1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4 5## 6# = Migration 7## 8 9{ 'include': 'common.json' } 10{ 'include': 'sockets.json' } 11 12## 13# @MigrationStats: 14# 15# Detailed migration status. 16# 17# @transferred: amount of bytes already transferred to the target VM 18# 19# @remaining: amount of bytes remaining to be transferred to the 20# target VM 21# 22# @total: total amount of bytes involved in the migration process 23# 24# @duplicate: number of duplicate (zero) pages (since 1.2) 25# 26# @normal: number of normal pages (since 1.2) 27# 28# @normal-bytes: number of normal bytes sent (since 1.2) 29# 30# @dirty-pages-rate: number of pages dirtied by second by the guest 31# (since 1.3) 32# 33# @mbps: throughput in megabits/sec. (since 1.6) 34# 35# @dirty-sync-count: number of times that dirty ram was synchronized 36# (since 2.1) 37# 38# @postcopy-requests: The number of page requests received from the 39# destination (since 2.7) 40# 41# @page-size: The number of bytes per page for the various page-based 42# statistics (since 2.10) 43# 44# @multifd-bytes: The number of bytes sent through multifd (since 3.0) 45# 46# @pages-per-second: the number of memory pages transferred per second 47# (Since 4.0) 48# 49# @precopy-bytes: The number of bytes sent in the pre-copy phase 50# (since 7.0). 51# 52# @downtime-bytes: The number of bytes sent while the guest is paused 53# (since 7.0). 54# 55# @postcopy-bytes: The number of bytes sent during the post-copy phase 56# (since 7.0). 57# 58# @dirty-sync-missed-zero-copy: Number of times dirty RAM 59# synchronization could not avoid copying dirty pages. This is 60# between 0 and @dirty-sync-count * @multifd-channels. 61# (since 7.1) 62# 63# Since: 0.14 64## 65{ 'struct': 'MigrationStats', 66 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' , 67 'duplicate': 'int', 68 'normal': 'int', 69 'normal-bytes': 'int', 'dirty-pages-rate': 'int', 70 'mbps': 'number', 'dirty-sync-count': 'int', 71 'postcopy-requests': 'int', 'page-size': 'int', 72 'multifd-bytes': 'uint64', 'pages-per-second': 'uint64', 73 'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64', 74 'postcopy-bytes': 'uint64', 75 'dirty-sync-missed-zero-copy': 'uint64' } } 76 77## 78# @XBZRLECacheStats: 79# 80# Detailed XBZRLE migration cache statistics 81# 82# @cache-size: XBZRLE cache size 83# 84# @bytes: amount of bytes already transferred to the target VM 85# 86# @pages: amount of pages transferred to the target VM 87# 88# @cache-miss: number of cache miss 89# 90# @cache-miss-rate: rate of cache miss (since 2.1) 91# 92# @encoding-rate: rate of encoded bytes (since 5.1) 93# 94# @overflow: number of overflows 95# 96# Since: 1.2 97## 98{ 'struct': 'XBZRLECacheStats', 99 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int', 100 'cache-miss': 'int', 'cache-miss-rate': 'number', 101 'encoding-rate': 'number', 'overflow': 'int' } } 102 103## 104# @CompressionStats: 105# 106# Detailed migration compression statistics 107# 108# @pages: amount of pages compressed and transferred to the target VM 109# 110# @busy: count of times that no free thread was available to compress 111# data 112# 113# @busy-rate: rate of thread busy 114# 115# @compressed-size: amount of bytes after compression 116# 117# @compression-rate: rate of compressed size 118# 119# Since: 3.1 120## 121{ 'struct': 'CompressionStats', 122 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number', 123 'compressed-size': 'int', 'compression-rate': 'number' } } 124 125## 126# @MigrationStatus: 127# 128# An enumeration of migration status. 129# 130# @none: no migration has ever happened. 131# 132# @setup: migration process has been initiated. 133# 134# @cancelling: in the process of cancelling migration. 135# 136# @cancelled: cancelling migration is finished. 137# 138# @active: in the process of doing migration. 139# 140# @postcopy-active: like active, but now in postcopy mode. 141# (since 2.5) 142# 143# @postcopy-paused: during postcopy but paused. (since 3.0) 144# 145# @postcopy-recover-setup: setup phase for a postcopy recovery 146# process, preparing for a recovery phase to start. (since 9.1) 147# 148# @postcopy-recover: trying to recover from a paused postcopy. 149# (since 3.0) 150# 151# @completed: migration is finished. 152# 153# @failed: some error occurred during migration process. 154# 155# @colo: VM is in the process of fault tolerance, VM can not get into 156# this state unless colo capability is enabled for migration. 157# (since 2.8) 158# 159# @pre-switchover: Paused before device serialisation. (since 2.11) 160# 161# @device: During device serialisation (also known as switchover phase). 162# Before 9.2, this is only used when (1) in precopy, and (2) when 163# pre-switchover capability is enabled. After 10.0, this state will 164# always be present for every migration procedure as the switchover 165# phase. (since 2.11) 166# 167# @wait-unplug: wait for device unplug request by guest OS to be 168# completed. (since 4.2) 169# 170# Since: 2.3 171## 172{ 'enum': 'MigrationStatus', 173 'data': [ 'none', 'setup', 'cancelling', 'cancelled', 174 'active', 'postcopy-active', 'postcopy-paused', 175 'postcopy-recover-setup', 176 'postcopy-recover', 'completed', 'failed', 'colo', 177 'pre-switchover', 'device', 'wait-unplug' ] } 178## 179# @VfioStats: 180# 181# Detailed VFIO devices migration statistics 182# 183# @transferred: amount of bytes transferred to the target VM by VFIO 184# devices 185# 186# Since: 5.2 187## 188{ 'struct': 'VfioStats', 189 'data': {'transferred': 'int' } } 190 191## 192# @MigrationInfo: 193# 194# Information about current migration process. 195# 196# @status: @MigrationStatus describing the current migration status. 197# If this field is not returned, no migration process has been 198# initiated 199# 200# @ram: @MigrationStats containing detailed migration status, only 201# returned if status is 'active' or 'completed'(since 1.2) 202# 203# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE 204# migration statistics, only returned if XBZRLE feature is on and 205# status is 'active' or 'completed' (since 1.2) 206# 207# @total-time: total amount of milliseconds since migration started. 208# If migration has ended, it returns the total migration time. 209# (since 1.2) 210# 211# @downtime: only present when migration finishes correctly total 212# downtime in milliseconds for the guest. (since 1.3) 213# 214# @expected-downtime: only present while migration is active expected 215# downtime in milliseconds for the guest in last walk of the dirty 216# bitmap. (since 1.3) 217# 218# @setup-time: amount of setup time in milliseconds *before* the 219# iterations begin but *after* the QMP command is issued. This is 220# designed to provide an accounting of any activities (such as 221# RDMA pinning) which may be expensive, but do not actually occur 222# during the iterative migration rounds themselves. (since 1.6) 223# 224# @cpu-throttle-percentage: percentage of time guest cpus are being 225# throttled during auto-converge. This is only present when 226# auto-converge has started throttling guest cpus. (Since 2.7) 227# 228# @error-desc: the human readable error description string. Clients 229# should not attempt to parse the error strings. (Since 2.7) 230# 231# @postcopy-blocktime: total time when all vCPU were blocked during 232# postcopy live migration. This is only present when the 233# postcopy-blocktime migration capability is enabled. (Since 3.0) 234# 235# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. 236# This is only present when the postcopy-blocktime migration 237# capability is enabled. (Since 3.0) 238# 239# @socket-address: Only used for tcp, to know what the real port is 240# (Since 4.0) 241# 242# @vfio: @VfioStats containing detailed VFIO devices migration 243# statistics, only returned if VFIO device is present, migration 244# is supported by all VFIO devices and status is 'active' or 245# 'completed' (since 5.2) 246# 247# @blocked-reasons: A list of reasons an outgoing migration is 248# blocked. Present and non-empty when migration is blocked. 249# (since 6.0) 250# 251# @dirty-limit-throttle-time-per-round: Maximum throttle time (in 252# microseconds) of virtual CPUs each dirty ring full round, which 253# shows how MigrationCapability dirty-limit affects the guest 254# during live migration. (Since 8.1) 255# 256# @dirty-limit-ring-full-time: Estimated average dirty ring full time 257# (in microseconds) for each dirty ring full round. The value 258# equals the dirty ring memory size divided by the average dirty 259# page rate of the virtual CPU, which can be used to observe the 260# average memory load of the virtual CPU indirectly. Note that 261# zero means guest doesn't dirty memory. (Since 8.1) 262# 263# Since: 0.14 264## 265{ 'struct': 'MigrationInfo', 266 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats', 267 '*vfio': 'VfioStats', 268 '*xbzrle-cache': 'XBZRLECacheStats', 269 '*total-time': 'int', 270 '*expected-downtime': 'int', 271 '*downtime': 'int', 272 '*setup-time': 'int', 273 '*cpu-throttle-percentage': 'int', 274 '*error-desc': 'str', 275 '*blocked-reasons': ['str'], 276 '*postcopy-blocktime': 'uint32', 277 '*postcopy-vcpu-blocktime': ['uint32'], 278 '*socket-address': ['SocketAddress'], 279 '*dirty-limit-throttle-time-per-round': 'uint64', 280 '*dirty-limit-ring-full-time': 'uint64'} } 281 282## 283# @query-migrate: 284# 285# Return information about current migration process. If migration 286# is active there will be another json-object with RAM migration 287# status. 288# 289# Returns: @MigrationInfo 290# 291# Since: 0.14 292# 293# .. qmp-example:: 294# :title: Before the first migration 295# 296# -> { "execute": "query-migrate" } 297# <- { "return": {} } 298# 299# .. qmp-example:: 300# :title: Migration is done and has succeeded 301# 302# -> { "execute": "query-migrate" } 303# <- { "return": { 304# "status": "completed", 305# "total-time":12345, 306# "setup-time":12345, 307# "downtime":12345, 308# "ram":{ 309# "transferred":123, 310# "remaining":123, 311# "total":246, 312# "duplicate":123, 313# "normal":123, 314# "normal-bytes":123456, 315# "dirty-sync-count":15 316# } 317# } 318# } 319# 320# .. qmp-example:: 321# :title: Migration is done and has failed 322# 323# -> { "execute": "query-migrate" } 324# <- { "return": { "status": "failed" } } 325# 326# .. qmp-example:: 327# :title: Migration is being performed 328# 329# -> { "execute": "query-migrate" } 330# <- { 331# "return":{ 332# "status":"active", 333# "total-time":12345, 334# "setup-time":12345, 335# "expected-downtime":12345, 336# "ram":{ 337# "transferred":123, 338# "remaining":123, 339# "total":246, 340# "duplicate":123, 341# "normal":123, 342# "normal-bytes":123456, 343# "dirty-sync-count":15 344# } 345# } 346# } 347# 348# .. qmp-example:: 349# :title: Migration is being performed and XBZRLE is active 350# 351# -> { "execute": "query-migrate" } 352# <- { 353# "return":{ 354# "status":"active", 355# "total-time":12345, 356# "setup-time":12345, 357# "expected-downtime":12345, 358# "ram":{ 359# "total":1057024, 360# "remaining":1053304, 361# "transferred":3720, 362# "duplicate":10, 363# "normal":3333, 364# "normal-bytes":3412992, 365# "dirty-sync-count":15 366# }, 367# "xbzrle-cache":{ 368# "cache-size":67108864, 369# "bytes":20971520, 370# "pages":2444343, 371# "cache-miss":2244, 372# "cache-miss-rate":0.123, 373# "encoding-rate":80.1, 374# "overflow":34434 375# } 376# } 377# } 378## 379{ 'command': 'query-migrate', 'returns': 'MigrationInfo' } 380 381## 382# @MigrationCapability: 383# 384# Migration capabilities enumeration 385# 386# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length 387# Encoding). This feature allows us to minimize migration traffic 388# for certain work loads, by sending compressed difference of the 389# pages 390# 391# @rdma-pin-all: Controls whether or not the entire VM memory 392# footprint is mlock()'d on demand or all at once. Refer to 393# docs/rdma.txt for usage. Disabled by default. (since 2.0) 394# 395# @zero-blocks: During storage migration encode blocks of zeroes 396# efficiently. This essentially saves 1MB of zeroes per block on 397# the wire. Enabling requires source and target VM to support 398# this feature. To enable it is sufficient to enable the 399# capability on the source VM. The feature is disabled by 400# default. (since 1.6) 401# 402# @events: generate events for each migration state change (since 2.4) 403# 404# @auto-converge: If enabled, QEMU will automatically throttle down 405# the guest to speed up convergence of RAM migration. (since 1.6) 406# 407# @postcopy-ram: Start executing on the migration target before all of 408# RAM has been migrated, pulling the remaining pages along as 409# needed. The capacity must have the same setting on both source 410# and target or migration will not even start. **Note:** if the 411# migration fails during postcopy the VM will fail. (since 2.6) 412# 413# @x-colo: If enabled, migration will never end, and the state of the 414# VM on the primary side will be migrated continuously to the VM 415# on secondary side, this process is called COarse-Grain LOck 416# Stepping (COLO) for Non-stop Service. (since 2.8) 417# 418# @release-ram: if enabled, QEMU will free the migrated ram pages on 419# the source during postcopy-ram migration. (since 2.9) 420# 421# @return-path: If enabled, migration will use the return path even 422# for precopy. (since 2.10) 423# 424# @pause-before-switchover: Pause outgoing migration before 425# serialising device state and before disabling block IO 426# (since 2.11) 427# 428# @multifd: Use more than one fd for migration (since 4.0) 429# 430# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps. 431# (since 2.12) 432# 433# @postcopy-blocktime: Calculate downtime for postcopy live migration 434# (since 3.0) 435# 436# @late-block-activate: If enabled, the destination will not activate 437# block devices (and thus take locks) immediately at the end of 438# migration. (since 3.0) 439# 440# @x-ignore-shared: If enabled, QEMU will not migrate shared memory 441# that is accessible on the destination machine. (since 4.0) 442# 443# @validate-uuid: Send the UUID of the source to allow the destination 444# to ensure it is the same. (since 4.2) 445# 446# @background-snapshot: If enabled, the migration stream will be a 447# snapshot of the VM exactly at the point when the migration 448# procedure starts. The VM RAM is saved with running VM. 449# (since 6.0) 450# 451# @zero-copy-send: Controls behavior on sending memory pages on 452# migration. When true, enables a zero-copy mechanism for sending 453# memory pages, if host supports it. Requires that QEMU be 454# permitted to use locked memory for guest RAM pages. (since 7.1) 455# 456# @postcopy-preempt: If enabled, the migration process will allow 457# postcopy requests to preempt precopy stream, so postcopy 458# requests will be handled faster. This is a performance feature 459# and should not affect the correctness of postcopy migration. 460# (since 7.1) 461# 462# @switchover-ack: If enabled, migration will not stop the source VM 463# and complete the migration until an ACK is received from the 464# destination that it's OK to do so. Exactly when this ACK is 465# sent depends on the migrated devices that use this feature. For 466# example, a device can use it to make sure some of its data is 467# sent and loaded in the destination before doing switchover. 468# This can reduce downtime if devices that support this capability 469# are present. 'return-path' capability must be enabled to use 470# it. (since 8.1) 471# 472# @dirty-limit: If enabled, migration will throttle vCPUs as needed to 473# keep their dirty page rate within @vcpu-dirty-limit. This can 474# improve responsiveness of large guests during live migration, 475# and can result in more stable read performance. Requires KVM 476# with accelerator property "dirty-ring-size" set. (Since 8.1) 477# 478# @mapped-ram: Migrate using fixed offsets in the migration file for 479# each RAM page. Requires a migration URI that supports seeking, 480# such as a file. (since 9.0) 481# 482# Features: 483# 484# @unstable: Members @x-colo and @x-ignore-shared are experimental. 485# @deprecated: Member @zero-blocks is deprecated as being part of 486# block migration which was already removed. 487# 488# Since: 1.2 489## 490{ 'enum': 'MigrationCapability', 491 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 492 { 'name': 'zero-blocks', 'features': [ 'deprecated' ] }, 493 'events', 'postcopy-ram', 494 { 'name': 'x-colo', 'features': [ 'unstable' ] }, 495 'release-ram', 496 'return-path', 'pause-before-switchover', 'multifd', 497 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate', 498 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] }, 499 'validate-uuid', 'background-snapshot', 500 'zero-copy-send', 'postcopy-preempt', 'switchover-ack', 501 'dirty-limit', 'mapped-ram'] } 502 503## 504# @MigrationCapabilityStatus: 505# 506# Migration capability information 507# 508# @capability: capability enum 509# 510# @state: capability state bool 511# 512# Since: 1.2 513## 514{ 'struct': 'MigrationCapabilityStatus', 515 'data': { 'capability': 'MigrationCapability', 'state': 'bool' } } 516 517## 518# @migrate-set-capabilities: 519# 520# Enable/Disable the following migration capabilities (like xbzrle) 521# 522# @capabilities: json array of capability modifications to make 523# 524# Since: 1.2 525# 526# .. qmp-example:: 527# 528# -> { "execute": "migrate-set-capabilities" , "arguments": 529# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } } 530# <- { "return": {} } 531## 532{ 'command': 'migrate-set-capabilities', 533 'data': { 'capabilities': ['MigrationCapabilityStatus'] } } 534 535## 536# @query-migrate-capabilities: 537# 538# Return information about the current migration capabilities status 539# 540# Returns: @MigrationCapabilityStatus 541# 542# Since: 1.2 543# 544# .. qmp-example:: 545# 546# -> { "execute": "query-migrate-capabilities" } 547# <- { "return": [ 548# {"state": false, "capability": "xbzrle"}, 549# {"state": false, "capability": "rdma-pin-all"}, 550# {"state": false, "capability": "auto-converge"}, 551# {"state": false, "capability": "zero-blocks"}, 552# {"state": true, "capability": "events"}, 553# {"state": false, "capability": "postcopy-ram"}, 554# {"state": false, "capability": "x-colo"} 555# ]} 556## 557{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']} 558 559## 560# @MultiFDCompression: 561# 562# An enumeration of multifd compression methods. 563# 564# @none: no compression. 565# 566# @zlib: use zlib compression method. 567# 568# @zstd: use zstd compression method. 569# 570# @qatzip: use qatzip compression method. (Since 9.2) 571# 572# @qpl: use qpl compression method. Query Processing Library(qpl) is 573# based on the deflate compression algorithm and use the Intel 574# In-Memory Analytics Accelerator(IAA) accelerated compression and 575# decompression. (Since 9.1) 576# 577# @uadk: use UADK library compression method. (Since 9.1) 578# 579# Since: 5.0 580## 581{ 'enum': 'MultiFDCompression', 582 'prefix': 'MULTIFD_COMPRESSION', 583 'data': [ 'none', 'zlib', 584 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' }, 585 { 'name': 'qatzip', 'if': 'CONFIG_QATZIP'}, 586 { 'name': 'qpl', 'if': 'CONFIG_QPL' }, 587 { 'name': 'uadk', 'if': 'CONFIG_UADK' } ] } 588 589## 590# @MigMode: 591# 592# @normal: the original form of migration. (since 8.2) 593# 594# @cpr-reboot: The migrate command stops the VM and saves state to the 595# URI. After quitting QEMU, the user resumes by running QEMU 596# -incoming. 597# 598# This mode allows the user to quit QEMU, optionally update and 599# reboot the OS, and restart QEMU. If the user reboots, the URI 600# must persist across the reboot, such as by using a file. 601# 602# Unlike normal mode, the use of certain local storage options 603# does not block the migration, but the user must not modify the 604# contents of guest block devices between the quit and restart. 605# 606# This mode supports VFIO devices provided the user first puts the 607# guest in the suspended runstate, such as by issuing 608# guest-suspend-ram to the QEMU guest agent. 609# 610# Best performance is achieved when the memory backend is shared 611# and the @x-ignore-shared migration capability is set, but this 612# is not required. Further, if the user reboots before restarting 613# such a configuration, the shared memory must persist across the 614# reboot, such as by backing it with a dax device. 615# 616# @cpr-reboot may not be used with postcopy, background-snapshot, 617# or COLO. 618# 619# (since 8.2) 620# 621# @cpr-transfer: This mode allows the user to transfer a guest to a 622# new QEMU instance on the same host with minimal guest pause 623# time by preserving guest RAM in place. 624# 625# Devices and their pinned pages are also preserved for VFIO and 626# IOMMUFD. (since 10.1) 627# 628# The user starts new QEMU on the same host as old QEMU, with 629# command-line arguments to create the same machine, plus the 630# -incoming option for the main migration channel, like normal 631# live migration. In addition, the user adds a second -incoming 632# option with channel type "cpr". This CPR channel must support 633# file descriptor transfer with SCM_RIGHTS, i.e. it must be a 634# UNIX domain socket. 635# 636# To initiate CPR, the user issues a migrate command to old QEMU, 637# adding a second migration channel of type "cpr" in the channels 638# argument. Old QEMU stops the VM, saves state to the migration 639# channels, and enters the postmigrate state. Execution resumes 640# in new QEMU. 641# 642# New QEMU reads the CPR channel before opening a monitor, hence 643# the CPR channel cannot be specified in the list of channels for 644# a migrate-incoming command. It may only be specified on the 645# command line. 646# 647# The main channel address cannot be a file type, and for an 648# inet socket, the port cannot be 0 (meaning dynamically choose 649# a port). 650# 651# Memory-backend objects must have the share=on attribute, but 652# memory-backend-epc is not supported. The VM must be started 653# with the '-machine aux-ram-share=on' option. 654# 655# When using -incoming defer, you must issue the migrate command 656# to old QEMU before issuing any monitor commands to new QEMU. 657# However, new QEMU does not open and read the migration stream 658# until you issue the migrate incoming command. 659# 660# (since 10.0) 661## 662{ 'enum': 'MigMode', 663 'data': [ 'normal', 'cpr-reboot', 'cpr-transfer' ] } 664 665## 666# @ZeroPageDetection: 667# 668# @none: Do not perform zero page checking. 669# 670# @legacy: Perform zero page checking in main migration thread. 671# 672# @multifd: Perform zero page checking in multifd sender thread if 673# multifd migration is enabled, else in the main migration thread 674# as for @legacy. 675# 676# Since: 9.0 677## 678{ 'enum': 'ZeroPageDetection', 679 'data': [ 'none', 'legacy', 'multifd' ] } 680 681## 682# @BitmapMigrationBitmapAliasTransform: 683# 684# @persistent: If present, the bitmap will be made persistent or 685# transient depending on this parameter. 686# 687# Since: 6.0 688## 689{ 'struct': 'BitmapMigrationBitmapAliasTransform', 690 'data': { 691 '*persistent': 'bool' 692 } } 693 694## 695# @BitmapMigrationBitmapAlias: 696# 697# @name: The name of the bitmap. 698# 699# @alias: An alias name for migration (for example the bitmap name on 700# the opposite site). 701# 702# @transform: Allows the modification of the migrated bitmap. 703# (since 6.0) 704# 705# Since: 5.2 706## 707{ 'struct': 'BitmapMigrationBitmapAlias', 708 'data': { 709 'name': 'str', 710 'alias': 'str', 711 '*transform': 'BitmapMigrationBitmapAliasTransform' 712 } } 713 714## 715# @BitmapMigrationNodeAlias: 716# 717# Maps a block node name and the bitmaps it has to aliases for dirty 718# bitmap migration. 719# 720# @node-name: A block node name. 721# 722# @alias: An alias block node name for migration (for example the node 723# name on the opposite site). 724# 725# @bitmaps: Mappings for the bitmaps on this node. 726# 727# Since: 5.2 728## 729{ 'struct': 'BitmapMigrationNodeAlias', 730 'data': { 731 'node-name': 'str', 732 'alias': 'str', 733 'bitmaps': [ 'BitmapMigrationBitmapAlias' ] 734 } } 735 736## 737# @MigrationParameter: 738# 739# Migration parameters enumeration 740# 741# @announce-initial: Initial delay (in milliseconds) before sending 742# the first announce (Since 4.0) 743# 744# @announce-max: Maximum delay (in milliseconds) between packets in 745# the announcement (Since 4.0) 746# 747# @announce-rounds: Number of self-announce packets sent after 748# migration (Since 4.0) 749# 750# @announce-step: Increase in delay (in milliseconds) between 751# subsequent packets in the announcement (Since 4.0) 752# 753# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 754# bytes_xfer_period to trigger throttling. It is expressed as 755# percentage. The default value is 50. (Since 5.0) 756# 757# @cpu-throttle-initial: Initial percentage of time guest cpus are 758# throttled when migration auto-converge is activated. The 759# default value is 20. (Since 2.7) 760# 761# @cpu-throttle-increment: throttle percentage increase each time 762# auto-converge detects that migration is not making progress. 763# The default value is 10. (Since 2.7) 764# 765# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage. 766# At the tail stage of throttling, the Guest is very sensitive to 767# CPU percentage while the @cpu-throttle -increment is excessive 768# usually at tail stage. If this parameter is true, we will 769# compute the ideal CPU percentage used by the Guest, which may 770# exactly make the dirty rate match the dirty rate threshold. 771# Then we will choose a smaller throttle increment between the one 772# specified by @cpu-throttle-increment and the one generated by 773# ideal CPU percentage. Therefore, it is compatible to 774# traditional throttling, meanwhile the throttle increment won't 775# be excessive at tail stage. The default value is false. 776# (Since 5.1) 777# 778# @tls-creds: ID of the 'tls-creds' object that provides credentials 779# for establishing a TLS connection over the migration data 780# channel. On the outgoing side of the migration, the credentials 781# must be for a 'client' endpoint, while for the incoming side the 782# credentials must be for a 'server' endpoint. Setting this to a 783# non-empty string enables TLS for all migrations. An empty 784# string means that QEMU will use plain text mode for migration, 785# rather than TLS. (Since 2.7) 786# 787# @tls-hostname: migration target's hostname for validating the 788# server's x509 certificate identity. If empty, QEMU will use the 789# hostname from the migration URI, if any. A non-empty value is 790# required when using x509 based TLS credentials and the migration 791# URI does not include a hostname, such as fd: or exec: based 792# migration. (Since 2.7) 793# 794# Note: empty value works only since 2.9. 795# 796# @tls-authz: ID of the 'authz' object subclass that provides access 797# control checking of the TLS x509 certificate distinguished name. 798# This object is only resolved at time of use, so can be deleted 799# and recreated on the fly while the migration server is active. 800# If missing, it will default to denying access (Since 4.0) 801# 802# @max-bandwidth: maximum speed for migration, in bytes per second. 803# (Since 2.8) 804# 805# @avail-switchover-bandwidth: to set the available bandwidth that 806# migration can use during switchover phase. **Note:** this does 807# not limit the bandwidth during switchover, but only for 808# calculations when making decisions to switchover. By default, 809# this value is zero, which means QEMU will estimate the bandwidth 810# automatically. This can be set when the estimated value is not 811# accurate, while the user is able to guarantee such bandwidth is 812# available when switching over. When specified correctly, this 813# can make the switchover decision much more accurate. 814# (Since 8.2) 815# 816# @downtime-limit: set maximum tolerated downtime for migration. 817# maximum downtime in milliseconds (Since 2.8) 818# 819# @x-checkpoint-delay: The delay time (in ms) between two COLO 820# checkpoints in periodic mode. (Since 2.8) 821# 822# @multifd-channels: Number of channels used to migrate data in 823# parallel. This is the same number that the number of sockets 824# used for migration. The default value is 2 (since 4.0) 825# 826# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 827# needs to be a multiple of the target page size and a power of 2 828# (Since 2.11) 829# 830# @max-postcopy-bandwidth: Background transfer bandwidth during 831# postcopy. Defaults to 0 (unlimited). In bytes per second. 832# (Since 3.0) 833# 834# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 835# (Since 3.1) 836# 837# @multifd-compression: Which compression method to use. Defaults to 838# none. (Since 5.0) 839# 840# @multifd-zlib-level: Set the compression level to be used in live 841# migration, the compression level is an integer between 0 and 9, 842# where 0 means no compression, 1 means the best compression 843# speed, and 9 means best compression ratio which will consume 844# more CPU. Defaults to 1. (Since 5.0) 845# 846# @multifd-qatzip-level: Set the compression level to be used in live 847# migration. The level is an integer between 1 and 9, where 1 means 848# the best compression speed, and 9 means the best compression 849# ratio which will consume more CPU. Defaults to 1. (Since 9.2) 850# 851# @multifd-zstd-level: Set the compression level to be used in live 852# migration, the compression level is an integer between 0 and 20, 853# where 0 means no compression, 1 means the best compression 854# speed, and 20 means best compression ratio which will consume 855# more CPU. Defaults to 1. (Since 5.0) 856# 857# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 858# aliases for the purpose of dirty bitmap migration. Such aliases 859# may for example be the corresponding names on the opposite site. 860# The mapping must be one-to-one, but not necessarily complete: On 861# the source, unmapped bitmaps and all bitmaps on unmapped nodes 862# will be ignored. On the destination, encountering an unmapped 863# alias in the incoming migration stream will result in a report, 864# and all further bitmap migration data will then be discarded. 865# Note that the destination does not know about bitmaps it does 866# not receive, so there is no limitation or requirement regarding 867# the number of bitmaps received, or how they are named, or on 868# which nodes they are placed. By default (when this parameter 869# has never been set), bitmap names are mapped to themselves. 870# Nodes are mapped to their block device name if there is one, and 871# to their node name otherwise. (Since 5.2) 872# 873# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 874# limit during live migration. Should be in the range 1 to 875# 1000ms. Defaults to 1000ms. (Since 8.1) 876# 877# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 878# Defaults to 1. (Since 8.1) 879# 880# @mode: Migration mode. See description in @MigMode. Default is 881# 'normal'. (Since 8.2) 882# 883# @zero-page-detection: Whether and how to detect zero pages. 884# See description in @ZeroPageDetection. Default is 'multifd'. 885# (since 9.0) 886# 887# @direct-io: Open migration files with O_DIRECT when possible. This 888# only has effect if the @mapped-ram capability is enabled. 889# (Since 9.1) 890# 891# Features: 892# 893# @unstable: Members @x-checkpoint-delay and 894# @x-vcpu-dirty-limit-period are experimental. 895# 896# Since: 2.4 897## 898{ 'enum': 'MigrationParameter', 899 'data': ['announce-initial', 'announce-max', 900 'announce-rounds', 'announce-step', 901 'throttle-trigger-threshold', 902 'cpu-throttle-initial', 'cpu-throttle-increment', 903 'cpu-throttle-tailslow', 904 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth', 905 'avail-switchover-bandwidth', 'downtime-limit', 906 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] }, 907 'multifd-channels', 908 'xbzrle-cache-size', 'max-postcopy-bandwidth', 909 'max-cpu-throttle', 'multifd-compression', 910 'multifd-zlib-level', 'multifd-zstd-level', 911 'multifd-qatzip-level', 912 'block-bitmap-mapping', 913 { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] }, 914 'vcpu-dirty-limit', 915 'mode', 916 'zero-page-detection', 917 'direct-io'] } 918 919## 920# @MigrateSetParameters: 921# 922# @announce-initial: Initial delay (in milliseconds) before sending 923# the first announce (Since 4.0) 924# 925# @announce-max: Maximum delay (in milliseconds) between packets in 926# the announcement (Since 4.0) 927# 928# @announce-rounds: Number of self-announce packets sent after 929# migration (Since 4.0) 930# 931# @announce-step: Increase in delay (in milliseconds) between 932# subsequent packets in the announcement (Since 4.0) 933# 934# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 935# bytes_xfer_period to trigger throttling. It is expressed as 936# percentage. The default value is 50. (Since 5.0) 937# 938# @cpu-throttle-initial: Initial percentage of time guest cpus are 939# throttled when migration auto-converge is activated. The 940# default value is 20. (Since 2.7) 941# 942# @cpu-throttle-increment: throttle percentage increase each time 943# auto-converge detects that migration is not making progress. 944# The default value is 10. (Since 2.7) 945# 946# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage. 947# At the tail stage of throttling, the Guest is very sensitive to 948# CPU percentage while the @cpu-throttle -increment is excessive 949# usually at tail stage. If this parameter is true, we will 950# compute the ideal CPU percentage used by the Guest, which may 951# exactly make the dirty rate match the dirty rate threshold. 952# Then we will choose a smaller throttle increment between the one 953# specified by @cpu-throttle-increment and the one generated by 954# ideal CPU percentage. Therefore, it is compatible to 955# traditional throttling, meanwhile the throttle increment won't 956# be excessive at tail stage. The default value is false. 957# (Since 5.1) 958# 959# @tls-creds: ID of the 'tls-creds' object that provides credentials 960# for establishing a TLS connection over the migration data 961# channel. On the outgoing side of the migration, the credentials 962# must be for a 'client' endpoint, while for the incoming side the 963# credentials must be for a 'server' endpoint. Setting this to a 964# non-empty string enables TLS for all migrations. An empty 965# string means that QEMU will use plain text mode for migration, 966# rather than TLS. This is the default. (Since 2.7) 967# 968# @tls-hostname: migration target's hostname for validating the 969# server's x509 certificate identity. If empty, QEMU will use the 970# hostname from the migration URI, if any. A non-empty value is 971# required when using x509 based TLS credentials and the migration 972# URI does not include a hostname, such as fd: or exec: based 973# migration. (Since 2.7) 974# 975# Note: empty value works only since 2.9. 976# 977# @tls-authz: ID of the 'authz' object subclass that provides access 978# control checking of the TLS x509 certificate distinguished name. 979# This object is only resolved at time of use, so can be deleted 980# and recreated on the fly while the migration server is active. 981# If missing, it will default to denying access (Since 4.0) 982# 983# @max-bandwidth: maximum speed for migration, in bytes per second. 984# (Since 2.8) 985# 986# @avail-switchover-bandwidth: to set the available bandwidth that 987# migration can use during switchover phase. **Note:** this does 988# not limit the bandwidth during switchover, but only for 989# calculations when making decisions to switchover. By default, 990# this value is zero, which means QEMU will estimate the bandwidth 991# automatically. This can be set when the estimated value is not 992# accurate, while the user is able to guarantee such bandwidth is 993# available when switching over. When specified correctly, this 994# can make the switchover decision much more accurate. 995# (Since 8.2) 996# 997# @downtime-limit: set maximum tolerated downtime for migration. 998# maximum downtime in milliseconds (Since 2.8) 999# 1000# @x-checkpoint-delay: The delay time (in ms) between two COLO 1001# checkpoints in periodic mode. (Since 2.8) 1002# 1003# @multifd-channels: Number of channels used to migrate data in 1004# parallel. This is the same number that the number of sockets 1005# used for migration. The default value is 2 (since 4.0) 1006# 1007# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1008# needs to be a multiple of the target page size and a power of 2 1009# (Since 2.11) 1010# 1011# @max-postcopy-bandwidth: Background transfer bandwidth during 1012# postcopy. Defaults to 0 (unlimited). In bytes per second. 1013# (Since 3.0) 1014# 1015# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 1016# (Since 3.1) 1017# 1018# @multifd-compression: Which compression method to use. Defaults to 1019# none. (Since 5.0) 1020# 1021# @multifd-zlib-level: Set the compression level to be used in live 1022# migration, the compression level is an integer between 0 and 9, 1023# where 0 means no compression, 1 means the best compression 1024# speed, and 9 means best compression ratio which will consume 1025# more CPU. Defaults to 1. (Since 5.0) 1026# 1027# @multifd-qatzip-level: Set the compression level to be used in live 1028# migration. The level is an integer between 1 and 9, where 1 means 1029# the best compression speed, and 9 means the best compression 1030# ratio which will consume more CPU. Defaults to 1. (Since 9.2) 1031# 1032# @multifd-zstd-level: Set the compression level to be used in live 1033# migration, the compression level is an integer between 0 and 20, 1034# where 0 means no compression, 1 means the best compression 1035# speed, and 20 means best compression ratio which will consume 1036# more CPU. Defaults to 1. (Since 5.0) 1037# 1038# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1039# aliases for the purpose of dirty bitmap migration. Such aliases 1040# may for example be the corresponding names on the opposite site. 1041# The mapping must be one-to-one, but not necessarily complete: On 1042# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1043# will be ignored. On the destination, encountering an unmapped 1044# alias in the incoming migration stream will result in a report, 1045# and all further bitmap migration data will then be discarded. 1046# Note that the destination does not know about bitmaps it does 1047# not receive, so there is no limitation or requirement regarding 1048# the number of bitmaps received, or how they are named, or on 1049# which nodes they are placed. By default (when this parameter 1050# has never been set), bitmap names are mapped to themselves. 1051# Nodes are mapped to their block device name if there is one, and 1052# to their node name otherwise. (Since 5.2) 1053# 1054# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 1055# limit during live migration. Should be in the range 1 to 1056# 1000ms. Defaults to 1000ms. (Since 8.1) 1057# 1058# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1059# Defaults to 1. (Since 8.1) 1060# 1061# @mode: Migration mode. See description in @MigMode. Default is 1062# 'normal'. (Since 8.2) 1063# 1064# @zero-page-detection: Whether and how to detect zero pages. 1065# See description in @ZeroPageDetection. Default is 'multifd'. 1066# (since 9.0) 1067# 1068# @direct-io: Open migration files with O_DIRECT when possible. This 1069# only has effect if the @mapped-ram capability is enabled. 1070# (Since 9.1) 1071# 1072# Features: 1073# 1074# @unstable: Members @x-checkpoint-delay and 1075# @x-vcpu-dirty-limit-period are experimental. 1076# 1077# TODO: either fuse back into MigrationParameters, or make 1078# MigrationParameters members mandatory 1079# 1080# Since: 2.4 1081## 1082{ 'struct': 'MigrateSetParameters', 1083 'data': { '*announce-initial': 'size', 1084 '*announce-max': 'size', 1085 '*announce-rounds': 'size', 1086 '*announce-step': 'size', 1087 '*throttle-trigger-threshold': 'uint8', 1088 '*cpu-throttle-initial': 'uint8', 1089 '*cpu-throttle-increment': 'uint8', 1090 '*cpu-throttle-tailslow': 'bool', 1091 '*tls-creds': 'StrOrNull', 1092 '*tls-hostname': 'StrOrNull', 1093 '*tls-authz': 'StrOrNull', 1094 '*max-bandwidth': 'size', 1095 '*avail-switchover-bandwidth': 'size', 1096 '*downtime-limit': 'uint64', 1097 '*x-checkpoint-delay': { 'type': 'uint32', 1098 'features': [ 'unstable' ] }, 1099 '*multifd-channels': 'uint8', 1100 '*xbzrle-cache-size': 'size', 1101 '*max-postcopy-bandwidth': 'size', 1102 '*max-cpu-throttle': 'uint8', 1103 '*multifd-compression': 'MultiFDCompression', 1104 '*multifd-zlib-level': 'uint8', 1105 '*multifd-qatzip-level': 'uint8', 1106 '*multifd-zstd-level': 'uint8', 1107 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1108 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1109 'features': [ 'unstable' ] }, 1110 '*vcpu-dirty-limit': 'uint64', 1111 '*mode': 'MigMode', 1112 '*zero-page-detection': 'ZeroPageDetection', 1113 '*direct-io': 'bool' } } 1114 1115## 1116# @migrate-set-parameters: 1117# 1118# Set various migration parameters. 1119# 1120# Since: 2.4 1121# 1122# .. qmp-example:: 1123# 1124# -> { "execute": "migrate-set-parameters" , 1125# "arguments": { "multifd-channels": 5 } } 1126# <- { "return": {} } 1127## 1128{ 'command': 'migrate-set-parameters', 'boxed': true, 1129 'data': 'MigrateSetParameters' } 1130 1131## 1132# @MigrationParameters: 1133# 1134# The optional members aren't actually optional. 1135# 1136# @announce-initial: Initial delay (in milliseconds) before sending 1137# the first announce (Since 4.0) 1138# 1139# @announce-max: Maximum delay (in milliseconds) between packets in 1140# the announcement (Since 4.0) 1141# 1142# @announce-rounds: Number of self-announce packets sent after 1143# migration (Since 4.0) 1144# 1145# @announce-step: Increase in delay (in milliseconds) between 1146# subsequent packets in the announcement (Since 4.0) 1147# 1148# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 1149# bytes_xfer_period to trigger throttling. It is expressed as 1150# percentage. The default value is 50. (Since 5.0) 1151# 1152# @cpu-throttle-initial: Initial percentage of time guest cpus are 1153# throttled when migration auto-converge is activated. 1154# (Since 2.7) 1155# 1156# @cpu-throttle-increment: throttle percentage increase each time 1157# auto-converge detects that migration is not making progress. 1158# (Since 2.7) 1159# 1160# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage. 1161# At the tail stage of throttling, the Guest is very sensitive to 1162# CPU percentage while the @cpu-throttle -increment is excessive 1163# usually at tail stage. If this parameter is true, we will 1164# compute the ideal CPU percentage used by the Guest, which may 1165# exactly make the dirty rate match the dirty rate threshold. 1166# Then we will choose a smaller throttle increment between the one 1167# specified by @cpu-throttle-increment and the one generated by 1168# ideal CPU percentage. Therefore, it is compatible to 1169# traditional throttling, meanwhile the throttle increment won't 1170# be excessive at tail stage. The default value is false. 1171# (Since 5.1) 1172# 1173# @tls-creds: ID of the 'tls-creds' object that provides credentials 1174# for establishing a TLS connection over the migration data 1175# channel. On the outgoing side of the migration, the credentials 1176# must be for a 'client' endpoint, while for the incoming side the 1177# credentials must be for a 'server' endpoint. An empty string 1178# means that QEMU will use plain text mode for migration, rather 1179# than TLS. (Since 2.7) 1180# 1181# Note: 2.8 omits empty @tls-creds instead. 1182# 1183# @tls-hostname: migration target's hostname for validating the 1184# server's x509 certificate identity. If empty, QEMU will use the 1185# hostname from the migration URI, if any. (Since 2.7) 1186# 1187# Note: 2.8 omits empty @tls-hostname instead. 1188# 1189# @tls-authz: ID of the 'authz' object subclass that provides access 1190# control checking of the TLS x509 certificate distinguished name. 1191# (Since 4.0) 1192# 1193# @max-bandwidth: maximum speed for migration, in bytes per second. 1194# (Since 2.8) 1195# 1196# @avail-switchover-bandwidth: to set the available bandwidth that 1197# migration can use during switchover phase. **Note:** this does 1198# not limit the bandwidth during switchover, but only for 1199# calculations when making decisions to switchover. By default, 1200# this value is zero, which means QEMU will estimate the bandwidth 1201# automatically. This can be set when the estimated value is not 1202# accurate, while the user is able to guarantee such bandwidth is 1203# available when switching over. When specified correctly, this 1204# can make the switchover decision much more accurate. 1205# (Since 8.2) 1206# 1207# @downtime-limit: set maximum tolerated downtime for migration. 1208# maximum downtime in milliseconds (Since 2.8) 1209# 1210# @x-checkpoint-delay: the delay time between two COLO checkpoints. 1211# (Since 2.8) 1212# 1213# @multifd-channels: Number of channels used to migrate data in 1214# parallel. This is the same number that the number of sockets 1215# used for migration. The default value is 2 (since 4.0) 1216# 1217# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1218# needs to be a multiple of the target page size and a power of 2 1219# (Since 2.11) 1220# 1221# @max-postcopy-bandwidth: Background transfer bandwidth during 1222# postcopy. Defaults to 0 (unlimited). In bytes per second. 1223# (Since 3.0) 1224# 1225# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 1226# (Since 3.1) 1227# 1228# @multifd-compression: Which compression method to use. Defaults to 1229# none. (Since 5.0) 1230# 1231# @multifd-zlib-level: Set the compression level to be used in live 1232# migration, the compression level is an integer between 0 and 9, 1233# where 0 means no compression, 1 means the best compression 1234# speed, and 9 means best compression ratio which will consume 1235# more CPU. Defaults to 1. (Since 5.0) 1236# 1237# @multifd-qatzip-level: Set the compression level to be used in live 1238# migration. The level is an integer between 1 and 9, where 1 means 1239# the best compression speed, and 9 means the best compression 1240# ratio which will consume more CPU. Defaults to 1. (Since 9.2) 1241# 1242# @multifd-zstd-level: Set the compression level to be used in live 1243# migration, the compression level is an integer between 0 and 20, 1244# where 0 means no compression, 1 means the best compression 1245# speed, and 20 means best compression ratio which will consume 1246# more CPU. Defaults to 1. (Since 5.0) 1247# 1248# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1249# aliases for the purpose of dirty bitmap migration. Such aliases 1250# may for example be the corresponding names on the opposite site. 1251# The mapping must be one-to-one, but not necessarily complete: On 1252# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1253# will be ignored. On the destination, encountering an unmapped 1254# alias in the incoming migration stream will result in a report, 1255# and all further bitmap migration data will then be discarded. 1256# Note that the destination does not know about bitmaps it does 1257# not receive, so there is no limitation or requirement regarding 1258# the number of bitmaps received, or how they are named, or on 1259# which nodes they are placed. By default (when this parameter 1260# has never been set), bitmap names are mapped to themselves. 1261# Nodes are mapped to their block device name if there is one, and 1262# to their node name otherwise. (Since 5.2) 1263# 1264# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 1265# limit during live migration. Should be in the range 1 to 1266# 1000ms. Defaults to 1000ms. (Since 8.1) 1267# 1268# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1269# Defaults to 1. (Since 8.1) 1270# 1271# @mode: Migration mode. See description in @MigMode. Default is 1272# 'normal'. (Since 8.2) 1273# 1274# @zero-page-detection: Whether and how to detect zero pages. 1275# See description in @ZeroPageDetection. Default is 'multifd'. 1276# (since 9.0) 1277# 1278# @direct-io: Open migration files with O_DIRECT when possible. This 1279# only has effect if the @mapped-ram capability is enabled. 1280# (Since 9.1) 1281# 1282# Features: 1283# 1284# @unstable: Members @x-checkpoint-delay and 1285# @x-vcpu-dirty-limit-period are experimental. 1286# 1287# Since: 2.4 1288## 1289{ 'struct': 'MigrationParameters', 1290 'data': { '*announce-initial': 'size', 1291 '*announce-max': 'size', 1292 '*announce-rounds': 'size', 1293 '*announce-step': 'size', 1294 '*throttle-trigger-threshold': 'uint8', 1295 '*cpu-throttle-initial': 'uint8', 1296 '*cpu-throttle-increment': 'uint8', 1297 '*cpu-throttle-tailslow': 'bool', 1298 '*tls-creds': 'str', 1299 '*tls-hostname': 'str', 1300 '*tls-authz': 'str', 1301 '*max-bandwidth': 'size', 1302 '*avail-switchover-bandwidth': 'size', 1303 '*downtime-limit': 'uint64', 1304 '*x-checkpoint-delay': { 'type': 'uint32', 1305 'features': [ 'unstable' ] }, 1306 '*multifd-channels': 'uint8', 1307 '*xbzrle-cache-size': 'size', 1308 '*max-postcopy-bandwidth': 'size', 1309 '*max-cpu-throttle': 'uint8', 1310 '*multifd-compression': 'MultiFDCompression', 1311 '*multifd-zlib-level': 'uint8', 1312 '*multifd-qatzip-level': 'uint8', 1313 '*multifd-zstd-level': 'uint8', 1314 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1315 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1316 'features': [ 'unstable' ] }, 1317 '*vcpu-dirty-limit': 'uint64', 1318 '*mode': 'MigMode', 1319 '*zero-page-detection': 'ZeroPageDetection', 1320 '*direct-io': 'bool' } } 1321 1322## 1323# @query-migrate-parameters: 1324# 1325# Return information about the current migration parameters 1326# 1327# Returns: @MigrationParameters 1328# 1329# Since: 2.4 1330# 1331# .. qmp-example:: 1332# 1333# -> { "execute": "query-migrate-parameters" } 1334# <- { "return": { 1335# "multifd-channels": 2, 1336# "cpu-throttle-increment": 10, 1337# "cpu-throttle-initial": 20, 1338# "max-bandwidth": 33554432, 1339# "downtime-limit": 300 1340# } 1341# } 1342## 1343{ 'command': 'query-migrate-parameters', 1344 'returns': 'MigrationParameters' } 1345 1346## 1347# @migrate-start-postcopy: 1348# 1349# Followup to a migration command to switch the migration to postcopy 1350# mode. The postcopy-ram capability must be set on both source and 1351# destination before the original migration command. 1352# 1353# Since: 2.5 1354# 1355# .. qmp-example:: 1356# 1357# -> { "execute": "migrate-start-postcopy" } 1358# <- { "return": {} } 1359## 1360{ 'command': 'migrate-start-postcopy' } 1361 1362## 1363# @MIGRATION: 1364# 1365# Emitted when a migration event happens 1366# 1367# @status: @MigrationStatus describing the current migration status. 1368# 1369# Since: 2.4 1370# 1371# .. qmp-example:: 1372# 1373# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001}, 1374# "event": "MIGRATION", 1375# "data": {"status": "completed"} } 1376## 1377{ 'event': 'MIGRATION', 1378 'data': {'status': 'MigrationStatus'}} 1379 1380## 1381# @MIGRATION_PASS: 1382# 1383# Emitted from the source side of a migration at the start of each 1384# pass (when it syncs the dirty bitmap) 1385# 1386# @pass: An incrementing count (starting at 1 on the first pass) 1387# 1388# Since: 2.6 1389# 1390# .. qmp-example:: 1391# 1392# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225}, 1393# "event": "MIGRATION_PASS", "data": {"pass": 2} } 1394## 1395{ 'event': 'MIGRATION_PASS', 1396 'data': { 'pass': 'int' } } 1397 1398## 1399# @COLOMessage: 1400# 1401# The message transmission between Primary side and Secondary side. 1402# 1403# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing 1404# 1405# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for 1406# checkpointing 1407# 1408# @checkpoint-reply: SVM gets PVM's checkpoint request 1409# 1410# @vmstate-send: VM's state will be sent by PVM. 1411# 1412# @vmstate-size: The total size of VMstate. 1413# 1414# @vmstate-received: VM's state has been received by SVM. 1415# 1416# @vmstate-loaded: VM's state has been loaded by SVM. 1417# 1418# Since: 2.8 1419## 1420{ 'enum': 'COLOMessage', 1421 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply', 1422 'vmstate-send', 'vmstate-size', 'vmstate-received', 1423 'vmstate-loaded' ] } 1424 1425## 1426# @COLOMode: 1427# 1428# The COLO current mode. 1429# 1430# @none: COLO is disabled. 1431# 1432# @primary: COLO node in primary side. 1433# 1434# @secondary: COLO node in slave side. 1435# 1436# Since: 2.8 1437## 1438{ 'enum': 'COLOMode', 1439 'data': [ 'none', 'primary', 'secondary'] } 1440 1441## 1442# @FailoverStatus: 1443# 1444# An enumeration of COLO failover status 1445# 1446# @none: no failover has ever happened 1447# 1448# @require: got failover requirement but not handled 1449# 1450# @active: in the process of doing failover 1451# 1452# @completed: finish the process of failover 1453# 1454# @relaunch: restart the failover process, from 'none' -> 'completed' 1455# (Since 2.9) 1456# 1457# Since: 2.8 1458## 1459{ 'enum': 'FailoverStatus', 1460 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] } 1461 1462## 1463# @COLO_EXIT: 1464# 1465# Emitted when VM finishes COLO mode due to some errors happening or 1466# at the request of users. 1467# 1468# @mode: report COLO mode when COLO exited. 1469# 1470# @reason: describes the reason for the COLO exit. 1471# 1472# Since: 3.1 1473# 1474# .. qmp-example:: 1475# 1476# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172}, 1477# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } } 1478## 1479{ 'event': 'COLO_EXIT', 1480 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } } 1481 1482## 1483# @COLOExitReason: 1484# 1485# The reason for a COLO exit. 1486# 1487# @none: failover has never happened. This state does not occur in 1488# the COLO_EXIT event, and is only visible in the result of 1489# query-colo-status. 1490# 1491# @request: COLO exit is due to an external request. 1492# 1493# @error: COLO exit is due to an internal error. 1494# 1495# @processing: COLO is currently handling a failover (since 4.0). 1496# 1497# Since: 3.1 1498## 1499{ 'enum': 'COLOExitReason', 1500 'data': [ 'none', 'request', 'error' , 'processing' ] } 1501 1502## 1503# @x-colo-lost-heartbeat: 1504# 1505# Tell QEMU that heartbeat is lost, request it to do takeover 1506# procedures. If this command is sent to the PVM, the Primary side 1507# will exit COLO mode. If sent to the Secondary, the Secondary side 1508# will run failover work, then takes over server operation to become 1509# the service VM. 1510# 1511# Features: 1512# 1513# @unstable: This command is experimental. 1514# 1515# Since: 2.8 1516# 1517# .. qmp-example:: 1518# 1519# -> { "execute": "x-colo-lost-heartbeat" } 1520# <- { "return": {} } 1521## 1522{ 'command': 'x-colo-lost-heartbeat', 1523 'features': [ 'unstable' ], 1524 'if': 'CONFIG_REPLICATION' } 1525 1526## 1527# @migrate_cancel: 1528# 1529# Cancel the currently executing migration process. Allows a new 1530# migration to be started right after. When postcopy-ram is in use, 1531# cancelling is not allowed after the postcopy phase has started. 1532# 1533# .. note:: This command succeeds even if there is no migration 1534# process running. 1535# 1536# Since: 0.14 1537# 1538# .. qmp-example:: 1539# 1540# -> { "execute": "migrate_cancel" } 1541# <- { "return": {} } 1542## 1543{ 'command': 'migrate_cancel' } 1544 1545## 1546# @migrate-continue: 1547# 1548# Continue migration when it's in a paused state. 1549# 1550# @state: The state the migration is currently expected to be in 1551# 1552# Since: 2.11 1553# 1554# .. qmp-example:: 1555# 1556# -> { "execute": "migrate-continue" , "arguments": 1557# { "state": "pre-switchover" } } 1558# <- { "return": {} } 1559## 1560{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} } 1561 1562## 1563# @MigrationAddressType: 1564# 1565# The migration stream transport mechanisms. 1566# 1567# @socket: Migrate via socket. 1568# 1569# @exec: Direct the migration stream to another process. 1570# 1571# @rdma: Migrate via RDMA. 1572# 1573# @file: Direct the migration stream to a file. 1574# 1575# Since: 8.2 1576## 1577{ 'enum': 'MigrationAddressType', 1578 'data': [ 'socket', 'exec', 'rdma', 'file' ] } 1579 1580## 1581# @FileMigrationArgs: 1582# 1583# @filename: The file to receive the migration stream 1584# 1585# @offset: The file offset where the migration stream will start 1586# 1587# Since: 8.2 1588## 1589{ 'struct': 'FileMigrationArgs', 1590 'data': { 'filename': 'str', 1591 'offset': 'uint64' } } 1592 1593## 1594# @MigrationExecCommand: 1595# 1596# @args: command (list head) and arguments to execute. 1597# 1598# Since: 8.2 1599## 1600{ 'struct': 'MigrationExecCommand', 1601 'data': {'args': [ 'str' ] } } 1602 1603## 1604# @MigrationAddress: 1605# 1606# Migration endpoint configuration. 1607# 1608# @transport: The migration stream transport mechanism 1609# 1610# Since: 8.2 1611## 1612{ 'union': 'MigrationAddress', 1613 'base': { 'transport' : 'MigrationAddressType'}, 1614 'discriminator': 'transport', 1615 'data': { 1616 'socket': 'SocketAddress', 1617 'exec': 'MigrationExecCommand', 1618 'rdma': 'InetSocketAddress', 1619 'file': 'FileMigrationArgs' } } 1620 1621## 1622# @MigrationChannelType: 1623# 1624# The migration channel-type request options. 1625# 1626# @main: Main outbound migration channel. 1627# @cpr: Checkpoint and restart state channel. 1628# 1629# Since: 8.1 1630## 1631{ 'enum': 'MigrationChannelType', 1632 'data': [ 'main', 'cpr' ] } 1633 1634## 1635# @MigrationChannel: 1636# 1637# Migration stream channel parameters. 1638# 1639# @channel-type: Channel type for transferring packet information. 1640# 1641# @addr: Migration endpoint configuration on destination interface. 1642# 1643# Since: 8.1 1644## 1645{ 'struct': 'MigrationChannel', 1646 'data': { 1647 'channel-type': 'MigrationChannelType', 1648 'addr': 'MigrationAddress' } } 1649 1650## 1651# @migrate: 1652# 1653# Migrates the current running guest to another Virtual Machine. 1654# 1655# @uri: the Uniform Resource Identifier of the destination VM 1656# 1657# @channels: list of migration stream channels with each stream in the 1658# list connected to a destination interface endpoint. 1659# 1660# @detach: this argument exists only for compatibility reasons and is 1661# ignored by QEMU 1662# 1663# @resume: resume one paused migration, default "off". (since 3.0) 1664# 1665# Features: 1666# 1667# @deprecated: Argument @detach is deprecated. 1668# 1669# Since: 0.14 1670# 1671# .. admonition:: Notes 1672# 1673# 1. The 'query-migrate' command should be used to check 1674# migration's progress and final result (this information is 1675# provided by the 'status' member). 1676# 1677# 2. The uri argument should have the Uniform Resource Identifier 1678# of default destination VM. This connection will be bound to 1679# default network. 1680# 1681# 3. For now, number of migration streams is restricted to one, 1682# i.e. number of items in 'channels' list is just 1. 1683# 1684# 4. The 'uri' and 'channels' arguments are mutually exclusive; 1685# exactly one of the two should be present. 1686# 1687# .. qmp-example:: 1688# 1689# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } } 1690# <- { "return": {} } 1691# 1692# -> { "execute": "migrate", 1693# "arguments": { 1694# "channels": [ { "channel-type": "main", 1695# "addr": { "transport": "socket", 1696# "type": "inet", 1697# "host": "10.12.34.9", 1698# "port": "1050" } } ] } } 1699# <- { "return": {} } 1700# 1701# -> { "execute": "migrate", 1702# "arguments": { 1703# "channels": [ { "channel-type": "main", 1704# "addr": { "transport": "exec", 1705# "args": [ "/bin/nc", "-p", "6000", 1706# "/some/sock" ] } } ] } } 1707# <- { "return": {} } 1708# 1709# -> { "execute": "migrate", 1710# "arguments": { 1711# "channels": [ { "channel-type": "main", 1712# "addr": { "transport": "rdma", 1713# "host": "10.12.34.9", 1714# "port": "1050" } } ] } } 1715# <- { "return": {} } 1716# 1717# -> { "execute": "migrate", 1718# "arguments": { 1719# "channels": [ { "channel-type": "main", 1720# "addr": { "transport": "file", 1721# "filename": "/tmp/migfile", 1722# "offset": "0x1000" } } ] } } 1723# <- { "return": {} } 1724## 1725{ 'command': 'migrate', 1726 'data': {'*uri': 'str', 1727 '*channels': [ 'MigrationChannel' ], 1728 '*detach': { 'type': 'bool', 'features': [ 'deprecated' ] }, 1729 '*resume': 'bool' } } 1730 1731## 1732# @migrate-incoming: 1733# 1734# Start an incoming migration. QEMU must have been started with 1735# -incoming defer. 1736# 1737# @uri: The Uniform Resource Identifier identifying the source or 1738# address to listen on 1739# 1740# @channels: list of migration stream channels with each stream in the 1741# list connected to a destination interface endpoint. 1742# 1743# @exit-on-error: Exit on incoming migration failure. Default true. 1744# When set to false, the failure triggers a MIGRATION event, and 1745# error details could be retrieved with query-migrate. 1746# (since 9.1) 1747# 1748# Since: 2.3 1749# 1750# .. admonition:: Notes 1751# 1752# 1. It's a bad idea to use a string for the uri, but it needs to 1753# stay compatible with -incoming and the format of the uri is 1754# already exposed above libvirt. 1755# 1756# 2. QEMU must be started with -incoming defer to allow 1757# migrate-incoming to be used. 1758# 1759# 3. The uri format is the same as for -incoming 1760# 1761# 4. For now, number of migration streams is restricted to one, 1762# i.e. number of items in 'channels' list is just 1. 1763# 1764# 5. The 'uri' and 'channels' arguments are mutually exclusive; 1765# exactly one of the two should be present. 1766# 1767# .. qmp-example:: 1768# 1769# -> { "execute": "migrate-incoming", 1770# "arguments": { "uri": "tcp:0:4446" } } 1771# <- { "return": {} } 1772# 1773# -> { "execute": "migrate-incoming", 1774# "arguments": { 1775# "channels": [ { "channel-type": "main", 1776# "addr": { "transport": "socket", 1777# "type": "inet", 1778# "host": "10.12.34.9", 1779# "port": "1050" } } ] } } 1780# <- { "return": {} } 1781# 1782# -> { "execute": "migrate-incoming", 1783# "arguments": { 1784# "channels": [ { "channel-type": "main", 1785# "addr": { "transport": "exec", 1786# "args": [ "/bin/nc", "-p", "6000", 1787# "/some/sock" ] } } ] } } 1788# <- { "return": {} } 1789# 1790# -> { "execute": "migrate-incoming", 1791# "arguments": { 1792# "channels": [ { "channel-type": "main", 1793# "addr": { "transport": "rdma", 1794# "host": "10.12.34.9", 1795# "port": "1050" } } ] } } 1796# <- { "return": {} } 1797## 1798{ 'command': 'migrate-incoming', 1799 'data': {'*uri': 'str', 1800 '*channels': [ 'MigrationChannel' ], 1801 '*exit-on-error': 'bool' } } 1802 1803## 1804# @xen-save-devices-state: 1805# 1806# Save the state of all devices to file. The RAM and the block 1807# devices of the VM are not saved by this command. 1808# 1809# @filename: the file to save the state of the devices to as binary 1810# data. See xen-save-devices-state.txt for a description of the 1811# binary format. 1812# 1813# @live: Optional argument to ask QEMU to treat this command as part 1814# of a live migration. Default to true. (since 2.11) 1815# 1816# Since: 1.1 1817# 1818# .. qmp-example:: 1819# 1820# -> { "execute": "xen-save-devices-state", 1821# "arguments": { "filename": "/tmp/save" } } 1822# <- { "return": {} } 1823## 1824{ 'command': 'xen-save-devices-state', 1825 'data': {'filename': 'str', '*live':'bool' } } 1826 1827## 1828# @xen-set-global-dirty-log: 1829# 1830# Enable or disable the global dirty log mode. 1831# 1832# @enable: true to enable, false to disable. 1833# 1834# Since: 1.3 1835# 1836# .. qmp-example:: 1837# 1838# -> { "execute": "xen-set-global-dirty-log", 1839# "arguments": { "enable": true } } 1840# <- { "return": {} } 1841## 1842{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1843 1844## 1845# @xen-load-devices-state: 1846# 1847# Load the state of all devices from file. The RAM and the block 1848# devices of the VM are not loaded by this command. 1849# 1850# @filename: the file to load the state of the devices from as binary 1851# data. See xen-save-devices-state.txt for a description of the 1852# binary format. 1853# 1854# Since: 2.7 1855# 1856# .. qmp-example:: 1857# 1858# -> { "execute": "xen-load-devices-state", 1859# "arguments": { "filename": "/tmp/resume" } } 1860# <- { "return": {} } 1861## 1862{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 1863 1864## 1865# @xen-set-replication: 1866# 1867# Enable or disable replication. 1868# 1869# @enable: true to enable, false to disable. 1870# 1871# @primary: true for primary or false for secondary. 1872# 1873# @failover: true to do failover, false to stop. Cannot be specified 1874# if 'enable' is true. Default value is false. 1875# 1876# .. qmp-example:: 1877# 1878# -> { "execute": "xen-set-replication", 1879# "arguments": {"enable": true, "primary": false} } 1880# <- { "return": {} } 1881# 1882# Since: 2.9 1883## 1884{ 'command': 'xen-set-replication', 1885 'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' }, 1886 'if': 'CONFIG_REPLICATION' } 1887 1888## 1889# @ReplicationStatus: 1890# 1891# The result format for 'query-xen-replication-status'. 1892# 1893# @error: true if an error happened, false if replication is normal. 1894# 1895# @desc: the human readable error description string, when @error is 1896# 'true'. 1897# 1898# Since: 2.9 1899## 1900{ 'struct': 'ReplicationStatus', 1901 'data': { 'error': 'bool', '*desc': 'str' }, 1902 'if': 'CONFIG_REPLICATION' } 1903 1904## 1905# @query-xen-replication-status: 1906# 1907# Query replication status while the vm is running. 1908# 1909# Returns: A @ReplicationStatus object showing the status. 1910# 1911# .. qmp-example:: 1912# 1913# -> { "execute": "query-xen-replication-status" } 1914# <- { "return": { "error": false } } 1915# 1916# Since: 2.9 1917## 1918{ 'command': 'query-xen-replication-status', 1919 'returns': 'ReplicationStatus', 1920 'if': 'CONFIG_REPLICATION' } 1921 1922## 1923# @xen-colo-do-checkpoint: 1924# 1925# Xen uses this command to notify replication to trigger a checkpoint. 1926# 1927# .. qmp-example:: 1928# 1929# -> { "execute": "xen-colo-do-checkpoint" } 1930# <- { "return": {} } 1931# 1932# Since: 2.9 1933## 1934{ 'command': 'xen-colo-do-checkpoint', 1935 'if': 'CONFIG_REPLICATION' } 1936 1937## 1938# @COLOStatus: 1939# 1940# The result format for 'query-colo-status'. 1941# 1942# @mode: COLO running mode. If COLO is running, this field will 1943# return 'primary' or 'secondary'. 1944# 1945# @last-mode: COLO last running mode. If COLO is running, this field 1946# will return same like mode field, after failover we can use this 1947# field to get last colo mode. (since 4.0) 1948# 1949# @reason: describes the reason for the COLO exit. 1950# 1951# Since: 3.1 1952## 1953{ 'struct': 'COLOStatus', 1954 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode', 1955 'reason': 'COLOExitReason' }, 1956 'if': 'CONFIG_REPLICATION' } 1957 1958## 1959# @query-colo-status: 1960# 1961# Query COLO status while the vm is running. 1962# 1963# Returns: A @COLOStatus object showing the status. 1964# 1965# .. qmp-example:: 1966# 1967# -> { "execute": "query-colo-status" } 1968# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } } 1969# 1970# Since: 3.1 1971## 1972{ 'command': 'query-colo-status', 1973 'returns': 'COLOStatus', 1974 'if': 'CONFIG_REPLICATION' } 1975 1976## 1977# @migrate-recover: 1978# 1979# Provide a recovery migration stream URI. 1980# 1981# @uri: the URI to be used for the recovery of migration stream. 1982# 1983# .. qmp-example:: 1984# 1985# -> { "execute": "migrate-recover", 1986# "arguments": { "uri": "tcp:192.168.1.200:12345" } } 1987# <- { "return": {} } 1988# 1989# Since: 3.0 1990## 1991{ 'command': 'migrate-recover', 1992 'data': { 'uri': 'str' }, 1993 'allow-oob': true } 1994 1995## 1996# @migrate-pause: 1997# 1998# Pause a migration. Currently it only supports postcopy. 1999# 2000# .. qmp-example:: 2001# 2002# -> { "execute": "migrate-pause" } 2003# <- { "return": {} } 2004# 2005# Since: 3.0 2006## 2007{ 'command': 'migrate-pause', 'allow-oob': true } 2008 2009## 2010# @UNPLUG_PRIMARY: 2011# 2012# Emitted from source side of a migration when migration state is 2013# WAIT_UNPLUG. Device was unplugged by guest operating system. 2014# Device resources in QEMU are kept on standby to be able to re-plug 2015# it in case of migration failure. 2016# 2017# @device-id: QEMU device id of the unplugged device 2018# 2019# Since: 4.2 2020# 2021# .. qmp-example:: 2022# 2023# <- { "event": "UNPLUG_PRIMARY", 2024# "data": { "device-id": "hostdev0" }, 2025# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 2026## 2027{ 'event': 'UNPLUG_PRIMARY', 2028 'data': { 'device-id': 'str' } } 2029 2030## 2031# @DirtyRateVcpu: 2032# 2033# Dirty rate of vcpu. 2034# 2035# @id: vcpu index. 2036# 2037# @dirty-rate: dirty rate. 2038# 2039# Since: 6.2 2040## 2041{ 'struct': 'DirtyRateVcpu', 2042 'data': { 'id': 'int', 'dirty-rate': 'int64' } } 2043 2044## 2045# @DirtyRateStatus: 2046# 2047# Dirty page rate measurement status. 2048# 2049# @unstarted: measuring thread has not been started yet 2050# 2051# @measuring: measuring thread is running 2052# 2053# @measured: dirty page rate is measured and the results are available 2054# 2055# Since: 5.2 2056## 2057{ 'enum': 'DirtyRateStatus', 2058 'data': [ 'unstarted', 'measuring', 'measured'] } 2059 2060## 2061# @DirtyRateMeasureMode: 2062# 2063# Method used to measure dirty page rate. Differences between 2064# available methods are explained in @calc-dirty-rate. 2065# 2066# @page-sampling: use page sampling 2067# 2068# @dirty-ring: use dirty ring 2069# 2070# @dirty-bitmap: use dirty bitmap 2071# 2072# Since: 6.2 2073## 2074{ 'enum': 'DirtyRateMeasureMode', 2075 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] } 2076 2077## 2078# @TimeUnit: 2079# 2080# Specifies unit in which time-related value is specified. 2081# 2082# @second: value is in seconds 2083# 2084# @millisecond: value is in milliseconds 2085# 2086# Since: 8.2 2087## 2088{ 'enum': 'TimeUnit', 2089 'data': ['second', 'millisecond'] } 2090 2091## 2092# @DirtyRateInfo: 2093# 2094# Information about measured dirty page rate. 2095# 2096# @dirty-rate: an estimate of the dirty page rate of the VM in units 2097# of MiB/s. Value is present only when @status is 'measured'. 2098# 2099# @status: current status of dirty page rate measurements 2100# 2101# @start-time: start time in units of second for calculation 2102# 2103# @calc-time: time period for which dirty page rate was measured, 2104# expressed and rounded down to @calc-time-unit. 2105# 2106# @calc-time-unit: time unit of @calc-time (Since 8.2) 2107# 2108# @sample-pages: number of sampled pages per GiB of guest memory. 2109# Valid only in page-sampling mode (Since 6.1) 2110# 2111# @mode: mode that was used to measure dirty page rate (Since 6.2) 2112# 2113# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was 2114# specified (Since 6.2) 2115# 2116# Since: 5.2 2117## 2118{ 'struct': 'DirtyRateInfo', 2119 'data': {'*dirty-rate': 'int64', 2120 'status': 'DirtyRateStatus', 2121 'start-time': 'int64', 2122 'calc-time': 'int64', 2123 'calc-time-unit': 'TimeUnit', 2124 'sample-pages': 'uint64', 2125 'mode': 'DirtyRateMeasureMode', 2126 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } } 2127 2128## 2129# @calc-dirty-rate: 2130# 2131# Start measuring dirty page rate of the VM. Results can be retrieved 2132# with @query-dirty-rate after measurements are completed. 2133# 2134# Dirty page rate is the number of pages changed in a given time 2135# period expressed in MiB/s. The following methods of calculation are 2136# available: 2137# 2138# 1. In page sampling mode, a random subset of pages are selected and 2139# hashed twice: once at the beginning of measurement time period, 2140# and once again at the end. If two hashes for some page are 2141# different, the page is counted as changed. Since this method 2142# relies on sampling and hashing, calculated dirty page rate is 2143# only an estimate of its true value. Increasing @sample-pages 2144# improves estimation quality at the cost of higher computational 2145# overhead. 2146# 2147# 2. Dirty bitmap mode captures writes to memory (for example by 2148# temporarily revoking write access to all pages) and counting page 2149# faults. Information about modified pages is collected into a 2150# bitmap, where each bit corresponds to one guest page. This mode 2151# requires that KVM accelerator property "dirty-ring-size" is *not* 2152# set. 2153# 2154# 3. Dirty ring mode is similar to dirty bitmap mode, but the 2155# information about modified pages is collected into ring buffer. 2156# This mode tracks page modification per each vCPU separately. It 2157# requires that KVM accelerator property "dirty-ring-size" is set. 2158# 2159# @calc-time: time period for which dirty page rate is calculated. By 2160# default it is specified in seconds, but the unit can be set 2161# explicitly with @calc-time-unit. Note that larger @calc-time 2162# values will typically result in smaller dirty page rates because 2163# page dirtying is a one-time event. Once some page is counted as 2164# dirty during @calc-time period, further writes to this page will 2165# not increase dirty page rate anymore. 2166# 2167# @calc-time-unit: time unit in which @calc-time is specified. By 2168# default it is seconds. (Since 8.2) 2169# 2170# @sample-pages: number of sampled pages per each GiB of guest memory. 2171# Default value is 512. For 4KiB guest pages this corresponds to 2172# sampling ratio of 0.2%. This argument is used only in page 2173# sampling mode. (Since 6.1) 2174# 2175# @mode: mechanism for tracking dirty pages. Default value is 2176# 'page-sampling'. Others are 'dirty-bitmap' and 'dirty-ring'. 2177# (Since 6.1) 2178# 2179# Since: 5.2 2180# 2181# .. qmp-example:: 2182# 2183# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1, 2184# "sample-pages": 512} } 2185# <- { "return": {} } 2186# 2187# .. qmp-example:: 2188# :annotated: 2189# 2190# Measure dirty rate using dirty bitmap for 500 milliseconds:: 2191# 2192# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500, 2193# "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} } 2194# 2195# <- { "return": {} } 2196## 2197{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64', 2198 '*calc-time-unit': 'TimeUnit', 2199 '*sample-pages': 'int', 2200 '*mode': 'DirtyRateMeasureMode'} } 2201 2202## 2203# @query-dirty-rate: 2204# 2205# Query results of the most recent invocation of @calc-dirty-rate. 2206# 2207# @calc-time-unit: time unit in which to report calculation time. 2208# By default it is reported in seconds. (Since 8.2) 2209# 2210# Since: 5.2 2211# 2212# .. qmp-example:: 2213# :title: Measurement is in progress 2214# 2215# <- {"status": "measuring", "sample-pages": 512, 2216# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2217# "calc-time-unit": "second"} 2218# 2219# .. qmp-example:: 2220# :title: Measurement has been completed 2221# 2222# <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108, 2223# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2224# "calc-time-unit": "second"} 2225## 2226{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' }, 2227 'returns': 'DirtyRateInfo' } 2228 2229## 2230# @DirtyLimitInfo: 2231# 2232# Dirty page rate limit information of a virtual CPU. 2233# 2234# @cpu-index: index of a virtual CPU. 2235# 2236# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual 2237# CPU, 0 means unlimited. 2238# 2239# @current-rate: current dirty page rate (MB/s) for a virtual CPU. 2240# 2241# Since: 7.1 2242## 2243{ 'struct': 'DirtyLimitInfo', 2244 'data': { 'cpu-index': 'int', 2245 'limit-rate': 'uint64', 2246 'current-rate': 'uint64' } } 2247 2248## 2249# @set-vcpu-dirty-limit: 2250# 2251# Set the upper limit of dirty page rate for virtual CPUs. 2252# 2253# Requires KVM with accelerator property "dirty-ring-size" set. A 2254# virtual CPU's dirty page rate is a measure of its memory load. To 2255# observe dirty page rates, use @calc-dirty-rate. 2256# 2257# @cpu-index: index of a virtual CPU, default is all. 2258# 2259# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs. 2260# 2261# Since: 7.1 2262# 2263# .. qmp-example:: 2264# 2265# -> {"execute": "set-vcpu-dirty-limit"} 2266# "arguments": { "dirty-rate": 200, 2267# "cpu-index": 1 } } 2268# <- { "return": {} } 2269## 2270{ 'command': 'set-vcpu-dirty-limit', 2271 'data': { '*cpu-index': 'int', 2272 'dirty-rate': 'uint64' } } 2273 2274## 2275# @cancel-vcpu-dirty-limit: 2276# 2277# Cancel the upper limit of dirty page rate for virtual CPUs. 2278# 2279# Cancel the dirty page limit for the vCPU which has been set with 2280# set-vcpu-dirty-limit command. Note that this command requires 2281# support from dirty ring, same as the "set-vcpu-dirty-limit". 2282# 2283# @cpu-index: index of a virtual CPU, default is all. 2284# 2285# Since: 7.1 2286# 2287# .. qmp-example:: 2288# 2289# -> {"execute": "cancel-vcpu-dirty-limit"}, 2290# "arguments": { "cpu-index": 1 } } 2291# <- { "return": {} } 2292## 2293{ 'command': 'cancel-vcpu-dirty-limit', 2294 'data': { '*cpu-index': 'int'} } 2295 2296## 2297# @query-vcpu-dirty-limit: 2298# 2299# Return information about virtual CPU dirty page rate limits, if 2300# any. 2301# 2302# Since: 7.1 2303# 2304# .. qmp-example:: 2305# 2306# -> {"execute": "query-vcpu-dirty-limit"} 2307# <- {"return": [ 2308# { "limit-rate": 60, "current-rate": 3, "cpu-index": 0}, 2309# { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]} 2310## 2311{ 'command': 'query-vcpu-dirty-limit', 2312 'returns': [ 'DirtyLimitInfo' ] } 2313 2314## 2315# @MigrationThreadInfo: 2316# 2317# Information about migrationthreads 2318# 2319# @name: the name of migration thread 2320# 2321# @thread-id: ID of the underlying host thread 2322# 2323# Since: 7.2 2324## 2325{ 'struct': 'MigrationThreadInfo', 2326 'data': {'name': 'str', 2327 'thread-id': 'int'} } 2328 2329## 2330# @query-migrationthreads: 2331# 2332# Return information of migration threads 2333# 2334# Features: 2335# 2336# @deprecated: This command is deprecated with no replacement yet. 2337# 2338# Returns: @MigrationThreadInfo 2339# 2340# Since: 7.2 2341## 2342{ 'command': 'query-migrationthreads', 2343 'returns': ['MigrationThreadInfo'], 2344 'features': ['deprecated'] } 2345 2346## 2347# @snapshot-save: 2348# 2349# Save a VM snapshot 2350# 2351# @job-id: identifier for the newly created job 2352# 2353# @tag: name of the snapshot to create 2354# 2355# @vmstate: block device node name to save vmstate to 2356# 2357# @devices: list of block device node names to save a snapshot to 2358# 2359# Applications should not assume that the snapshot save is complete 2360# when this command returns. The job commands / events must be used 2361# to determine completion and to fetch details of any errors that 2362# arise. 2363# 2364# Note that execution of the guest CPUs may be stopped during the time 2365# it takes to save the snapshot. A future version of QEMU may ensure 2366# CPUs are executing continuously. 2367# 2368# It is strongly recommended that @devices contain all writable block 2369# device nodes if a consistent snapshot is required. 2370# 2371# If @tag already exists, an error will be reported 2372# 2373# .. qmp-example:: 2374# 2375# -> { "execute": "snapshot-save", 2376# "arguments": { 2377# "job-id": "snapsave0", 2378# "tag": "my-snap", 2379# "vmstate": "disk0", 2380# "devices": ["disk0", "disk1"] 2381# } 2382# } 2383# <- { "return": { } } 2384# <- {"event": "JOB_STATUS_CHANGE", 2385# "timestamp": {"seconds": 1432121972, "microseconds": 744001}, 2386# "data": {"status": "created", "id": "snapsave0"}} 2387# <- {"event": "JOB_STATUS_CHANGE", 2388# "timestamp": {"seconds": 1432122172, "microseconds": 744001}, 2389# "data": {"status": "running", "id": "snapsave0"}} 2390# <- {"event": "STOP", 2391# "timestamp": {"seconds": 1432122372, "microseconds": 744001} } 2392# <- {"event": "RESUME", 2393# "timestamp": {"seconds": 1432122572, "microseconds": 744001} } 2394# <- {"event": "JOB_STATUS_CHANGE", 2395# "timestamp": {"seconds": 1432122772, "microseconds": 744001}, 2396# "data": {"status": "waiting", "id": "snapsave0"}} 2397# <- {"event": "JOB_STATUS_CHANGE", 2398# "timestamp": {"seconds": 1432122972, "microseconds": 744001}, 2399# "data": {"status": "pending", "id": "snapsave0"}} 2400# <- {"event": "JOB_STATUS_CHANGE", 2401# "timestamp": {"seconds": 1432123172, "microseconds": 744001}, 2402# "data": {"status": "concluded", "id": "snapsave0"}} 2403# -> {"execute": "query-jobs"} 2404# <- {"return": [{"current-progress": 1, 2405# "status": "concluded", 2406# "total-progress": 1, 2407# "type": "snapshot-save", 2408# "id": "snapsave0"}]} 2409# 2410# Since: 6.0 2411## 2412{ 'command': 'snapshot-save', 2413 'data': { 'job-id': 'str', 2414 'tag': 'str', 2415 'vmstate': 'str', 2416 'devices': ['str'] } } 2417 2418## 2419# @snapshot-load: 2420# 2421# Load a VM snapshot 2422# 2423# @job-id: identifier for the newly created job 2424# 2425# @tag: name of the snapshot to load. 2426# 2427# @vmstate: block device node name to load vmstate from 2428# 2429# @devices: list of block device node names to load a snapshot from 2430# 2431# Applications should not assume that the snapshot load is complete 2432# when this command returns. The job commands / events must be used 2433# to determine completion and to fetch details of any errors that 2434# arise. 2435# 2436# Note that execution of the guest CPUs will be stopped during the 2437# time it takes to load the snapshot. 2438# 2439# It is strongly recommended that @devices contain all writable block 2440# device nodes that can have changed since the original @snapshot-save 2441# command execution. 2442# 2443# .. qmp-example:: 2444# 2445# -> { "execute": "snapshot-load", 2446# "arguments": { 2447# "job-id": "snapload0", 2448# "tag": "my-snap", 2449# "vmstate": "disk0", 2450# "devices": ["disk0", "disk1"] 2451# } 2452# } 2453# <- { "return": { } } 2454# <- {"event": "JOB_STATUS_CHANGE", 2455# "timestamp": {"seconds": 1472124172, "microseconds": 744001}, 2456# "data": {"status": "created", "id": "snapload0"}} 2457# <- {"event": "JOB_STATUS_CHANGE", 2458# "timestamp": {"seconds": 1472125172, "microseconds": 744001}, 2459# "data": {"status": "running", "id": "snapload0"}} 2460# <- {"event": "STOP", 2461# "timestamp": {"seconds": 1472125472, "microseconds": 744001} } 2462# <- {"event": "RESUME", 2463# "timestamp": {"seconds": 1472125872, "microseconds": 744001} } 2464# <- {"event": "JOB_STATUS_CHANGE", 2465# "timestamp": {"seconds": 1472126172, "microseconds": 744001}, 2466# "data": {"status": "waiting", "id": "snapload0"}} 2467# <- {"event": "JOB_STATUS_CHANGE", 2468# "timestamp": {"seconds": 1472127172, "microseconds": 744001}, 2469# "data": {"status": "pending", "id": "snapload0"}} 2470# <- {"event": "JOB_STATUS_CHANGE", 2471# "timestamp": {"seconds": 1472128172, "microseconds": 744001}, 2472# "data": {"status": "concluded", "id": "snapload0"}} 2473# -> {"execute": "query-jobs"} 2474# <- {"return": [{"current-progress": 1, 2475# "status": "concluded", 2476# "total-progress": 1, 2477# "type": "snapshot-load", 2478# "id": "snapload0"}]} 2479# 2480# Since: 6.0 2481## 2482{ 'command': 'snapshot-load', 2483 'data': { 'job-id': 'str', 2484 'tag': 'str', 2485 'vmstate': 'str', 2486 'devices': ['str'] } } 2487 2488## 2489# @snapshot-delete: 2490# 2491# Delete a VM snapshot 2492# 2493# @job-id: identifier for the newly created job 2494# 2495# @tag: name of the snapshot to delete. 2496# 2497# @devices: list of block device node names to delete a snapshot from 2498# 2499# Applications should not assume that the snapshot delete is complete 2500# when this command returns. The job commands / events must be used 2501# to determine completion and to fetch details of any errors that 2502# arise. 2503# 2504# .. qmp-example:: 2505# 2506# -> { "execute": "snapshot-delete", 2507# "arguments": { 2508# "job-id": "snapdelete0", 2509# "tag": "my-snap", 2510# "devices": ["disk0", "disk1"] 2511# } 2512# } 2513# <- { "return": { } } 2514# <- {"event": "JOB_STATUS_CHANGE", 2515# "timestamp": {"seconds": 1442124172, "microseconds": 744001}, 2516# "data": {"status": "created", "id": "snapdelete0"}} 2517# <- {"event": "JOB_STATUS_CHANGE", 2518# "timestamp": {"seconds": 1442125172, "microseconds": 744001}, 2519# "data": {"status": "running", "id": "snapdelete0"}} 2520# <- {"event": "JOB_STATUS_CHANGE", 2521# "timestamp": {"seconds": 1442126172, "microseconds": 744001}, 2522# "data": {"status": "waiting", "id": "snapdelete0"}} 2523# <- {"event": "JOB_STATUS_CHANGE", 2524# "timestamp": {"seconds": 1442127172, "microseconds": 744001}, 2525# "data": {"status": "pending", "id": "snapdelete0"}} 2526# <- {"event": "JOB_STATUS_CHANGE", 2527# "timestamp": {"seconds": 1442128172, "microseconds": 744001}, 2528# "data": {"status": "concluded", "id": "snapdelete0"}} 2529# -> {"execute": "query-jobs"} 2530# <- {"return": [{"current-progress": 1, 2531# "status": "concluded", 2532# "total-progress": 1, 2533# "type": "snapshot-delete", 2534# "id": "snapdelete0"}]} 2535# 2536# Since: 6.0 2537## 2538{ 'command': 'snapshot-delete', 2539 'data': { 'job-id': 'str', 2540 'tag': 'str', 2541 'devices': ['str'] } } 2542