xref: /openbmc/qemu/qapi/migration.json (revision 56266c6d)
1# -*- Mode: Python -*-
2# vim: filetype=python
3#
4
5##
6# = Migration
7##
8
9{ 'include': 'common.json' }
10{ 'include': 'sockets.json' }
11
12##
13# @MigrationStats:
14#
15# Detailed migration status.
16#
17# @transferred: amount of bytes already transferred to the target VM
18#
19# @remaining: amount of bytes remaining to be transferred to the target VM
20#
21# @total: total amount of bytes involved in the migration process
22#
23# @duplicate: number of duplicate (zero) pages (since 1.2)
24#
25# @skipped: number of skipped zero pages (since 1.5)
26#
27# @normal: number of normal pages (since 1.2)
28#
29# @normal-bytes: number of normal bytes sent (since 1.2)
30#
31# @dirty-pages-rate: number of pages dirtied by second by the
32#                    guest (since 1.3)
33#
34# @mbps: throughput in megabits/sec. (since 1.6)
35#
36# @dirty-sync-count: number of times that dirty ram was synchronized (since 2.1)
37#
38# @postcopy-requests: The number of page requests received from the destination
39#                     (since 2.7)
40#
41# @page-size: The number of bytes per page for the various page-based
42#             statistics (since 2.10)
43#
44# @multifd-bytes: The number of bytes sent through multifd (since 3.0)
45#
46# @pages-per-second: the number of memory pages transferred per second
47#                    (Since 4.0)
48#
49# @precopy-bytes: The number of bytes sent in the pre-copy phase
50#                 (since 7.0).
51#
52# @downtime-bytes: The number of bytes sent while the guest is paused
53#                  (since 7.0).
54#
55# @postcopy-bytes: The number of bytes sent during the post-copy phase
56#                  (since 7.0).
57#
58# @dirty-sync-missed-zero-copy: Number of times dirty RAM synchronization could
59#                               not avoid copying dirty pages. This is between
60#                               0 and @dirty-sync-count * @multifd-channels.
61#                               (since 7.1)
62# Since: 0.14
63##
64{ 'struct': 'MigrationStats',
65  'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
66           'duplicate': 'int', 'skipped': 'int', 'normal': 'int',
67           'normal-bytes': 'int', 'dirty-pages-rate' : 'int',
68           'mbps' : 'number', 'dirty-sync-count' : 'int',
69           'postcopy-requests' : 'int', 'page-size' : 'int',
70           'multifd-bytes' : 'uint64', 'pages-per-second' : 'uint64',
71           'precopy-bytes' : 'uint64', 'downtime-bytes' : 'uint64',
72           'postcopy-bytes' : 'uint64',
73           'dirty-sync-missed-zero-copy' : 'uint64' } }
74
75##
76# @XBZRLECacheStats:
77#
78# Detailed XBZRLE migration cache statistics
79#
80# @cache-size: XBZRLE cache size
81#
82# @bytes: amount of bytes already transferred to the target VM
83#
84# @pages: amount of pages transferred to the target VM
85#
86# @cache-miss: number of cache miss
87#
88# @cache-miss-rate: rate of cache miss (since 2.1)
89#
90# @encoding-rate: rate of encoded bytes (since 5.1)
91#
92# @overflow: number of overflows
93#
94# Since: 1.2
95##
96{ 'struct': 'XBZRLECacheStats',
97  'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
98           'cache-miss': 'int', 'cache-miss-rate': 'number',
99           'encoding-rate': 'number', 'overflow': 'int' } }
100
101##
102# @CompressionStats:
103#
104# Detailed migration compression statistics
105#
106# @pages: amount of pages compressed and transferred to the target VM
107#
108# @busy: count of times that no free thread was available to compress data
109#
110# @busy-rate: rate of thread busy
111#
112# @compressed-size: amount of bytes after compression
113#
114# @compression-rate: rate of compressed size
115#
116# Since: 3.1
117##
118{ 'struct': 'CompressionStats',
119  'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
120           'compressed-size': 'int', 'compression-rate': 'number' } }
121
122##
123# @MigrationStatus:
124#
125# An enumeration of migration status.
126#
127# @none: no migration has ever happened.
128#
129# @setup: migration process has been initiated.
130#
131# @cancelling: in the process of cancelling migration.
132#
133# @cancelled: cancelling migration is finished.
134#
135# @active: in the process of doing migration.
136#
137# @postcopy-active: like active, but now in postcopy mode. (since 2.5)
138#
139# @postcopy-paused: during postcopy but paused. (since 3.0)
140#
141# @postcopy-recover: trying to recover from a paused postcopy. (since 3.0)
142#
143# @completed: migration is finished.
144#
145# @failed: some error occurred during migration process.
146#
147# @colo: VM is in the process of fault tolerance, VM can not get into this
148#        state unless colo capability is enabled for migration. (since 2.8)
149#
150# @pre-switchover: Paused before device serialisation. (since 2.11)
151#
152# @device: During device serialisation when pause-before-switchover is enabled
153#          (since 2.11)
154#
155# @wait-unplug: wait for device unplug request by guest OS to be completed.
156#               (since 4.2)
157#
158# Since: 2.3
159##
160{ 'enum': 'MigrationStatus',
161  'data': [ 'none', 'setup', 'cancelling', 'cancelled',
162            'active', 'postcopy-active', 'postcopy-paused',
163            'postcopy-recover', 'completed', 'failed', 'colo',
164            'pre-switchover', 'device', 'wait-unplug' ] }
165##
166# @VfioStats:
167#
168# Detailed VFIO devices migration statistics
169#
170# @transferred: amount of bytes transferred to the target VM by VFIO devices
171#
172# Since: 5.2
173##
174{ 'struct': 'VfioStats',
175  'data': {'transferred': 'int' } }
176
177##
178# @MigrationInfo:
179#
180# Information about current migration process.
181#
182# @status: @MigrationStatus describing the current migration status.
183#          If this field is not returned, no migration process
184#          has been initiated
185#
186# @ram: @MigrationStats containing detailed migration
187#       status, only returned if status is 'active' or
188#       'completed'(since 1.2)
189#
190# @disk: @MigrationStats containing detailed disk migration
191#        status, only returned if status is 'active' and it is a block
192#        migration
193#
194# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
195#                migration statistics, only returned if XBZRLE feature is on and
196#                status is 'active' or 'completed' (since 1.2)
197#
198# @total-time: total amount of milliseconds since migration started.
199#              If migration has ended, it returns the total migration
200#              time. (since 1.2)
201#
202# @downtime: only present when migration finishes correctly
203#            total downtime in milliseconds for the guest.
204#            (since 1.3)
205#
206# @expected-downtime: only present while migration is active
207#                     expected downtime in milliseconds for the guest in last walk
208#                     of the dirty bitmap. (since 1.3)
209#
210# @setup-time: amount of setup time in milliseconds *before* the
211#              iterations begin but *after* the QMP command is issued. This is designed
212#              to provide an accounting of any activities (such as RDMA pinning) which
213#              may be expensive, but do not actually occur during the iterative
214#              migration rounds themselves. (since 1.6)
215#
216# @cpu-throttle-percentage: percentage of time guest cpus are being
217#                           throttled during auto-converge. This is only present when auto-converge
218#                           has started throttling guest cpus. (Since 2.7)
219#
220# @error-desc: the human readable error description string, when
221#              @status is 'failed'. Clients should not attempt to parse the
222#              error strings. (Since 2.7)
223#
224# @postcopy-blocktime: total time when all vCPU were blocked during postcopy
225#                      live migration. This is only present when the postcopy-blocktime
226#                      migration capability is enabled. (Since 3.0)
227#
228# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU.  This is
229#                           only present when the postcopy-blocktime migration capability
230#                           is enabled. (Since 3.0)
231#
232# @compression: migration compression statistics, only returned if compression
233#               feature is on and status is 'active' or 'completed' (Since 3.1)
234#
235# @socket-address: Only used for tcp, to know what the real port is (Since 4.0)
236#
237# @vfio: @VfioStats containing detailed VFIO devices migration statistics,
238#        only returned if VFIO device is present, migration is supported by all
239#        VFIO devices and status is 'active' or 'completed' (since 5.2)
240#
241# @blocked-reasons: A list of reasons an outgoing migration is blocked.
242#                   Present and non-empty when migration is blocked.
243#                   (since 6.0)
244#
245# Since: 0.14
246##
247{ 'struct': 'MigrationInfo',
248  'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
249           '*disk': 'MigrationStats',
250           '*vfio': 'VfioStats',
251           '*xbzrle-cache': 'XBZRLECacheStats',
252           '*total-time': 'int',
253           '*expected-downtime': 'int',
254           '*downtime': 'int',
255           '*setup-time': 'int',
256           '*cpu-throttle-percentage': 'int',
257           '*error-desc': 'str',
258           '*blocked-reasons': ['str'],
259           '*postcopy-blocktime' : 'uint32',
260           '*postcopy-vcpu-blocktime': ['uint32'],
261           '*compression': 'CompressionStats',
262           '*socket-address': ['SocketAddress'] } }
263
264##
265# @query-migrate:
266#
267# Returns information about current migration process. If migration
268# is active there will be another json-object with RAM migration
269# status and if block migration is active another one with block
270# migration status.
271#
272# Returns: @MigrationInfo
273#
274# Since: 0.14
275#
276# Examples:
277#
278# 1. Before the first migration
279#
280# -> { "execute": "query-migrate" }
281# <- { "return": {} }
282#
283# 2. Migration is done and has succeeded
284#
285# -> { "execute": "query-migrate" }
286# <- { "return": {
287#         "status": "completed",
288#         "total-time":12345,
289#         "setup-time":12345,
290#         "downtime":12345,
291#         "ram":{
292#           "transferred":123,
293#           "remaining":123,
294#           "total":246,
295#           "duplicate":123,
296#           "normal":123,
297#           "normal-bytes":123456,
298#           "dirty-sync-count":15
299#         }
300#      }
301#    }
302#
303# 3. Migration is done and has failed
304#
305# -> { "execute": "query-migrate" }
306# <- { "return": { "status": "failed" } }
307#
308# 4. Migration is being performed and is not a block migration:
309#
310# -> { "execute": "query-migrate" }
311# <- {
312#       "return":{
313#          "status":"active",
314#          "total-time":12345,
315#          "setup-time":12345,
316#          "expected-downtime":12345,
317#          "ram":{
318#             "transferred":123,
319#             "remaining":123,
320#             "total":246,
321#             "duplicate":123,
322#             "normal":123,
323#             "normal-bytes":123456,
324#             "dirty-sync-count":15
325#          }
326#       }
327#    }
328#
329# 5. Migration is being performed and is a block migration:
330#
331# -> { "execute": "query-migrate" }
332# <- {
333#       "return":{
334#          "status":"active",
335#          "total-time":12345,
336#          "setup-time":12345,
337#          "expected-downtime":12345,
338#          "ram":{
339#             "total":1057024,
340#             "remaining":1053304,
341#             "transferred":3720,
342#             "duplicate":123,
343#             "normal":123,
344#             "normal-bytes":123456,
345#             "dirty-sync-count":15
346#          },
347#          "disk":{
348#             "total":20971520,
349#             "remaining":20880384,
350#             "transferred":91136
351#          }
352#       }
353#    }
354#
355# 6. Migration is being performed and XBZRLE is active:
356#
357# -> { "execute": "query-migrate" }
358# <- {
359#       "return":{
360#          "status":"active",
361#          "total-time":12345,
362#          "setup-time":12345,
363#          "expected-downtime":12345,
364#          "ram":{
365#             "total":1057024,
366#             "remaining":1053304,
367#             "transferred":3720,
368#             "duplicate":10,
369#             "normal":3333,
370#             "normal-bytes":3412992,
371#             "dirty-sync-count":15
372#          },
373#          "xbzrle-cache":{
374#             "cache-size":67108864,
375#             "bytes":20971520,
376#             "pages":2444343,
377#             "cache-miss":2244,
378#             "cache-miss-rate":0.123,
379#             "encoding-rate":80.1,
380#             "overflow":34434
381#          }
382#       }
383#    }
384#
385##
386{ 'command': 'query-migrate', 'returns': 'MigrationInfo' }
387
388##
389# @MigrationCapability:
390#
391# Migration capabilities enumeration
392#
393# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length Encoding).
394#          This feature allows us to minimize migration traffic for certain work
395#          loads, by sending compressed difference of the pages
396#
397# @rdma-pin-all: Controls whether or not the entire VM memory footprint is
398#                mlock()'d on demand or all at once. Refer to docs/rdma.txt for usage.
399#                Disabled by default. (since 2.0)
400#
401# @zero-blocks: During storage migration encode blocks of zeroes efficiently. This
402#               essentially saves 1MB of zeroes per block on the wire. Enabling requires
403#               source and target VM to support this feature. To enable it is sufficient
404#               to enable the capability on the source VM. The feature is disabled by
405#               default. (since 1.6)
406#
407# @compress: Use multiple compression threads to accelerate live migration.
408#            This feature can help to reduce the migration traffic, by sending
409#            compressed pages. Please note that if compress and xbzrle are both
410#            on, compress only takes effect in the ram bulk stage, after that,
411#            it will be disabled and only xbzrle takes effect, this can help to
412#            minimize migration traffic. The feature is disabled by default.
413#            (since 2.4 )
414#
415# @events: generate events for each migration state change
416#          (since 2.4 )
417#
418# @auto-converge: If enabled, QEMU will automatically throttle down the guest
419#                 to speed up convergence of RAM migration. (since 1.6)
420#
421# @postcopy-ram: Start executing on the migration target before all of RAM has
422#                been migrated, pulling the remaining pages along as needed. The
423#                capacity must have the same setting on both source and target
424#                or migration will not even start. NOTE: If the migration fails during
425#                postcopy the VM will fail.  (since 2.6)
426#
427# @x-colo: If enabled, migration will never end, and the state of the VM on the
428#          primary side will be migrated continuously to the VM on secondary
429#          side, this process is called COarse-Grain LOck Stepping (COLO) for
430#          Non-stop Service. (since 2.8)
431#
432# @release-ram: if enabled, qemu will free the migrated ram pages on the source
433#               during postcopy-ram migration. (since 2.9)
434#
435# @block: If enabled, QEMU will also migrate the contents of all block
436#         devices.  Default is disabled.  A possible alternative uses
437#         mirror jobs to a builtin NBD server on the destination, which
438#         offers more flexibility.
439#         (Since 2.10)
440#
441# @return-path: If enabled, migration will use the return path even
442#               for precopy. (since 2.10)
443#
444# @pause-before-switchover: Pause outgoing migration before serialising device
445#                           state and before disabling block IO (since 2.11)
446#
447# @multifd: Use more than one fd for migration (since 4.0)
448#
449# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
450#                 (since 2.12)
451#
452# @postcopy-blocktime: Calculate downtime for postcopy live migration
453#                      (since 3.0)
454#
455# @late-block-activate: If enabled, the destination will not activate block
456#                       devices (and thus take locks) immediately at the end of migration.
457#                       (since 3.0)
458#
459# @x-ignore-shared: If enabled, QEMU will not migrate shared memory (since 4.0)
460#
461# @validate-uuid: Send the UUID of the source to allow the destination
462#                 to ensure it is the same. (since 4.2)
463#
464# @background-snapshot: If enabled, the migration stream will be a snapshot
465#                       of the VM exactly at the point when the migration
466#                       procedure starts. The VM RAM is saved with running VM.
467#                       (since 6.0)
468#
469# @zero-copy-send: Controls behavior on sending memory pages on migration.
470#                  When true, enables a zero-copy mechanism for sending
471#                  memory pages, if host supports it.
472#                  Requires that QEMU be permitted to use locked memory
473#                  for guest RAM pages.
474#                  (since 7.1)
475# @postcopy-preempt: If enabled, the migration process will allow postcopy
476#                    requests to preempt precopy stream, so postcopy requests
477#                    will be handled faster.  This is a performance feature and
478#                    should not affect the correctness of postcopy migration.
479#                    (since 7.1)
480#
481# Features:
482# @unstable: Members @x-colo and @x-ignore-shared are experimental.
483#
484# Since: 1.2
485##
486{ 'enum': 'MigrationCapability',
487  'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
488           'compress', 'events', 'postcopy-ram',
489           { 'name': 'x-colo', 'features': [ 'unstable' ] },
490           'release-ram',
491           'block', 'return-path', 'pause-before-switchover', 'multifd',
492           'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
493           { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
494           'validate-uuid', 'background-snapshot',
495           'zero-copy-send', 'postcopy-preempt'] }
496
497##
498# @MigrationCapabilityStatus:
499#
500# Migration capability information
501#
502# @capability: capability enum
503#
504# @state: capability state bool
505#
506# Since: 1.2
507##
508{ 'struct': 'MigrationCapabilityStatus',
509  'data': { 'capability' : 'MigrationCapability', 'state' : 'bool' } }
510
511##
512# @migrate-set-capabilities:
513#
514# Enable/Disable the following migration capabilities (like xbzrle)
515#
516# @capabilities: json array of capability modifications to make
517#
518# Since: 1.2
519#
520# Example:
521#
522# -> { "execute": "migrate-set-capabilities" , "arguments":
523#      { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
524# <- { "return": {} }
525#
526##
527{ 'command': 'migrate-set-capabilities',
528  'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
529
530##
531# @query-migrate-capabilities:
532#
533# Returns information about the current migration capabilities status
534#
535# Returns: @MigrationCapabilityStatus
536#
537# Since: 1.2
538#
539# Example:
540#
541# -> { "execute": "query-migrate-capabilities" }
542# <- { "return": [
543#       {"state": false, "capability": "xbzrle"},
544#       {"state": false, "capability": "rdma-pin-all"},
545#       {"state": false, "capability": "auto-converge"},
546#       {"state": false, "capability": "zero-blocks"},
547#       {"state": false, "capability": "compress"},
548#       {"state": true, "capability": "events"},
549#       {"state": false, "capability": "postcopy-ram"},
550#       {"state": false, "capability": "x-colo"}
551#    ]}
552#
553##
554{ 'command': 'query-migrate-capabilities', 'returns':   ['MigrationCapabilityStatus']}
555
556##
557# @MultiFDCompression:
558#
559# An enumeration of multifd compression methods.
560#
561# @none: no compression.
562# @zlib: use zlib compression method.
563# @zstd: use zstd compression method.
564#
565# Since: 5.0
566##
567{ 'enum': 'MultiFDCompression',
568  'data': [ 'none', 'zlib',
569            { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
570
571##
572# @BitmapMigrationBitmapAliasTransform:
573#
574# @persistent: If present, the bitmap will be made persistent
575#              or transient depending on this parameter.
576#
577# Since: 6.0
578##
579{ 'struct': 'BitmapMigrationBitmapAliasTransform',
580  'data': {
581      '*persistent': 'bool'
582  } }
583
584##
585# @BitmapMigrationBitmapAlias:
586#
587# @name: The name of the bitmap.
588#
589# @alias: An alias name for migration (for example the bitmap name on
590#         the opposite site).
591#
592# @transform: Allows the modification of the migrated bitmap.
593#             (since 6.0)
594#
595# Since: 5.2
596##
597{ 'struct': 'BitmapMigrationBitmapAlias',
598  'data': {
599      'name': 'str',
600      'alias': 'str',
601      '*transform': 'BitmapMigrationBitmapAliasTransform'
602  } }
603
604##
605# @BitmapMigrationNodeAlias:
606#
607# Maps a block node name and the bitmaps it has to aliases for dirty
608# bitmap migration.
609#
610# @node-name: A block node name.
611#
612# @alias: An alias block node name for migration (for example the
613#         node name on the opposite site).
614#
615# @bitmaps: Mappings for the bitmaps on this node.
616#
617# Since: 5.2
618##
619{ 'struct': 'BitmapMigrationNodeAlias',
620  'data': {
621      'node-name': 'str',
622      'alias': 'str',
623      'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
624  } }
625
626##
627# @MigrationParameter:
628#
629# Migration parameters enumeration
630#
631# @announce-initial: Initial delay (in milliseconds) before sending the first
632#                    announce (Since 4.0)
633#
634# @announce-max: Maximum delay (in milliseconds) between packets in the
635#                announcement (Since 4.0)
636#
637# @announce-rounds: Number of self-announce packets sent after migration
638#                   (Since 4.0)
639#
640# @announce-step: Increase in delay (in milliseconds) between subsequent
641#                 packets in the announcement (Since 4.0)
642#
643# @compress-level: Set the compression level to be used in live migration,
644#                  the compression level is an integer between 0 and 9, where 0 means
645#                  no compression, 1 means the best compression speed, and 9 means best
646#                  compression ratio which will consume more CPU.
647#
648# @compress-threads: Set compression thread count to be used in live migration,
649#                    the compression thread count is an integer between 1 and 255.
650#
651# @compress-wait-thread: Controls behavior when all compression threads are
652#                        currently busy. If true (default), wait for a free
653#                        compression thread to become available; otherwise,
654#                        send the page uncompressed. (Since 3.1)
655#
656# @decompress-threads: Set decompression thread count to be used in live
657#                      migration, the decompression thread count is an integer between 1
658#                      and 255. Usually, decompression is at least 4 times as fast as
659#                      compression, so set the decompress-threads to the number about 1/4
660#                      of compress-threads is adequate.
661#
662# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
663#                              to trigger throttling. It is expressed as percentage.
664#                              The default value is 50. (Since 5.0)
665#
666# @cpu-throttle-initial: Initial percentage of time guest cpus are throttled
667#                        when migration auto-converge is activated. The
668#                        default value is 20. (Since 2.7)
669#
670# @cpu-throttle-increment: throttle percentage increase each time
671#                          auto-converge detects that migration is not making
672#                          progress. The default value is 10. (Since 2.7)
673#
674# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
675#                         At the tail stage of throttling, the Guest is very
676#                         sensitive to CPU percentage while the @cpu-throttle
677#                         -increment is excessive usually at tail stage.
678#                         If this parameter is true, we will compute the ideal
679#                         CPU percentage used by the Guest, which may exactly make
680#                         the dirty rate match the dirty rate threshold. Then we
681#                         will choose a smaller throttle increment between the
682#                         one specified by @cpu-throttle-increment and the one
683#                         generated by ideal CPU percentage.
684#                         Therefore, it is compatible to traditional throttling,
685#                         meanwhile the throttle increment won't be excessive
686#                         at tail stage.
687#                         The default value is false. (Since 5.1)
688#
689# @tls-creds: ID of the 'tls-creds' object that provides credentials for
690#             establishing a TLS connection over the migration data channel.
691#             On the outgoing side of the migration, the credentials must
692#             be for a 'client' endpoint, while for the incoming side the
693#             credentials must be for a 'server' endpoint. Setting this
694#             will enable TLS for all migrations. The default is unset,
695#             resulting in unsecured migration at the QEMU level. (Since 2.7)
696#
697# @tls-hostname: hostname of the target host for the migration. This is
698#                required when using x509 based TLS credentials and the
699#                migration URI does not already include a hostname. For
700#                example if using fd: or exec: based migration, the
701#                hostname must be provided so that the server's x509
702#                certificate identity can be validated. (Since 2.7)
703#
704# @tls-authz: ID of the 'authz' object subclass that provides access control
705#             checking of the TLS x509 certificate distinguished name.
706#             This object is only resolved at time of use, so can be deleted
707#             and recreated on the fly while the migration server is active.
708#             If missing, it will default to denying access (Since 4.0)
709#
710# @max-bandwidth: to set maximum speed for migration. maximum speed in
711#                 bytes per second. (Since 2.8)
712#
713# @downtime-limit: set maximum tolerated downtime for migration. maximum
714#                  downtime in milliseconds (Since 2.8)
715#
716# @x-checkpoint-delay: The delay time (in ms) between two COLO checkpoints in
717#                      periodic mode. (Since 2.8)
718#
719# @block-incremental: Affects how much storage is migrated when the
720#                     block migration capability is enabled.  When false, the entire
721#                     storage backing chain is migrated into a flattened image at
722#                     the destination; when true, only the active qcow2 layer is
723#                     migrated and the destination must already have access to the
724#                     same backing chain as was used on the source.  (since 2.10)
725#
726# @multifd-channels: Number of channels used to migrate data in
727#                    parallel. This is the same number that the
728#                    number of sockets used for migration.  The
729#                    default value is 2 (since 4.0)
730#
731# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
732#                     needs to be a multiple of the target page size
733#                     and a power of 2
734#                     (Since 2.11)
735#
736# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
737#                          Defaults to 0 (unlimited).  In bytes per second.
738#                          (Since 3.0)
739#
740# @max-cpu-throttle: maximum cpu throttle percentage.
741#                    Defaults to 99. (Since 3.1)
742#
743# @multifd-compression: Which compression method to use.
744#                       Defaults to none. (Since 5.0)
745#
746# @multifd-zlib-level: Set the compression level to be used in live
747#                      migration, the compression level is an integer between 0
748#                      and 9, where 0 means no compression, 1 means the best
749#                      compression speed, and 9 means best compression ratio which
750#                      will consume more CPU.
751#                      Defaults to 1. (Since 5.0)
752#
753# @multifd-zstd-level: Set the compression level to be used in live
754#                      migration, the compression level is an integer between 0
755#                      and 20, where 0 means no compression, 1 means the best
756#                      compression speed, and 20 means best compression ratio which
757#                      will consume more CPU.
758#                      Defaults to 1. (Since 5.0)
759#
760#
761# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
762#                        aliases for the purpose of dirty bitmap migration.  Such
763#                        aliases may for example be the corresponding names on the
764#                        opposite site.
765#                        The mapping must be one-to-one, but not necessarily
766#                        complete: On the source, unmapped bitmaps and all bitmaps
767#                        on unmapped nodes will be ignored.  On the destination,
768#                        encountering an unmapped alias in the incoming migration
769#                        stream will result in a report, and all further bitmap
770#                        migration data will then be discarded.
771#                        Note that the destination does not know about bitmaps it
772#                        does not receive, so there is no limitation or requirement
773#                        regarding the number of bitmaps received, or how they are
774#                        named, or on which nodes they are placed.
775#                        By default (when this parameter has never been set), bitmap
776#                        names are mapped to themselves.  Nodes are mapped to their
777#                        block device name if there is one, and to their node name
778#                        otherwise. (Since 5.2)
779#
780# Features:
781# @unstable: Member @x-checkpoint-delay is experimental.
782#
783# Since: 2.4
784##
785{ 'enum': 'MigrationParameter',
786  'data': ['announce-initial', 'announce-max',
787           'announce-rounds', 'announce-step',
788           'compress-level', 'compress-threads', 'decompress-threads',
789           'compress-wait-thread', 'throttle-trigger-threshold',
790           'cpu-throttle-initial', 'cpu-throttle-increment',
791           'cpu-throttle-tailslow',
792           'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
793           'downtime-limit',
794           { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
795           'block-incremental',
796           'multifd-channels',
797           'xbzrle-cache-size', 'max-postcopy-bandwidth',
798           'max-cpu-throttle', 'multifd-compression',
799           'multifd-zlib-level' ,'multifd-zstd-level',
800           'block-bitmap-mapping' ] }
801
802##
803# @MigrateSetParameters:
804#
805# @announce-initial: Initial delay (in milliseconds) before sending the first
806#                    announce (Since 4.0)
807#
808# @announce-max: Maximum delay (in milliseconds) between packets in the
809#                announcement (Since 4.0)
810#
811# @announce-rounds: Number of self-announce packets sent after migration
812#                   (Since 4.0)
813#
814# @announce-step: Increase in delay (in milliseconds) between subsequent
815#                 packets in the announcement (Since 4.0)
816#
817# @compress-level: compression level
818#
819# @compress-threads: compression thread count
820#
821# @compress-wait-thread: Controls behavior when all compression threads are
822#                        currently busy. If true (default), wait for a free
823#                        compression thread to become available; otherwise,
824#                        send the page uncompressed. (Since 3.1)
825#
826# @decompress-threads: decompression thread count
827#
828# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
829#                              to trigger throttling. It is expressed as percentage.
830#                              The default value is 50. (Since 5.0)
831#
832# @cpu-throttle-initial: Initial percentage of time guest cpus are
833#                        throttled when migration auto-converge is activated.
834#                        The default value is 20. (Since 2.7)
835#
836# @cpu-throttle-increment: throttle percentage increase each time
837#                          auto-converge detects that migration is not making
838#                          progress. The default value is 10. (Since 2.7)
839#
840# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
841#                         At the tail stage of throttling, the Guest is very
842#                         sensitive to CPU percentage while the @cpu-throttle
843#                         -increment is excessive usually at tail stage.
844#                         If this parameter is true, we will compute the ideal
845#                         CPU percentage used by the Guest, which may exactly make
846#                         the dirty rate match the dirty rate threshold. Then we
847#                         will choose a smaller throttle increment between the
848#                         one specified by @cpu-throttle-increment and the one
849#                         generated by ideal CPU percentage.
850#                         Therefore, it is compatible to traditional throttling,
851#                         meanwhile the throttle increment won't be excessive
852#                         at tail stage.
853#                         The default value is false. (Since 5.1)
854#
855# @tls-creds: ID of the 'tls-creds' object that provides credentials
856#             for establishing a TLS connection over the migration data
857#             channel. On the outgoing side of the migration, the credentials
858#             must be for a 'client' endpoint, while for the incoming side the
859#             credentials must be for a 'server' endpoint. Setting this
860#             to a non-empty string enables TLS for all migrations.
861#             An empty string means that QEMU will use plain text mode for
862#             migration, rather than TLS (Since 2.9)
863#             Previously (since 2.7), this was reported by omitting
864#             tls-creds instead.
865#
866# @tls-hostname: hostname of the target host for the migration. This
867#                is required when using x509 based TLS credentials and the
868#                migration URI does not already include a hostname. For
869#                example if using fd: or exec: based migration, the
870#                hostname must be provided so that the server's x509
871#                certificate identity can be validated. (Since 2.7)
872#                An empty string means that QEMU will use the hostname
873#                associated with the migration URI, if any. (Since 2.9)
874#                Previously (since 2.7), this was reported by omitting
875#                tls-hostname instead.
876#
877# @max-bandwidth: to set maximum speed for migration. maximum speed in
878#                 bytes per second. (Since 2.8)
879#
880# @downtime-limit: set maximum tolerated downtime for migration. maximum
881#                  downtime in milliseconds (Since 2.8)
882#
883# @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8)
884#
885# @block-incremental: Affects how much storage is migrated when the
886#                     block migration capability is enabled.  When false, the entire
887#                     storage backing chain is migrated into a flattened image at
888#                     the destination; when true, only the active qcow2 layer is
889#                     migrated and the destination must already have access to the
890#                     same backing chain as was used on the source.  (since 2.10)
891#
892# @multifd-channels: Number of channels used to migrate data in
893#                    parallel. This is the same number that the
894#                    number of sockets used for migration.  The
895#                    default value is 2 (since 4.0)
896#
897# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
898#                     needs to be a multiple of the target page size
899#                     and a power of 2
900#                     (Since 2.11)
901#
902# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
903#                          Defaults to 0 (unlimited).  In bytes per second.
904#                          (Since 3.0)
905#
906# @max-cpu-throttle: maximum cpu throttle percentage.
907#                    The default value is 99. (Since 3.1)
908#
909# @multifd-compression: Which compression method to use.
910#                       Defaults to none. (Since 5.0)
911#
912# @multifd-zlib-level: Set the compression level to be used in live
913#                      migration, the compression level is an integer between 0
914#                      and 9, where 0 means no compression, 1 means the best
915#                      compression speed, and 9 means best compression ratio which
916#                      will consume more CPU.
917#                      Defaults to 1. (Since 5.0)
918#
919# @multifd-zstd-level: Set the compression level to be used in live
920#                      migration, the compression level is an integer between 0
921#                      and 20, where 0 means no compression, 1 means the best
922#                      compression speed, and 20 means best compression ratio which
923#                      will consume more CPU.
924#                      Defaults to 1. (Since 5.0)
925#
926# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
927#                        aliases for the purpose of dirty bitmap migration.  Such
928#                        aliases may for example be the corresponding names on the
929#                        opposite site.
930#                        The mapping must be one-to-one, but not necessarily
931#                        complete: On the source, unmapped bitmaps and all bitmaps
932#                        on unmapped nodes will be ignored.  On the destination,
933#                        encountering an unmapped alias in the incoming migration
934#                        stream will result in a report, and all further bitmap
935#                        migration data will then be discarded.
936#                        Note that the destination does not know about bitmaps it
937#                        does not receive, so there is no limitation or requirement
938#                        regarding the number of bitmaps received, or how they are
939#                        named, or on which nodes they are placed.
940#                        By default (when this parameter has never been set), bitmap
941#                        names are mapped to themselves.  Nodes are mapped to their
942#                        block device name if there is one, and to their node name
943#                        otherwise. (Since 5.2)
944#
945# Features:
946# @unstable: Member @x-checkpoint-delay is experimental.
947#
948# TODO: either fuse back into MigrationParameters, or make
949#       MigrationParameters members mandatory
950#
951# Since: 2.4
952##
953{ 'struct': 'MigrateSetParameters',
954  'data': { '*announce-initial': 'size',
955            '*announce-max': 'size',
956            '*announce-rounds': 'size',
957            '*announce-step': 'size',
958            '*compress-level': 'uint8',
959            '*compress-threads': 'uint8',
960            '*compress-wait-thread': 'bool',
961            '*decompress-threads': 'uint8',
962            '*throttle-trigger-threshold': 'uint8',
963            '*cpu-throttle-initial': 'uint8',
964            '*cpu-throttle-increment': 'uint8',
965            '*cpu-throttle-tailslow': 'bool',
966            '*tls-creds': 'StrOrNull',
967            '*tls-hostname': 'StrOrNull',
968            '*tls-authz': 'StrOrNull',
969            '*max-bandwidth': 'size',
970            '*downtime-limit': 'uint64',
971            '*x-checkpoint-delay': { 'type': 'uint32',
972                                     'features': [ 'unstable' ] },
973            '*block-incremental': 'bool',
974            '*multifd-channels': 'uint8',
975            '*xbzrle-cache-size': 'size',
976            '*max-postcopy-bandwidth': 'size',
977            '*max-cpu-throttle': 'uint8',
978            '*multifd-compression': 'MultiFDCompression',
979            '*multifd-zlib-level': 'uint8',
980            '*multifd-zstd-level': 'uint8',
981            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } }
982
983##
984# @migrate-set-parameters:
985#
986# Set various migration parameters.
987#
988# Since: 2.4
989#
990# Example:
991#
992# -> { "execute": "migrate-set-parameters" ,
993#      "arguments": { "compress-level": 1 } }
994# <- { "return": {} }
995#
996##
997{ 'command': 'migrate-set-parameters', 'boxed': true,
998  'data': 'MigrateSetParameters' }
999
1000##
1001# @MigrationParameters:
1002#
1003# The optional members aren't actually optional.
1004#
1005# @announce-initial: Initial delay (in milliseconds) before sending the
1006#                    first announce (Since 4.0)
1007#
1008# @announce-max: Maximum delay (in milliseconds) between packets in the
1009#                announcement (Since 4.0)
1010#
1011# @announce-rounds: Number of self-announce packets sent after migration
1012#                   (Since 4.0)
1013#
1014# @announce-step: Increase in delay (in milliseconds) between subsequent
1015#                 packets in the announcement (Since 4.0)
1016#
1017# @compress-level: compression level
1018#
1019# @compress-threads: compression thread count
1020#
1021# @compress-wait-thread: Controls behavior when all compression threads are
1022#                        currently busy. If true (default), wait for a free
1023#                        compression thread to become available; otherwise,
1024#                        send the page uncompressed. (Since 3.1)
1025#
1026# @decompress-threads: decompression thread count
1027#
1028# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
1029#                              to trigger throttling. It is expressed as percentage.
1030#                              The default value is 50. (Since 5.0)
1031#
1032# @cpu-throttle-initial: Initial percentage of time guest cpus are
1033#                        throttled when migration auto-converge is activated.
1034#                        (Since 2.7)
1035#
1036# @cpu-throttle-increment: throttle percentage increase each time
1037#                          auto-converge detects that migration is not making
1038#                          progress. (Since 2.7)
1039#
1040# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
1041#                         At the tail stage of throttling, the Guest is very
1042#                         sensitive to CPU percentage while the @cpu-throttle
1043#                         -increment is excessive usually at tail stage.
1044#                         If this parameter is true, we will compute the ideal
1045#                         CPU percentage used by the Guest, which may exactly make
1046#                         the dirty rate match the dirty rate threshold. Then we
1047#                         will choose a smaller throttle increment between the
1048#                         one specified by @cpu-throttle-increment and the one
1049#                         generated by ideal CPU percentage.
1050#                         Therefore, it is compatible to traditional throttling,
1051#                         meanwhile the throttle increment won't be excessive
1052#                         at tail stage.
1053#                         The default value is false. (Since 5.1)
1054#
1055# @tls-creds: ID of the 'tls-creds' object that provides credentials
1056#             for establishing a TLS connection over the migration data
1057#             channel. On the outgoing side of the migration, the credentials
1058#             must be for a 'client' endpoint, while for the incoming side the
1059#             credentials must be for a 'server' endpoint.
1060#             An empty string means that QEMU will use plain text mode for
1061#             migration, rather than TLS (Since 2.7)
1062#             Note: 2.8 reports this by omitting tls-creds instead.
1063#
1064# @tls-hostname: hostname of the target host for the migration. This
1065#                is required when using x509 based TLS credentials and the
1066#                migration URI does not already include a hostname. For
1067#                example if using fd: or exec: based migration, the
1068#                hostname must be provided so that the server's x509
1069#                certificate identity can be validated. (Since 2.7)
1070#                An empty string means that QEMU will use the hostname
1071#                associated with the migration URI, if any. (Since 2.9)
1072#                Note: 2.8 reports this by omitting tls-hostname instead.
1073#
1074# @tls-authz: ID of the 'authz' object subclass that provides access control
1075#             checking of the TLS x509 certificate distinguished name. (Since
1076#             4.0)
1077#
1078# @max-bandwidth: to set maximum speed for migration. maximum speed in
1079#                 bytes per second. (Since 2.8)
1080#
1081# @downtime-limit: set maximum tolerated downtime for migration. maximum
1082#                  downtime in milliseconds (Since 2.8)
1083#
1084# @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8)
1085#
1086# @block-incremental: Affects how much storage is migrated when the
1087#                     block migration capability is enabled.  When false, the entire
1088#                     storage backing chain is migrated into a flattened image at
1089#                     the destination; when true, only the active qcow2 layer is
1090#                     migrated and the destination must already have access to the
1091#                     same backing chain as was used on the source.  (since 2.10)
1092#
1093# @multifd-channels: Number of channels used to migrate data in
1094#                    parallel. This is the same number that the
1095#                    number of sockets used for migration.
1096#                    The default value is 2 (since 4.0)
1097#
1098# @xbzrle-cache-size: cache size to be used by XBZRLE migration.  It
1099#                     needs to be a multiple of the target page size
1100#                     and a power of 2
1101#                     (Since 2.11)
1102#
1103# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
1104#                          Defaults to 0 (unlimited).  In bytes per second.
1105#                          (Since 3.0)
1106#
1107# @max-cpu-throttle: maximum cpu throttle percentage.
1108#                    Defaults to 99.
1109#                    (Since 3.1)
1110#
1111# @multifd-compression: Which compression method to use.
1112#                       Defaults to none. (Since 5.0)
1113#
1114# @multifd-zlib-level: Set the compression level to be used in live
1115#                      migration, the compression level is an integer between 0
1116#                      and 9, where 0 means no compression, 1 means the best
1117#                      compression speed, and 9 means best compression ratio which
1118#                      will consume more CPU.
1119#                      Defaults to 1. (Since 5.0)
1120#
1121# @multifd-zstd-level: Set the compression level to be used in live
1122#                      migration, the compression level is an integer between 0
1123#                      and 20, where 0 means no compression, 1 means the best
1124#                      compression speed, and 20 means best compression ratio which
1125#                      will consume more CPU.
1126#                      Defaults to 1. (Since 5.0)
1127#
1128# @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1129#                        aliases for the purpose of dirty bitmap migration.  Such
1130#                        aliases may for example be the corresponding names on the
1131#                        opposite site.
1132#                        The mapping must be one-to-one, but not necessarily
1133#                        complete: On the source, unmapped bitmaps and all bitmaps
1134#                        on unmapped nodes will be ignored.  On the destination,
1135#                        encountering an unmapped alias in the incoming migration
1136#                        stream will result in a report, and all further bitmap
1137#                        migration data will then be discarded.
1138#                        Note that the destination does not know about bitmaps it
1139#                        does not receive, so there is no limitation or requirement
1140#                        regarding the number of bitmaps received, or how they are
1141#                        named, or on which nodes they are placed.
1142#                        By default (when this parameter has never been set), bitmap
1143#                        names are mapped to themselves.  Nodes are mapped to their
1144#                        block device name if there is one, and to their node name
1145#                        otherwise. (Since 5.2)
1146#
1147# Features:
1148# @unstable: Member @x-checkpoint-delay is experimental.
1149#
1150# Since: 2.4
1151##
1152{ 'struct': 'MigrationParameters',
1153  'data': { '*announce-initial': 'size',
1154            '*announce-max': 'size',
1155            '*announce-rounds': 'size',
1156            '*announce-step': 'size',
1157            '*compress-level': 'uint8',
1158            '*compress-threads': 'uint8',
1159            '*compress-wait-thread': 'bool',
1160            '*decompress-threads': 'uint8',
1161            '*throttle-trigger-threshold': 'uint8',
1162            '*cpu-throttle-initial': 'uint8',
1163            '*cpu-throttle-increment': 'uint8',
1164            '*cpu-throttle-tailslow': 'bool',
1165            '*tls-creds': 'str',
1166            '*tls-hostname': 'str',
1167            '*tls-authz': 'str',
1168            '*max-bandwidth': 'size',
1169            '*downtime-limit': 'uint64',
1170            '*x-checkpoint-delay': { 'type': 'uint32',
1171                                     'features': [ 'unstable' ] },
1172            '*block-incremental': 'bool',
1173            '*multifd-channels': 'uint8',
1174            '*xbzrle-cache-size': 'size',
1175            '*max-postcopy-bandwidth': 'size',
1176            '*max-cpu-throttle': 'uint8',
1177            '*multifd-compression': 'MultiFDCompression',
1178            '*multifd-zlib-level': 'uint8',
1179            '*multifd-zstd-level': 'uint8',
1180            '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } }
1181
1182##
1183# @query-migrate-parameters:
1184#
1185# Returns information about the current migration parameters
1186#
1187# Returns: @MigrationParameters
1188#
1189# Since: 2.4
1190#
1191# Example:
1192#
1193# -> { "execute": "query-migrate-parameters" }
1194# <- { "return": {
1195#          "decompress-threads": 2,
1196#          "cpu-throttle-increment": 10,
1197#          "compress-threads": 8,
1198#          "compress-level": 1,
1199#          "cpu-throttle-initial": 20,
1200#          "max-bandwidth": 33554432,
1201#          "downtime-limit": 300
1202#       }
1203#    }
1204#
1205##
1206{ 'command': 'query-migrate-parameters',
1207  'returns': 'MigrationParameters' }
1208
1209##
1210# @migrate-start-postcopy:
1211#
1212# Followup to a migration command to switch the migration to postcopy mode.
1213# The postcopy-ram capability must be set on both source and destination
1214# before the original migration command.
1215#
1216# Since: 2.5
1217#
1218# Example:
1219#
1220# -> { "execute": "migrate-start-postcopy" }
1221# <- { "return": {} }
1222#
1223##
1224{ 'command': 'migrate-start-postcopy' }
1225
1226##
1227# @MIGRATION:
1228#
1229# Emitted when a migration event happens
1230#
1231# @status: @MigrationStatus describing the current migration status.
1232#
1233# Since: 2.4
1234#
1235# Example:
1236#
1237# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1238#     "event": "MIGRATION",
1239#     "data": {"status": "completed"} }
1240#
1241##
1242{ 'event': 'MIGRATION',
1243  'data': {'status': 'MigrationStatus'}}
1244
1245##
1246# @MIGRATION_PASS:
1247#
1248# Emitted from the source side of a migration at the start of each pass
1249# (when it syncs the dirty bitmap)
1250#
1251# @pass: An incrementing count (starting at 1 on the first pass)
1252#
1253# Since: 2.6
1254#
1255# Example:
1256#
1257# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1258#       "event": "MIGRATION_PASS", "data": {"pass": 2} }
1259#
1260##
1261{ 'event': 'MIGRATION_PASS',
1262  'data': { 'pass': 'int' } }
1263
1264##
1265# @COLOMessage:
1266#
1267# The message transmission between Primary side and Secondary side.
1268#
1269# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1270#
1271# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for checkpointing
1272#
1273# @checkpoint-reply: SVM gets PVM's checkpoint request
1274#
1275# @vmstate-send: VM's state will be sent by PVM.
1276#
1277# @vmstate-size: The total size of VMstate.
1278#
1279# @vmstate-received: VM's state has been received by SVM.
1280#
1281# @vmstate-loaded: VM's state has been loaded by SVM.
1282#
1283# Since: 2.8
1284##
1285{ 'enum': 'COLOMessage',
1286  'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1287            'vmstate-send', 'vmstate-size', 'vmstate-received',
1288            'vmstate-loaded' ] }
1289
1290##
1291# @COLOMode:
1292#
1293# The COLO current mode.
1294#
1295# @none: COLO is disabled.
1296#
1297# @primary: COLO node in primary side.
1298#
1299# @secondary: COLO node in slave side.
1300#
1301# Since: 2.8
1302##
1303{ 'enum': 'COLOMode',
1304  'data': [ 'none', 'primary', 'secondary'] }
1305
1306##
1307# @FailoverStatus:
1308#
1309# An enumeration of COLO failover status
1310#
1311# @none: no failover has ever happened
1312#
1313# @require: got failover requirement but not handled
1314#
1315# @active: in the process of doing failover
1316#
1317# @completed: finish the process of failover
1318#
1319# @relaunch: restart the failover process, from 'none' -> 'completed' (Since 2.9)
1320#
1321# Since: 2.8
1322##
1323{ 'enum': 'FailoverStatus',
1324  'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1325
1326##
1327# @COLO_EXIT:
1328#
1329# Emitted when VM finishes COLO mode due to some errors happening or
1330# at the request of users.
1331#
1332# @mode: report COLO mode when COLO exited.
1333#
1334# @reason: describes the reason for the COLO exit.
1335#
1336# Since: 3.1
1337#
1338# Example:
1339#
1340# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1341#      "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1342#
1343##
1344{ 'event': 'COLO_EXIT',
1345  'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1346
1347##
1348# @COLOExitReason:
1349#
1350# The reason for a COLO exit.
1351#
1352# @none: failover has never happened. This state does not occur
1353#        in the COLO_EXIT event, and is only visible in the result of
1354#        query-colo-status.
1355#
1356# @request: COLO exit is due to an external request.
1357#
1358# @error: COLO exit is due to an internal error.
1359#
1360# @processing: COLO is currently handling a failover (since 4.0).
1361#
1362# Since: 3.1
1363##
1364{ 'enum': 'COLOExitReason',
1365  'data': [ 'none', 'request', 'error' , 'processing' ] }
1366
1367##
1368# @x-colo-lost-heartbeat:
1369#
1370# Tell qemu that heartbeat is lost, request it to do takeover procedures.
1371# If this command is sent to the PVM, the Primary side will exit COLO mode.
1372# If sent to the Secondary, the Secondary side will run failover work,
1373# then takes over server operation to become the service VM.
1374#
1375# Features:
1376# @unstable: This command is experimental.
1377#
1378# Since: 2.8
1379#
1380# Example:
1381#
1382# -> { "execute": "x-colo-lost-heartbeat" }
1383# <- { "return": {} }
1384#
1385##
1386{ 'command': 'x-colo-lost-heartbeat',
1387  'features': [ 'unstable' ] }
1388
1389##
1390# @migrate_cancel:
1391#
1392# Cancel the current executing migration process.
1393#
1394# Returns: nothing on success
1395#
1396# Notes: This command succeeds even if there is no migration process running.
1397#
1398# Since: 0.14
1399#
1400# Example:
1401#
1402# -> { "execute": "migrate_cancel" }
1403# <- { "return": {} }
1404#
1405##
1406{ 'command': 'migrate_cancel' }
1407
1408##
1409# @migrate-continue:
1410#
1411# Continue migration when it's in a paused state.
1412#
1413# @state: The state the migration is currently expected to be in
1414#
1415# Returns: nothing on success
1416#
1417# Since: 2.11
1418#
1419# Example:
1420#
1421# -> { "execute": "migrate-continue" , "arguments":
1422#      { "state": "pre-switchover" } }
1423# <- { "return": {} }
1424##
1425{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1426
1427##
1428# @migrate:
1429#
1430# Migrates the current running guest to another Virtual Machine.
1431#
1432# @uri: the Uniform Resource Identifier of the destination VM
1433#
1434# @blk: do block migration (full disk copy)
1435#
1436# @inc: incremental disk copy migration
1437#
1438# @detach: this argument exists only for compatibility reasons and
1439#          is ignored by QEMU
1440#
1441# @resume: resume one paused migration, default "off". (since 3.0)
1442#
1443# Returns: nothing on success
1444#
1445# Since: 0.14
1446#
1447# Notes:
1448#
1449# 1. The 'query-migrate' command should be used to check migration's progress
1450#    and final result (this information is provided by the 'status' member)
1451#
1452# 2. All boolean arguments default to false
1453#
1454# 3. The user Monitor's "detach" argument is invalid in QMP and should not
1455#    be used
1456#
1457# Example:
1458#
1459# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1460# <- { "return": {} }
1461#
1462##
1463{ 'command': 'migrate',
1464  'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool',
1465           '*detach': 'bool', '*resume': 'bool' } }
1466
1467##
1468# @migrate-incoming:
1469#
1470# Start an incoming migration, the qemu must have been started
1471# with -incoming defer
1472#
1473# @uri: The Uniform Resource Identifier identifying the source or
1474#       address to listen on
1475#
1476# Returns: nothing on success
1477#
1478# Since: 2.3
1479#
1480# Notes:
1481#
1482# 1. It's a bad idea to use a string for the uri, but it needs to stay
1483#    compatible with -incoming and the format of the uri is already exposed
1484#    above libvirt.
1485#
1486# 2. QEMU must be started with -incoming defer to allow migrate-incoming to
1487#    be used.
1488#
1489# 3. The uri format is the same as for -incoming
1490#
1491# Example:
1492#
1493# -> { "execute": "migrate-incoming",
1494#      "arguments": { "uri": "tcp::4446" } }
1495# <- { "return": {} }
1496#
1497##
1498{ 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
1499
1500##
1501# @xen-save-devices-state:
1502#
1503# Save the state of all devices to file. The RAM and the block devices
1504# of the VM are not saved by this command.
1505#
1506# @filename: the file to save the state of the devices to as binary
1507#            data. See xen-save-devices-state.txt for a description of the binary
1508#            format.
1509#
1510# @live: Optional argument to ask QEMU to treat this command as part of a live
1511#        migration. Default to true. (since 2.11)
1512#
1513# Returns: Nothing on success
1514#
1515# Since: 1.1
1516#
1517# Example:
1518#
1519# -> { "execute": "xen-save-devices-state",
1520#      "arguments": { "filename": "/tmp/save" } }
1521# <- { "return": {} }
1522#
1523##
1524{ 'command': 'xen-save-devices-state',
1525  'data': {'filename': 'str', '*live':'bool' } }
1526
1527##
1528# @xen-set-global-dirty-log:
1529#
1530# Enable or disable the global dirty log mode.
1531#
1532# @enable: true to enable, false to disable.
1533#
1534# Returns: nothing
1535#
1536# Since: 1.3
1537#
1538# Example:
1539#
1540# -> { "execute": "xen-set-global-dirty-log",
1541#      "arguments": { "enable": true } }
1542# <- { "return": {} }
1543#
1544##
1545{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1546
1547##
1548# @xen-load-devices-state:
1549#
1550# Load the state of all devices from file. The RAM and the block devices
1551# of the VM are not loaded by this command.
1552#
1553# @filename: the file to load the state of the devices from as binary
1554#            data. See xen-save-devices-state.txt for a description of the binary
1555#            format.
1556#
1557# Since: 2.7
1558#
1559# Example:
1560#
1561# -> { "execute": "xen-load-devices-state",
1562#      "arguments": { "filename": "/tmp/resume" } }
1563# <- { "return": {} }
1564#
1565##
1566{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1567
1568##
1569# @xen-set-replication:
1570#
1571# Enable or disable replication.
1572#
1573# @enable: true to enable, false to disable.
1574#
1575# @primary: true for primary or false for secondary.
1576#
1577# @failover: true to do failover, false to stop. but cannot be
1578#            specified if 'enable' is true. default value is false.
1579#
1580# Returns: nothing.
1581#
1582# Example:
1583#
1584# -> { "execute": "xen-set-replication",
1585#      "arguments": {"enable": true, "primary": false} }
1586# <- { "return": {} }
1587#
1588# Since: 2.9
1589##
1590{ 'command': 'xen-set-replication',
1591  'data': { 'enable': 'bool', 'primary': 'bool', '*failover' : 'bool' },
1592  'if': 'CONFIG_REPLICATION' }
1593
1594##
1595# @ReplicationStatus:
1596#
1597# The result format for 'query-xen-replication-status'.
1598#
1599# @error: true if an error happened, false if replication is normal.
1600#
1601# @desc: the human readable error description string, when
1602#        @error is 'true'.
1603#
1604# Since: 2.9
1605##
1606{ 'struct': 'ReplicationStatus',
1607  'data': { 'error': 'bool', '*desc': 'str' },
1608  'if': 'CONFIG_REPLICATION' }
1609
1610##
1611# @query-xen-replication-status:
1612#
1613# Query replication status while the vm is running.
1614#
1615# Returns: A @ReplicationStatus object showing the status.
1616#
1617# Example:
1618#
1619# -> { "execute": "query-xen-replication-status" }
1620# <- { "return": { "error": false } }
1621#
1622# Since: 2.9
1623##
1624{ 'command': 'query-xen-replication-status',
1625  'returns': 'ReplicationStatus',
1626  'if': 'CONFIG_REPLICATION' }
1627
1628##
1629# @xen-colo-do-checkpoint:
1630#
1631# Xen uses this command to notify replication to trigger a checkpoint.
1632#
1633# Returns: nothing.
1634#
1635# Example:
1636#
1637# -> { "execute": "xen-colo-do-checkpoint" }
1638# <- { "return": {} }
1639#
1640# Since: 2.9
1641##
1642{ 'command': 'xen-colo-do-checkpoint',
1643  'if': 'CONFIG_REPLICATION' }
1644
1645##
1646# @COLOStatus:
1647#
1648# The result format for 'query-colo-status'.
1649#
1650# @mode: COLO running mode. If COLO is running, this field will return
1651#        'primary' or 'secondary'.
1652#
1653# @last-mode: COLO last running mode. If COLO is running, this field
1654#             will return same like mode field, after failover we can
1655#             use this field to get last colo mode. (since 4.0)
1656#
1657# @reason: describes the reason for the COLO exit.
1658#
1659# Since: 3.1
1660##
1661{ 'struct': 'COLOStatus',
1662  'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
1663            'reason': 'COLOExitReason' } }
1664
1665##
1666# @query-colo-status:
1667#
1668# Query COLO status while the vm is running.
1669#
1670# Returns: A @COLOStatus object showing the status.
1671#
1672# Example:
1673#
1674# -> { "execute": "query-colo-status" }
1675# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
1676#
1677# Since: 3.1
1678##
1679{ 'command': 'query-colo-status',
1680  'returns': 'COLOStatus' }
1681
1682##
1683# @migrate-recover:
1684#
1685# Provide a recovery migration stream URI.
1686#
1687# @uri: the URI to be used for the recovery of migration stream.
1688#
1689# Returns: nothing.
1690#
1691# Example:
1692#
1693# -> { "execute": "migrate-recover",
1694#      "arguments": { "uri": "tcp:192.168.1.200:12345" } }
1695# <- { "return": {} }
1696#
1697# Since: 3.0
1698##
1699{ 'command': 'migrate-recover',
1700  'data': { 'uri': 'str' },
1701  'allow-oob': true }
1702
1703##
1704# @migrate-pause:
1705#
1706# Pause a migration.  Currently it only supports postcopy.
1707#
1708# Returns: nothing.
1709#
1710# Example:
1711#
1712# -> { "execute": "migrate-pause" }
1713# <- { "return": {} }
1714#
1715# Since: 3.0
1716##
1717{ 'command': 'migrate-pause', 'allow-oob': true }
1718
1719##
1720# @UNPLUG_PRIMARY:
1721#
1722# Emitted from source side of a migration when migration state is
1723# WAIT_UNPLUG. Device was unplugged by guest operating system.
1724# Device resources in QEMU are kept on standby to be able to re-plug it in case
1725# of migration failure.
1726#
1727# @device-id: QEMU device id of the unplugged device
1728#
1729# Since: 4.2
1730#
1731# Example:
1732#
1733# <- { "event": "UNPLUG_PRIMARY",
1734#      "data": { "device-id": "hostdev0" },
1735#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1736#
1737##
1738{ 'event': 'UNPLUG_PRIMARY',
1739  'data': { 'device-id': 'str' } }
1740
1741##
1742# @DirtyRateVcpu:
1743#
1744# Dirty rate of vcpu.
1745#
1746# @id: vcpu index.
1747#
1748# @dirty-rate: dirty rate.
1749#
1750# Since: 6.2
1751##
1752{ 'struct': 'DirtyRateVcpu',
1753  'data': { 'id': 'int', 'dirty-rate': 'int64' } }
1754
1755##
1756# @DirtyRateStatus:
1757#
1758# An enumeration of dirtyrate status.
1759#
1760# @unstarted: the dirtyrate thread has not been started.
1761#
1762# @measuring: the dirtyrate thread is measuring.
1763#
1764# @measured: the dirtyrate thread has measured and results are available.
1765#
1766# Since: 5.2
1767##
1768{ 'enum': 'DirtyRateStatus',
1769  'data': [ 'unstarted', 'measuring', 'measured'] }
1770
1771##
1772# @DirtyRateMeasureMode:
1773#
1774# An enumeration of mode of measuring dirtyrate.
1775#
1776# @page-sampling: calculate dirtyrate by sampling pages.
1777#
1778# @dirty-ring: calculate dirtyrate by dirty ring.
1779#
1780# @dirty-bitmap: calculate dirtyrate by dirty bitmap.
1781#
1782# Since: 6.2
1783##
1784{ 'enum': 'DirtyRateMeasureMode',
1785  'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
1786
1787##
1788# @DirtyRateInfo:
1789#
1790# Information about current dirty page rate of vm.
1791#
1792# @dirty-rate: an estimate of the dirty page rate of the VM in units of
1793#              MB/s, present only when estimating the rate has completed.
1794#
1795# @status: status containing dirtyrate query status includes
1796#          'unstarted' or 'measuring' or 'measured'
1797#
1798# @start-time: start time in units of second for calculation
1799#
1800# @calc-time: time in units of second for sample dirty pages
1801#
1802# @sample-pages: page count per GB for sample dirty pages
1803#                the default value is 512 (since 6.1)
1804#
1805# @mode: mode containing method of calculate dirtyrate includes
1806#        'page-sampling' and 'dirty-ring' (Since 6.2)
1807#
1808# @vcpu-dirty-rate: dirtyrate for each vcpu if dirty-ring
1809#                   mode specified (Since 6.2)
1810#
1811# Since: 5.2
1812##
1813{ 'struct': 'DirtyRateInfo',
1814  'data': {'*dirty-rate': 'int64',
1815           'status': 'DirtyRateStatus',
1816           'start-time': 'int64',
1817           'calc-time': 'int64',
1818           'sample-pages': 'uint64',
1819           'mode': 'DirtyRateMeasureMode',
1820           '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
1821
1822##
1823# @calc-dirty-rate:
1824#
1825# start calculating dirty page rate for vm
1826#
1827# @calc-time: time in units of second for sample dirty pages
1828#
1829# @sample-pages: page count per GB for sample dirty pages
1830#                the default value is 512 (since 6.1)
1831#
1832# @mode: mechanism of calculating dirtyrate includes
1833#        'page-sampling' and 'dirty-ring' (Since 6.1)
1834#
1835# Since: 5.2
1836#
1837# Example:
1838#
1839# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
1840#                                                 'sample-pages': 512} }
1841# <- { "return": {} }
1842#
1843##
1844{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
1845                                         '*sample-pages': 'int',
1846                                         '*mode': 'DirtyRateMeasureMode'} }
1847
1848##
1849# @query-dirty-rate:
1850#
1851# query dirty page rate in units of MB/s for vm
1852#
1853# Since: 5.2
1854##
1855{ 'command': 'query-dirty-rate', 'returns': 'DirtyRateInfo' }
1856
1857##
1858# @DirtyLimitInfo:
1859#
1860# Dirty page rate limit information of a virtual CPU.
1861#
1862# @cpu-index: index of a virtual CPU.
1863#
1864# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
1865#              CPU, 0 means unlimited.
1866#
1867# @current-rate: current dirty page rate (MB/s) for a virtual CPU.
1868#
1869# Since: 7.1
1870#
1871##
1872{ 'struct': 'DirtyLimitInfo',
1873  'data': { 'cpu-index': 'int',
1874            'limit-rate': 'uint64',
1875            'current-rate': 'uint64' } }
1876
1877##
1878# @set-vcpu-dirty-limit:
1879#
1880# Set the upper limit of dirty page rate for virtual CPUs.
1881#
1882# Requires KVM with accelerator property "dirty-ring-size" set.
1883# A virtual CPU's dirty page rate is a measure of its memory load.
1884# To observe dirty page rates, use @calc-dirty-rate.
1885#
1886# @cpu-index: index of a virtual CPU, default is all.
1887#
1888# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
1889#
1890# Since: 7.1
1891#
1892# Example:
1893#
1894# -> {"execute": "set-vcpu-dirty-limit"}
1895#     "arguments": { "dirty-rate": 200,
1896#                    "cpu-index": 1 } }
1897# <- { "return": {} }
1898#
1899##
1900{ 'command': 'set-vcpu-dirty-limit',
1901  'data': { '*cpu-index': 'int',
1902            'dirty-rate': 'uint64' } }
1903
1904##
1905# @cancel-vcpu-dirty-limit:
1906#
1907# Cancel the upper limit of dirty page rate for virtual CPUs.
1908#
1909# Cancel the dirty page limit for the vCPU which has been set with
1910# set-vcpu-dirty-limit command. Note that this command requires
1911# support from dirty ring, same as the "set-vcpu-dirty-limit".
1912#
1913# @cpu-index: index of a virtual CPU, default is all.
1914#
1915# Since: 7.1
1916#
1917# Example:
1918#
1919# -> {"execute": "cancel-vcpu-dirty-limit"},
1920#     "arguments": { "cpu-index": 1 } }
1921# <- { "return": {} }
1922#
1923##
1924{ 'command': 'cancel-vcpu-dirty-limit',
1925  'data': { '*cpu-index': 'int'} }
1926
1927##
1928# @query-vcpu-dirty-limit:
1929#
1930# Returns information about virtual CPU dirty page rate limits, if any.
1931#
1932# Since: 7.1
1933#
1934# Example:
1935#
1936# -> {"execute": "query-vcpu-dirty-limit"}
1937# <- {"return": [
1938#        { "limit-rate": 60, "current-rate": 3, "cpu-index": 0},
1939#        { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]}
1940#
1941##
1942{ 'command': 'query-vcpu-dirty-limit',
1943  'returns': [ 'DirtyLimitInfo' ] }
1944
1945##
1946# @MigrationThreadInfo:
1947#
1948# Information about migrationthreads
1949#
1950# @name: the name of migration thread
1951#
1952# @thread-id: ID of the underlying host thread
1953#
1954# Since: 7.2
1955##
1956{ 'struct': 'MigrationThreadInfo',
1957  'data': {'name': 'str',
1958           'thread-id': 'int'} }
1959
1960##
1961# @query-migrationthreads:
1962#
1963# Returns information of migration threads
1964#
1965# data: migration thread name
1966#
1967# Returns: information about migration threads
1968#
1969# Since: 7.2
1970##
1971{ 'command': 'query-migrationthreads',
1972  'returns': ['MigrationThreadInfo'] }
1973
1974##
1975# @snapshot-save:
1976#
1977# Save a VM snapshot
1978#
1979# @job-id: identifier for the newly created job
1980# @tag: name of the snapshot to create
1981# @vmstate: block device node name to save vmstate to
1982# @devices: list of block device node names to save a snapshot to
1983#
1984# Applications should not assume that the snapshot save is complete
1985# when this command returns. The job commands / events must be used
1986# to determine completion and to fetch details of any errors that arise.
1987#
1988# Note that execution of the guest CPUs may be stopped during the
1989# time it takes to save the snapshot. A future version of QEMU
1990# may ensure CPUs are executing continuously.
1991#
1992# It is strongly recommended that @devices contain all writable
1993# block device nodes if a consistent snapshot is required.
1994#
1995# If @tag already exists, an error will be reported
1996#
1997# Returns: nothing
1998#
1999# Example:
2000#
2001# -> { "execute": "snapshot-save",
2002#      "arguments": {
2003#         "job-id": "snapsave0",
2004#         "tag": "my-snap",
2005#         "vmstate": "disk0",
2006#         "devices": ["disk0", "disk1"]
2007#      }
2008#    }
2009# <- { "return": { } }
2010# <- {"event": "JOB_STATUS_CHANGE",
2011#     "timestamp": {"seconds": 1432121972, "microseconds": 744001},
2012#     "data": {"status": "created", "id": "snapsave0"}}
2013# <- {"event": "JOB_STATUS_CHANGE",
2014#     "timestamp": {"seconds": 1432122172, "microseconds": 744001},
2015#     "data": {"status": "running", "id": "snapsave0"}}
2016# <- {"event": "STOP",
2017#     "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2018# <- {"event": "RESUME",
2019#     "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
2020# <- {"event": "JOB_STATUS_CHANGE",
2021#     "timestamp": {"seconds": 1432122772, "microseconds": 744001},
2022#     "data": {"status": "waiting", "id": "snapsave0"}}
2023# <- {"event": "JOB_STATUS_CHANGE",
2024#     "timestamp": {"seconds": 1432122972, "microseconds": 744001},
2025#     "data": {"status": "pending", "id": "snapsave0"}}
2026# <- {"event": "JOB_STATUS_CHANGE",
2027#     "timestamp": {"seconds": 1432123172, "microseconds": 744001},
2028#     "data": {"status": "concluded", "id": "snapsave0"}}
2029# -> {"execute": "query-jobs"}
2030# <- {"return": [{"current-progress": 1,
2031#                 "status": "concluded",
2032#                 "total-progress": 1,
2033#                 "type": "snapshot-save",
2034#                 "id": "snapsave0"}]}
2035#
2036# Since: 6.0
2037##
2038{ 'command': 'snapshot-save',
2039  'data': { 'job-id': 'str',
2040            'tag': 'str',
2041            'vmstate': 'str',
2042            'devices': ['str'] } }
2043
2044##
2045# @snapshot-load:
2046#
2047# Load a VM snapshot
2048#
2049# @job-id: identifier for the newly created job
2050# @tag: name of the snapshot to load.
2051# @vmstate: block device node name to load vmstate from
2052# @devices: list of block device node names to load a snapshot from
2053#
2054# Applications should not assume that the snapshot load is complete
2055# when this command returns. The job commands / events must be used
2056# to determine completion and to fetch details of any errors that arise.
2057#
2058# Note that execution of the guest CPUs will be stopped during the
2059# time it takes to load the snapshot.
2060#
2061# It is strongly recommended that @devices contain all writable
2062# block device nodes that can have changed since the original
2063# @snapshot-save command execution.
2064#
2065# Returns: nothing
2066#
2067# Example:
2068#
2069# -> { "execute": "snapshot-load",
2070#      "arguments": {
2071#         "job-id": "snapload0",
2072#         "tag": "my-snap",
2073#         "vmstate": "disk0",
2074#         "devices": ["disk0", "disk1"]
2075#      }
2076#    }
2077# <- { "return": { } }
2078# <- {"event": "JOB_STATUS_CHANGE",
2079#     "timestamp": {"seconds": 1472124172, "microseconds": 744001},
2080#     "data": {"status": "created", "id": "snapload0"}}
2081# <- {"event": "JOB_STATUS_CHANGE",
2082#     "timestamp": {"seconds": 1472125172, "microseconds": 744001},
2083#     "data": {"status": "running", "id": "snapload0"}}
2084# <- {"event": "STOP",
2085#     "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2086# <- {"event": "RESUME",
2087#     "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
2088# <- {"event": "JOB_STATUS_CHANGE",
2089#     "timestamp": {"seconds": 1472126172, "microseconds": 744001},
2090#     "data": {"status": "waiting", "id": "snapload0"}}
2091# <- {"event": "JOB_STATUS_CHANGE",
2092#     "timestamp": {"seconds": 1472127172, "microseconds": 744001},
2093#     "data": {"status": "pending", "id": "snapload0"}}
2094# <- {"event": "JOB_STATUS_CHANGE",
2095#     "timestamp": {"seconds": 1472128172, "microseconds": 744001},
2096#     "data": {"status": "concluded", "id": "snapload0"}}
2097# -> {"execute": "query-jobs"}
2098# <- {"return": [{"current-progress": 1,
2099#                 "status": "concluded",
2100#                 "total-progress": 1,
2101#                 "type": "snapshot-load",
2102#                 "id": "snapload0"}]}
2103#
2104# Since: 6.0
2105##
2106{ 'command': 'snapshot-load',
2107  'data': { 'job-id': 'str',
2108            'tag': 'str',
2109            'vmstate': 'str',
2110            'devices': ['str'] } }
2111
2112##
2113# @snapshot-delete:
2114#
2115# Delete a VM snapshot
2116#
2117# @job-id: identifier for the newly created job
2118# @tag: name of the snapshot to delete.
2119# @devices: list of block device node names to delete a snapshot from
2120#
2121# Applications should not assume that the snapshot delete is complete
2122# when this command returns. The job commands / events must be used
2123# to determine completion and to fetch details of any errors that arise.
2124#
2125# Returns: nothing
2126#
2127# Example:
2128#
2129# -> { "execute": "snapshot-delete",
2130#      "arguments": {
2131#         "job-id": "snapdelete0",
2132#         "tag": "my-snap",
2133#         "devices": ["disk0", "disk1"]
2134#      }
2135#    }
2136# <- { "return": { } }
2137# <- {"event": "JOB_STATUS_CHANGE",
2138#     "timestamp": {"seconds": 1442124172, "microseconds": 744001},
2139#     "data": {"status": "created", "id": "snapdelete0"}}
2140# <- {"event": "JOB_STATUS_CHANGE",
2141#     "timestamp": {"seconds": 1442125172, "microseconds": 744001},
2142#     "data": {"status": "running", "id": "snapdelete0"}}
2143# <- {"event": "JOB_STATUS_CHANGE",
2144#     "timestamp": {"seconds": 1442126172, "microseconds": 744001},
2145#     "data": {"status": "waiting", "id": "snapdelete0"}}
2146# <- {"event": "JOB_STATUS_CHANGE",
2147#     "timestamp": {"seconds": 1442127172, "microseconds": 744001},
2148#     "data": {"status": "pending", "id": "snapdelete0"}}
2149# <- {"event": "JOB_STATUS_CHANGE",
2150#     "timestamp": {"seconds": 1442128172, "microseconds": 744001},
2151#     "data": {"status": "concluded", "id": "snapdelete0"}}
2152# -> {"execute": "query-jobs"}
2153# <- {"return": [{"current-progress": 1,
2154#                 "status": "concluded",
2155#                 "total-progress": 1,
2156#                 "type": "snapshot-delete",
2157#                 "id": "snapdelete0"}]}
2158#
2159# Since: 6.0
2160##
2161{ 'command': 'snapshot-delete',
2162  'data': { 'job-id': 'str',
2163            'tag': 'str',
2164            'devices': ['str'] } }
2165