1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4 5## 6# = Migration 7## 8 9{ 'include': 'common.json' } 10{ 'include': 'sockets.json' } 11 12## 13# @MigrationStats: 14# 15# Detailed migration status. 16# 17# @transferred: amount of bytes already transferred to the target VM 18# 19# @remaining: amount of bytes remaining to be transferred to the 20# target VM 21# 22# @total: total amount of bytes involved in the migration process 23# 24# @duplicate: number of duplicate (zero) pages (since 1.2) 25# 26# @skipped: number of skipped zero pages. Always zero, only provided for 27# compatibility (since 1.5) 28# 29# @normal: number of normal pages (since 1.2) 30# 31# @normal-bytes: number of normal bytes sent (since 1.2) 32# 33# @dirty-pages-rate: number of pages dirtied by second by the guest 34# (since 1.3) 35# 36# @mbps: throughput in megabits/sec. (since 1.6) 37# 38# @dirty-sync-count: number of times that dirty ram was synchronized 39# (since 2.1) 40# 41# @postcopy-requests: The number of page requests received from the 42# destination (since 2.7) 43# 44# @page-size: The number of bytes per page for the various page-based 45# statistics (since 2.10) 46# 47# @multifd-bytes: The number of bytes sent through multifd (since 3.0) 48# 49# @pages-per-second: the number of memory pages transferred per second 50# (Since 4.0) 51# 52# @precopy-bytes: The number of bytes sent in the pre-copy phase 53# (since 7.0). 54# 55# @downtime-bytes: The number of bytes sent while the guest is paused 56# (since 7.0). 57# 58# @postcopy-bytes: The number of bytes sent during the post-copy phase 59# (since 7.0). 60# 61# @dirty-sync-missed-zero-copy: Number of times dirty RAM 62# synchronization could not avoid copying dirty pages. This is 63# between 0 and @dirty-sync-count * @multifd-channels. (since 64# 7.1) 65# 66# Features: 67# 68# @deprecated: Member @skipped is always zero since 1.5.3 69# 70# Since: 0.14 71# 72## 73{ 'struct': 'MigrationStats', 74 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' , 75 'duplicate': 'int', 76 'skipped': { 'type': 'int', 'features': ['deprecated'] }, 77 'normal': 'int', 78 'normal-bytes': 'int', 'dirty-pages-rate': 'int', 79 'mbps': 'number', 'dirty-sync-count': 'int', 80 'postcopy-requests': 'int', 'page-size': 'int', 81 'multifd-bytes': 'uint64', 'pages-per-second': 'uint64', 82 'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64', 83 'postcopy-bytes': 'uint64', 84 'dirty-sync-missed-zero-copy': 'uint64' } } 85 86## 87# @XBZRLECacheStats: 88# 89# Detailed XBZRLE migration cache statistics 90# 91# @cache-size: XBZRLE cache size 92# 93# @bytes: amount of bytes already transferred to the target VM 94# 95# @pages: amount of pages transferred to the target VM 96# 97# @cache-miss: number of cache miss 98# 99# @cache-miss-rate: rate of cache miss (since 2.1) 100# 101# @encoding-rate: rate of encoded bytes (since 5.1) 102# 103# @overflow: number of overflows 104# 105# Since: 1.2 106## 107{ 'struct': 'XBZRLECacheStats', 108 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int', 109 'cache-miss': 'int', 'cache-miss-rate': 'number', 110 'encoding-rate': 'number', 'overflow': 'int' } } 111 112## 113# @CompressionStats: 114# 115# Detailed migration compression statistics 116# 117# @pages: amount of pages compressed and transferred to the target VM 118# 119# @busy: count of times that no free thread was available to compress 120# data 121# 122# @busy-rate: rate of thread busy 123# 124# @compressed-size: amount of bytes after compression 125# 126# @compression-rate: rate of compressed size 127# 128# Since: 3.1 129## 130{ 'struct': 'CompressionStats', 131 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number', 132 'compressed-size': 'int', 'compression-rate': 'number' } } 133 134## 135# @MigrationStatus: 136# 137# An enumeration of migration status. 138# 139# @none: no migration has ever happened. 140# 141# @setup: migration process has been initiated. 142# 143# @cancelling: in the process of cancelling migration. 144# 145# @cancelled: cancelling migration is finished. 146# 147# @active: in the process of doing migration. 148# 149# @postcopy-active: like active, but now in postcopy mode. (since 150# 2.5) 151# 152# @postcopy-paused: during postcopy but paused. (since 3.0) 153# 154# @postcopy-recover: trying to recover from a paused postcopy. (since 155# 3.0) 156# 157# @completed: migration is finished. 158# 159# @failed: some error occurred during migration process. 160# 161# @colo: VM is in the process of fault tolerance, VM can not get into 162# this state unless colo capability is enabled for migration. 163# (since 2.8) 164# 165# @pre-switchover: Paused before device serialisation. (since 2.11) 166# 167# @device: During device serialisation when pause-before-switchover is 168# enabled (since 2.11) 169# 170# @wait-unplug: wait for device unplug request by guest OS to be 171# completed. (since 4.2) 172# 173# Since: 2.3 174## 175{ 'enum': 'MigrationStatus', 176 'data': [ 'none', 'setup', 'cancelling', 'cancelled', 177 'active', 'postcopy-active', 'postcopy-paused', 178 'postcopy-recover', 'completed', 'failed', 'colo', 179 'pre-switchover', 'device', 'wait-unplug' ] } 180## 181# @VfioStats: 182# 183# Detailed VFIO devices migration statistics 184# 185# @transferred: amount of bytes transferred to the target VM by VFIO 186# devices 187# 188# Since: 5.2 189## 190{ 'struct': 'VfioStats', 191 'data': {'transferred': 'int' } } 192 193## 194# @MigrationInfo: 195# 196# Information about current migration process. 197# 198# @status: @MigrationStatus describing the current migration status. 199# If this field is not returned, no migration process has been 200# initiated 201# 202# @ram: @MigrationStats containing detailed migration status, only 203# returned if status is 'active' or 'completed'(since 1.2) 204# 205# @disk: @MigrationStats containing detailed disk migration status, 206# only returned if status is 'active' and it is a block migration 207# 208# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE 209# migration statistics, only returned if XBZRLE feature is on and 210# status is 'active' or 'completed' (since 1.2) 211# 212# @total-time: total amount of milliseconds since migration started. 213# If migration has ended, it returns the total migration time. 214# (since 1.2) 215# 216# @downtime: only present when migration finishes correctly total 217# downtime in milliseconds for the guest. (since 1.3) 218# 219# @expected-downtime: only present while migration is active expected 220# downtime in milliseconds for the guest in last walk of the dirty 221# bitmap. (since 1.3) 222# 223# @setup-time: amount of setup time in milliseconds *before* the 224# iterations begin but *after* the QMP command is issued. This is 225# designed to provide an accounting of any activities (such as 226# RDMA pinning) which may be expensive, but do not actually occur 227# during the iterative migration rounds themselves. (since 1.6) 228# 229# @cpu-throttle-percentage: percentage of time guest cpus are being 230# throttled during auto-converge. This is only present when 231# auto-converge has started throttling guest cpus. (Since 2.7) 232# 233# @error-desc: the human readable error description string, when 234# @status is 'failed'. Clients should not attempt to parse the 235# error strings. (Since 2.7) 236# 237# @postcopy-blocktime: total time when all vCPU were blocked during 238# postcopy live migration. This is only present when the 239# postcopy-blocktime migration capability is enabled. (Since 3.0) 240# 241# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. 242# This is only present when the postcopy-blocktime migration 243# capability is enabled. (Since 3.0) 244# 245# @compression: migration compression statistics, only returned if 246# compression feature is on and status is 'active' or 'completed' 247# (Since 3.1) 248# 249# @socket-address: Only used for tcp, to know what the real port is 250# (Since 4.0) 251# 252# @vfio: @VfioStats containing detailed VFIO devices migration 253# statistics, only returned if VFIO device is present, migration 254# is supported by all VFIO devices and status is 'active' or 255# 'completed' (since 5.2) 256# 257# @blocked-reasons: A list of reasons an outgoing migration is 258# blocked. Present and non-empty when migration is blocked. 259# (since 6.0) 260# 261# @dirty-limit-throttle-time-per-round: Maximum throttle time (in microseconds) of virtual 262# CPUs each dirty ring full round, which shows how 263# MigrationCapability dirty-limit affects the guest 264# during live migration. (since 8.1) 265# 266# @dirty-limit-ring-full-time: Estimated average dirty ring full time (in microseconds) 267# each dirty ring full round, note that the value equals 268# dirty ring memory size divided by average dirty page rate 269# of virtual CPU, which can be used to observe the average 270# memory load of virtual CPU indirectly. Note that zero 271# means guest doesn't dirty memory (since 8.1) 272# 273# Since: 0.14 274## 275{ 'struct': 'MigrationInfo', 276 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats', 277 '*disk': 'MigrationStats', 278 '*vfio': 'VfioStats', 279 '*xbzrle-cache': 'XBZRLECacheStats', 280 '*total-time': 'int', 281 '*expected-downtime': 'int', 282 '*downtime': 'int', 283 '*setup-time': 'int', 284 '*cpu-throttle-percentage': 'int', 285 '*error-desc': 'str', 286 '*blocked-reasons': ['str'], 287 '*postcopy-blocktime': 'uint32', 288 '*postcopy-vcpu-blocktime': ['uint32'], 289 '*compression': 'CompressionStats', 290 '*socket-address': ['SocketAddress'], 291 '*dirty-limit-throttle-time-per-round': 'uint64', 292 '*dirty-limit-ring-full-time': 'uint64'} } 293 294## 295# @query-migrate: 296# 297# Returns information about current migration process. If migration 298# is active there will be another json-object with RAM migration 299# status and if block migration is active another one with block 300# migration status. 301# 302# Returns: @MigrationInfo 303# 304# Since: 0.14 305# 306# Examples: 307# 308# 1. Before the first migration 309# 310# -> { "execute": "query-migrate" } 311# <- { "return": {} } 312# 313# 2. Migration is done and has succeeded 314# 315# -> { "execute": "query-migrate" } 316# <- { "return": { 317# "status": "completed", 318# "total-time":12345, 319# "setup-time":12345, 320# "downtime":12345, 321# "ram":{ 322# "transferred":123, 323# "remaining":123, 324# "total":246, 325# "duplicate":123, 326# "normal":123, 327# "normal-bytes":123456, 328# "dirty-sync-count":15 329# } 330# } 331# } 332# 333# 3. Migration is done and has failed 334# 335# -> { "execute": "query-migrate" } 336# <- { "return": { "status": "failed" } } 337# 338# 4. Migration is being performed and is not a block migration: 339# 340# -> { "execute": "query-migrate" } 341# <- { 342# "return":{ 343# "status":"active", 344# "total-time":12345, 345# "setup-time":12345, 346# "expected-downtime":12345, 347# "ram":{ 348# "transferred":123, 349# "remaining":123, 350# "total":246, 351# "duplicate":123, 352# "normal":123, 353# "normal-bytes":123456, 354# "dirty-sync-count":15 355# } 356# } 357# } 358# 359# 5. Migration is being performed and is a block migration: 360# 361# -> { "execute": "query-migrate" } 362# <- { 363# "return":{ 364# "status":"active", 365# "total-time":12345, 366# "setup-time":12345, 367# "expected-downtime":12345, 368# "ram":{ 369# "total":1057024, 370# "remaining":1053304, 371# "transferred":3720, 372# "duplicate":123, 373# "normal":123, 374# "normal-bytes":123456, 375# "dirty-sync-count":15 376# }, 377# "disk":{ 378# "total":20971520, 379# "remaining":20880384, 380# "transferred":91136 381# } 382# } 383# } 384# 385# 6. Migration is being performed and XBZRLE is active: 386# 387# -> { "execute": "query-migrate" } 388# <- { 389# "return":{ 390# "status":"active", 391# "total-time":12345, 392# "setup-time":12345, 393# "expected-downtime":12345, 394# "ram":{ 395# "total":1057024, 396# "remaining":1053304, 397# "transferred":3720, 398# "duplicate":10, 399# "normal":3333, 400# "normal-bytes":3412992, 401# "dirty-sync-count":15 402# }, 403# "xbzrle-cache":{ 404# "cache-size":67108864, 405# "bytes":20971520, 406# "pages":2444343, 407# "cache-miss":2244, 408# "cache-miss-rate":0.123, 409# "encoding-rate":80.1, 410# "overflow":34434 411# } 412# } 413# } 414## 415{ 'command': 'query-migrate', 'returns': 'MigrationInfo' } 416 417## 418# @MigrationCapability: 419# 420# Migration capabilities enumeration 421# 422# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length 423# Encoding). This feature allows us to minimize migration traffic 424# for certain work loads, by sending compressed difference of the 425# pages 426# 427# @rdma-pin-all: Controls whether or not the entire VM memory 428# footprint is mlock()'d on demand or all at once. Refer to 429# docs/rdma.txt for usage. Disabled by default. (since 2.0) 430# 431# @zero-blocks: During storage migration encode blocks of zeroes 432# efficiently. This essentially saves 1MB of zeroes per block on 433# the wire. Enabling requires source and target VM to support 434# this feature. To enable it is sufficient to enable the 435# capability on the source VM. The feature is disabled by default. 436# (since 1.6) 437# 438# @compress: Use multiple compression threads to accelerate live 439# migration. This feature can help to reduce the migration 440# traffic, by sending compressed pages. Please note that if 441# compress and xbzrle are both on, compress only takes effect in 442# the ram bulk stage, after that, it will be disabled and only 443# xbzrle takes effect, this can help to minimize migration 444# traffic. The feature is disabled by default. (since 2.4 ) 445# 446# @events: generate events for each migration state change (since 2.4 447# ) 448# 449# @auto-converge: If enabled, QEMU will automatically throttle down 450# the guest to speed up convergence of RAM migration. (since 1.6) 451# 452# @postcopy-ram: Start executing on the migration target before all of 453# RAM has been migrated, pulling the remaining pages along as 454# needed. The capacity must have the same setting on both source 455# and target or migration will not even start. NOTE: If the 456# migration fails during postcopy the VM will fail. (since 2.6) 457# 458# @x-colo: If enabled, migration will never end, and the state of the 459# VM on the primary side will be migrated continuously to the VM 460# on secondary side, this process is called COarse-Grain LOck 461# Stepping (COLO) for Non-stop Service. (since 2.8) 462# 463# @release-ram: if enabled, qemu will free the migrated ram pages on 464# the source during postcopy-ram migration. (since 2.9) 465# 466# @block: If enabled, QEMU will also migrate the contents of all block 467# devices. Default is disabled. A possible alternative uses 468# mirror jobs to a builtin NBD server on the destination, which 469# offers more flexibility. (Since 2.10) 470# 471# @return-path: If enabled, migration will use the return path even 472# for precopy. (since 2.10) 473# 474# @pause-before-switchover: Pause outgoing migration before 475# serialising device state and before disabling block IO (since 476# 2.11) 477# 478# @multifd: Use more than one fd for migration (since 4.0) 479# 480# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps. 481# (since 2.12) 482# 483# @postcopy-blocktime: Calculate downtime for postcopy live migration 484# (since 3.0) 485# 486# @late-block-activate: If enabled, the destination will not activate 487# block devices (and thus take locks) immediately at the end of 488# migration. (since 3.0) 489# 490# @x-ignore-shared: If enabled, QEMU will not migrate shared memory 491# that is accessible on the destination machine. (since 4.0) 492# 493# @validate-uuid: Send the UUID of the source to allow the destination 494# to ensure it is the same. (since 4.2) 495# 496# @background-snapshot: If enabled, the migration stream will be a 497# snapshot of the VM exactly at the point when the migration 498# procedure starts. The VM RAM is saved with running VM. (since 499# 6.0) 500# 501# @zero-copy-send: Controls behavior on sending memory pages on 502# migration. When true, enables a zero-copy mechanism for sending 503# memory pages, if host supports it. Requires that QEMU be 504# permitted to use locked memory for guest RAM pages. (since 7.1) 505# 506# @postcopy-preempt: If enabled, the migration process will allow 507# postcopy requests to preempt precopy stream, so postcopy 508# requests will be handled faster. This is a performance feature 509# and should not affect the correctness of postcopy migration. 510# (since 7.1) 511# 512# @switchover-ack: If enabled, migration will not stop the source VM 513# and complete the migration until an ACK is received from the 514# destination that it's OK to do so. Exactly when this ACK is 515# sent depends on the migrated devices that use this feature. For 516# example, a device can use it to make sure some of its data is 517# sent and loaded in the destination before doing switchover. 518# This can reduce downtime if devices that support this capability 519# are present. 'return-path' capability must be enabled to use 520# it. (since 8.1) 521# 522# @dirty-limit: If enabled, migration will use the dirty-limit algo to 523# throttle down guest instead of auto-converge algo. 524# Throttle algo only works when vCPU's dirtyrate greater 525# than 'vcpu-dirty-limit', read processes in guest os 526# aren't penalized any more, so this algo can improve 527# performance of vCPU during live migration. This is an 528# optional performance feature and should not affect the 529# correctness of the existing auto-converge algo. 530# (since 8.1) 531# 532# Features: 533# 534# @unstable: Members @x-colo and @x-ignore-shared are experimental. 535# 536# Since: 1.2 537## 538{ 'enum': 'MigrationCapability', 539 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks', 540 'compress', 'events', 'postcopy-ram', 541 { 'name': 'x-colo', 'features': [ 'unstable' ] }, 542 'release-ram', 543 'block', 'return-path', 'pause-before-switchover', 'multifd', 544 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate', 545 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] }, 546 'validate-uuid', 'background-snapshot', 547 'zero-copy-send', 'postcopy-preempt', 'switchover-ack', 548 'dirty-limit'] } 549 550## 551# @MigrationCapabilityStatus: 552# 553# Migration capability information 554# 555# @capability: capability enum 556# 557# @state: capability state bool 558# 559# Since: 1.2 560## 561{ 'struct': 'MigrationCapabilityStatus', 562 'data': { 'capability': 'MigrationCapability', 'state': 'bool' } } 563 564## 565# @migrate-set-capabilities: 566# 567# Enable/Disable the following migration capabilities (like xbzrle) 568# 569# @capabilities: json array of capability modifications to make 570# 571# Since: 1.2 572# 573# Example: 574# 575# -> { "execute": "migrate-set-capabilities" , "arguments": 576# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } } 577# <- { "return": {} } 578## 579{ 'command': 'migrate-set-capabilities', 580 'data': { 'capabilities': ['MigrationCapabilityStatus'] } } 581 582## 583# @query-migrate-capabilities: 584# 585# Returns information about the current migration capabilities status 586# 587# Returns: @MigrationCapabilityStatus 588# 589# Since: 1.2 590# 591# Example: 592# 593# -> { "execute": "query-migrate-capabilities" } 594# <- { "return": [ 595# {"state": false, "capability": "xbzrle"}, 596# {"state": false, "capability": "rdma-pin-all"}, 597# {"state": false, "capability": "auto-converge"}, 598# {"state": false, "capability": "zero-blocks"}, 599# {"state": false, "capability": "compress"}, 600# {"state": true, "capability": "events"}, 601# {"state": false, "capability": "postcopy-ram"}, 602# {"state": false, "capability": "x-colo"} 603# ]} 604## 605{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']} 606 607## 608# @MultiFDCompression: 609# 610# An enumeration of multifd compression methods. 611# 612# @none: no compression. 613# 614# @zlib: use zlib compression method. 615# 616# @zstd: use zstd compression method. 617# 618# Since: 5.0 619## 620{ 'enum': 'MultiFDCompression', 621 'data': [ 'none', 'zlib', 622 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] } 623 624## 625# @BitmapMigrationBitmapAliasTransform: 626# 627# @persistent: If present, the bitmap will be made persistent or 628# transient depending on this parameter. 629# 630# Since: 6.0 631## 632{ 'struct': 'BitmapMigrationBitmapAliasTransform', 633 'data': { 634 '*persistent': 'bool' 635 } } 636 637## 638# @BitmapMigrationBitmapAlias: 639# 640# @name: The name of the bitmap. 641# 642# @alias: An alias name for migration (for example the bitmap name on 643# the opposite site). 644# 645# @transform: Allows the modification of the migrated bitmap. (since 646# 6.0) 647# 648# Since: 5.2 649## 650{ 'struct': 'BitmapMigrationBitmapAlias', 651 'data': { 652 'name': 'str', 653 'alias': 'str', 654 '*transform': 'BitmapMigrationBitmapAliasTransform' 655 } } 656 657## 658# @BitmapMigrationNodeAlias: 659# 660# Maps a block node name and the bitmaps it has to aliases for dirty 661# bitmap migration. 662# 663# @node-name: A block node name. 664# 665# @alias: An alias block node name for migration (for example the node 666# name on the opposite site). 667# 668# @bitmaps: Mappings for the bitmaps on this node. 669# 670# Since: 5.2 671## 672{ 'struct': 'BitmapMigrationNodeAlias', 673 'data': { 674 'node-name': 'str', 675 'alias': 'str', 676 'bitmaps': [ 'BitmapMigrationBitmapAlias' ] 677 } } 678 679## 680# @MigrationParameter: 681# 682# Migration parameters enumeration 683# 684# @announce-initial: Initial delay (in milliseconds) before sending 685# the first announce (Since 4.0) 686# 687# @announce-max: Maximum delay (in milliseconds) between packets in 688# the announcement (Since 4.0) 689# 690# @announce-rounds: Number of self-announce packets sent after 691# migration (Since 4.0) 692# 693# @announce-step: Increase in delay (in milliseconds) between 694# subsequent packets in the announcement (Since 4.0) 695# 696# @compress-level: Set the compression level to be used in live 697# migration, the compression level is an integer between 0 and 9, 698# where 0 means no compression, 1 means the best compression 699# speed, and 9 means best compression ratio which will consume 700# more CPU. 701# 702# @compress-threads: Set compression thread count to be used in live 703# migration, the compression thread count is an integer between 1 704# and 255. 705# 706# @compress-wait-thread: Controls behavior when all compression 707# threads are currently busy. If true (default), wait for a free 708# compression thread to become available; otherwise, send the page 709# uncompressed. (Since 3.1) 710# 711# @decompress-threads: Set decompression thread count to be used in 712# live migration, the decompression thread count is an integer 713# between 1 and 255. Usually, decompression is at least 4 times as 714# fast as compression, so set the decompress-threads to the number 715# about 1/4 of compress-threads is adequate. 716# 717# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 718# bytes_xfer_period to trigger throttling. It is expressed as 719# percentage. The default value is 50. (Since 5.0) 720# 721# @cpu-throttle-initial: Initial percentage of time guest cpus are 722# throttled when migration auto-converge is activated. The 723# default value is 20. (Since 2.7) 724# 725# @cpu-throttle-increment: throttle percentage increase each time 726# auto-converge detects that migration is not making progress. 727# The default value is 10. (Since 2.7) 728# 729# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 730# the tail stage of throttling, the Guest is very sensitive to CPU 731# percentage while the @cpu-throttle -increment is excessive 732# usually at tail stage. If this parameter is true, we will 733# compute the ideal CPU percentage used by the Guest, which may 734# exactly make the dirty rate match the dirty rate threshold. 735# Then we will choose a smaller throttle increment between the one 736# specified by @cpu-throttle-increment and the one generated by 737# ideal CPU percentage. Therefore, it is compatible to 738# traditional throttling, meanwhile the throttle increment won't 739# be excessive at tail stage. The default value is false. (Since 740# 5.1) 741# 742# @tls-creds: ID of the 'tls-creds' object that provides credentials 743# for establishing a TLS connection over the migration data 744# channel. On the outgoing side of the migration, the credentials 745# must be for a 'client' endpoint, while for the incoming side the 746# credentials must be for a 'server' endpoint. Setting this will 747# enable TLS for all migrations. The default is unset, resulting 748# in unsecured migration at the QEMU level. (Since 2.7) 749# 750# @tls-hostname: hostname of the target host for the migration. This 751# is required when using x509 based TLS credentials and the 752# migration URI does not already include a hostname. For example 753# if using fd: or exec: based migration, the hostname must be 754# provided so that the server's x509 certificate identity can be 755# validated. (Since 2.7) 756# 757# @tls-authz: ID of the 'authz' object subclass that provides access 758# control checking of the TLS x509 certificate distinguished name. 759# This object is only resolved at time of use, so can be deleted 760# and recreated on the fly while the migration server is active. 761# If missing, it will default to denying access (Since 4.0) 762# 763# @max-bandwidth: to set maximum speed for migration. maximum speed 764# in bytes per second. (Since 2.8) 765# 766# @downtime-limit: set maximum tolerated downtime for migration. 767# maximum downtime in milliseconds (Since 2.8) 768# 769# @x-checkpoint-delay: The delay time (in ms) between two COLO 770# checkpoints in periodic mode. (Since 2.8) 771# 772# @block-incremental: Affects how much storage is migrated when the 773# block migration capability is enabled. When false, the entire 774# storage backing chain is migrated into a flattened image at the 775# destination; when true, only the active qcow2 layer is migrated 776# and the destination must already have access to the same backing 777# chain as was used on the source. (since 2.10) 778# 779# @multifd-channels: Number of channels used to migrate data in 780# parallel. This is the same number that the number of sockets 781# used for migration. The default value is 2 (since 4.0) 782# 783# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 784# needs to be a multiple of the target page size and a power of 2 785# (Since 2.11) 786# 787# @max-postcopy-bandwidth: Background transfer bandwidth during 788# postcopy. Defaults to 0 (unlimited). In bytes per second. 789# (Since 3.0) 790# 791# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 792# (Since 3.1) 793# 794# @multifd-compression: Which compression method to use. Defaults to 795# none. (Since 5.0) 796# 797# @multifd-zlib-level: Set the compression level to be used in live 798# migration, the compression level is an integer between 0 and 9, 799# where 0 means no compression, 1 means the best compression 800# speed, and 9 means best compression ratio which will consume 801# more CPU. Defaults to 1. (Since 5.0) 802# 803# @multifd-zstd-level: Set the compression level to be used in live 804# migration, the compression level is an integer between 0 and 20, 805# where 0 means no compression, 1 means the best compression 806# speed, and 20 means best compression ratio which will consume 807# more CPU. Defaults to 1. (Since 5.0) 808# 809# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 810# aliases for the purpose of dirty bitmap migration. Such aliases 811# may for example be the corresponding names on the opposite site. 812# The mapping must be one-to-one, but not necessarily complete: On 813# the source, unmapped bitmaps and all bitmaps on unmapped nodes 814# will be ignored. On the destination, encountering an unmapped 815# alias in the incoming migration stream will result in a report, 816# and all further bitmap migration data will then be discarded. 817# Note that the destination does not know about bitmaps it does 818# not receive, so there is no limitation or requirement regarding 819# the number of bitmaps received, or how they are named, or on 820# which nodes they are placed. By default (when this parameter 821# has never been set), bitmap names are mapped to themselves. 822# Nodes are mapped to their block device name if there is one, and 823# to their node name otherwise. (Since 5.2) 824# 825# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty limit during 826# live migration. Should be in the range 1 to 1000ms, 827# defaults to 1000ms. (Since 8.1) 828# 829# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 830# Defaults to 1. (Since 8.1) 831# 832# Features: 833# 834# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period 835# are experimental. 836# 837# Since: 2.4 838## 839{ 'enum': 'MigrationParameter', 840 'data': ['announce-initial', 'announce-max', 841 'announce-rounds', 'announce-step', 842 'compress-level', 'compress-threads', 'decompress-threads', 843 'compress-wait-thread', 'throttle-trigger-threshold', 844 'cpu-throttle-initial', 'cpu-throttle-increment', 845 'cpu-throttle-tailslow', 846 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth', 847 'downtime-limit', 848 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] }, 849 'block-incremental', 850 'multifd-channels', 851 'xbzrle-cache-size', 'max-postcopy-bandwidth', 852 'max-cpu-throttle', 'multifd-compression', 853 'multifd-zlib-level', 'multifd-zstd-level', 854 'block-bitmap-mapping', 855 { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] }, 856 'vcpu-dirty-limit'] } 857 858## 859# @MigrateSetParameters: 860# 861# @announce-initial: Initial delay (in milliseconds) before sending 862# the first announce (Since 4.0) 863# 864# @announce-max: Maximum delay (in milliseconds) between packets in 865# the announcement (Since 4.0) 866# 867# @announce-rounds: Number of self-announce packets sent after 868# migration (Since 4.0) 869# 870# @announce-step: Increase in delay (in milliseconds) between 871# subsequent packets in the announcement (Since 4.0) 872# 873# @compress-level: compression level 874# 875# @compress-threads: compression thread count 876# 877# @compress-wait-thread: Controls behavior when all compression 878# threads are currently busy. If true (default), wait for a free 879# compression thread to become available; otherwise, send the page 880# uncompressed. (Since 3.1) 881# 882# @decompress-threads: decompression thread count 883# 884# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 885# bytes_xfer_period to trigger throttling. It is expressed as 886# percentage. The default value is 50. (Since 5.0) 887# 888# @cpu-throttle-initial: Initial percentage of time guest cpus are 889# throttled when migration auto-converge is activated. The 890# default value is 20. (Since 2.7) 891# 892# @cpu-throttle-increment: throttle percentage increase each time 893# auto-converge detects that migration is not making progress. 894# The default value is 10. (Since 2.7) 895# 896# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 897# the tail stage of throttling, the Guest is very sensitive to CPU 898# percentage while the @cpu-throttle -increment is excessive 899# usually at tail stage. If this parameter is true, we will 900# compute the ideal CPU percentage used by the Guest, which may 901# exactly make the dirty rate match the dirty rate threshold. 902# Then we will choose a smaller throttle increment between the one 903# specified by @cpu-throttle-increment and the one generated by 904# ideal CPU percentage. Therefore, it is compatible to 905# traditional throttling, meanwhile the throttle increment won't 906# be excessive at tail stage. The default value is false. (Since 907# 5.1) 908# 909# @tls-creds: ID of the 'tls-creds' object that provides credentials 910# for establishing a TLS connection over the migration data 911# channel. On the outgoing side of the migration, the credentials 912# must be for a 'client' endpoint, while for the incoming side the 913# credentials must be for a 'server' endpoint. Setting this to a 914# non-empty string enables TLS for all migrations. An empty 915# string means that QEMU will use plain text mode for migration, 916# rather than TLS (Since 2.9) Previously (since 2.7), this was 917# reported by omitting tls-creds instead. 918# 919# @tls-hostname: hostname of the target host for the migration. This 920# is required when using x509 based TLS credentials and the 921# migration URI does not already include a hostname. For example 922# if using fd: or exec: based migration, the hostname must be 923# provided so that the server's x509 certificate identity can be 924# validated. (Since 2.7) An empty string means that QEMU will use 925# the hostname associated with the migration URI, if any. (Since 926# 2.9) Previously (since 2.7), this was reported by omitting 927# tls-hostname instead. 928# 929# @max-bandwidth: to set maximum speed for migration. maximum speed 930# in bytes per second. (Since 2.8) 931# 932# @downtime-limit: set maximum tolerated downtime for migration. 933# maximum downtime in milliseconds (Since 2.8) 934# 935# @x-checkpoint-delay: the delay time between two COLO checkpoints. 936# (Since 2.8) 937# 938# @block-incremental: Affects how much storage is migrated when the 939# block migration capability is enabled. When false, the entire 940# storage backing chain is migrated into a flattened image at the 941# destination; when true, only the active qcow2 layer is migrated 942# and the destination must already have access to the same backing 943# chain as was used on the source. (since 2.10) 944# 945# @multifd-channels: Number of channels used to migrate data in 946# parallel. This is the same number that the number of sockets 947# used for migration. The default value is 2 (since 4.0) 948# 949# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 950# needs to be a multiple of the target page size and a power of 2 951# (Since 2.11) 952# 953# @max-postcopy-bandwidth: Background transfer bandwidth during 954# postcopy. Defaults to 0 (unlimited). In bytes per second. 955# (Since 3.0) 956# 957# @max-cpu-throttle: maximum cpu throttle percentage. The default 958# value is 99. (Since 3.1) 959# 960# @multifd-compression: Which compression method to use. Defaults to 961# none. (Since 5.0) 962# 963# @multifd-zlib-level: Set the compression level to be used in live 964# migration, the compression level is an integer between 0 and 9, 965# where 0 means no compression, 1 means the best compression 966# speed, and 9 means best compression ratio which will consume 967# more CPU. Defaults to 1. (Since 5.0) 968# 969# @multifd-zstd-level: Set the compression level to be used in live 970# migration, the compression level is an integer between 0 and 20, 971# where 0 means no compression, 1 means the best compression 972# speed, and 20 means best compression ratio which will consume 973# more CPU. Defaults to 1. (Since 5.0) 974# 975# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 976# aliases for the purpose of dirty bitmap migration. Such aliases 977# may for example be the corresponding names on the opposite site. 978# The mapping must be one-to-one, but not necessarily complete: On 979# the source, unmapped bitmaps and all bitmaps on unmapped nodes 980# will be ignored. On the destination, encountering an unmapped 981# alias in the incoming migration stream will result in a report, 982# and all further bitmap migration data will then be discarded. 983# Note that the destination does not know about bitmaps it does 984# not receive, so there is no limitation or requirement regarding 985# the number of bitmaps received, or how they are named, or on 986# which nodes they are placed. By default (when this parameter 987# has never been set), bitmap names are mapped to themselves. 988# Nodes are mapped to their block device name if there is one, and 989# to their node name otherwise. (Since 5.2) 990# 991# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty limit during 992# live migration. Should be in the range 1 to 1000ms, 993# defaults to 1000ms. (Since 8.1) 994# 995# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 996# Defaults to 1. (Since 8.1) 997# 998# Features: 999# 1000# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period 1001# are experimental. 1002# 1003# TODO: either fuse back into MigrationParameters, or make 1004# MigrationParameters members mandatory 1005# 1006# Since: 2.4 1007## 1008{ 'struct': 'MigrateSetParameters', 1009 'data': { '*announce-initial': 'size', 1010 '*announce-max': 'size', 1011 '*announce-rounds': 'size', 1012 '*announce-step': 'size', 1013 '*compress-level': 'uint8', 1014 '*compress-threads': 'uint8', 1015 '*compress-wait-thread': 'bool', 1016 '*decompress-threads': 'uint8', 1017 '*throttle-trigger-threshold': 'uint8', 1018 '*cpu-throttle-initial': 'uint8', 1019 '*cpu-throttle-increment': 'uint8', 1020 '*cpu-throttle-tailslow': 'bool', 1021 '*tls-creds': 'StrOrNull', 1022 '*tls-hostname': 'StrOrNull', 1023 '*tls-authz': 'StrOrNull', 1024 '*max-bandwidth': 'size', 1025 '*downtime-limit': 'uint64', 1026 '*x-checkpoint-delay': { 'type': 'uint32', 1027 'features': [ 'unstable' ] }, 1028 '*block-incremental': 'bool', 1029 '*multifd-channels': 'uint8', 1030 '*xbzrle-cache-size': 'size', 1031 '*max-postcopy-bandwidth': 'size', 1032 '*max-cpu-throttle': 'uint8', 1033 '*multifd-compression': 'MultiFDCompression', 1034 '*multifd-zlib-level': 'uint8', 1035 '*multifd-zstd-level': 'uint8', 1036 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1037 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1038 'features': [ 'unstable' ] }, 1039 '*vcpu-dirty-limit': 'uint64'} } 1040 1041## 1042# @migrate-set-parameters: 1043# 1044# Set various migration parameters. 1045# 1046# Since: 2.4 1047# 1048# Example: 1049# 1050# -> { "execute": "migrate-set-parameters" , 1051# "arguments": { "compress-level": 1 } } 1052# <- { "return": {} } 1053## 1054{ 'command': 'migrate-set-parameters', 'boxed': true, 1055 'data': 'MigrateSetParameters' } 1056 1057## 1058# @MigrationParameters: 1059# 1060# The optional members aren't actually optional. 1061# 1062# @announce-initial: Initial delay (in milliseconds) before sending 1063# the first announce (Since 4.0) 1064# 1065# @announce-max: Maximum delay (in milliseconds) between packets in 1066# the announcement (Since 4.0) 1067# 1068# @announce-rounds: Number of self-announce packets sent after 1069# migration (Since 4.0) 1070# 1071# @announce-step: Increase in delay (in milliseconds) between 1072# subsequent packets in the announcement (Since 4.0) 1073# 1074# @compress-level: compression level 1075# 1076# @compress-threads: compression thread count 1077# 1078# @compress-wait-thread: Controls behavior when all compression 1079# threads are currently busy. If true (default), wait for a free 1080# compression thread to become available; otherwise, send the page 1081# uncompressed. (Since 3.1) 1082# 1083# @decompress-threads: decompression thread count 1084# 1085# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 1086# bytes_xfer_period to trigger throttling. It is expressed as 1087# percentage. The default value is 50. (Since 5.0) 1088# 1089# @cpu-throttle-initial: Initial percentage of time guest cpus are 1090# throttled when migration auto-converge is activated. (Since 1091# 2.7) 1092# 1093# @cpu-throttle-increment: throttle percentage increase each time 1094# auto-converge detects that migration is not making progress. 1095# (Since 2.7) 1096# 1097# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 1098# the tail stage of throttling, the Guest is very sensitive to CPU 1099# percentage while the @cpu-throttle -increment is excessive 1100# usually at tail stage. If this parameter is true, we will 1101# compute the ideal CPU percentage used by the Guest, which may 1102# exactly make the dirty rate match the dirty rate threshold. 1103# Then we will choose a smaller throttle increment between the one 1104# specified by @cpu-throttle-increment and the one generated by 1105# ideal CPU percentage. Therefore, it is compatible to 1106# traditional throttling, meanwhile the throttle increment won't 1107# be excessive at tail stage. The default value is false. (Since 1108# 5.1) 1109# 1110# @tls-creds: ID of the 'tls-creds' object that provides credentials 1111# for establishing a TLS connection over the migration data 1112# channel. On the outgoing side of the migration, the credentials 1113# must be for a 'client' endpoint, while for the incoming side the 1114# credentials must be for a 'server' endpoint. An empty string 1115# means that QEMU will use plain text mode for migration, rather 1116# than TLS (Since 2.7) Note: 2.8 reports this by omitting 1117# tls-creds instead. 1118# 1119# @tls-hostname: hostname of the target host for the migration. This 1120# is required when using x509 based TLS credentials and the 1121# migration URI does not already include a hostname. For example 1122# if using fd: or exec: based migration, the hostname must be 1123# provided so that the server's x509 certificate identity can be 1124# validated. (Since 2.7) An empty string means that QEMU will use 1125# the hostname associated with the migration URI, if any. (Since 1126# 2.9) Note: 2.8 reports this by omitting tls-hostname instead. 1127# 1128# @tls-authz: ID of the 'authz' object subclass that provides access 1129# control checking of the TLS x509 certificate distinguished name. 1130# (Since 4.0) 1131# 1132# @max-bandwidth: to set maximum speed for migration. maximum speed 1133# in bytes per second. (Since 2.8) 1134# 1135# @downtime-limit: set maximum tolerated downtime for migration. 1136# maximum downtime in milliseconds (Since 2.8) 1137# 1138# @x-checkpoint-delay: the delay time between two COLO checkpoints. 1139# (Since 2.8) 1140# 1141# @block-incremental: Affects how much storage is migrated when the 1142# block migration capability is enabled. When false, the entire 1143# storage backing chain is migrated into a flattened image at the 1144# destination; when true, only the active qcow2 layer is migrated 1145# and the destination must already have access to the same backing 1146# chain as was used on the source. (since 2.10) 1147# 1148# @multifd-channels: Number of channels used to migrate data in 1149# parallel. This is the same number that the number of sockets 1150# used for migration. The default value is 2 (since 4.0) 1151# 1152# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1153# needs to be a multiple of the target page size and a power of 2 1154# (Since 2.11) 1155# 1156# @max-postcopy-bandwidth: Background transfer bandwidth during 1157# postcopy. Defaults to 0 (unlimited). In bytes per second. 1158# (Since 3.0) 1159# 1160# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 1161# (Since 3.1) 1162# 1163# @multifd-compression: Which compression method to use. Defaults to 1164# none. (Since 5.0) 1165# 1166# @multifd-zlib-level: Set the compression level to be used in live 1167# migration, the compression level is an integer between 0 and 9, 1168# where 0 means no compression, 1 means the best compression 1169# speed, and 9 means best compression ratio which will consume 1170# more CPU. Defaults to 1. (Since 5.0) 1171# 1172# @multifd-zstd-level: Set the compression level to be used in live 1173# migration, the compression level is an integer between 0 and 20, 1174# where 0 means no compression, 1 means the best compression 1175# speed, and 20 means best compression ratio which will consume 1176# more CPU. Defaults to 1. (Since 5.0) 1177# 1178# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1179# aliases for the purpose of dirty bitmap migration. Such aliases 1180# may for example be the corresponding names on the opposite site. 1181# The mapping must be one-to-one, but not necessarily complete: On 1182# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1183# will be ignored. On the destination, encountering an unmapped 1184# alias in the incoming migration stream will result in a report, 1185# and all further bitmap migration data will then be discarded. 1186# Note that the destination does not know about bitmaps it does 1187# not receive, so there is no limitation or requirement regarding 1188# the number of bitmaps received, or how they are named, or on 1189# which nodes they are placed. By default (when this parameter 1190# has never been set), bitmap names are mapped to themselves. 1191# Nodes are mapped to their block device name if there is one, and 1192# to their node name otherwise. (Since 5.2) 1193# 1194# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty limit during 1195# live migration. Should be in the range 1 to 1000ms, 1196# defaults to 1000ms. (Since 8.1) 1197# 1198# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1199# Defaults to 1. (Since 8.1) 1200# 1201# Features: 1202# 1203# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period 1204# are experimental. 1205# 1206# Since: 2.4 1207## 1208{ 'struct': 'MigrationParameters', 1209 'data': { '*announce-initial': 'size', 1210 '*announce-max': 'size', 1211 '*announce-rounds': 'size', 1212 '*announce-step': 'size', 1213 '*compress-level': 'uint8', 1214 '*compress-threads': 'uint8', 1215 '*compress-wait-thread': 'bool', 1216 '*decompress-threads': 'uint8', 1217 '*throttle-trigger-threshold': 'uint8', 1218 '*cpu-throttle-initial': 'uint8', 1219 '*cpu-throttle-increment': 'uint8', 1220 '*cpu-throttle-tailslow': 'bool', 1221 '*tls-creds': 'str', 1222 '*tls-hostname': 'str', 1223 '*tls-authz': 'str', 1224 '*max-bandwidth': 'size', 1225 '*downtime-limit': 'uint64', 1226 '*x-checkpoint-delay': { 'type': 'uint32', 1227 'features': [ 'unstable' ] }, 1228 '*block-incremental': 'bool', 1229 '*multifd-channels': 'uint8', 1230 '*xbzrle-cache-size': 'size', 1231 '*max-postcopy-bandwidth': 'size', 1232 '*max-cpu-throttle': 'uint8', 1233 '*multifd-compression': 'MultiFDCompression', 1234 '*multifd-zlib-level': 'uint8', 1235 '*multifd-zstd-level': 'uint8', 1236 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1237 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1238 'features': [ 'unstable' ] }, 1239 '*vcpu-dirty-limit': 'uint64'} } 1240 1241## 1242# @query-migrate-parameters: 1243# 1244# Returns information about the current migration parameters 1245# 1246# Returns: @MigrationParameters 1247# 1248# Since: 2.4 1249# 1250# Example: 1251# 1252# -> { "execute": "query-migrate-parameters" } 1253# <- { "return": { 1254# "decompress-threads": 2, 1255# "cpu-throttle-increment": 10, 1256# "compress-threads": 8, 1257# "compress-level": 1, 1258# "cpu-throttle-initial": 20, 1259# "max-bandwidth": 33554432, 1260# "downtime-limit": 300 1261# } 1262# } 1263## 1264{ 'command': 'query-migrate-parameters', 1265 'returns': 'MigrationParameters' } 1266 1267## 1268# @migrate-start-postcopy: 1269# 1270# Followup to a migration command to switch the migration to postcopy 1271# mode. The postcopy-ram capability must be set on both source and 1272# destination before the original migration command. 1273# 1274# Since: 2.5 1275# 1276# Example: 1277# 1278# -> { "execute": "migrate-start-postcopy" } 1279# <- { "return": {} } 1280## 1281{ 'command': 'migrate-start-postcopy' } 1282 1283## 1284# @MIGRATION: 1285# 1286# Emitted when a migration event happens 1287# 1288# @status: @MigrationStatus describing the current migration status. 1289# 1290# Since: 2.4 1291# 1292# Example: 1293# 1294# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001}, 1295# "event": "MIGRATION", 1296# "data": {"status": "completed"} } 1297## 1298{ 'event': 'MIGRATION', 1299 'data': {'status': 'MigrationStatus'}} 1300 1301## 1302# @MIGRATION_PASS: 1303# 1304# Emitted from the source side of a migration at the start of each 1305# pass (when it syncs the dirty bitmap) 1306# 1307# @pass: An incrementing count (starting at 1 on the first pass) 1308# 1309# Since: 2.6 1310# 1311# Example: 1312# 1313# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225}, 1314# "event": "MIGRATION_PASS", "data": {"pass": 2} } 1315## 1316{ 'event': 'MIGRATION_PASS', 1317 'data': { 'pass': 'int' } } 1318 1319## 1320# @COLOMessage: 1321# 1322# The message transmission between Primary side and Secondary side. 1323# 1324# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing 1325# 1326# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for 1327# checkpointing 1328# 1329# @checkpoint-reply: SVM gets PVM's checkpoint request 1330# 1331# @vmstate-send: VM's state will be sent by PVM. 1332# 1333# @vmstate-size: The total size of VMstate. 1334# 1335# @vmstate-received: VM's state has been received by SVM. 1336# 1337# @vmstate-loaded: VM's state has been loaded by SVM. 1338# 1339# Since: 2.8 1340## 1341{ 'enum': 'COLOMessage', 1342 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply', 1343 'vmstate-send', 'vmstate-size', 'vmstate-received', 1344 'vmstate-loaded' ] } 1345 1346## 1347# @COLOMode: 1348# 1349# The COLO current mode. 1350# 1351# @none: COLO is disabled. 1352# 1353# @primary: COLO node in primary side. 1354# 1355# @secondary: COLO node in slave side. 1356# 1357# Since: 2.8 1358## 1359{ 'enum': 'COLOMode', 1360 'data': [ 'none', 'primary', 'secondary'] } 1361 1362## 1363# @FailoverStatus: 1364# 1365# An enumeration of COLO failover status 1366# 1367# @none: no failover has ever happened 1368# 1369# @require: got failover requirement but not handled 1370# 1371# @active: in the process of doing failover 1372# 1373# @completed: finish the process of failover 1374# 1375# @relaunch: restart the failover process, from 'none' -> 'completed' 1376# (Since 2.9) 1377# 1378# Since: 2.8 1379## 1380{ 'enum': 'FailoverStatus', 1381 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] } 1382 1383## 1384# @COLO_EXIT: 1385# 1386# Emitted when VM finishes COLO mode due to some errors happening or 1387# at the request of users. 1388# 1389# @mode: report COLO mode when COLO exited. 1390# 1391# @reason: describes the reason for the COLO exit. 1392# 1393# Since: 3.1 1394# 1395# Example: 1396# 1397# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172}, 1398# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } } 1399## 1400{ 'event': 'COLO_EXIT', 1401 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } } 1402 1403## 1404# @COLOExitReason: 1405# 1406# The reason for a COLO exit. 1407# 1408# @none: failover has never happened. This state does not occur in 1409# the COLO_EXIT event, and is only visible in the result of 1410# query-colo-status. 1411# 1412# @request: COLO exit is due to an external request. 1413# 1414# @error: COLO exit is due to an internal error. 1415# 1416# @processing: COLO is currently handling a failover (since 4.0). 1417# 1418# Since: 3.1 1419## 1420{ 'enum': 'COLOExitReason', 1421 'data': [ 'none', 'request', 'error' , 'processing' ] } 1422 1423## 1424# @x-colo-lost-heartbeat: 1425# 1426# Tell qemu that heartbeat is lost, request it to do takeover 1427# procedures. If this command is sent to the PVM, the Primary side 1428# will exit COLO mode. If sent to the Secondary, the Secondary side 1429# will run failover work, then takes over server operation to become 1430# the service VM. 1431# 1432# Features: 1433# 1434# @unstable: This command is experimental. 1435# 1436# Since: 2.8 1437# 1438# Example: 1439# 1440# -> { "execute": "x-colo-lost-heartbeat" } 1441# <- { "return": {} } 1442## 1443{ 'command': 'x-colo-lost-heartbeat', 1444 'features': [ 'unstable' ], 1445 'if': 'CONFIG_REPLICATION' } 1446 1447## 1448# @migrate_cancel: 1449# 1450# Cancel the current executing migration process. 1451# 1452# Returns: nothing on success 1453# 1454# Notes: This command succeeds even if there is no migration process 1455# running. 1456# 1457# Since: 0.14 1458# 1459# Example: 1460# 1461# -> { "execute": "migrate_cancel" } 1462# <- { "return": {} } 1463## 1464{ 'command': 'migrate_cancel' } 1465 1466## 1467# @migrate-continue: 1468# 1469# Continue migration when it's in a paused state. 1470# 1471# @state: The state the migration is currently expected to be in 1472# 1473# Returns: nothing on success 1474# 1475# Since: 2.11 1476# 1477# Example: 1478# 1479# -> { "execute": "migrate-continue" , "arguments": 1480# { "state": "pre-switchover" } } 1481# <- { "return": {} } 1482## 1483{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} } 1484 1485## 1486# @migrate: 1487# 1488# Migrates the current running guest to another Virtual Machine. 1489# 1490# @uri: the Uniform Resource Identifier of the destination VM 1491# 1492# @blk: do block migration (full disk copy) 1493# 1494# @inc: incremental disk copy migration 1495# 1496# @detach: this argument exists only for compatibility reasons and is 1497# ignored by QEMU 1498# 1499# @resume: resume one paused migration, default "off". (since 3.0) 1500# 1501# Returns: nothing on success 1502# 1503# Since: 0.14 1504# 1505# Notes: 1506# 1507# 1. The 'query-migrate' command should be used to check migration's 1508# progress and final result (this information is provided by the 1509# 'status' member) 1510# 1511# 2. All boolean arguments default to false 1512# 1513# 3. The user Monitor's "detach" argument is invalid in QMP and should 1514# not be used 1515# 1516# Example: 1517# 1518# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } } 1519# <- { "return": {} } 1520## 1521{ 'command': 'migrate', 1522 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool', 1523 '*detach': 'bool', '*resume': 'bool' } } 1524 1525## 1526# @migrate-incoming: 1527# 1528# Start an incoming migration, the qemu must have been started with 1529# -incoming defer 1530# 1531# @uri: The Uniform Resource Identifier identifying the source or 1532# address to listen on 1533# 1534# Returns: nothing on success 1535# 1536# Since: 2.3 1537# 1538# Notes: 1539# 1540# 1. It's a bad idea to use a string for the uri, but it needs 1541# to stay compatible with -incoming and the format of the uri 1542# is already exposed above libvirt. 1543# 1544# 2. QEMU must be started with -incoming defer to allow 1545# migrate-incoming to be used. 1546# 1547# 3. The uri format is the same as for -incoming 1548# 1549# Example: 1550# 1551# -> { "execute": "migrate-incoming", 1552# "arguments": { "uri": "tcp::4446" } } 1553# <- { "return": {} } 1554## 1555{ 'command': 'migrate-incoming', 'data': {'uri': 'str' } } 1556 1557## 1558# @xen-save-devices-state: 1559# 1560# Save the state of all devices to file. The RAM and the block 1561# devices of the VM are not saved by this command. 1562# 1563# @filename: the file to save the state of the devices to as binary 1564# data. See xen-save-devices-state.txt for a description of the 1565# binary format. 1566# 1567# @live: Optional argument to ask QEMU to treat this command as part 1568# of a live migration. Default to true. (since 2.11) 1569# 1570# Returns: Nothing on success 1571# 1572# Since: 1.1 1573# 1574# Example: 1575# 1576# -> { "execute": "xen-save-devices-state", 1577# "arguments": { "filename": "/tmp/save" } } 1578# <- { "return": {} } 1579## 1580{ 'command': 'xen-save-devices-state', 1581 'data': {'filename': 'str', '*live':'bool' } } 1582 1583## 1584# @xen-set-global-dirty-log: 1585# 1586# Enable or disable the global dirty log mode. 1587# 1588# @enable: true to enable, false to disable. 1589# 1590# Returns: nothing 1591# 1592# Since: 1.3 1593# 1594# Example: 1595# 1596# -> { "execute": "xen-set-global-dirty-log", 1597# "arguments": { "enable": true } } 1598# <- { "return": {} } 1599## 1600{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1601 1602## 1603# @xen-load-devices-state: 1604# 1605# Load the state of all devices from file. The RAM and the block 1606# devices of the VM are not loaded by this command. 1607# 1608# @filename: the file to load the state of the devices from as binary 1609# data. See xen-save-devices-state.txt for a description of the 1610# binary format. 1611# 1612# Since: 2.7 1613# 1614# Example: 1615# 1616# -> { "execute": "xen-load-devices-state", 1617# "arguments": { "filename": "/tmp/resume" } } 1618# <- { "return": {} } 1619## 1620{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 1621 1622## 1623# @xen-set-replication: 1624# 1625# Enable or disable replication. 1626# 1627# @enable: true to enable, false to disable. 1628# 1629# @primary: true for primary or false for secondary. 1630# 1631# @failover: true to do failover, false to stop. but cannot be 1632# specified if 'enable' is true. default value is false. 1633# 1634# Returns: nothing. 1635# 1636# Example: 1637# 1638# -> { "execute": "xen-set-replication", 1639# "arguments": {"enable": true, "primary": false} } 1640# <- { "return": {} } 1641# 1642# Since: 2.9 1643## 1644{ 'command': 'xen-set-replication', 1645 'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' }, 1646 'if': 'CONFIG_REPLICATION' } 1647 1648## 1649# @ReplicationStatus: 1650# 1651# The result format for 'query-xen-replication-status'. 1652# 1653# @error: true if an error happened, false if replication is normal. 1654# 1655# @desc: the human readable error description string, when @error is 1656# 'true'. 1657# 1658# Since: 2.9 1659## 1660{ 'struct': 'ReplicationStatus', 1661 'data': { 'error': 'bool', '*desc': 'str' }, 1662 'if': 'CONFIG_REPLICATION' } 1663 1664## 1665# @query-xen-replication-status: 1666# 1667# Query replication status while the vm is running. 1668# 1669# Returns: A @ReplicationStatus object showing the status. 1670# 1671# Example: 1672# 1673# -> { "execute": "query-xen-replication-status" } 1674# <- { "return": { "error": false } } 1675# 1676# Since: 2.9 1677## 1678{ 'command': 'query-xen-replication-status', 1679 'returns': 'ReplicationStatus', 1680 'if': 'CONFIG_REPLICATION' } 1681 1682## 1683# @xen-colo-do-checkpoint: 1684# 1685# Xen uses this command to notify replication to trigger a checkpoint. 1686# 1687# Returns: nothing. 1688# 1689# Example: 1690# 1691# -> { "execute": "xen-colo-do-checkpoint" } 1692# <- { "return": {} } 1693# 1694# Since: 2.9 1695## 1696{ 'command': 'xen-colo-do-checkpoint', 1697 'if': 'CONFIG_REPLICATION' } 1698 1699## 1700# @COLOStatus: 1701# 1702# The result format for 'query-colo-status'. 1703# 1704# @mode: COLO running mode. If COLO is running, this field will 1705# return 'primary' or 'secondary'. 1706# 1707# @last-mode: COLO last running mode. If COLO is running, this field 1708# will return same like mode field, after failover we can use this 1709# field to get last colo mode. (since 4.0) 1710# 1711# @reason: describes the reason for the COLO exit. 1712# 1713# Since: 3.1 1714## 1715{ 'struct': 'COLOStatus', 1716 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode', 1717 'reason': 'COLOExitReason' }, 1718 'if': 'CONFIG_REPLICATION' } 1719 1720## 1721# @query-colo-status: 1722# 1723# Query COLO status while the vm is running. 1724# 1725# Returns: A @COLOStatus object showing the status. 1726# 1727# Example: 1728# 1729# -> { "execute": "query-colo-status" } 1730# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } } 1731# 1732# Since: 3.1 1733## 1734{ 'command': 'query-colo-status', 1735 'returns': 'COLOStatus', 1736 'if': 'CONFIG_REPLICATION' } 1737 1738## 1739# @migrate-recover: 1740# 1741# Provide a recovery migration stream URI. 1742# 1743# @uri: the URI to be used for the recovery of migration stream. 1744# 1745# Returns: nothing. 1746# 1747# Example: 1748# 1749# -> { "execute": "migrate-recover", 1750# "arguments": { "uri": "tcp:192.168.1.200:12345" } } 1751# <- { "return": {} } 1752# 1753# Since: 3.0 1754## 1755{ 'command': 'migrate-recover', 1756 'data': { 'uri': 'str' }, 1757 'allow-oob': true } 1758 1759## 1760# @migrate-pause: 1761# 1762# Pause a migration. Currently it only supports postcopy. 1763# 1764# Returns: nothing. 1765# 1766# Example: 1767# 1768# -> { "execute": "migrate-pause" } 1769# <- { "return": {} } 1770# 1771# Since: 3.0 1772## 1773{ 'command': 'migrate-pause', 'allow-oob': true } 1774 1775## 1776# @UNPLUG_PRIMARY: 1777# 1778# Emitted from source side of a migration when migration state is 1779# WAIT_UNPLUG. Device was unplugged by guest operating system. Device 1780# resources in QEMU are kept on standby to be able to re-plug it in 1781# case of migration failure. 1782# 1783# @device-id: QEMU device id of the unplugged device 1784# 1785# Since: 4.2 1786# 1787# Example: 1788# 1789# <- { "event": "UNPLUG_PRIMARY", 1790# "data": { "device-id": "hostdev0" }, 1791# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 1792## 1793{ 'event': 'UNPLUG_PRIMARY', 1794 'data': { 'device-id': 'str' } } 1795 1796## 1797# @DirtyRateVcpu: 1798# 1799# Dirty rate of vcpu. 1800# 1801# @id: vcpu index. 1802# 1803# @dirty-rate: dirty rate. 1804# 1805# Since: 6.2 1806## 1807{ 'struct': 'DirtyRateVcpu', 1808 'data': { 'id': 'int', 'dirty-rate': 'int64' } } 1809 1810## 1811# @DirtyRateStatus: 1812# 1813# Dirty page rate measurement status. 1814# 1815# @unstarted: measuring thread has not been started yet 1816# 1817# @measuring: measuring thread is running 1818# 1819# @measured: dirty page rate is measured and the results are available 1820# 1821# Since: 5.2 1822## 1823{ 'enum': 'DirtyRateStatus', 1824 'data': [ 'unstarted', 'measuring', 'measured'] } 1825 1826## 1827# @DirtyRateMeasureMode: 1828# 1829# Method used to measure dirty page rate. Differences between 1830# available methods are explained in @calc-dirty-rate. 1831# 1832# @page-sampling: use page sampling 1833# 1834# @dirty-ring: use dirty ring 1835# 1836# @dirty-bitmap: use dirty bitmap 1837# 1838# Since: 6.2 1839## 1840{ 'enum': 'DirtyRateMeasureMode', 1841 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] } 1842 1843## 1844# @DirtyRateInfo: 1845# 1846# Information about measured dirty page rate. 1847# 1848# @dirty-rate: an estimate of the dirty page rate of the VM in units 1849# of MiB/s. Value is present only when @status is 'measured'. 1850# 1851# @status: current status of dirty page rate measurements 1852# 1853# @start-time: start time in units of second for calculation 1854# 1855# @calc-time: time period for which dirty page rate was measured 1856# (in seconds) 1857# 1858# @sample-pages: number of sampled pages per GiB of guest memory. 1859# Valid only in page-sampling mode (Since 6.1) 1860# 1861# @mode: mode that was used to measure dirty page rate (Since 6.2) 1862# 1863# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was 1864# specified (Since 6.2) 1865# 1866# Since: 5.2 1867## 1868{ 'struct': 'DirtyRateInfo', 1869 'data': {'*dirty-rate': 'int64', 1870 'status': 'DirtyRateStatus', 1871 'start-time': 'int64', 1872 'calc-time': 'int64', 1873 'sample-pages': 'uint64', 1874 'mode': 'DirtyRateMeasureMode', 1875 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } } 1876 1877## 1878# @calc-dirty-rate: 1879# 1880# Start measuring dirty page rate of the VM. Results can be retrieved 1881# with @query-dirty-rate after measurements are completed. 1882# 1883# Dirty page rate is the number of pages changed in a given time 1884# period expressed in MiB/s. The following methods of calculation are 1885# available: 1886# 1887# 1. In page sampling mode, a random subset of pages are selected and 1888# hashed twice: once at the beginning of measurement time period, 1889# and once again at the end. If two hashes for some page are 1890# different, the page is counted as changed. Since this method 1891# relies on sampling and hashing, calculated dirty page rate is 1892# only an estimate of its true value. Increasing @sample-pages 1893# improves estimation quality at the cost of higher computational 1894# overhead. 1895# 1896# 2. Dirty bitmap mode captures writes to memory (for example by 1897# temporarily revoking write access to all pages) and counting page 1898# faults. Information about modified pages is collected into a 1899# bitmap, where each bit corresponds to one guest page. This mode 1900# requires that KVM accelerator property "dirty-ring-size" is *not* 1901# set. 1902# 1903# 3. Dirty ring mode is similar to dirty bitmap mode, but the 1904# information about modified pages is collected into ring buffer. 1905# This mode tracks page modification per each vCPU separately. It 1906# requires that KVM accelerator property "dirty-ring-size" is set. 1907# 1908# @calc-time: time period in units of second for which dirty page rate 1909# is calculated. Note that larger @calc-time values will 1910# typically result in smaller dirty page rates because page 1911# dirtying is a one-time event. Once some page is counted as 1912# dirty during @calc-time period, further writes to this page will 1913# not increase dirty page rate anymore. 1914# 1915# @sample-pages: number of sampled pages per each GiB of guest memory. 1916# Default value is 512. For 4KiB guest pages this corresponds to 1917# sampling ratio of 0.2%. This argument is used only in page 1918# sampling mode. (Since 6.1) 1919# 1920# @mode: mechanism for tracking dirty pages. Default value is 1921# 'page-sampling'. Others are 'dirty-bitmap' and 'dirty-ring'. 1922# (Since 6.1) 1923# 1924# Since: 5.2 1925# 1926# Example: 1927# 1928# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1, 1929# 'sample-pages': 512} } 1930# <- { "return": {} } 1931## 1932{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64', 1933 '*sample-pages': 'int', 1934 '*mode': 'DirtyRateMeasureMode'} } 1935 1936## 1937# @query-dirty-rate: 1938# 1939# Query results of the most recent invocation of @calc-dirty-rate. 1940# 1941# Since: 5.2 1942# 1943# Examples: 1944# 1945# 1. Measurement is in progress: 1946# 1947# <- {"status": "measuring", "sample-pages": 512, 1948# "mode": "page-sampling", "start-time": 3665220, "calc-time": 10} 1949# 1950# 2. Measurement has been completed: 1951# 1952# <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108, 1953# "mode": "page-sampling", "start-time": 3665220, "calc-time": 10} 1954## 1955{ 'command': 'query-dirty-rate', 'returns': 'DirtyRateInfo' } 1956 1957## 1958# @DirtyLimitInfo: 1959# 1960# Dirty page rate limit information of a virtual CPU. 1961# 1962# @cpu-index: index of a virtual CPU. 1963# 1964# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual 1965# CPU, 0 means unlimited. 1966# 1967# @current-rate: current dirty page rate (MB/s) for a virtual CPU. 1968# 1969# Since: 7.1 1970## 1971{ 'struct': 'DirtyLimitInfo', 1972 'data': { 'cpu-index': 'int', 1973 'limit-rate': 'uint64', 1974 'current-rate': 'uint64' } } 1975 1976## 1977# @set-vcpu-dirty-limit: 1978# 1979# Set the upper limit of dirty page rate for virtual CPUs. 1980# 1981# Requires KVM with accelerator property "dirty-ring-size" set. A 1982# virtual CPU's dirty page rate is a measure of its memory load. To 1983# observe dirty page rates, use @calc-dirty-rate. 1984# 1985# @cpu-index: index of a virtual CPU, default is all. 1986# 1987# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs. 1988# 1989# Since: 7.1 1990# 1991# Example: 1992# 1993# -> {"execute": "set-vcpu-dirty-limit"} 1994# "arguments": { "dirty-rate": 200, 1995# "cpu-index": 1 } } 1996# <- { "return": {} } 1997## 1998{ 'command': 'set-vcpu-dirty-limit', 1999 'data': { '*cpu-index': 'int', 2000 'dirty-rate': 'uint64' } } 2001 2002## 2003# @cancel-vcpu-dirty-limit: 2004# 2005# Cancel the upper limit of dirty page rate for virtual CPUs. 2006# 2007# Cancel the dirty page limit for the vCPU which has been set with 2008# set-vcpu-dirty-limit command. Note that this command requires 2009# support from dirty ring, same as the "set-vcpu-dirty-limit". 2010# 2011# @cpu-index: index of a virtual CPU, default is all. 2012# 2013# Since: 7.1 2014# 2015# Example: 2016# 2017# -> {"execute": "cancel-vcpu-dirty-limit"}, 2018# "arguments": { "cpu-index": 1 } } 2019# <- { "return": {} } 2020## 2021{ 'command': 'cancel-vcpu-dirty-limit', 2022 'data': { '*cpu-index': 'int'} } 2023 2024## 2025# @query-vcpu-dirty-limit: 2026# 2027# Returns information about virtual CPU dirty page rate limits, if 2028# any. 2029# 2030# Since: 7.1 2031# 2032# Example: 2033# 2034# -> {"execute": "query-vcpu-dirty-limit"} 2035# <- {"return": [ 2036# { "limit-rate": 60, "current-rate": 3, "cpu-index": 0}, 2037# { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]} 2038## 2039{ 'command': 'query-vcpu-dirty-limit', 2040 'returns': [ 'DirtyLimitInfo' ] } 2041 2042## 2043# @MigrationThreadInfo: 2044# 2045# Information about migrationthreads 2046# 2047# @name: the name of migration thread 2048# 2049# @thread-id: ID of the underlying host thread 2050# 2051# Since: 7.2 2052## 2053{ 'struct': 'MigrationThreadInfo', 2054 'data': {'name': 'str', 2055 'thread-id': 'int'} } 2056 2057## 2058# @query-migrationthreads: 2059# 2060# Returns information of migration threads 2061# 2062# data: migration thread name 2063# 2064# Returns: information about migration threads 2065# 2066# Since: 7.2 2067## 2068{ 'command': 'query-migrationthreads', 2069 'returns': ['MigrationThreadInfo'] } 2070 2071## 2072# @snapshot-save: 2073# 2074# Save a VM snapshot 2075# 2076# @job-id: identifier for the newly created job 2077# 2078# @tag: name of the snapshot to create 2079# 2080# @vmstate: block device node name to save vmstate to 2081# 2082# @devices: list of block device node names to save a snapshot to 2083# 2084# Applications should not assume that the snapshot save is complete 2085# when this command returns. The job commands / events must be used 2086# to determine completion and to fetch details of any errors that 2087# arise. 2088# 2089# Note that execution of the guest CPUs may be stopped during the time 2090# it takes to save the snapshot. A future version of QEMU may ensure 2091# CPUs are executing continuously. 2092# 2093# It is strongly recommended that @devices contain all writable block 2094# device nodes if a consistent snapshot is required. 2095# 2096# If @tag already exists, an error will be reported 2097# 2098# Returns: nothing 2099# 2100# Example: 2101# 2102# -> { "execute": "snapshot-save", 2103# "arguments": { 2104# "job-id": "snapsave0", 2105# "tag": "my-snap", 2106# "vmstate": "disk0", 2107# "devices": ["disk0", "disk1"] 2108# } 2109# } 2110# <- { "return": { } } 2111# <- {"event": "JOB_STATUS_CHANGE", 2112# "timestamp": {"seconds": 1432121972, "microseconds": 744001}, 2113# "data": {"status": "created", "id": "snapsave0"}} 2114# <- {"event": "JOB_STATUS_CHANGE", 2115# "timestamp": {"seconds": 1432122172, "microseconds": 744001}, 2116# "data": {"status": "running", "id": "snapsave0"}} 2117# <- {"event": "STOP", 2118# "timestamp": {"seconds": 1432122372, "microseconds": 744001} } 2119# <- {"event": "RESUME", 2120# "timestamp": {"seconds": 1432122572, "microseconds": 744001} } 2121# <- {"event": "JOB_STATUS_CHANGE", 2122# "timestamp": {"seconds": 1432122772, "microseconds": 744001}, 2123# "data": {"status": "waiting", "id": "snapsave0"}} 2124# <- {"event": "JOB_STATUS_CHANGE", 2125# "timestamp": {"seconds": 1432122972, "microseconds": 744001}, 2126# "data": {"status": "pending", "id": "snapsave0"}} 2127# <- {"event": "JOB_STATUS_CHANGE", 2128# "timestamp": {"seconds": 1432123172, "microseconds": 744001}, 2129# "data": {"status": "concluded", "id": "snapsave0"}} 2130# -> {"execute": "query-jobs"} 2131# <- {"return": [{"current-progress": 1, 2132# "status": "concluded", 2133# "total-progress": 1, 2134# "type": "snapshot-save", 2135# "id": "snapsave0"}]} 2136# 2137# Since: 6.0 2138## 2139{ 'command': 'snapshot-save', 2140 'data': { 'job-id': 'str', 2141 'tag': 'str', 2142 'vmstate': 'str', 2143 'devices': ['str'] } } 2144 2145## 2146# @snapshot-load: 2147# 2148# Load a VM snapshot 2149# 2150# @job-id: identifier for the newly created job 2151# 2152# @tag: name of the snapshot to load. 2153# 2154# @vmstate: block device node name to load vmstate from 2155# 2156# @devices: list of block device node names to load a snapshot from 2157# 2158# Applications should not assume that the snapshot load is complete 2159# when this command returns. The job commands / events must be used 2160# to determine completion and to fetch details of any errors that 2161# arise. 2162# 2163# Note that execution of the guest CPUs will be stopped during the 2164# time it takes to load the snapshot. 2165# 2166# It is strongly recommended that @devices contain all writable block 2167# device nodes that can have changed since the original @snapshot-save 2168# command execution. 2169# 2170# Returns: nothing 2171# 2172# Example: 2173# 2174# -> { "execute": "snapshot-load", 2175# "arguments": { 2176# "job-id": "snapload0", 2177# "tag": "my-snap", 2178# "vmstate": "disk0", 2179# "devices": ["disk0", "disk1"] 2180# } 2181# } 2182# <- { "return": { } } 2183# <- {"event": "JOB_STATUS_CHANGE", 2184# "timestamp": {"seconds": 1472124172, "microseconds": 744001}, 2185# "data": {"status": "created", "id": "snapload0"}} 2186# <- {"event": "JOB_STATUS_CHANGE", 2187# "timestamp": {"seconds": 1472125172, "microseconds": 744001}, 2188# "data": {"status": "running", "id": "snapload0"}} 2189# <- {"event": "STOP", 2190# "timestamp": {"seconds": 1472125472, "microseconds": 744001} } 2191# <- {"event": "RESUME", 2192# "timestamp": {"seconds": 1472125872, "microseconds": 744001} } 2193# <- {"event": "JOB_STATUS_CHANGE", 2194# "timestamp": {"seconds": 1472126172, "microseconds": 744001}, 2195# "data": {"status": "waiting", "id": "snapload0"}} 2196# <- {"event": "JOB_STATUS_CHANGE", 2197# "timestamp": {"seconds": 1472127172, "microseconds": 744001}, 2198# "data": {"status": "pending", "id": "snapload0"}} 2199# <- {"event": "JOB_STATUS_CHANGE", 2200# "timestamp": {"seconds": 1472128172, "microseconds": 744001}, 2201# "data": {"status": "concluded", "id": "snapload0"}} 2202# -> {"execute": "query-jobs"} 2203# <- {"return": [{"current-progress": 1, 2204# "status": "concluded", 2205# "total-progress": 1, 2206# "type": "snapshot-load", 2207# "id": "snapload0"}]} 2208# 2209# Since: 6.0 2210## 2211{ 'command': 'snapshot-load', 2212 'data': { 'job-id': 'str', 2213 'tag': 'str', 2214 'vmstate': 'str', 2215 'devices': ['str'] } } 2216 2217## 2218# @snapshot-delete: 2219# 2220# Delete a VM snapshot 2221# 2222# @job-id: identifier for the newly created job 2223# 2224# @tag: name of the snapshot to delete. 2225# 2226# @devices: list of block device node names to delete a snapshot from 2227# 2228# Applications should not assume that the snapshot delete is complete 2229# when this command returns. The job commands / events must be used 2230# to determine completion and to fetch details of any errors that 2231# arise. 2232# 2233# Returns: nothing 2234# 2235# Example: 2236# 2237# -> { "execute": "snapshot-delete", 2238# "arguments": { 2239# "job-id": "snapdelete0", 2240# "tag": "my-snap", 2241# "devices": ["disk0", "disk1"] 2242# } 2243# } 2244# <- { "return": { } } 2245# <- {"event": "JOB_STATUS_CHANGE", 2246# "timestamp": {"seconds": 1442124172, "microseconds": 744001}, 2247# "data": {"status": "created", "id": "snapdelete0"}} 2248# <- {"event": "JOB_STATUS_CHANGE", 2249# "timestamp": {"seconds": 1442125172, "microseconds": 744001}, 2250# "data": {"status": "running", "id": "snapdelete0"}} 2251# <- {"event": "JOB_STATUS_CHANGE", 2252# "timestamp": {"seconds": 1442126172, "microseconds": 744001}, 2253# "data": {"status": "waiting", "id": "snapdelete0"}} 2254# <- {"event": "JOB_STATUS_CHANGE", 2255# "timestamp": {"seconds": 1442127172, "microseconds": 744001}, 2256# "data": {"status": "pending", "id": "snapdelete0"}} 2257# <- {"event": "JOB_STATUS_CHANGE", 2258# "timestamp": {"seconds": 1442128172, "microseconds": 744001}, 2259# "data": {"status": "concluded", "id": "snapdelete0"}} 2260# -> {"execute": "query-jobs"} 2261# <- {"return": [{"current-progress": 1, 2262# "status": "concluded", 2263# "total-progress": 1, 2264# "type": "snapshot-delete", 2265# "id": "snapdelete0"}]} 2266# 2267# Since: 6.0 2268## 2269{ 'command': 'snapshot-delete', 2270 'data': { 'job-id': 'str', 2271 'tag': 'str', 2272 'devices': ['str'] } } 2273