1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4 5## 6# = Migration 7## 8 9{ 'include': 'common.json' } 10{ 'include': 'sockets.json' } 11 12## 13# @MigrationStats: 14# 15# Detailed migration status. 16# 17# @transferred: amount of bytes already transferred to the target VM 18# 19# @remaining: amount of bytes remaining to be transferred to the 20# target VM 21# 22# @total: total amount of bytes involved in the migration process 23# 24# @duplicate: number of duplicate (zero) pages (since 1.2) 25# 26# @skipped: number of skipped zero pages. Always zero, only provided for 27# compatibility (since 1.5) 28# 29# @normal: number of normal pages (since 1.2) 30# 31# @normal-bytes: number of normal bytes sent (since 1.2) 32# 33# @dirty-pages-rate: number of pages dirtied by second by the guest 34# (since 1.3) 35# 36# @mbps: throughput in megabits/sec. (since 1.6) 37# 38# @dirty-sync-count: number of times that dirty ram was synchronized 39# (since 2.1) 40# 41# @postcopy-requests: The number of page requests received from the 42# destination (since 2.7) 43# 44# @page-size: The number of bytes per page for the various page-based 45# statistics (since 2.10) 46# 47# @multifd-bytes: The number of bytes sent through multifd (since 3.0) 48# 49# @pages-per-second: the number of memory pages transferred per second 50# (Since 4.0) 51# 52# @precopy-bytes: The number of bytes sent in the pre-copy phase 53# (since 7.0). 54# 55# @downtime-bytes: The number of bytes sent while the guest is paused 56# (since 7.0). 57# 58# @postcopy-bytes: The number of bytes sent during the post-copy phase 59# (since 7.0). 60# 61# @dirty-sync-missed-zero-copy: Number of times dirty RAM 62# synchronization could not avoid copying dirty pages. This is 63# between 0 and @dirty-sync-count * @multifd-channels. (since 64# 7.1) 65# 66# Features: 67# 68# @deprecated: Member @skipped is always zero since 1.5.3 69# 70# Since: 0.14 71# 72## 73{ 'struct': 'MigrationStats', 74 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' , 75 'duplicate': 'int', 76 'skipped': { 'type': 'int', 'features': [ 'deprecated' ] }, 77 'normal': 'int', 78 'normal-bytes': 'int', 'dirty-pages-rate': 'int', 79 'mbps': 'number', 'dirty-sync-count': 'int', 80 'postcopy-requests': 'int', 'page-size': 'int', 81 'multifd-bytes': 'uint64', 'pages-per-second': 'uint64', 82 'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64', 83 'postcopy-bytes': 'uint64', 84 'dirty-sync-missed-zero-copy': 'uint64' } } 85 86## 87# @XBZRLECacheStats: 88# 89# Detailed XBZRLE migration cache statistics 90# 91# @cache-size: XBZRLE cache size 92# 93# @bytes: amount of bytes already transferred to the target VM 94# 95# @pages: amount of pages transferred to the target VM 96# 97# @cache-miss: number of cache miss 98# 99# @cache-miss-rate: rate of cache miss (since 2.1) 100# 101# @encoding-rate: rate of encoded bytes (since 5.1) 102# 103# @overflow: number of overflows 104# 105# Since: 1.2 106## 107{ 'struct': 'XBZRLECacheStats', 108 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int', 109 'cache-miss': 'int', 'cache-miss-rate': 'number', 110 'encoding-rate': 'number', 'overflow': 'int' } } 111 112## 113# @CompressionStats: 114# 115# Detailed migration compression statistics 116# 117# @pages: amount of pages compressed and transferred to the target VM 118# 119# @busy: count of times that no free thread was available to compress 120# data 121# 122# @busy-rate: rate of thread busy 123# 124# @compressed-size: amount of bytes after compression 125# 126# @compression-rate: rate of compressed size 127# 128# Since: 3.1 129## 130{ 'struct': 'CompressionStats', 131 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number', 132 'compressed-size': 'int', 'compression-rate': 'number' } } 133 134## 135# @MigrationStatus: 136# 137# An enumeration of migration status. 138# 139# @none: no migration has ever happened. 140# 141# @setup: migration process has been initiated. 142# 143# @cancelling: in the process of cancelling migration. 144# 145# @cancelled: cancelling migration is finished. 146# 147# @active: in the process of doing migration. 148# 149# @postcopy-active: like active, but now in postcopy mode. (since 150# 2.5) 151# 152# @postcopy-paused: during postcopy but paused. (since 3.0) 153# 154# @postcopy-recover: trying to recover from a paused postcopy. (since 155# 3.0) 156# 157# @completed: migration is finished. 158# 159# @failed: some error occurred during migration process. 160# 161# @colo: VM is in the process of fault tolerance, VM can not get into 162# this state unless colo capability is enabled for migration. 163# (since 2.8) 164# 165# @pre-switchover: Paused before device serialisation. (since 2.11) 166# 167# @device: During device serialisation when pause-before-switchover is 168# enabled (since 2.11) 169# 170# @wait-unplug: wait for device unplug request by guest OS to be 171# completed. (since 4.2) 172# 173# Since: 2.3 174## 175{ 'enum': 'MigrationStatus', 176 'data': [ 'none', 'setup', 'cancelling', 'cancelled', 177 'active', 'postcopy-active', 'postcopy-paused', 178 'postcopy-recover', 'completed', 'failed', 'colo', 179 'pre-switchover', 'device', 'wait-unplug' ] } 180## 181# @VfioStats: 182# 183# Detailed VFIO devices migration statistics 184# 185# @transferred: amount of bytes transferred to the target VM by VFIO 186# devices 187# 188# Since: 5.2 189## 190{ 'struct': 'VfioStats', 191 'data': {'transferred': 'int' } } 192 193## 194# @MigrationInfo: 195# 196# Information about current migration process. 197# 198# @status: @MigrationStatus describing the current migration status. 199# If this field is not returned, no migration process has been 200# initiated 201# 202# @ram: @MigrationStats containing detailed migration status, only 203# returned if status is 'active' or 'completed'(since 1.2) 204# 205# @disk: @MigrationStats containing detailed disk migration status, 206# only returned if status is 'active' and it is a block migration 207# 208# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE 209# migration statistics, only returned if XBZRLE feature is on and 210# status is 'active' or 'completed' (since 1.2) 211# 212# @total-time: total amount of milliseconds since migration started. 213# If migration has ended, it returns the total migration time. 214# (since 1.2) 215# 216# @downtime: only present when migration finishes correctly total 217# downtime in milliseconds for the guest. (since 1.3) 218# 219# @expected-downtime: only present while migration is active expected 220# downtime in milliseconds for the guest in last walk of the dirty 221# bitmap. (since 1.3) 222# 223# @setup-time: amount of setup time in milliseconds *before* the 224# iterations begin but *after* the QMP command is issued. This is 225# designed to provide an accounting of any activities (such as 226# RDMA pinning) which may be expensive, but do not actually occur 227# during the iterative migration rounds themselves. (since 1.6) 228# 229# @cpu-throttle-percentage: percentage of time guest cpus are being 230# throttled during auto-converge. This is only present when 231# auto-converge has started throttling guest cpus. (Since 2.7) 232# 233# @error-desc: the human readable error description string. Clients 234# should not attempt to parse the error strings. (Since 2.7) 235# 236# @postcopy-blocktime: total time when all vCPU were blocked during 237# postcopy live migration. This is only present when the 238# postcopy-blocktime migration capability is enabled. (Since 3.0) 239# 240# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. 241# This is only present when the postcopy-blocktime migration 242# capability is enabled. (Since 3.0) 243# 244# @compression: migration compression statistics, only returned if 245# compression feature is on and status is 'active' or 'completed' 246# (Since 3.1) 247# 248# @socket-address: Only used for tcp, to know what the real port is 249# (Since 4.0) 250# 251# @vfio: @VfioStats containing detailed VFIO devices migration 252# statistics, only returned if VFIO device is present, migration 253# is supported by all VFIO devices and status is 'active' or 254# 'completed' (since 5.2) 255# 256# @blocked-reasons: A list of reasons an outgoing migration is 257# blocked. Present and non-empty when migration is blocked. 258# (since 6.0) 259# 260# @dirty-limit-throttle-time-per-round: Maximum throttle time 261# (in microseconds) of virtual CPUs each dirty ring full round, 262# which shows how MigrationCapability dirty-limit affects the 263# guest during live migration. (Since 8.1) 264# 265# @dirty-limit-ring-full-time: Estimated average dirty ring full time 266# (in microseconds) for each dirty ring full round. The value 267# equals the dirty ring memory size divided by the average dirty 268# page rate of the virtual CPU, which can be used to observe the 269# average memory load of the virtual CPU indirectly. Note that 270# zero means guest doesn't dirty memory. (Since 8.1) 271# 272# Features: 273# 274# @deprecated: Member @disk is deprecated because block migration is. 275# Member @compression is deprecated because it is unreliable and 276# untested. It is recommended to use multifd migration, which 277# offers an alternative compression implementation that is 278# reliable and tested. 279# 280# Since: 0.14 281## 282{ 'struct': 'MigrationInfo', 283 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats', 284 '*disk': { 'type': 'MigrationStats', 'features': [ 'deprecated' ] }, 285 '*vfio': 'VfioStats', 286 '*xbzrle-cache': 'XBZRLECacheStats', 287 '*total-time': 'int', 288 '*expected-downtime': 'int', 289 '*downtime': 'int', 290 '*setup-time': 'int', 291 '*cpu-throttle-percentage': 'int', 292 '*error-desc': 'str', 293 '*blocked-reasons': ['str'], 294 '*postcopy-blocktime': 'uint32', 295 '*postcopy-vcpu-blocktime': ['uint32'], 296 '*compression': { 'type': 'CompressionStats', 'features': [ 'deprecated' ] }, 297 '*socket-address': ['SocketAddress'], 298 '*dirty-limit-throttle-time-per-round': 'uint64', 299 '*dirty-limit-ring-full-time': 'uint64'} } 300 301## 302# @query-migrate: 303# 304# Returns information about current migration process. If migration 305# is active there will be another json-object with RAM migration 306# status and if block migration is active another one with block 307# migration status. 308# 309# Returns: @MigrationInfo 310# 311# Since: 0.14 312# 313# Examples: 314# 315# 1. Before the first migration 316# 317# -> { "execute": "query-migrate" } 318# <- { "return": {} } 319# 320# 2. Migration is done and has succeeded 321# 322# -> { "execute": "query-migrate" } 323# <- { "return": { 324# "status": "completed", 325# "total-time":12345, 326# "setup-time":12345, 327# "downtime":12345, 328# "ram":{ 329# "transferred":123, 330# "remaining":123, 331# "total":246, 332# "duplicate":123, 333# "normal":123, 334# "normal-bytes":123456, 335# "dirty-sync-count":15 336# } 337# } 338# } 339# 340# 3. Migration is done and has failed 341# 342# -> { "execute": "query-migrate" } 343# <- { "return": { "status": "failed" } } 344# 345# 4. Migration is being performed and is not a block migration: 346# 347# -> { "execute": "query-migrate" } 348# <- { 349# "return":{ 350# "status":"active", 351# "total-time":12345, 352# "setup-time":12345, 353# "expected-downtime":12345, 354# "ram":{ 355# "transferred":123, 356# "remaining":123, 357# "total":246, 358# "duplicate":123, 359# "normal":123, 360# "normal-bytes":123456, 361# "dirty-sync-count":15 362# } 363# } 364# } 365# 366# 5. Migration is being performed and is a block migration: 367# 368# -> { "execute": "query-migrate" } 369# <- { 370# "return":{ 371# "status":"active", 372# "total-time":12345, 373# "setup-time":12345, 374# "expected-downtime":12345, 375# "ram":{ 376# "total":1057024, 377# "remaining":1053304, 378# "transferred":3720, 379# "duplicate":123, 380# "normal":123, 381# "normal-bytes":123456, 382# "dirty-sync-count":15 383# }, 384# "disk":{ 385# "total":20971520, 386# "remaining":20880384, 387# "transferred":91136 388# } 389# } 390# } 391# 392# 6. Migration is being performed and XBZRLE is active: 393# 394# -> { "execute": "query-migrate" } 395# <- { 396# "return":{ 397# "status":"active", 398# "total-time":12345, 399# "setup-time":12345, 400# "expected-downtime":12345, 401# "ram":{ 402# "total":1057024, 403# "remaining":1053304, 404# "transferred":3720, 405# "duplicate":10, 406# "normal":3333, 407# "normal-bytes":3412992, 408# "dirty-sync-count":15 409# }, 410# "xbzrle-cache":{ 411# "cache-size":67108864, 412# "bytes":20971520, 413# "pages":2444343, 414# "cache-miss":2244, 415# "cache-miss-rate":0.123, 416# "encoding-rate":80.1, 417# "overflow":34434 418# } 419# } 420# } 421## 422{ 'command': 'query-migrate', 'returns': 'MigrationInfo' } 423 424## 425# @MigrationCapability: 426# 427# Migration capabilities enumeration 428# 429# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length 430# Encoding). This feature allows us to minimize migration traffic 431# for certain work loads, by sending compressed difference of the 432# pages 433# 434# @rdma-pin-all: Controls whether or not the entire VM memory 435# footprint is mlock()'d on demand or all at once. Refer to 436# docs/rdma.txt for usage. Disabled by default. (since 2.0) 437# 438# @zero-blocks: During storage migration encode blocks of zeroes 439# efficiently. This essentially saves 1MB of zeroes per block on 440# the wire. Enabling requires source and target VM to support 441# this feature. To enable it is sufficient to enable the 442# capability on the source VM. The feature is disabled by default. 443# (since 1.6) 444# 445# @compress: Use multiple compression threads to accelerate live 446# migration. This feature can help to reduce the migration 447# traffic, by sending compressed pages. Please note that if 448# compress and xbzrle are both on, compress only takes effect in 449# the ram bulk stage, after that, it will be disabled and only 450# xbzrle takes effect, this can help to minimize migration 451# traffic. The feature is disabled by default. (since 2.4) 452# 453# @events: generate events for each migration state change (since 2.4) 454# 455# @auto-converge: If enabled, QEMU will automatically throttle down 456# the guest to speed up convergence of RAM migration. (since 1.6) 457# 458# @postcopy-ram: Start executing on the migration target before all of 459# RAM has been migrated, pulling the remaining pages along as 460# needed. The capacity must have the same setting on both source 461# and target or migration will not even start. NOTE: If the 462# migration fails during postcopy the VM will fail. (since 2.6) 463# 464# @x-colo: If enabled, migration will never end, and the state of the 465# VM on the primary side will be migrated continuously to the VM 466# on secondary side, this process is called COarse-Grain LOck 467# Stepping (COLO) for Non-stop Service. (since 2.8) 468# 469# @release-ram: if enabled, qemu will free the migrated ram pages on 470# the source during postcopy-ram migration. (since 2.9) 471# 472# @block: If enabled, QEMU will also migrate the contents of all block 473# devices. Default is disabled. A possible alternative uses 474# mirror jobs to a builtin NBD server on the destination, which 475# offers more flexibility. (Since 2.10) 476# 477# @return-path: If enabled, migration will use the return path even 478# for precopy. (since 2.10) 479# 480# @pause-before-switchover: Pause outgoing migration before 481# serialising device state and before disabling block IO (since 482# 2.11) 483# 484# @multifd: Use more than one fd for migration (since 4.0) 485# 486# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps. 487# (since 2.12) 488# 489# @postcopy-blocktime: Calculate downtime for postcopy live migration 490# (since 3.0) 491# 492# @late-block-activate: If enabled, the destination will not activate 493# block devices (and thus take locks) immediately at the end of 494# migration. (since 3.0) 495# 496# @x-ignore-shared: If enabled, QEMU will not migrate shared memory 497# that is accessible on the destination machine. (since 4.0) 498# 499# @validate-uuid: Send the UUID of the source to allow the destination 500# to ensure it is the same. (since 4.2) 501# 502# @background-snapshot: If enabled, the migration stream will be a 503# snapshot of the VM exactly at the point when the migration 504# procedure starts. The VM RAM is saved with running VM. (since 505# 6.0) 506# 507# @zero-copy-send: Controls behavior on sending memory pages on 508# migration. When true, enables a zero-copy mechanism for sending 509# memory pages, if host supports it. Requires that QEMU be 510# permitted to use locked memory for guest RAM pages. (since 7.1) 511# 512# @postcopy-preempt: If enabled, the migration process will allow 513# postcopy requests to preempt precopy stream, so postcopy 514# requests will be handled faster. This is a performance feature 515# and should not affect the correctness of postcopy migration. 516# (since 7.1) 517# 518# @switchover-ack: If enabled, migration will not stop the source VM 519# and complete the migration until an ACK is received from the 520# destination that it's OK to do so. Exactly when this ACK is 521# sent depends on the migrated devices that use this feature. For 522# example, a device can use it to make sure some of its data is 523# sent and loaded in the destination before doing switchover. 524# This can reduce downtime if devices that support this capability 525# are present. 'return-path' capability must be enabled to use 526# it. (since 8.1) 527# 528# @dirty-limit: If enabled, migration will throttle vCPUs as needed to 529# keep their dirty page rate within @vcpu-dirty-limit. This can 530# improve responsiveness of large guests during live migration, 531# and can result in more stable read performance. Requires KVM 532# with accelerator property "dirty-ring-size" set. (Since 8.1) 533# 534# @mapped-ram: Migrate using fixed offsets in the migration file for 535# each RAM page. Requires a migration URI that supports seeking, 536# such as a file. (since 9.0) 537# 538# Features: 539# 540# @deprecated: Member @block is deprecated. Use blockdev-mirror with 541# NBD instead. Member @compress is deprecated because it is 542# unreliable and untested. It is recommended to use multifd 543# migration, which offers an alternative compression 544# implementation that is reliable and tested. 545# 546# @unstable: Members @x-colo and @x-ignore-shared are experimental. 547# 548# Since: 1.2 549## 550{ 'enum': 'MigrationCapability', 551 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks', 552 { 'name': 'compress', 'features': [ 'deprecated' ] }, 553 'events', 'postcopy-ram', 554 { 'name': 'x-colo', 'features': [ 'unstable' ] }, 555 'release-ram', 556 { 'name': 'block', 'features': [ 'deprecated' ] }, 557 'return-path', 'pause-before-switchover', 'multifd', 558 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate', 559 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] }, 560 'validate-uuid', 'background-snapshot', 561 'zero-copy-send', 'postcopy-preempt', 'switchover-ack', 562 'dirty-limit', 'mapped-ram'] } 563 564## 565# @MigrationCapabilityStatus: 566# 567# Migration capability information 568# 569# @capability: capability enum 570# 571# @state: capability state bool 572# 573# Since: 1.2 574## 575{ 'struct': 'MigrationCapabilityStatus', 576 'data': { 'capability': 'MigrationCapability', 'state': 'bool' } } 577 578## 579# @migrate-set-capabilities: 580# 581# Enable/Disable the following migration capabilities (like xbzrle) 582# 583# @capabilities: json array of capability modifications to make 584# 585# Since: 1.2 586# 587# Example: 588# 589# -> { "execute": "migrate-set-capabilities" , "arguments": 590# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } } 591# <- { "return": {} } 592## 593{ 'command': 'migrate-set-capabilities', 594 'data': { 'capabilities': ['MigrationCapabilityStatus'] } } 595 596## 597# @query-migrate-capabilities: 598# 599# Returns information about the current migration capabilities status 600# 601# Returns: @MigrationCapabilityStatus 602# 603# Since: 1.2 604# 605# Example: 606# 607# -> { "execute": "query-migrate-capabilities" } 608# <- { "return": [ 609# {"state": false, "capability": "xbzrle"}, 610# {"state": false, "capability": "rdma-pin-all"}, 611# {"state": false, "capability": "auto-converge"}, 612# {"state": false, "capability": "zero-blocks"}, 613# {"state": false, "capability": "compress"}, 614# {"state": true, "capability": "events"}, 615# {"state": false, "capability": "postcopy-ram"}, 616# {"state": false, "capability": "x-colo"} 617# ]} 618## 619{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']} 620 621## 622# @MultiFDCompression: 623# 624# An enumeration of multifd compression methods. 625# 626# @none: no compression. 627# 628# @zlib: use zlib compression method. 629# 630# @zstd: use zstd compression method. 631# 632# Since: 5.0 633## 634{ 'enum': 'MultiFDCompression', 635 'data': [ 'none', 'zlib', 636 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] } 637 638## 639# @MigMode: 640# 641# @normal: the original form of migration. (since 8.2) 642# 643# @cpr-reboot: The migrate command stops the VM and saves state to 644# the URI. After quitting QEMU, the user resumes by running 645# QEMU -incoming. 646# 647# This mode allows the user to quit QEMU, optionally update and 648# reboot the OS, and restart QEMU. If the user reboots, the URI 649# must persist across the reboot, such as by using a file. 650# 651# Unlike normal mode, the use of certain local storage options 652# does not block the migration, but the user must not modify the 653# contents of guest block devices between the quit and restart. 654# 655# This mode supports VFIO devices provided the user first puts 656# the guest in the suspended runstate, such as by issuing 657# guest-suspend-ram to the QEMU guest agent. 658# 659# Best performance is achieved when the memory backend is shared 660# and the @x-ignore-shared migration capability is set, but this 661# is not required. Further, if the user reboots before restarting 662# such a configuration, the shared memory must persist across the 663# reboot, such as by backing it with a dax device. 664# 665# @cpr-reboot may not be used with postcopy, background-snapshot, 666# or COLO. 667# 668# (since 8.2) 669## 670{ 'enum': 'MigMode', 671 'data': [ 'normal', 'cpr-reboot' ] } 672 673## 674# @ZeroPageDetection: 675# 676# @none: Do not perform zero page checking. 677# 678# @legacy: Perform zero page checking in main migration thread. 679# 680# @multifd: Perform zero page checking in multifd sender thread if 681# multifd migration is enabled, else in the main migration 682# thread as for @legacy. 683# 684# Since: 9.0 685# 686## 687{ 'enum': 'ZeroPageDetection', 688 'data': [ 'none', 'legacy', 'multifd' ] } 689 690## 691# @BitmapMigrationBitmapAliasTransform: 692# 693# @persistent: If present, the bitmap will be made persistent or 694# transient depending on this parameter. 695# 696# Since: 6.0 697## 698{ 'struct': 'BitmapMigrationBitmapAliasTransform', 699 'data': { 700 '*persistent': 'bool' 701 } } 702 703## 704# @BitmapMigrationBitmapAlias: 705# 706# @name: The name of the bitmap. 707# 708# @alias: An alias name for migration (for example the bitmap name on 709# the opposite site). 710# 711# @transform: Allows the modification of the migrated bitmap. (since 712# 6.0) 713# 714# Since: 5.2 715## 716{ 'struct': 'BitmapMigrationBitmapAlias', 717 'data': { 718 'name': 'str', 719 'alias': 'str', 720 '*transform': 'BitmapMigrationBitmapAliasTransform' 721 } } 722 723## 724# @BitmapMigrationNodeAlias: 725# 726# Maps a block node name and the bitmaps it has to aliases for dirty 727# bitmap migration. 728# 729# @node-name: A block node name. 730# 731# @alias: An alias block node name for migration (for example the node 732# name on the opposite site). 733# 734# @bitmaps: Mappings for the bitmaps on this node. 735# 736# Since: 5.2 737## 738{ 'struct': 'BitmapMigrationNodeAlias', 739 'data': { 740 'node-name': 'str', 741 'alias': 'str', 742 'bitmaps': [ 'BitmapMigrationBitmapAlias' ] 743 } } 744 745## 746# @MigrationParameter: 747# 748# Migration parameters enumeration 749# 750# @announce-initial: Initial delay (in milliseconds) before sending 751# the first announce (Since 4.0) 752# 753# @announce-max: Maximum delay (in milliseconds) between packets in 754# the announcement (Since 4.0) 755# 756# @announce-rounds: Number of self-announce packets sent after 757# migration (Since 4.0) 758# 759# @announce-step: Increase in delay (in milliseconds) between 760# subsequent packets in the announcement (Since 4.0) 761# 762# @compress-level: Set the compression level to be used in live 763# migration, the compression level is an integer between 0 and 9, 764# where 0 means no compression, 1 means the best compression 765# speed, and 9 means best compression ratio which will consume 766# more CPU. 767# 768# @compress-threads: Set compression thread count to be used in live 769# migration, the compression thread count is an integer between 1 770# and 255. 771# 772# @compress-wait-thread: Controls behavior when all compression 773# threads are currently busy. If true (default), wait for a free 774# compression thread to become available; otherwise, send the page 775# uncompressed. (Since 3.1) 776# 777# @decompress-threads: Set decompression thread count to be used in 778# live migration, the decompression thread count is an integer 779# between 1 and 255. Usually, decompression is at least 4 times as 780# fast as compression, so set the decompress-threads to the number 781# about 1/4 of compress-threads is adequate. 782# 783# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 784# bytes_xfer_period to trigger throttling. It is expressed as 785# percentage. The default value is 50. (Since 5.0) 786# 787# @cpu-throttle-initial: Initial percentage of time guest cpus are 788# throttled when migration auto-converge is activated. The 789# default value is 20. (Since 2.7) 790# 791# @cpu-throttle-increment: throttle percentage increase each time 792# auto-converge detects that migration is not making progress. 793# The default value is 10. (Since 2.7) 794# 795# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 796# the tail stage of throttling, the Guest is very sensitive to CPU 797# percentage while the @cpu-throttle -increment is excessive 798# usually at tail stage. If this parameter is true, we will 799# compute the ideal CPU percentage used by the Guest, which may 800# exactly make the dirty rate match the dirty rate threshold. 801# Then we will choose a smaller throttle increment between the one 802# specified by @cpu-throttle-increment and the one generated by 803# ideal CPU percentage. Therefore, it is compatible to 804# traditional throttling, meanwhile the throttle increment won't 805# be excessive at tail stage. The default value is false. (Since 806# 5.1) 807# 808# @tls-creds: ID of the 'tls-creds' object that provides credentials 809# for establishing a TLS connection over the migration data 810# channel. On the outgoing side of the migration, the credentials 811# must be for a 'client' endpoint, while for the incoming side the 812# credentials must be for a 'server' endpoint. Setting this will 813# enable TLS for all migrations. The default is unset, resulting 814# in unsecured migration at the QEMU level. (Since 2.7) 815# 816# @tls-hostname: hostname of the target host for the migration. This 817# is required when using x509 based TLS credentials and the 818# migration URI does not already include a hostname. For example 819# if using fd: or exec: based migration, the hostname must be 820# provided so that the server's x509 certificate identity can be 821# validated. (Since 2.7) 822# 823# @tls-authz: ID of the 'authz' object subclass that provides access 824# control checking of the TLS x509 certificate distinguished name. 825# This object is only resolved at time of use, so can be deleted 826# and recreated on the fly while the migration server is active. 827# If missing, it will default to denying access (Since 4.0) 828# 829# @max-bandwidth: to set maximum speed for migration. maximum speed 830# in bytes per second. (Since 2.8) 831# 832# @avail-switchover-bandwidth: to set the available bandwidth that 833# migration can use during switchover phase. NOTE! This does not 834# limit the bandwidth during switchover, but only for calculations when 835# making decisions to switchover. By default, this value is zero, 836# which means QEMU will estimate the bandwidth automatically. This can 837# be set when the estimated value is not accurate, while the user is 838# able to guarantee such bandwidth is available when switching over. 839# When specified correctly, this can make the switchover decision much 840# more accurate. (Since 8.2) 841# 842# @downtime-limit: set maximum tolerated downtime for migration. 843# maximum downtime in milliseconds (Since 2.8) 844# 845# @x-checkpoint-delay: The delay time (in ms) between two COLO 846# checkpoints in periodic mode. (Since 2.8) 847# 848# @block-incremental: Affects how much storage is migrated when the 849# block migration capability is enabled. When false, the entire 850# storage backing chain is migrated into a flattened image at the 851# destination; when true, only the active qcow2 layer is migrated 852# and the destination must already have access to the same backing 853# chain as was used on the source. (since 2.10) 854# 855# @multifd-channels: Number of channels used to migrate data in 856# parallel. This is the same number that the number of sockets 857# used for migration. The default value is 2 (since 4.0) 858# 859# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 860# needs to be a multiple of the target page size and a power of 2 861# (Since 2.11) 862# 863# @max-postcopy-bandwidth: Background transfer bandwidth during 864# postcopy. Defaults to 0 (unlimited). In bytes per second. 865# (Since 3.0) 866# 867# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 868# (Since 3.1) 869# 870# @multifd-compression: Which compression method to use. Defaults to 871# none. (Since 5.0) 872# 873# @multifd-zlib-level: Set the compression level to be used in live 874# migration, the compression level is an integer between 0 and 9, 875# where 0 means no compression, 1 means the best compression 876# speed, and 9 means best compression ratio which will consume 877# more CPU. Defaults to 1. (Since 5.0) 878# 879# @multifd-zstd-level: Set the compression level to be used in live 880# migration, the compression level is an integer between 0 and 20, 881# where 0 means no compression, 1 means the best compression 882# speed, and 20 means best compression ratio which will consume 883# more CPU. Defaults to 1. (Since 5.0) 884# 885# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 886# aliases for the purpose of dirty bitmap migration. Such aliases 887# may for example be the corresponding names on the opposite site. 888# The mapping must be one-to-one, but not necessarily complete: On 889# the source, unmapped bitmaps and all bitmaps on unmapped nodes 890# will be ignored. On the destination, encountering an unmapped 891# alias in the incoming migration stream will result in a report, 892# and all further bitmap migration data will then be discarded. 893# Note that the destination does not know about bitmaps it does 894# not receive, so there is no limitation or requirement regarding 895# the number of bitmaps received, or how they are named, or on 896# which nodes they are placed. By default (when this parameter 897# has never been set), bitmap names are mapped to themselves. 898# Nodes are mapped to their block device name if there is one, and 899# to their node name otherwise. (Since 5.2) 900# 901# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 902# limit during live migration. Should be in the range 1 to 1000ms. 903# Defaults to 1000ms. (Since 8.1) 904# 905# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 906# Defaults to 1. (Since 8.1) 907# 908# @mode: Migration mode. See description in @MigMode. Default is 'normal'. 909# (Since 8.2) 910# 911# @zero-page-detection: Whether and how to detect zero pages. 912# See description in @ZeroPageDetection. Default is 'multifd'. 913# (since 9.0) 914# 915# Features: 916# 917# @deprecated: Member @block-incremental is deprecated. Use 918# blockdev-mirror with NBD instead. Members @compress-level, 919# @compress-threads, @decompress-threads and @compress-wait-thread 920# are deprecated because @compression is deprecated. 921# 922# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period 923# are experimental. 924# 925# Since: 2.4 926## 927{ 'enum': 'MigrationParameter', 928 'data': ['announce-initial', 'announce-max', 929 'announce-rounds', 'announce-step', 930 { 'name': 'compress-level', 'features': [ 'deprecated' ] }, 931 { 'name': 'compress-threads', 'features': [ 'deprecated' ] }, 932 { 'name': 'decompress-threads', 'features': [ 'deprecated' ] }, 933 { 'name': 'compress-wait-thread', 'features': [ 'deprecated' ] }, 934 'throttle-trigger-threshold', 935 'cpu-throttle-initial', 'cpu-throttle-increment', 936 'cpu-throttle-tailslow', 937 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth', 938 'avail-switchover-bandwidth', 'downtime-limit', 939 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] }, 940 { 'name': 'block-incremental', 'features': [ 'deprecated' ] }, 941 'multifd-channels', 942 'xbzrle-cache-size', 'max-postcopy-bandwidth', 943 'max-cpu-throttle', 'multifd-compression', 944 'multifd-zlib-level', 'multifd-zstd-level', 945 'block-bitmap-mapping', 946 { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] }, 947 'vcpu-dirty-limit', 948 'mode', 949 'zero-page-detection'] } 950 951## 952# @MigrateSetParameters: 953# 954# @announce-initial: Initial delay (in milliseconds) before sending 955# the first announce (Since 4.0) 956# 957# @announce-max: Maximum delay (in milliseconds) between packets in 958# the announcement (Since 4.0) 959# 960# @announce-rounds: Number of self-announce packets sent after 961# migration (Since 4.0) 962# 963# @announce-step: Increase in delay (in milliseconds) between 964# subsequent packets in the announcement (Since 4.0) 965# 966# @compress-level: compression level 967# 968# @compress-threads: compression thread count 969# 970# @compress-wait-thread: Controls behavior when all compression 971# threads are currently busy. If true (default), wait for a free 972# compression thread to become available; otherwise, send the page 973# uncompressed. (Since 3.1) 974# 975# @decompress-threads: decompression thread count 976# 977# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 978# bytes_xfer_period to trigger throttling. It is expressed as 979# percentage. The default value is 50. (Since 5.0) 980# 981# @cpu-throttle-initial: Initial percentage of time guest cpus are 982# throttled when migration auto-converge is activated. The 983# default value is 20. (Since 2.7) 984# 985# @cpu-throttle-increment: throttle percentage increase each time 986# auto-converge detects that migration is not making progress. 987# The default value is 10. (Since 2.7) 988# 989# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 990# the tail stage of throttling, the Guest is very sensitive to CPU 991# percentage while the @cpu-throttle -increment is excessive 992# usually at tail stage. If this parameter is true, we will 993# compute the ideal CPU percentage used by the Guest, which may 994# exactly make the dirty rate match the dirty rate threshold. 995# Then we will choose a smaller throttle increment between the one 996# specified by @cpu-throttle-increment and the one generated by 997# ideal CPU percentage. Therefore, it is compatible to 998# traditional throttling, meanwhile the throttle increment won't 999# be excessive at tail stage. The default value is false. (Since 1000# 5.1) 1001# 1002# @tls-creds: ID of the 'tls-creds' object that provides credentials 1003# for establishing a TLS connection over the migration data 1004# channel. On the outgoing side of the migration, the credentials 1005# must be for a 'client' endpoint, while for the incoming side the 1006# credentials must be for a 'server' endpoint. Setting this to a 1007# non-empty string enables TLS for all migrations. An empty 1008# string means that QEMU will use plain text mode for migration, 1009# rather than TLS (Since 2.9) Previously (since 2.7), this was 1010# reported by omitting tls-creds instead. 1011# 1012# @tls-hostname: hostname of the target host for the migration. This 1013# is required when using x509 based TLS credentials and the 1014# migration URI does not already include a hostname. For example 1015# if using fd: or exec: based migration, the hostname must be 1016# provided so that the server's x509 certificate identity can be 1017# validated. (Since 2.7) An empty string means that QEMU will use 1018# the hostname associated with the migration URI, if any. (Since 1019# 2.9) Previously (since 2.7), this was reported by omitting 1020# tls-hostname instead. 1021# 1022# @tls-authz: ID of the 'authz' object subclass that provides access 1023# control checking of the TLS x509 certificate distinguished name. 1024# (Since 4.0) 1025# 1026# @max-bandwidth: to set maximum speed for migration. maximum speed 1027# in bytes per second. (Since 2.8) 1028# 1029# @avail-switchover-bandwidth: to set the available bandwidth that 1030# migration can use during switchover phase. NOTE! This does not 1031# limit the bandwidth during switchover, but only for calculations when 1032# making decisions to switchover. By default, this value is zero, 1033# which means QEMU will estimate the bandwidth automatically. This can 1034# be set when the estimated value is not accurate, while the user is 1035# able to guarantee such bandwidth is available when switching over. 1036# When specified correctly, this can make the switchover decision much 1037# more accurate. (Since 8.2) 1038# 1039# @downtime-limit: set maximum tolerated downtime for migration. 1040# maximum downtime in milliseconds (Since 2.8) 1041# 1042# @x-checkpoint-delay: the delay time between two COLO checkpoints. 1043# (Since 2.8) 1044# 1045# @block-incremental: Affects how much storage is migrated when the 1046# block migration capability is enabled. When false, the entire 1047# storage backing chain is migrated into a flattened image at the 1048# destination; when true, only the active qcow2 layer is migrated 1049# and the destination must already have access to the same backing 1050# chain as was used on the source. (since 2.10) 1051# 1052# @multifd-channels: Number of channels used to migrate data in 1053# parallel. This is the same number that the number of sockets 1054# used for migration. The default value is 2 (since 4.0) 1055# 1056# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1057# needs to be a multiple of the target page size and a power of 2 1058# (Since 2.11) 1059# 1060# @max-postcopy-bandwidth: Background transfer bandwidth during 1061# postcopy. Defaults to 0 (unlimited). In bytes per second. 1062# (Since 3.0) 1063# 1064# @max-cpu-throttle: maximum cpu throttle percentage. The default 1065# value is 99. (Since 3.1) 1066# 1067# @multifd-compression: Which compression method to use. Defaults to 1068# none. (Since 5.0) 1069# 1070# @multifd-zlib-level: Set the compression level to be used in live 1071# migration, the compression level is an integer between 0 and 9, 1072# where 0 means no compression, 1 means the best compression 1073# speed, and 9 means best compression ratio which will consume 1074# more CPU. Defaults to 1. (Since 5.0) 1075# 1076# @multifd-zstd-level: Set the compression level to be used in live 1077# migration, the compression level is an integer between 0 and 20, 1078# where 0 means no compression, 1 means the best compression 1079# speed, and 20 means best compression ratio which will consume 1080# more CPU. Defaults to 1. (Since 5.0) 1081# 1082# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1083# aliases for the purpose of dirty bitmap migration. Such aliases 1084# may for example be the corresponding names on the opposite site. 1085# The mapping must be one-to-one, but not necessarily complete: On 1086# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1087# will be ignored. On the destination, encountering an unmapped 1088# alias in the incoming migration stream will result in a report, 1089# and all further bitmap migration data will then be discarded. 1090# Note that the destination does not know about bitmaps it does 1091# not receive, so there is no limitation or requirement regarding 1092# the number of bitmaps received, or how they are named, or on 1093# which nodes they are placed. By default (when this parameter 1094# has never been set), bitmap names are mapped to themselves. 1095# Nodes are mapped to their block device name if there is one, and 1096# to their node name otherwise. (Since 5.2) 1097# 1098# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 1099# limit during live migration. Should be in the range 1 to 1000ms. 1100# Defaults to 1000ms. (Since 8.1) 1101# 1102# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1103# Defaults to 1. (Since 8.1) 1104# 1105# @mode: Migration mode. See description in @MigMode. Default is 'normal'. 1106# (Since 8.2) 1107# 1108# @zero-page-detection: Whether and how to detect zero pages. 1109# See description in @ZeroPageDetection. Default is 'multifd'. 1110# (since 9.0) 1111# 1112# Features: 1113# 1114# @deprecated: Member @block-incremental is deprecated. Use 1115# blockdev-mirror with NBD instead. Members @compress-level, 1116# @compress-threads, @decompress-threads and @compress-wait-thread 1117# are deprecated because @compression is deprecated. 1118# 1119# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period 1120# are experimental. 1121# 1122# TODO: either fuse back into MigrationParameters, or make 1123# MigrationParameters members mandatory 1124# 1125# Since: 2.4 1126## 1127{ 'struct': 'MigrateSetParameters', 1128 'data': { '*announce-initial': 'size', 1129 '*announce-max': 'size', 1130 '*announce-rounds': 'size', 1131 '*announce-step': 'size', 1132 '*compress-level': { 'type': 'uint8', 1133 'features': [ 'deprecated' ] }, 1134 '*compress-threads': { 'type': 'uint8', 1135 'features': [ 'deprecated' ] }, 1136 '*compress-wait-thread': { 'type': 'bool', 1137 'features': [ 'deprecated' ] }, 1138 '*decompress-threads': { 'type': 'uint8', 1139 'features': [ 'deprecated' ] }, 1140 '*throttle-trigger-threshold': 'uint8', 1141 '*cpu-throttle-initial': 'uint8', 1142 '*cpu-throttle-increment': 'uint8', 1143 '*cpu-throttle-tailslow': 'bool', 1144 '*tls-creds': 'StrOrNull', 1145 '*tls-hostname': 'StrOrNull', 1146 '*tls-authz': 'StrOrNull', 1147 '*max-bandwidth': 'size', 1148 '*avail-switchover-bandwidth': 'size', 1149 '*downtime-limit': 'uint64', 1150 '*x-checkpoint-delay': { 'type': 'uint32', 1151 'features': [ 'unstable' ] }, 1152 '*block-incremental': { 'type': 'bool', 1153 'features': [ 'deprecated' ] }, 1154 '*multifd-channels': 'uint8', 1155 '*xbzrle-cache-size': 'size', 1156 '*max-postcopy-bandwidth': 'size', 1157 '*max-cpu-throttle': 'uint8', 1158 '*multifd-compression': 'MultiFDCompression', 1159 '*multifd-zlib-level': 'uint8', 1160 '*multifd-zstd-level': 'uint8', 1161 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1162 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1163 'features': [ 'unstable' ] }, 1164 '*vcpu-dirty-limit': 'uint64', 1165 '*mode': 'MigMode', 1166 '*zero-page-detection': 'ZeroPageDetection'} } 1167 1168## 1169# @migrate-set-parameters: 1170# 1171# Set various migration parameters. 1172# 1173# Since: 2.4 1174# 1175# Example: 1176# 1177# -> { "execute": "migrate-set-parameters" , 1178# "arguments": { "multifd-channels": 5 } } 1179# <- { "return": {} } 1180## 1181{ 'command': 'migrate-set-parameters', 'boxed': true, 1182 'data': 'MigrateSetParameters' } 1183 1184## 1185# @MigrationParameters: 1186# 1187# The optional members aren't actually optional. 1188# 1189# @announce-initial: Initial delay (in milliseconds) before sending 1190# the first announce (Since 4.0) 1191# 1192# @announce-max: Maximum delay (in milliseconds) between packets in 1193# the announcement (Since 4.0) 1194# 1195# @announce-rounds: Number of self-announce packets sent after 1196# migration (Since 4.0) 1197# 1198# @announce-step: Increase in delay (in milliseconds) between 1199# subsequent packets in the announcement (Since 4.0) 1200# 1201# @compress-level: compression level 1202# 1203# @compress-threads: compression thread count 1204# 1205# @compress-wait-thread: Controls behavior when all compression 1206# threads are currently busy. If true (default), wait for a free 1207# compression thread to become available; otherwise, send the page 1208# uncompressed. (Since 3.1) 1209# 1210# @decompress-threads: decompression thread count 1211# 1212# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 1213# bytes_xfer_period to trigger throttling. It is expressed as 1214# percentage. The default value is 50. (Since 5.0) 1215# 1216# @cpu-throttle-initial: Initial percentage of time guest cpus are 1217# throttled when migration auto-converge is activated. (Since 1218# 2.7) 1219# 1220# @cpu-throttle-increment: throttle percentage increase each time 1221# auto-converge detects that migration is not making progress. 1222# (Since 2.7) 1223# 1224# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 1225# the tail stage of throttling, the Guest is very sensitive to CPU 1226# percentage while the @cpu-throttle -increment is excessive 1227# usually at tail stage. If this parameter is true, we will 1228# compute the ideal CPU percentage used by the Guest, which may 1229# exactly make the dirty rate match the dirty rate threshold. 1230# Then we will choose a smaller throttle increment between the one 1231# specified by @cpu-throttle-increment and the one generated by 1232# ideal CPU percentage. Therefore, it is compatible to 1233# traditional throttling, meanwhile the throttle increment won't 1234# be excessive at tail stage. The default value is false. (Since 1235# 5.1) 1236# 1237# @tls-creds: ID of the 'tls-creds' object that provides credentials 1238# for establishing a TLS connection over the migration data 1239# channel. On the outgoing side of the migration, the credentials 1240# must be for a 'client' endpoint, while for the incoming side the 1241# credentials must be for a 'server' endpoint. An empty string 1242# means that QEMU will use plain text mode for migration, rather 1243# than TLS (Since 2.7) Note: 2.8 reports this by omitting 1244# tls-creds instead. 1245# 1246# @tls-hostname: hostname of the target host for the migration. This 1247# is required when using x509 based TLS credentials and the 1248# migration URI does not already include a hostname. For example 1249# if using fd: or exec: based migration, the hostname must be 1250# provided so that the server's x509 certificate identity can be 1251# validated. (Since 2.7) An empty string means that QEMU will use 1252# the hostname associated with the migration URI, if any. (Since 1253# 2.9) Note: 2.8 reports this by omitting tls-hostname instead. 1254# 1255# @tls-authz: ID of the 'authz' object subclass that provides access 1256# control checking of the TLS x509 certificate distinguished name. 1257# (Since 4.0) 1258# 1259# @max-bandwidth: to set maximum speed for migration. maximum speed 1260# in bytes per second. (Since 2.8) 1261# 1262# @avail-switchover-bandwidth: to set the available bandwidth that 1263# migration can use during switchover phase. NOTE! This does not 1264# limit the bandwidth during switchover, but only for calculations when 1265# making decisions to switchover. By default, this value is zero, 1266# which means QEMU will estimate the bandwidth automatically. This can 1267# be set when the estimated value is not accurate, while the user is 1268# able to guarantee such bandwidth is available when switching over. 1269# When specified correctly, this can make the switchover decision much 1270# more accurate. (Since 8.2) 1271# 1272# @downtime-limit: set maximum tolerated downtime for migration. 1273# maximum downtime in milliseconds (Since 2.8) 1274# 1275# @x-checkpoint-delay: the delay time between two COLO checkpoints. 1276# (Since 2.8) 1277# 1278# @block-incremental: Affects how much storage is migrated when the 1279# block migration capability is enabled. When false, the entire 1280# storage backing chain is migrated into a flattened image at the 1281# destination; when true, only the active qcow2 layer is migrated 1282# and the destination must already have access to the same backing 1283# chain as was used on the source. (since 2.10) 1284# 1285# @multifd-channels: Number of channels used to migrate data in 1286# parallel. This is the same number that the number of sockets 1287# used for migration. The default value is 2 (since 4.0) 1288# 1289# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1290# needs to be a multiple of the target page size and a power of 2 1291# (Since 2.11) 1292# 1293# @max-postcopy-bandwidth: Background transfer bandwidth during 1294# postcopy. Defaults to 0 (unlimited). In bytes per second. 1295# (Since 3.0) 1296# 1297# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 1298# (Since 3.1) 1299# 1300# @multifd-compression: Which compression method to use. Defaults to 1301# none. (Since 5.0) 1302# 1303# @multifd-zlib-level: Set the compression level to be used in live 1304# migration, the compression level is an integer between 0 and 9, 1305# where 0 means no compression, 1 means the best compression 1306# speed, and 9 means best compression ratio which will consume 1307# more CPU. Defaults to 1. (Since 5.0) 1308# 1309# @multifd-zstd-level: Set the compression level to be used in live 1310# migration, the compression level is an integer between 0 and 20, 1311# where 0 means no compression, 1 means the best compression 1312# speed, and 20 means best compression ratio which will consume 1313# more CPU. Defaults to 1. (Since 5.0) 1314# 1315# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1316# aliases for the purpose of dirty bitmap migration. Such aliases 1317# may for example be the corresponding names on the opposite site. 1318# The mapping must be one-to-one, but not necessarily complete: On 1319# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1320# will be ignored. On the destination, encountering an unmapped 1321# alias in the incoming migration stream will result in a report, 1322# and all further bitmap migration data will then be discarded. 1323# Note that the destination does not know about bitmaps it does 1324# not receive, so there is no limitation or requirement regarding 1325# the number of bitmaps received, or how they are named, or on 1326# which nodes they are placed. By default (when this parameter 1327# has never been set), bitmap names are mapped to themselves. 1328# Nodes are mapped to their block device name if there is one, and 1329# to their node name otherwise. (Since 5.2) 1330# 1331# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 1332# limit during live migration. Should be in the range 1 to 1000ms. 1333# Defaults to 1000ms. (Since 8.1) 1334# 1335# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1336# Defaults to 1. (Since 8.1) 1337# 1338# @mode: Migration mode. See description in @MigMode. Default is 'normal'. 1339# (Since 8.2) 1340# 1341# @zero-page-detection: Whether and how to detect zero pages. 1342# See description in @ZeroPageDetection. Default is 'multifd'. 1343# (since 9.0) 1344# 1345# Features: 1346# 1347# @deprecated: Member @block-incremental is deprecated. Use 1348# blockdev-mirror with NBD instead. Members @compress-level, 1349# @compress-threads, @decompress-threads and @compress-wait-thread 1350# are deprecated because @compression is deprecated. 1351# 1352# @unstable: Members @x-checkpoint-delay and @x-vcpu-dirty-limit-period 1353# are experimental. 1354# 1355# Since: 2.4 1356## 1357{ 'struct': 'MigrationParameters', 1358 'data': { '*announce-initial': 'size', 1359 '*announce-max': 'size', 1360 '*announce-rounds': 'size', 1361 '*announce-step': 'size', 1362 '*compress-level': { 'type': 'uint8', 1363 'features': [ 'deprecated' ] }, 1364 '*compress-threads': { 'type': 'uint8', 1365 'features': [ 'deprecated' ] }, 1366 '*compress-wait-thread': { 'type': 'bool', 1367 'features': [ 'deprecated' ] }, 1368 '*decompress-threads': { 'type': 'uint8', 1369 'features': [ 'deprecated' ] }, 1370 '*throttle-trigger-threshold': 'uint8', 1371 '*cpu-throttle-initial': 'uint8', 1372 '*cpu-throttle-increment': 'uint8', 1373 '*cpu-throttle-tailslow': 'bool', 1374 '*tls-creds': 'str', 1375 '*tls-hostname': 'str', 1376 '*tls-authz': 'str', 1377 '*max-bandwidth': 'size', 1378 '*avail-switchover-bandwidth': 'size', 1379 '*downtime-limit': 'uint64', 1380 '*x-checkpoint-delay': { 'type': 'uint32', 1381 'features': [ 'unstable' ] }, 1382 '*block-incremental': { 'type': 'bool', 1383 'features': [ 'deprecated' ] }, 1384 '*multifd-channels': 'uint8', 1385 '*xbzrle-cache-size': 'size', 1386 '*max-postcopy-bandwidth': 'size', 1387 '*max-cpu-throttle': 'uint8', 1388 '*multifd-compression': 'MultiFDCompression', 1389 '*multifd-zlib-level': 'uint8', 1390 '*multifd-zstd-level': 'uint8', 1391 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1392 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1393 'features': [ 'unstable' ] }, 1394 '*vcpu-dirty-limit': 'uint64', 1395 '*mode': 'MigMode', 1396 '*zero-page-detection': 'ZeroPageDetection'} } 1397 1398## 1399# @query-migrate-parameters: 1400# 1401# Returns information about the current migration parameters 1402# 1403# Returns: @MigrationParameters 1404# 1405# Since: 2.4 1406# 1407# Example: 1408# 1409# -> { "execute": "query-migrate-parameters" } 1410# <- { "return": { 1411# "multifd-channels": 2, 1412# "cpu-throttle-increment": 10, 1413# "cpu-throttle-initial": 20, 1414# "max-bandwidth": 33554432, 1415# "downtime-limit": 300 1416# } 1417# } 1418## 1419{ 'command': 'query-migrate-parameters', 1420 'returns': 'MigrationParameters' } 1421 1422## 1423# @migrate-start-postcopy: 1424# 1425# Followup to a migration command to switch the migration to postcopy 1426# mode. The postcopy-ram capability must be set on both source and 1427# destination before the original migration command. 1428# 1429# Since: 2.5 1430# 1431# Example: 1432# 1433# -> { "execute": "migrate-start-postcopy" } 1434# <- { "return": {} } 1435## 1436{ 'command': 'migrate-start-postcopy' } 1437 1438## 1439# @MIGRATION: 1440# 1441# Emitted when a migration event happens 1442# 1443# @status: @MigrationStatus describing the current migration status. 1444# 1445# Since: 2.4 1446# 1447# Example: 1448# 1449# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001}, 1450# "event": "MIGRATION", 1451# "data": {"status": "completed"} } 1452## 1453{ 'event': 'MIGRATION', 1454 'data': {'status': 'MigrationStatus'}} 1455 1456## 1457# @MIGRATION_PASS: 1458# 1459# Emitted from the source side of a migration at the start of each 1460# pass (when it syncs the dirty bitmap) 1461# 1462# @pass: An incrementing count (starting at 1 on the first pass) 1463# 1464# Since: 2.6 1465# 1466# Example: 1467# 1468# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225}, 1469# "event": "MIGRATION_PASS", "data": {"pass": 2} } 1470## 1471{ 'event': 'MIGRATION_PASS', 1472 'data': { 'pass': 'int' } } 1473 1474## 1475# @COLOMessage: 1476# 1477# The message transmission between Primary side and Secondary side. 1478# 1479# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing 1480# 1481# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for 1482# checkpointing 1483# 1484# @checkpoint-reply: SVM gets PVM's checkpoint request 1485# 1486# @vmstate-send: VM's state will be sent by PVM. 1487# 1488# @vmstate-size: The total size of VMstate. 1489# 1490# @vmstate-received: VM's state has been received by SVM. 1491# 1492# @vmstate-loaded: VM's state has been loaded by SVM. 1493# 1494# Since: 2.8 1495## 1496{ 'enum': 'COLOMessage', 1497 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply', 1498 'vmstate-send', 'vmstate-size', 'vmstate-received', 1499 'vmstate-loaded' ] } 1500 1501## 1502# @COLOMode: 1503# 1504# The COLO current mode. 1505# 1506# @none: COLO is disabled. 1507# 1508# @primary: COLO node in primary side. 1509# 1510# @secondary: COLO node in slave side. 1511# 1512# Since: 2.8 1513## 1514{ 'enum': 'COLOMode', 1515 'data': [ 'none', 'primary', 'secondary'] } 1516 1517## 1518# @FailoverStatus: 1519# 1520# An enumeration of COLO failover status 1521# 1522# @none: no failover has ever happened 1523# 1524# @require: got failover requirement but not handled 1525# 1526# @active: in the process of doing failover 1527# 1528# @completed: finish the process of failover 1529# 1530# @relaunch: restart the failover process, from 'none' -> 'completed' 1531# (Since 2.9) 1532# 1533# Since: 2.8 1534## 1535{ 'enum': 'FailoverStatus', 1536 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] } 1537 1538## 1539# @COLO_EXIT: 1540# 1541# Emitted when VM finishes COLO mode due to some errors happening or 1542# at the request of users. 1543# 1544# @mode: report COLO mode when COLO exited. 1545# 1546# @reason: describes the reason for the COLO exit. 1547# 1548# Since: 3.1 1549# 1550# Example: 1551# 1552# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172}, 1553# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } } 1554## 1555{ 'event': 'COLO_EXIT', 1556 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } } 1557 1558## 1559# @COLOExitReason: 1560# 1561# The reason for a COLO exit. 1562# 1563# @none: failover has never happened. This state does not occur in 1564# the COLO_EXIT event, and is only visible in the result of 1565# query-colo-status. 1566# 1567# @request: COLO exit is due to an external request. 1568# 1569# @error: COLO exit is due to an internal error. 1570# 1571# @processing: COLO is currently handling a failover (since 4.0). 1572# 1573# Since: 3.1 1574## 1575{ 'enum': 'COLOExitReason', 1576 'data': [ 'none', 'request', 'error' , 'processing' ] } 1577 1578## 1579# @x-colo-lost-heartbeat: 1580# 1581# Tell qemu that heartbeat is lost, request it to do takeover 1582# procedures. If this command is sent to the PVM, the Primary side 1583# will exit COLO mode. If sent to the Secondary, the Secondary side 1584# will run failover work, then takes over server operation to become 1585# the service VM. 1586# 1587# Features: 1588# 1589# @unstable: This command is experimental. 1590# 1591# Since: 2.8 1592# 1593# Example: 1594# 1595# -> { "execute": "x-colo-lost-heartbeat" } 1596# <- { "return": {} } 1597## 1598{ 'command': 'x-colo-lost-heartbeat', 1599 'features': [ 'unstable' ], 1600 'if': 'CONFIG_REPLICATION' } 1601 1602## 1603# @migrate_cancel: 1604# 1605# Cancel the current executing migration process. 1606# 1607# Notes: This command succeeds even if there is no migration process 1608# running. 1609# 1610# Since: 0.14 1611# 1612# Example: 1613# 1614# -> { "execute": "migrate_cancel" } 1615# <- { "return": {} } 1616## 1617{ 'command': 'migrate_cancel' } 1618 1619## 1620# @migrate-continue: 1621# 1622# Continue migration when it's in a paused state. 1623# 1624# @state: The state the migration is currently expected to be in 1625# 1626# Since: 2.11 1627# 1628# Example: 1629# 1630# -> { "execute": "migrate-continue" , "arguments": 1631# { "state": "pre-switchover" } } 1632# <- { "return": {} } 1633## 1634{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} } 1635 1636## 1637# @MigrationAddressType: 1638# 1639# The migration stream transport mechanisms. 1640# 1641# @socket: Migrate via socket. 1642# 1643# @exec: Direct the migration stream to another process. 1644# 1645# @rdma: Migrate via RDMA. 1646# 1647# @file: Direct the migration stream to a file. 1648# 1649# Since: 8.2 1650## 1651{ 'enum': 'MigrationAddressType', 1652 'data': [ 'socket', 'exec', 'rdma', 'file' ] } 1653 1654## 1655# @FileMigrationArgs: 1656# 1657# @filename: The file to receive the migration stream 1658# 1659# @offset: The file offset where the migration stream will start 1660# 1661# Since: 8.2 1662## 1663{ 'struct': 'FileMigrationArgs', 1664 'data': { 'filename': 'str', 1665 'offset': 'uint64' } } 1666 1667## 1668# @MigrationExecCommand: 1669# 1670# @args: command (list head) and arguments to execute. 1671# 1672# Since: 8.2 1673## 1674{ 'struct': 'MigrationExecCommand', 1675 'data': {'args': [ 'str' ] } } 1676 1677## 1678# @MigrationAddress: 1679# 1680# Migration endpoint configuration. 1681# 1682# @transport: The migration stream transport mechanism 1683# 1684# Since: 8.2 1685## 1686{ 'union': 'MigrationAddress', 1687 'base': { 'transport' : 'MigrationAddressType'}, 1688 'discriminator': 'transport', 1689 'data': { 1690 'socket': 'SocketAddress', 1691 'exec': 'MigrationExecCommand', 1692 'rdma': 'InetSocketAddress', 1693 'file': 'FileMigrationArgs' } } 1694 1695## 1696# @MigrationChannelType: 1697# 1698# The migration channel-type request options. 1699# 1700# @main: Main outbound migration channel. 1701# 1702# Since: 8.1 1703## 1704{ 'enum': 'MigrationChannelType', 1705 'data': [ 'main' ] } 1706 1707## 1708# @MigrationChannel: 1709# 1710# Migration stream channel parameters. 1711# 1712# @channel-type: Channel type for transferring packet information. 1713# 1714# @addr: Migration endpoint configuration on destination interface. 1715# 1716# Since: 8.1 1717## 1718{ 'struct': 'MigrationChannel', 1719 'data': { 1720 'channel-type': 'MigrationChannelType', 1721 'addr': 'MigrationAddress' } } 1722 1723## 1724# @migrate: 1725# 1726# Migrates the current running guest to another Virtual Machine. 1727# 1728# @uri: the Uniform Resource Identifier of the destination VM 1729# 1730# @channels: list of migration stream channels with each stream in the 1731# list connected to a destination interface endpoint. 1732# 1733# @blk: do block migration (full disk copy) 1734# 1735# @inc: incremental disk copy migration 1736# 1737# @detach: this argument exists only for compatibility reasons and is 1738# ignored by QEMU 1739# 1740# @resume: resume one paused migration, default "off". (since 3.0) 1741# 1742# Features: 1743# 1744# @deprecated: Members @inc and @blk are deprecated. Use 1745# blockdev-mirror with NBD instead. 1746# 1747# Since: 0.14 1748# 1749# Notes: 1750# 1751# 1. The 'query-migrate' command should be used to check 1752# migration's progress and final result (this information is 1753# provided by the 'status' member) 1754# 1755# 2. All boolean arguments default to false 1756# 1757# 3. The user Monitor's "detach" argument is invalid in QMP and 1758# should not be used 1759# 1760# 4. The uri argument should have the Uniform Resource Identifier 1761# of default destination VM. This connection will be bound to 1762# default network. 1763# 1764# 5. For now, number of migration streams is restricted to one, 1765# i.e number of items in 'channels' list is just 1. 1766# 1767# 6. The 'uri' and 'channels' arguments are mutually exclusive; 1768# exactly one of the two should be present. 1769# 1770# Example: 1771# 1772# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } } 1773# <- { "return": {} } 1774# 1775# -> { "execute": "migrate", 1776# "arguments": { 1777# "channels": [ { "channel-type": "main", 1778# "addr": { "transport": "socket", 1779# "type": "inet", 1780# "host": "10.12.34.9", 1781# "port": "1050" } } ] } } 1782# <- { "return": {} } 1783# 1784# -> { "execute": "migrate", 1785# "arguments": { 1786# "channels": [ { "channel-type": "main", 1787# "addr": { "transport": "exec", 1788# "args": [ "/bin/nc", "-p", "6000", 1789# "/some/sock" ] } } ] } } 1790# <- { "return": {} } 1791# 1792# -> { "execute": "migrate", 1793# "arguments": { 1794# "channels": [ { "channel-type": "main", 1795# "addr": { "transport": "rdma", 1796# "host": "10.12.34.9", 1797# "port": "1050" } } ] } } 1798# <- { "return": {} } 1799# 1800# -> { "execute": "migrate", 1801# "arguments": { 1802# "channels": [ { "channel-type": "main", 1803# "addr": { "transport": "file", 1804# "filename": "/tmp/migfile", 1805# "offset": "0x1000" } } ] } } 1806# <- { "return": {} } 1807# 1808## 1809{ 'command': 'migrate', 1810 'data': {'*uri': 'str', 1811 '*channels': [ 'MigrationChannel' ], 1812 '*blk': { 'type': 'bool', 'features': [ 'deprecated' ] }, 1813 '*inc': { 'type': 'bool', 'features': [ 'deprecated' ] }, 1814 '*detach': 'bool', '*resume': 'bool' } } 1815 1816## 1817# @migrate-incoming: 1818# 1819# Start an incoming migration, the qemu must have been started with 1820# -incoming defer 1821# 1822# @uri: The Uniform Resource Identifier identifying the source or 1823# address to listen on 1824# 1825# @channels: list of migration stream channels with each stream in the 1826# list connected to a destination interface endpoint. 1827# 1828# Since: 2.3 1829# 1830# Notes: 1831# 1832# 1. It's a bad idea to use a string for the uri, but it needs to 1833# stay compatible with -incoming and the format of the uri is 1834# already exposed above libvirt. 1835# 1836# 2. QEMU must be started with -incoming defer to allow 1837# migrate-incoming to be used. 1838# 1839# 3. The uri format is the same as for -incoming 1840# 1841# 4. For now, number of migration streams is restricted to one, 1842# i.e number of items in 'channels' list is just 1. 1843# 1844# 5. The 'uri' and 'channels' arguments are mutually exclusive; 1845# exactly one of the two should be present. 1846# 1847# Example: 1848# 1849# -> { "execute": "migrate-incoming", 1850# "arguments": { "uri": "tcp:0:4446" } } 1851# <- { "return": {} } 1852# 1853# -> { "execute": "migrate-incoming", 1854# "arguments": { 1855# "channels": [ { "channel-type": "main", 1856# "addr": { "transport": "socket", 1857# "type": "inet", 1858# "host": "10.12.34.9", 1859# "port": "1050" } } ] } } 1860# <- { "return": {} } 1861# 1862# -> { "execute": "migrate-incoming", 1863# "arguments": { 1864# "channels": [ { "channel-type": "main", 1865# "addr": { "transport": "exec", 1866# "args": [ "/bin/nc", "-p", "6000", 1867# "/some/sock" ] } } ] } } 1868# <- { "return": {} } 1869# 1870# -> { "execute": "migrate-incoming", 1871# "arguments": { 1872# "channels": [ { "channel-type": "main", 1873# "addr": { "transport": "rdma", 1874# "host": "10.12.34.9", 1875# "port": "1050" } } ] } } 1876# <- { "return": {} } 1877## 1878{ 'command': 'migrate-incoming', 1879 'data': {'*uri': 'str', 1880 '*channels': [ 'MigrationChannel' ] } } 1881 1882## 1883# @xen-save-devices-state: 1884# 1885# Save the state of all devices to file. The RAM and the block 1886# devices of the VM are not saved by this command. 1887# 1888# @filename: the file to save the state of the devices to as binary 1889# data. See xen-save-devices-state.txt for a description of the 1890# binary format. 1891# 1892# @live: Optional argument to ask QEMU to treat this command as part 1893# of a live migration. Default to true. (since 2.11) 1894# 1895# Since: 1.1 1896# 1897# Example: 1898# 1899# -> { "execute": "xen-save-devices-state", 1900# "arguments": { "filename": "/tmp/save" } } 1901# <- { "return": {} } 1902## 1903{ 'command': 'xen-save-devices-state', 1904 'data': {'filename': 'str', '*live':'bool' } } 1905 1906## 1907# @xen-set-global-dirty-log: 1908# 1909# Enable or disable the global dirty log mode. 1910# 1911# @enable: true to enable, false to disable. 1912# 1913# Since: 1.3 1914# 1915# Example: 1916# 1917# -> { "execute": "xen-set-global-dirty-log", 1918# "arguments": { "enable": true } } 1919# <- { "return": {} } 1920## 1921{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1922 1923## 1924# @xen-load-devices-state: 1925# 1926# Load the state of all devices from file. The RAM and the block 1927# devices of the VM are not loaded by this command. 1928# 1929# @filename: the file to load the state of the devices from as binary 1930# data. See xen-save-devices-state.txt for a description of the 1931# binary format. 1932# 1933# Since: 2.7 1934# 1935# Example: 1936# 1937# -> { "execute": "xen-load-devices-state", 1938# "arguments": { "filename": "/tmp/resume" } } 1939# <- { "return": {} } 1940## 1941{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 1942 1943## 1944# @xen-set-replication: 1945# 1946# Enable or disable replication. 1947# 1948# @enable: true to enable, false to disable. 1949# 1950# @primary: true for primary or false for secondary. 1951# 1952# @failover: true to do failover, false to stop. but cannot be 1953# specified if 'enable' is true. default value is false. 1954# 1955# Example: 1956# 1957# -> { "execute": "xen-set-replication", 1958# "arguments": {"enable": true, "primary": false} } 1959# <- { "return": {} } 1960# 1961# Since: 2.9 1962## 1963{ 'command': 'xen-set-replication', 1964 'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' }, 1965 'if': 'CONFIG_REPLICATION' } 1966 1967## 1968# @ReplicationStatus: 1969# 1970# The result format for 'query-xen-replication-status'. 1971# 1972# @error: true if an error happened, false if replication is normal. 1973# 1974# @desc: the human readable error description string, when @error is 1975# 'true'. 1976# 1977# Since: 2.9 1978## 1979{ 'struct': 'ReplicationStatus', 1980 'data': { 'error': 'bool', '*desc': 'str' }, 1981 'if': 'CONFIG_REPLICATION' } 1982 1983## 1984# @query-xen-replication-status: 1985# 1986# Query replication status while the vm is running. 1987# 1988# Returns: A @ReplicationStatus object showing the status. 1989# 1990# Example: 1991# 1992# -> { "execute": "query-xen-replication-status" } 1993# <- { "return": { "error": false } } 1994# 1995# Since: 2.9 1996## 1997{ 'command': 'query-xen-replication-status', 1998 'returns': 'ReplicationStatus', 1999 'if': 'CONFIG_REPLICATION' } 2000 2001## 2002# @xen-colo-do-checkpoint: 2003# 2004# Xen uses this command to notify replication to trigger a checkpoint. 2005# 2006# Example: 2007# 2008# -> { "execute": "xen-colo-do-checkpoint" } 2009# <- { "return": {} } 2010# 2011# Since: 2.9 2012## 2013{ 'command': 'xen-colo-do-checkpoint', 2014 'if': 'CONFIG_REPLICATION' } 2015 2016## 2017# @COLOStatus: 2018# 2019# The result format for 'query-colo-status'. 2020# 2021# @mode: COLO running mode. If COLO is running, this field will 2022# return 'primary' or 'secondary'. 2023# 2024# @last-mode: COLO last running mode. If COLO is running, this field 2025# will return same like mode field, after failover we can use this 2026# field to get last colo mode. (since 4.0) 2027# 2028# @reason: describes the reason for the COLO exit. 2029# 2030# Since: 3.1 2031## 2032{ 'struct': 'COLOStatus', 2033 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode', 2034 'reason': 'COLOExitReason' }, 2035 'if': 'CONFIG_REPLICATION' } 2036 2037## 2038# @query-colo-status: 2039# 2040# Query COLO status while the vm is running. 2041# 2042# Returns: A @COLOStatus object showing the status. 2043# 2044# Example: 2045# 2046# -> { "execute": "query-colo-status" } 2047# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } } 2048# 2049# Since: 3.1 2050## 2051{ 'command': 'query-colo-status', 2052 'returns': 'COLOStatus', 2053 'if': 'CONFIG_REPLICATION' } 2054 2055## 2056# @migrate-recover: 2057# 2058# Provide a recovery migration stream URI. 2059# 2060# @uri: the URI to be used for the recovery of migration stream. 2061# 2062# Example: 2063# 2064# -> { "execute": "migrate-recover", 2065# "arguments": { "uri": "tcp:192.168.1.200:12345" } } 2066# <- { "return": {} } 2067# 2068# Since: 3.0 2069## 2070{ 'command': 'migrate-recover', 2071 'data': { 'uri': 'str' }, 2072 'allow-oob': true } 2073 2074## 2075# @migrate-pause: 2076# 2077# Pause a migration. Currently it only supports postcopy. 2078# 2079# Example: 2080# 2081# -> { "execute": "migrate-pause" } 2082# <- { "return": {} } 2083# 2084# Since: 3.0 2085## 2086{ 'command': 'migrate-pause', 'allow-oob': true } 2087 2088## 2089# @UNPLUG_PRIMARY: 2090# 2091# Emitted from source side of a migration when migration state is 2092# WAIT_UNPLUG. Device was unplugged by guest operating system. Device 2093# resources in QEMU are kept on standby to be able to re-plug it in 2094# case of migration failure. 2095# 2096# @device-id: QEMU device id of the unplugged device 2097# 2098# Since: 4.2 2099# 2100# Example: 2101# 2102# <- { "event": "UNPLUG_PRIMARY", 2103# "data": { "device-id": "hostdev0" }, 2104# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 2105## 2106{ 'event': 'UNPLUG_PRIMARY', 2107 'data': { 'device-id': 'str' } } 2108 2109## 2110# @DirtyRateVcpu: 2111# 2112# Dirty rate of vcpu. 2113# 2114# @id: vcpu index. 2115# 2116# @dirty-rate: dirty rate. 2117# 2118# Since: 6.2 2119## 2120{ 'struct': 'DirtyRateVcpu', 2121 'data': { 'id': 'int', 'dirty-rate': 'int64' } } 2122 2123## 2124# @DirtyRateStatus: 2125# 2126# Dirty page rate measurement status. 2127# 2128# @unstarted: measuring thread has not been started yet 2129# 2130# @measuring: measuring thread is running 2131# 2132# @measured: dirty page rate is measured and the results are available 2133# 2134# Since: 5.2 2135## 2136{ 'enum': 'DirtyRateStatus', 2137 'data': [ 'unstarted', 'measuring', 'measured'] } 2138 2139## 2140# @DirtyRateMeasureMode: 2141# 2142# Method used to measure dirty page rate. Differences between 2143# available methods are explained in @calc-dirty-rate. 2144# 2145# @page-sampling: use page sampling 2146# 2147# @dirty-ring: use dirty ring 2148# 2149# @dirty-bitmap: use dirty bitmap 2150# 2151# Since: 6.2 2152## 2153{ 'enum': 'DirtyRateMeasureMode', 2154 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] } 2155 2156## 2157# @TimeUnit: 2158# 2159# Specifies unit in which time-related value is specified. 2160# 2161# @second: value is in seconds 2162# 2163# @millisecond: value is in milliseconds 2164# 2165# Since: 8.2 2166# 2167## 2168{ 'enum': 'TimeUnit', 2169 'data': ['second', 'millisecond'] } 2170 2171## 2172# @DirtyRateInfo: 2173# 2174# Information about measured dirty page rate. 2175# 2176# @dirty-rate: an estimate of the dirty page rate of the VM in units 2177# of MiB/s. Value is present only when @status is 'measured'. 2178# 2179# @status: current status of dirty page rate measurements 2180# 2181# @start-time: start time in units of second for calculation 2182# 2183# @calc-time: time period for which dirty page rate was measured, 2184# expressed and rounded down to @calc-time-unit. 2185# 2186# @calc-time-unit: time unit of @calc-time (Since 8.2) 2187# 2188# @sample-pages: number of sampled pages per GiB of guest memory. 2189# Valid only in page-sampling mode (Since 6.1) 2190# 2191# @mode: mode that was used to measure dirty page rate (Since 6.2) 2192# 2193# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was 2194# specified (Since 6.2) 2195# 2196# Since: 5.2 2197## 2198{ 'struct': 'DirtyRateInfo', 2199 'data': {'*dirty-rate': 'int64', 2200 'status': 'DirtyRateStatus', 2201 'start-time': 'int64', 2202 'calc-time': 'int64', 2203 'calc-time-unit': 'TimeUnit', 2204 'sample-pages': 'uint64', 2205 'mode': 'DirtyRateMeasureMode', 2206 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } } 2207 2208## 2209# @calc-dirty-rate: 2210# 2211# Start measuring dirty page rate of the VM. Results can be retrieved 2212# with @query-dirty-rate after measurements are completed. 2213# 2214# Dirty page rate is the number of pages changed in a given time 2215# period expressed in MiB/s. The following methods of calculation are 2216# available: 2217# 2218# 1. In page sampling mode, a random subset of pages are selected and 2219# hashed twice: once at the beginning of measurement time period, 2220# and once again at the end. If two hashes for some page are 2221# different, the page is counted as changed. Since this method 2222# relies on sampling and hashing, calculated dirty page rate is 2223# only an estimate of its true value. Increasing @sample-pages 2224# improves estimation quality at the cost of higher computational 2225# overhead. 2226# 2227# 2. Dirty bitmap mode captures writes to memory (for example by 2228# temporarily revoking write access to all pages) and counting page 2229# faults. Information about modified pages is collected into a 2230# bitmap, where each bit corresponds to one guest page. This mode 2231# requires that KVM accelerator property "dirty-ring-size" is *not* 2232# set. 2233# 2234# 3. Dirty ring mode is similar to dirty bitmap mode, but the 2235# information about modified pages is collected into ring buffer. 2236# This mode tracks page modification per each vCPU separately. It 2237# requires that KVM accelerator property "dirty-ring-size" is set. 2238# 2239# @calc-time: time period for which dirty page rate is calculated. 2240# By default it is specified in seconds, but the unit can be set 2241# explicitly with @calc-time-unit. Note that larger @calc-time 2242# values will typically result in smaller dirty page rates because 2243# page dirtying is a one-time event. Once some page is counted 2244# as dirty during @calc-time period, further writes to this page 2245# will not increase dirty page rate anymore. 2246# 2247# @calc-time-unit: time unit in which @calc-time is specified. 2248# By default it is seconds. (Since 8.2) 2249# 2250# @sample-pages: number of sampled pages per each GiB of guest memory. 2251# Default value is 512. For 4KiB guest pages this corresponds to 2252# sampling ratio of 0.2%. This argument is used only in page 2253# sampling mode. (Since 6.1) 2254# 2255# @mode: mechanism for tracking dirty pages. Default value is 2256# 'page-sampling'. Others are 'dirty-bitmap' and 'dirty-ring'. 2257# (Since 6.1) 2258# 2259# Since: 5.2 2260# 2261# Example: 2262# 2263# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1, 2264# 'sample-pages': 512} } 2265# <- { "return": {} } 2266# 2267# Measure dirty rate using dirty bitmap for 500 milliseconds: 2268# 2269# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500, 2270# "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} } 2271# 2272# <- { "return": {} } 2273## 2274{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64', 2275 '*calc-time-unit': 'TimeUnit', 2276 '*sample-pages': 'int', 2277 '*mode': 'DirtyRateMeasureMode'} } 2278 2279## 2280# @query-dirty-rate: 2281# 2282# Query results of the most recent invocation of @calc-dirty-rate. 2283# 2284# @calc-time-unit: time unit in which to report calculation time. 2285# By default it is reported in seconds. (Since 8.2) 2286# 2287# Since: 5.2 2288# 2289# Examples: 2290# 2291# 1. Measurement is in progress: 2292# 2293# <- {"status": "measuring", "sample-pages": 512, 2294# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2295# "calc-time-unit": "second"} 2296# 2297# 2. Measurement has been completed: 2298# 2299# <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108, 2300# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2301# "calc-time-unit": "second"} 2302## 2303{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' }, 2304 'returns': 'DirtyRateInfo' } 2305 2306## 2307# @DirtyLimitInfo: 2308# 2309# Dirty page rate limit information of a virtual CPU. 2310# 2311# @cpu-index: index of a virtual CPU. 2312# 2313# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual 2314# CPU, 0 means unlimited. 2315# 2316# @current-rate: current dirty page rate (MB/s) for a virtual CPU. 2317# 2318# Since: 7.1 2319## 2320{ 'struct': 'DirtyLimitInfo', 2321 'data': { 'cpu-index': 'int', 2322 'limit-rate': 'uint64', 2323 'current-rate': 'uint64' } } 2324 2325## 2326# @set-vcpu-dirty-limit: 2327# 2328# Set the upper limit of dirty page rate for virtual CPUs. 2329# 2330# Requires KVM with accelerator property "dirty-ring-size" set. A 2331# virtual CPU's dirty page rate is a measure of its memory load. To 2332# observe dirty page rates, use @calc-dirty-rate. 2333# 2334# @cpu-index: index of a virtual CPU, default is all. 2335# 2336# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs. 2337# 2338# Since: 7.1 2339# 2340# Example: 2341# 2342# -> {"execute": "set-vcpu-dirty-limit"} 2343# "arguments": { "dirty-rate": 200, 2344# "cpu-index": 1 } } 2345# <- { "return": {} } 2346## 2347{ 'command': 'set-vcpu-dirty-limit', 2348 'data': { '*cpu-index': 'int', 2349 'dirty-rate': 'uint64' } } 2350 2351## 2352# @cancel-vcpu-dirty-limit: 2353# 2354# Cancel the upper limit of dirty page rate for virtual CPUs. 2355# 2356# Cancel the dirty page limit for the vCPU which has been set with 2357# set-vcpu-dirty-limit command. Note that this command requires 2358# support from dirty ring, same as the "set-vcpu-dirty-limit". 2359# 2360# @cpu-index: index of a virtual CPU, default is all. 2361# 2362# Since: 7.1 2363# 2364# Example: 2365# 2366# -> {"execute": "cancel-vcpu-dirty-limit"}, 2367# "arguments": { "cpu-index": 1 } } 2368# <- { "return": {} } 2369## 2370{ 'command': 'cancel-vcpu-dirty-limit', 2371 'data': { '*cpu-index': 'int'} } 2372 2373## 2374# @query-vcpu-dirty-limit: 2375# 2376# Returns information about virtual CPU dirty page rate limits, if 2377# any. 2378# 2379# Since: 7.1 2380# 2381# Example: 2382# 2383# -> {"execute": "query-vcpu-dirty-limit"} 2384# <- {"return": [ 2385# { "limit-rate": 60, "current-rate": 3, "cpu-index": 0}, 2386# { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]} 2387## 2388{ 'command': 'query-vcpu-dirty-limit', 2389 'returns': [ 'DirtyLimitInfo' ] } 2390 2391## 2392# @MigrationThreadInfo: 2393# 2394# Information about migrationthreads 2395# 2396# @name: the name of migration thread 2397# 2398# @thread-id: ID of the underlying host thread 2399# 2400# Since: 7.2 2401## 2402{ 'struct': 'MigrationThreadInfo', 2403 'data': {'name': 'str', 2404 'thread-id': 'int'} } 2405 2406## 2407# @query-migrationthreads: 2408# 2409# Returns information of migration threads 2410# 2411# data: migration thread name 2412# 2413# Returns: information about migration threads 2414# 2415# Since: 7.2 2416## 2417{ 'command': 'query-migrationthreads', 2418 'returns': ['MigrationThreadInfo'] } 2419 2420## 2421# @snapshot-save: 2422# 2423# Save a VM snapshot 2424# 2425# @job-id: identifier for the newly created job 2426# 2427# @tag: name of the snapshot to create 2428# 2429# @vmstate: block device node name to save vmstate to 2430# 2431# @devices: list of block device node names to save a snapshot to 2432# 2433# Applications should not assume that the snapshot save is complete 2434# when this command returns. The job commands / events must be used 2435# to determine completion and to fetch details of any errors that 2436# arise. 2437# 2438# Note that execution of the guest CPUs may be stopped during the time 2439# it takes to save the snapshot. A future version of QEMU may ensure 2440# CPUs are executing continuously. 2441# 2442# It is strongly recommended that @devices contain all writable block 2443# device nodes if a consistent snapshot is required. 2444# 2445# If @tag already exists, an error will be reported 2446# 2447# Example: 2448# 2449# -> { "execute": "snapshot-save", 2450# "arguments": { 2451# "job-id": "snapsave0", 2452# "tag": "my-snap", 2453# "vmstate": "disk0", 2454# "devices": ["disk0", "disk1"] 2455# } 2456# } 2457# <- { "return": { } } 2458# <- {"event": "JOB_STATUS_CHANGE", 2459# "timestamp": {"seconds": 1432121972, "microseconds": 744001}, 2460# "data": {"status": "created", "id": "snapsave0"}} 2461# <- {"event": "JOB_STATUS_CHANGE", 2462# "timestamp": {"seconds": 1432122172, "microseconds": 744001}, 2463# "data": {"status": "running", "id": "snapsave0"}} 2464# <- {"event": "STOP", 2465# "timestamp": {"seconds": 1432122372, "microseconds": 744001} } 2466# <- {"event": "RESUME", 2467# "timestamp": {"seconds": 1432122572, "microseconds": 744001} } 2468# <- {"event": "JOB_STATUS_CHANGE", 2469# "timestamp": {"seconds": 1432122772, "microseconds": 744001}, 2470# "data": {"status": "waiting", "id": "snapsave0"}} 2471# <- {"event": "JOB_STATUS_CHANGE", 2472# "timestamp": {"seconds": 1432122972, "microseconds": 744001}, 2473# "data": {"status": "pending", "id": "snapsave0"}} 2474# <- {"event": "JOB_STATUS_CHANGE", 2475# "timestamp": {"seconds": 1432123172, "microseconds": 744001}, 2476# "data": {"status": "concluded", "id": "snapsave0"}} 2477# -> {"execute": "query-jobs"} 2478# <- {"return": [{"current-progress": 1, 2479# "status": "concluded", 2480# "total-progress": 1, 2481# "type": "snapshot-save", 2482# "id": "snapsave0"}]} 2483# 2484# Since: 6.0 2485## 2486{ 'command': 'snapshot-save', 2487 'data': { 'job-id': 'str', 2488 'tag': 'str', 2489 'vmstate': 'str', 2490 'devices': ['str'] } } 2491 2492## 2493# @snapshot-load: 2494# 2495# Load a VM snapshot 2496# 2497# @job-id: identifier for the newly created job 2498# 2499# @tag: name of the snapshot to load. 2500# 2501# @vmstate: block device node name to load vmstate from 2502# 2503# @devices: list of block device node names to load a snapshot from 2504# 2505# Applications should not assume that the snapshot load is complete 2506# when this command returns. The job commands / events must be used 2507# to determine completion and to fetch details of any errors that 2508# arise. 2509# 2510# Note that execution of the guest CPUs will be stopped during the 2511# time it takes to load the snapshot. 2512# 2513# It is strongly recommended that @devices contain all writable block 2514# device nodes that can have changed since the original @snapshot-save 2515# command execution. 2516# 2517# Example: 2518# 2519# -> { "execute": "snapshot-load", 2520# "arguments": { 2521# "job-id": "snapload0", 2522# "tag": "my-snap", 2523# "vmstate": "disk0", 2524# "devices": ["disk0", "disk1"] 2525# } 2526# } 2527# <- { "return": { } } 2528# <- {"event": "JOB_STATUS_CHANGE", 2529# "timestamp": {"seconds": 1472124172, "microseconds": 744001}, 2530# "data": {"status": "created", "id": "snapload0"}} 2531# <- {"event": "JOB_STATUS_CHANGE", 2532# "timestamp": {"seconds": 1472125172, "microseconds": 744001}, 2533# "data": {"status": "running", "id": "snapload0"}} 2534# <- {"event": "STOP", 2535# "timestamp": {"seconds": 1472125472, "microseconds": 744001} } 2536# <- {"event": "RESUME", 2537# "timestamp": {"seconds": 1472125872, "microseconds": 744001} } 2538# <- {"event": "JOB_STATUS_CHANGE", 2539# "timestamp": {"seconds": 1472126172, "microseconds": 744001}, 2540# "data": {"status": "waiting", "id": "snapload0"}} 2541# <- {"event": "JOB_STATUS_CHANGE", 2542# "timestamp": {"seconds": 1472127172, "microseconds": 744001}, 2543# "data": {"status": "pending", "id": "snapload0"}} 2544# <- {"event": "JOB_STATUS_CHANGE", 2545# "timestamp": {"seconds": 1472128172, "microseconds": 744001}, 2546# "data": {"status": "concluded", "id": "snapload0"}} 2547# -> {"execute": "query-jobs"} 2548# <- {"return": [{"current-progress": 1, 2549# "status": "concluded", 2550# "total-progress": 1, 2551# "type": "snapshot-load", 2552# "id": "snapload0"}]} 2553# 2554# Since: 6.0 2555## 2556{ 'command': 'snapshot-load', 2557 'data': { 'job-id': 'str', 2558 'tag': 'str', 2559 'vmstate': 'str', 2560 'devices': ['str'] } } 2561 2562## 2563# @snapshot-delete: 2564# 2565# Delete a VM snapshot 2566# 2567# @job-id: identifier for the newly created job 2568# 2569# @tag: name of the snapshot to delete. 2570# 2571# @devices: list of block device node names to delete a snapshot from 2572# 2573# Applications should not assume that the snapshot delete is complete 2574# when this command returns. The job commands / events must be used 2575# to determine completion and to fetch details of any errors that 2576# arise. 2577# 2578# Example: 2579# 2580# -> { "execute": "snapshot-delete", 2581# "arguments": { 2582# "job-id": "snapdelete0", 2583# "tag": "my-snap", 2584# "devices": ["disk0", "disk1"] 2585# } 2586# } 2587# <- { "return": { } } 2588# <- {"event": "JOB_STATUS_CHANGE", 2589# "timestamp": {"seconds": 1442124172, "microseconds": 744001}, 2590# "data": {"status": "created", "id": "snapdelete0"}} 2591# <- {"event": "JOB_STATUS_CHANGE", 2592# "timestamp": {"seconds": 1442125172, "microseconds": 744001}, 2593# "data": {"status": "running", "id": "snapdelete0"}} 2594# <- {"event": "JOB_STATUS_CHANGE", 2595# "timestamp": {"seconds": 1442126172, "microseconds": 744001}, 2596# "data": {"status": "waiting", "id": "snapdelete0"}} 2597# <- {"event": "JOB_STATUS_CHANGE", 2598# "timestamp": {"seconds": 1442127172, "microseconds": 744001}, 2599# "data": {"status": "pending", "id": "snapdelete0"}} 2600# <- {"event": "JOB_STATUS_CHANGE", 2601# "timestamp": {"seconds": 1442128172, "microseconds": 744001}, 2602# "data": {"status": "concluded", "id": "snapdelete0"}} 2603# -> {"execute": "query-jobs"} 2604# <- {"return": [{"current-progress": 1, 2605# "status": "concluded", 2606# "total-progress": 1, 2607# "type": "snapshot-delete", 2608# "id": "snapdelete0"}]} 2609# 2610# Since: 6.0 2611## 2612{ 'command': 'snapshot-delete', 2613 'data': { 'job-id': 'str', 2614 'tag': 'str', 2615 'devices': ['str'] } } 2616