been started with 1773# -incoming defer. 1774# 1775# @uri: The Uniform Resource Identifier identifying the source or 1776# address to listen on 1777# 1778# @channels: list of migration stream channels with each stream in the 1779# list connected to a destination interface endpoint. 1780# 1781# @exit-on-error: Exit on incoming migration failure. Default true. 1782# When set to false, the failure triggers a MIGRATION event, and 1783# error details could be retrieved with query-migrate. 1784# (since 9.1) 1785# 1786# Since: 2.3 1787# 1788# .. admonition:: Notes 1789# 1790# 1. It's a bad idea to use a string for the uri, but it needs to 1791# stay compatible with -incoming and the format of the uri is 1792# already exposed above libvirt. 1793# 1794# 2. QEMU must be started with -incoming defer to allow 1795# migrate-incoming to be used. 1796# 1797# 3. The uri format is the same as for -incoming 1798# 1799# 4. For now, number of migration streams is restricted to one, 1800# i.e. number of items in 'channels' list is just 1. 1801# 1802# 5. The 'uri' and 'channels' arguments are mutually exclusive; 1803# exactly one of the two should be present. 1804# 1805# .. qmp-example:: 1806# 1807# -> { "execute": "migrate-incoming", 1808# "arguments": { "uri": "tcp:0:4446" } } 1809# <- { "return": {} } 1810# 1811# -> { "execute": "migrate-incoming", 1812# "arguments": { 1813# "channels": [ { "channel-type": "main", 1814# "addr": { "transport": "socket", 1815# "type": "inet", 1816# "host": "10.12.34.9", 1817# "port": "1050" } } ] } } 1818# <- { "return": {} } 1819# 1820# -> { "execute": "migrate-incoming", 1821# "arguments": { 1822# "channels": [ { "channel-type": "main", 1823# "addr": { "transport": "exec", 1824# "args": [ "/bin/nc", "-p", "6000", 1825# "/some/sock" ] } } ] } } 1826# <- { "return": {} } 1827# 1828# -> { "execute": "migrate-incoming", 1829# "arguments": { 1830# "channels": [ { "channel-type": "main", 1831# "addr": { "transport": "rdma", 1832# "host": "10.12.34.9", 1833# "port": "1050" } } ] } } 1834# <- { "return": {} } 1835## 1836{ 'command': 'migrate-incoming', 1837 'data': {'*uri': 'str', 1838 '*channels': [ 'MigrationChannel' ], 1839 '*exit-on-error': 'bool' } } 1840 1841## 1842# @xen-save-devices-state: 1843# 1844# Save the state of all devices to file. The RAM and the block 1845# devices of the VM are not saved by this command. 1846# 1847# @filename: the file to save the state of the devices to as binary 1848# data. See xen-save-devices-state.txt for a description of the 1849# binary format. 1850# 1851# @live: Optional argument to ask QEMU to treat this command as part 1852# of a live migration. Default to true. (since 2.11) 1853# 1854# Since: 1.1 1855# 1856# .. qmp-example:: 1857# 1858# -> { "execute": "xen-save-devices-state", 1859# "arguments": { "filename": "/tmp/save" } } 1860# <- { "return": {} } 1861## 1862{ 'command': 'xen-save-devices-state', 1863 'data': {'filename': 'str', '*live':'bool' } } 1864 1865## 1866# @xen-set-global-dirty-log: 1867# 1868# Enable or disable the global dirty log mode. 1869# 1870# @enable: true to enable, false to disable. 1871# 1872# Since: 1.3 1873# 1874# .. qmp-example:: 1875# 1876# -> { "execute": "xen-set-global-dirty-log", 1877# "arguments": { "enable": true } } 1878# <- { "return": {} } 1879## 1880{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1881 1882## 1883# @xen-load-devices-state: 1884# 1885# Load the state of all devices from file. The RAM and the block 1886# devices of the VM are not loaded by this command. 1887# 1888# @filename: the file to load the state of the devices from as binary 1889# data. See xen-save-devices-state.txt for a description of the 1890# binary format. 1891# 1892# Since: 2.7 1893# 1894# .. qmp-example:: 1895# 1896# -> { "execute": "xen-load-devices-state", 1897# "arguments": { "filename": "/tmp/resume" } } 1898# <- { "return": {} } 1899## 1900{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 1901 1902## 1903# @xen-set-replication: 1904# 1905# Enable or disable replication. 1906# 1907# @enable: true to enable, false to disable. 1908# 1909# @primary: true for primary or false for secondary. 1910# 1911# @failover: true to do failover, false to stop. Cannot be specified 1912# if 'enable' is true. Default value is false. 1913# 1914# .. qmp-example:: 1915# 1916# -> { "execute": "xen-set-replication", 1917# "arguments": {"enable": true, "primary": false} } 1918# <- { "return": {} } 1919# 1920# Since: 2.9 1921## 1922{ 'command': 'xen-set-replication', 1923 'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' }, 1924 'if': 'CONFIG_REPLICATION' } 1925 1926## 1927# @ReplicationStatus: 1928# 1929# The result format for 'query-xen-replication-status'. 1930# 1931# @error: true if an error happened, false if replication is normal. 1932# 1933# @desc: the human readable error description string, when @error is 1934# 'true'. 1935# 1936# Since: 2.9 1937## 1938{ 'struct': 'ReplicationStatus', 1939 'data': { 'error': 'bool', '*desc': 'str' }, 1940 'if': 'CONFIG_REPLICATION' } 1941 1942## 1943# @query-xen-replication-status: 1944# 1945# Query replication status while the vm is running. 1946# 1947# Returns: A @ReplicationStatus object showing the status. 1948# 1949# .. qmp-example:: 1950# 1951# -> { "execute": "query-xen-replication-status" } 1952# <- { "return": { "error": false } } 1953# 1954# Since: 2.9 1955## 1956{ 'command': 'query-xen-replication-status', 1957 'returns': 'ReplicationStatus', 1958 'if': 'CONFIG_REPLICATION' } 1959 1960## 1961# @xen-colo-do-checkpoint: 1962# 1963# Xen uses this command to notify replication to trigger a checkpoint. 1964# 1965# .. qmp-example:: 1966# 1967# -> { "execute": "xen-colo-do-checkpoint" } 1968# <- { "return": {} } 1969# 1970# Since: 2.9 1971## 1972{ 'command': 'xen-colo-do-checkpoint', 1973 'if': 'CONFIG_REPLICATION' } 1974 1975## 1976# @COLOStatus: 1977# 1978# The result format for 'query-colo-status'. 1979# 1980# @mode: COLO running mode. If COLO is running, this field will 1981# return 'primary' or 'secondary'. 1982# 1983# @last-mode: COLO last running mode. If COLO is running, this field 1984# will return same like mode field, after failover we can use this 1985# field to get last colo mode. (since 4.0) 1986# 1987# @reason: describes the reason for the COLO exit. 1988# 1989# Since: 3.1 1990## 1991{ 'struct': 'COLOStatus', 1992 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode', 1993 'reason': 'COLOExitReason' }, 1994 'if': 'CONFIG_REPLICATION' } 1995 1996## 1997# @query-colo-status: 1998# 1999# Query COLO status while the vm is running. 2000# 2001# Returns: A @COLOStatus object showing the status. 2002# 2003# .. qmp-example:: 2004# 2005# -> { "execute": "query-colo-status" } 2006# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } } 2007# 2008# Since: 3.1 2009## 2010{ 'command': 'query-colo-status', 2011 'returns': 'COLOStatus', 2012 'if': 'CONFIG_REPLICATION' } 2013 2014## 2015# @migrate-recover: 2016# 2017# Provide a recovery migration stream URI. 2018# 2019# @uri: the URI to be used for the recovery of migration stream. 2020# 2021# .. qmp-example:: 2022# 2023# -> { "execute": "migrate-recover", 2024# "arguments": { "uri": "tcp:192.168.1.200:12345" } } 2025# <- { "return": {} } 2026# 2027# Since: 3.0 2028## 2029{ 'command': 'migrate-recover', 2030 'data': { 'uri': 'str' }, 2031 'allow-oob': true } 2032 2033## 2034# @migrate-pause: 2035# 2036# Pause a migration. Currently it only supports postcopy. 2037# 2038# .. qmp-example:: 2039# 2040# -> { "execute": "migrate-pause" } 2041# <- { "return": {} } 2042# 2043# Since: 3.0 2044## 2045{ 'command': 'migrate-pause', 'allow-oob': true } 2046 2047## 2048# @UNPLUG_PRIMARY: 2049# 2050# Emitted from source side of a migration when migration state is 2051# WAIT_UNPLUG. Device was unplugged by guest operating system. 2052# Device resources in QEMU are kept on standby to be able to re-plug 2053# it in case of migration failure. 2054# 2055# @device-id: QEMU device id of the unplugged device 2056# 2057# Since: 4.2 2058# 2059# .. qmp-example:: 2060# 2061# <- { "event": "UNPLUG_PRIMARY", 2062# "data": { "device-id": "hostdev0" }, 2063# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 2064## 2065{ 'event': 'UNPLUG_PRIMARY', 2066 'data': { 'device-id': 'str' } } 2067 2068## 2069# @DirtyRateVcpu: 2070# 2071# Dirty rate of vcpu. 2072# 2073# @id: vcpu index. 2074# 2075# @dirty-rate: dirty rate. 2076# 2077# Since: 6.2 2078## 2079{ 'struct': 'DirtyRateVcpu', 2080 'data': { 'id': 'int', 'dirty-rate': 'int64' } } 2081 2082## 2083# @DirtyRateStatus: 2084# 2085# Dirty page rate measurement status. 2086# 2087# @unstarted: measuring thread has not been started yet 2088# 2089# @measuring: measuring thread is running 2090# 2091# @measured: dirty page rate is measured and the results are available 2092# 2093# Since: 5.2 2094## 2095{ 'enum': 'DirtyRateStatus', 2096 'data': [ 'unstarted', 'measuring', 'measured'] } 2097 2098## 2099# @DirtyRateMeasureMode: 2100# 2101# Method used to measure dirty page rate. Differences between 2102# available methods are explained in @calc-dirty-rate. 2103# 2104# @page-sampling: use page sampling 2105# 2106# @dirty-ring: use dirty ring 2107# 2108# @dirty-bitmap: use dirty bitmap 2109# 2110# Since: 6.2 2111## 2112{ 'enum': 'DirtyRateMeasureMode', 2113 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] } 2114 2115## 2116# @TimeUnit: 2117# 2118# Specifies unit in which time-related value is specified. 2119# 2120# @second: value is in seconds 2121# 2122# @millisecond: value is in milliseconds 2123# 2124# Since: 8.2 2125## 2126{ 'enum': 'TimeUnit', 2127 'data': ['second', 'millisecond'] } 2128 2129## 2130# @DirtyRateInfo: 2131# 2132# Information about measured dirty page rate. 2133# 2134# @dirty-rate: an estimate of the dirty page rate of the VM in units 2135# of MiB/s. Value is present only when @status is 'measured'. 2136# 2137# @status: current status of dirty page rate measurements 2138# 2139# @start-time: start time in units of second for calculation 2140# 2141# @calc-time: time period for which dirty page rate was measured, 2142# expressed and rounded down to @calc-time-unit. 2143# 2144# @calc-time-unit: time unit of @calc-time (Since 8.2) 2145# 2146# @sample-pages: number of sampled pages per GiB of guest memory. 2147# Valid only in page-sampling mode (Since 6.1) 2148# 2149# @mode: mode that was used to measure dirty page rate (Since 6.2) 2150# 2151# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was 2152# specified (Since 6.2) 2153# 2154# Since: 5.2 2155## 2156{ 'struct': 'DirtyRateInfo', 2157 'data': {'*dirty-rate': 'int64', 2158 'status': 'DirtyRateStatus', 2159 'start-time': 'int64', 2160 'calc-time': 'int64', 2161 'calc-time-unit': 'TimeUnit', 2162 'sample-pages': 'uint64', 2163 'mode': 'DirtyRateMeasureMode', 2164 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } } 2165 2166## 2167# @calc-dirty-rate: 2168# 2169# Start measuring dirty page rate of the VM. Results can be retrieved 2170# with @query-dirty-rate after measurements are completed. 2171# 2172# Dirty page rate is the number of pages changed in a given time 2173# period expressed in MiB/s. The following methods of calculation are 2174# available: 2175# 2176# 1. In page sampling mode, a random subset of pages are selected and 2177# hashed twice: once at the beginning of measurement time period, 2178# and once again at the end. If two hashes for some page are 2179# different, the page is counted as changed. Since this method 2180# relies on sampling and hashing, calculated dirty page rate is 2181# only an estimate of its true value. Increasing @sample-pages 2182# improves estimation quality at the cost of higher computational 2183# overhead. 2184# 2185# 2. Dirty bitmap mode captures writes to memory (for example by 2186# temporarily revoking write access to all pages) and counting page 2187# faults. Information about modified pages is collected into a 2188# bitmap, where each bit corresponds to one guest page. This mode 2189# requires that KVM accelerator property "dirty-ring-size" is *not* 2190# set. 2191# 2192# 3. Dirty ring mode is similar to dirty bitmap mode, but the 2193# information about modified pages is collected into ring buffer. 2194# This mode tracks page modification per each vCPU separately. It 2195# requires that KVM accelerator property "dirty-ring-size" is set. 2196# 2197# @calc-time: time period for which dirty page rate is calculated. By 2198# default it is specified in seconds, but the unit can be set 2199# explicitly with @calc-time-unit. Note that larger @calc-time 2200# values will typically result in smaller dirty page rates because 2201# page dirtying is a one-time event. Once some page is counted as 2202# dirty during @calc-time period, further writes to this page will 2203# not increase dirty page rate anymore. 2204# 2205# @calc-time-unit: time unit in which @calc-time is specified. By 2206# default it is seconds. (Since 8.2) 2207# 2208# @sample-pages: number of sampled pages per each GiB of guest memory. 2209# Default value is 512. For 4KiB guest pages this corresponds to 2210# sampling ratio of 0.2%. This argument is used only in page 2211# sampling mode. (Since 6.1) 2212# 2213# @mode: mechanism for tracking dirty pages. Default value is 2214# 'page-sampling'. Others are 'dirty-bitmap' and 'dirty-ring'. 2215# (Since 6.1) 2216# 2217# Since: 5.2 2218# 2219# .. qmp-example:: 2220# 2221# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1, 2222# "sample-pages": 512} } 2223# <- { "return": {} } 2224# 2225# .. qmp-example:: 2226# :annotated: 2227# 2228# Measure dirty rate using dirty bitmap for 500 milliseconds:: 2229# 2230# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500, 2231# "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} } 2232# 2233# <- { "return": {} } 2234## 2235{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64', 2236 '*calc-time-unit': 'TimeUnit', 2237 '*sample-pages': 'int', 2238 '*mode': 'DirtyRateMeasureMode'} } 2239 2240## 2241# @query-dirty-rate: 2242# 2243# Query results of the most recent invocation of @calc-dirty-rate. 2244# 2245# @calc-time-unit: time unit in which to report calculation time. 2246# By default it is reported in seconds. (Since 8.2) 2247# 2248# Since: 5.2 2249# 2250# .. qmp-example:: 2251# :title: Measurement is in progress 2252# 2253# <- {"status": "measuring", "sample-pages": 512, 2254# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2255# "calc-time-unit": "second"} 2256# 2257# .. qmp-example:: 2258# :title: Measurement has been completed 2259# 2260# <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108, 2261# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2262# "calc-time-unit": "second"} 2263## 2264{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' }, 2265 'returns': 'DirtyRateInfo' } 2266 2267## 2268# @DirtyLimitInfo: 2269# 2270# Dirty page rate limit information of a virtual CPU. 2271# 2272# @cpu-index: index of a virtual CPU. 2273# 2274# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual 2275# CPU, 0 means unlimited. 2276# 2277# @current-rate: current dirty page rate (MB/s) for a virtual CPU. 2278# 2279# Since: 7.1 2280## 2281{ 'struct': 'DirtyLimitInfo', 2282 'data': { 'cpu-index': 'int', 2283 'limit-rate': 'uint64', 2284 'current-rate': 'uint64' } } 2285 2286## 2287# @set-vcpu-dirty-limit: 2288# 2289# Set the upper limit of dirty page rate for virtual CPUs. 2290# 2291# Requires KVM with accelerator property "dirty-ring-size" set. A 2292# virtual CPU's dirty page rate is a measure of its memory load. To 2293# observe dirty page rates, use @calc-dirty-rate. 2294# 2295# @cpu-index: index of a virtual CPU, default is all. 2296# 2297# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs. 2298# 2299# Since: 7.1 2300# 2301# .. qmp-example:: 2302# 2303# -> {"execute": "set-vcpu-dirty-limit"} 2304# "arguments": { "dirty-rate": 200, 2305# "cpu-index": 1 } } 2306# <- { "return": {} } 2307## 2308{ 'command': 'set-vcpu-dirty-limit', 2309 'data': { '*cpu-index': 'int', 2310 'dirty-rate': 'uint64' } } 2311 2312## 2313# @cancel-vcpu-dirty-limit: 2314# 2315# Cancel the upper limit of dirty page rate for virtual CPUs. 2316# 2317# Cancel the dirty page limit for the vCPU which has been set with 2318# set-vcpu-dirty-limit command. Note that this command requires 2319# support from dirty ring, same as the "set-vcpu-dirty-limit". 2320# 2321# @cpu-index: index of a virtual CPU, default is all. 2322# 2323# Since: 7.1 2324# 2325# .. qmp-example:: 2326# 2327# -> {"execute": "cancel-vcpu-dirty-limit"}, 2328# "arguments": { "cpu-index": 1 } } 2329# <- { "return": {} } 2330## 2331{ 'command': 'cancel-vcpu-dirty-limit', 2332 'data': { '*cpu-index': 'int'} } 2333 2334## 2335# @query-vcpu-dirty-limit: 2336# 2337# Return information about virtual CPU dirty page rate limits, if 2338# any. 2339# 2340# Since: 7.1 2341# 2342# .. qmp-example:: 2343# 2344# -> {"execute": "query-vcpu-dirty-limit"} 2345# <- {"return": [ 2346# { "limit-rate": 60, "current-rate": 3, "cpu-index": 0}, 2347# { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]} 2348## 2349{ 'command': 'query-vcpu-dirty-limit', 2350 'returns': [ 'DirtyLimitInfo' ] } 2351 2352## 2353# @MigrationThreadInfo: 2354# 2355# Information about migrationthreads 2356# 2357# @name: the name of migration thread 2358# 2359# @thread-id: ID of the underlying host thread 2360# 2361# Since: 7.2 2362## 2363{ 'struct': 'MigrationThreadInfo', 2364 'data': {'name': 'str', 2365 'thread-id': 'int'} } 2366 2367## 2368# @query-migrationthreads: 2369# 2370# Return information of migration threads 2371# 2372# Features: 2373# 2374# @deprecated: This command is deprecated with no replacement yet. 2375# 2376# Returns: @MigrationThreadInfo 2377# 2378# Since: 7.2 2379## 2380{ 'command': 'query-migrationthreads', 2381 'returns': ['MigrationThreadInfo'], 2382 'features': ['deprecated'] } 2383 2384## 2385# @snapshot-save: 2386# 2387# Save a VM snapshot 2388# 2389# @job-id: identifier for the newly created job 2390# 2391# @tag: name of the snapshot to create 2392# 2393# @vmstate: block device node name to save vmstate to 2394# 2395# @devices: list of block device node names to save a snapshot to 2396# 2397# Applications should not assume that the snapshot save is complete 2398# when this command returns. The job commands / events must be used 2399# to determine completion and to fetch details of any errors that 2400# arise. 2401# 2402# Note that execution of the guest CPUs may be stopped during the time 2403# it takes to save the snapshot. A future version of QEMU may ensure 2404# CPUs are executing continuously. 2405# 2406# It is strongly recommended that @devices contain all writable block 2407# device nodes if a consistent snapshot is required. 2408# 2409# If @tag already exists, an error will be reported 2410# 2411# .. qmp-example:: 2412# 2413# -> { "execute": "snapshot-save", 2414# "arguments": { 2415# "job-id": "snapsave0", 2416# "tag": "my-snap", 2417# "vmstate": "disk0", 2418# "devices": ["disk0", "disk1"] 2419# } 2420# } 2421# <- { "return": { } } 2422# <- {"event": "JOB_STATUS_CHANGE", 2423# "timestamp": {"seconds": 1432121972, "microseconds": 744001}, 2424# "data": {"status": "created", "id": "snapsave0"}} 2425# <- {"event": "JOB_STATUS_CHANGE", 2426# "timestamp": {"seconds": 1432122172, "microseconds": 744001}, 2427# "data": {"status": "running", "id": "snapsave0"}} 2428# <- {"event": "STOP", 2429# "timestamp": {"seconds": 1432122372, "microseconds": 744001} } 2430# <- {"event": "RESUME", 2431# "timestamp": {"seconds": 1432122572, "microseconds": 744001} } 2432# <- {"event": "JOB_STATUS_CHANGE", 2433# "timestamp": {"seconds": 1432122772, "microseconds": 744001}, 2434# "data": {"status": "waiting", "id": "snapsave0"}} 2435# <- {"event": "JOB_STATUS_CHANGE", 2436# "timestamp": {"seconds": 1432122972, "microseconds": 744001}, 2437# "data": {"status": "pending", "id": "snapsave0"}} 2438# <- {"event": "JOB_STATUS_CHANGE", 2439# "timestamp": {"seconds": 1432123172, "microseconds": 744001}, 2440# "data": {"status": "concluded", "id": "snapsave0"}} 2441# -> {"execute": "query-jobs"} 2442# <- {"return": [{"current-progress": 1, 2443# "status": "concluded", 2444# "total-progress": 1, 2445# "type": "snapshot-save", 2446# "id": "snapsave0"}]} 2447# 2448# Since: 6.0 2449## 2450{ 'command': 'snapshot-save', 2451 'data': { 'job-id': 'str', 2452 'tag': 'str', 2453 'vmstate': 'str', 2454 'devices': ['str'] } } 2455 2456## 2457# @snapshot-load: 2458# 2459# Load a VM snapshot 2460# 2461# @job-id: identifier for the newly created job 2462# 2463# @tag: name of the snapshot to load. 2464# 2465# @vmstate: block device node name to load vmstate from 2466# 2467# @devices: list of block device node names to load a snapshot from 2468# 2469# Applications should not assume that the snapshot load is complete 2470# when this command returns. The job commands / events must be used 2471# to determine completion and to fetch details of any errors that 2472# arise. 2473# 2474# Note that execution of the guest CPUs will be stopped during the 2475# time it takes to load the snapshot. 2476# 2477# It is strongly recommended that @devices contain all writable block 2478# device nodes that can have changed since the original @snapshot-save 2479# command execution. 2480# 2481# .. qmp-example:: 2482# 2483# -> { "execute": "snapshot-load", 2484# "arguments": { 2485# "job-id": "snapload0", 2486# "tag": "my-snap", 2487# "vmstate": "disk0", 2488# "devices": ["disk0", "disk1"] 2489# } 2490# } 2491# <- { "return": { } } 2492# <- {"event": "JOB_STATUS_CHANGE", 2493# "timestamp": {"seconds": 1472124172, "microseconds": 744001}, 2494# "data": {"status": "created", "id": "snapload0"}} 2495# <- {"event": "JOB_STATUS_CHANGE", 2496# "timestamp": {"seconds": 1472125172, "microseconds": 744001}, 2497# "data": {"status": "running", "id": "snapload0"}} 2498# <- {"event": "STOP", 2499# "timestamp": {"seconds": 1472125472, "microseconds": 744001} } 2500# <- {"event": "RESUME", 2501# "timestamp": {"seconds": 1472125872, "microseconds": 744001} } 2502# <- {"event": "JOB_STATUS_CHANGE", 2503# "timestamp": {"seconds": 1472126172, "microseconds": 744001}, 2504# "data": {"status": "waiting", "id": "snapload0"}} 2505# <- {"event": "JOB_STATUS_CHANGE", 2506# "timestamp": {"seconds": 1472127172, "microseconds": 744001}, 2507# "data": {"status": "pending", "id": "snapload0"}} 2508# <- {"event": "JOB_STATUS_CHANGE", 2509# "timestamp": {"seconds": 1472128172, "microseconds": 744001}, 2510# "data": {"status": "concluded", "id": "snapload0"}} 2511# -> {"execute": "query-jobs"} 2512# <- {"return": [{"current-progress": 1, 2513# "status": "concluded", 2514# "total-progress": 1, 2515# "type": "snapshot-load", 2516# "id": "snapload0"}]} 2517# 2518# Since: 6.0 2519## 2520{ 'command': 'snapshot-load', 2521 'data': { 'job-id': 'str', 2522 'tag': 'str', 2523 'vmstate': 'str', 2524 'devices': ['str'] } } 2525 2526## 2527# @snapshot-delete: 2528# 2529# Delete a VM snapshot 2530# 2531# @job-id: identifier for the newly created job 2532# 2533# @tag: name of the snapshot to delete. 2534# 2535# @devices: list of block device node names to delete a snapshot from 2536# 2537# Applications should not assume that the snapshot delete is complete 2538# when this command returns. The job commands / events must be used 2539# to determine completion and to fetch details of any errors that 2540# arise. 2541# 2542# .. qmp-example:: 2543# 2544# -> { "execute": "snapshot-delete", 2545# "arguments": { 2546# "job-id": "snapdelete0", 2547# "tag": "my-snap", 2548# "devices": ["disk0", "disk1"] 2549# } 2550# } 2551# <- { "return": { } } 2552# <- {"event": "JOB_STATUS_CHANGE", 2553# "timestamp": {"seconds": 1442124172, "microseconds": 744001}, 2554# "data": {"status": "created", "id": "snapdelete0"}} 2555# <- {"event": "JOB_STATUS_CHANGE", 2556# "timestamp": {"seconds": 1442125172, "microseconds": 744001}, 2557# "data": {"status": "running", "id": "snapdelete0"}} 2558# <- {"event": "JOB_STATUS_CHANGE", 2559# "timestamp": {"seconds": 1442126172, "microseconds": 744001}, 2560# "data": {"status": "waiting", "id": "snapdelete0"}} 2561# <- {"event": "JOB_STATUS_CHANGE", 2562# "timestamp": {"seconds": 1442127172, "microseconds": 744001}, 2563# "data": {"status": "pending", "id": "snapdelete0"}} 2564# <- {"event": "JOB_STATUS_CHANGE", 2565# "timestamp": {"seconds": 1442128172, "microseconds": 744001}, 2566# "data": {"status": "concluded", "id": "snapdelete0"}} 2567# -> {"execute": "query-jobs"} 2568# <- {"return": [{"current-progress": 1, 2569# "status": "concluded", 2570# "total-progress": 1, 2571# "type": "snapshot-delete", 2572# "id": "snapdelete0"}]} 2573# 2574# Since: 6.0 2575## 2576{ 'command': 'snapshot-delete', 2577 'data': { 'job-id': 'str', 2578 'tag': 'str', 2579 'devices': ['str'] } } 2580