1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4 5## 6# = Migration 7## 8 9{ 'include': 'common.json' } 10{ 'include': 'sockets.json' } 11 12## 13# @MigrationStats: 14# 15# Detailed migration status. 16# 17# @transferred: amount of bytes already transferred to the target VM 18# 19# @remaining: amount of bytes remaining to be transferred to the 20# target VM 21# 22# @total: total amount of bytes involved in the migration process 23# 24# @duplicate: number of duplicate (zero) pages (since 1.2) 25# 26# @normal: number of normal pages (since 1.2) 27# 28# @normal-bytes: number of normal bytes sent (since 1.2) 29# 30# @dirty-pages-rate: number of pages dirtied by second by the guest 31# (since 1.3) 32# 33# @mbps: throughput in megabits/sec. (since 1.6) 34# 35# @dirty-sync-count: number of times that dirty ram was synchronized 36# (since 2.1) 37# 38# @postcopy-requests: The number of page requests received from the 39# destination (since 2.7) 40# 41# @page-size: The number of bytes per page for the various page-based 42# statistics (since 2.10) 43# 44# @multifd-bytes: The number of bytes sent through multifd (since 3.0) 45# 46# @pages-per-second: the number of memory pages transferred per second 47# (Since 4.0) 48# 49# @precopy-bytes: The number of bytes sent in the pre-copy phase 50# (since 7.0). 51# 52# @downtime-bytes: The number of bytes sent while the guest is paused 53# (since 7.0). 54# 55# @postcopy-bytes: The number of bytes sent during the post-copy phase 56# (since 7.0). 57# 58# @dirty-sync-missed-zero-copy: Number of times dirty RAM 59# synchronization could not avoid copying dirty pages. This is 60# between 0 and @dirty-sync-count * @multifd-channels. (since 61# 7.1) 62# 63# Since: 0.14 64## 65{ 'struct': 'MigrationStats', 66 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' , 67 'duplicate': 'int', 68 'normal': 'int', 69 'normal-bytes': 'int', 'dirty-pages-rate': 'int', 70 'mbps': 'number', 'dirty-sync-count': 'int', 71 'postcopy-requests': 'int', 'page-size': 'int', 72 'multifd-bytes': 'uint64', 'pages-per-second': 'uint64', 73 'precopy-bytes': 'uint64', 'downtime-bytes': 'uint64', 74 'postcopy-bytes': 'uint64', 75 'dirty-sync-missed-zero-copy': 'uint64' } } 76 77## 78# @XBZRLECacheStats: 79# 80# Detailed XBZRLE migration cache statistics 81# 82# @cache-size: XBZRLE cache size 83# 84# @bytes: amount of bytes already transferred to the target VM 85# 86# @pages: amount of pages transferred to the target VM 87# 88# @cache-miss: number of cache miss 89# 90# @cache-miss-rate: rate of cache miss (since 2.1) 91# 92# @encoding-rate: rate of encoded bytes (since 5.1) 93# 94# @overflow: number of overflows 95# 96# Since: 1.2 97## 98{ 'struct': 'XBZRLECacheStats', 99 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int', 100 'cache-miss': 'int', 'cache-miss-rate': 'number', 101 'encoding-rate': 'number', 'overflow': 'int' } } 102 103## 104# @CompressionStats: 105# 106# Detailed migration compression statistics 107# 108# @pages: amount of pages compressed and transferred to the target VM 109# 110# @busy: count of times that no free thread was available to compress 111# data 112# 113# @busy-rate: rate of thread busy 114# 115# @compressed-size: amount of bytes after compression 116# 117# @compression-rate: rate of compressed size 118# 119# Since: 3.1 120## 121{ 'struct': 'CompressionStats', 122 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number', 123 'compressed-size': 'int', 'compression-rate': 'number' } } 124 125## 126# @MigrationStatus: 127# 128# An enumeration of migration status. 129# 130# @none: no migration has ever happened. 131# 132# @setup: migration process has been initiated. 133# 134# @cancelling: in the process of cancelling migration. 135# 136# @cancelled: cancelling migration is finished. 137# 138# @active: in the process of doing migration. 139# 140# @postcopy-active: like active, but now in postcopy mode. (since 141# 2.5) 142# 143# @postcopy-paused: during postcopy but paused. (since 3.0) 144# 145# @postcopy-recover-setup: setup phase for a postcopy recovery 146# process, preparing for a recovery phase to start. (since 9.1) 147# 148# @postcopy-recover: trying to recover from a paused postcopy. (since 149# 3.0) 150# 151# @completed: migration is finished. 152# 153# @failed: some error occurred during migration process. 154# 155# @colo: VM is in the process of fault tolerance, VM can not get into 156# this state unless colo capability is enabled for migration. 157# (since 2.8) 158# 159# @pre-switchover: Paused before device serialisation. (since 2.11) 160# 161# @device: During device serialisation when pause-before-switchover is 162# enabled (since 2.11) 163# 164# @wait-unplug: wait for device unplug request by guest OS to be 165# completed. (since 4.2) 166# 167# Since: 2.3 168## 169{ 'enum': 'MigrationStatus', 170 'data': [ 'none', 'setup', 'cancelling', 'cancelled', 171 'active', 'postcopy-active', 'postcopy-paused', 172 'postcopy-recover-setup', 173 'postcopy-recover', 'completed', 'failed', 'colo', 174 'pre-switchover', 'device', 'wait-unplug' ] } 175## 176# @VfioStats: 177# 178# Detailed VFIO devices migration statistics 179# 180# @transferred: amount of bytes transferred to the target VM by VFIO 181# devices 182# 183# Since: 5.2 184## 185{ 'struct': 'VfioStats', 186 'data': {'transferred': 'int' } } 187 188## 189# @MigrationInfo: 190# 191# Information about current migration process. 192# 193# @status: @MigrationStatus describing the current migration status. 194# If this field is not returned, no migration process has been 195# initiated 196# 197# @ram: @MigrationStats containing detailed migration status, only 198# returned if status is 'active' or 'completed'(since 1.2) 199# 200# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE 201# migration statistics, only returned if XBZRLE feature is on and 202# status is 'active' or 'completed' (since 1.2) 203# 204# @total-time: total amount of milliseconds since migration started. 205# If migration has ended, it returns the total migration time. 206# (since 1.2) 207# 208# @downtime: only present when migration finishes correctly total 209# downtime in milliseconds for the guest. (since 1.3) 210# 211# @expected-downtime: only present while migration is active expected 212# downtime in milliseconds for the guest in last walk of the dirty 213# bitmap. (since 1.3) 214# 215# @setup-time: amount of setup time in milliseconds *before* the 216# iterations begin but *after* the QMP command is issued. This is 217# designed to provide an accounting of any activities (such as 218# RDMA pinning) which may be expensive, but do not actually occur 219# during the iterative migration rounds themselves. (since 1.6) 220# 221# @cpu-throttle-percentage: percentage of time guest cpus are being 222# throttled during auto-converge. This is only present when 223# auto-converge has started throttling guest cpus. (Since 2.7) 224# 225# @error-desc: the human readable error description string. Clients 226# should not attempt to parse the error strings. (Since 2.7) 227# 228# @postcopy-blocktime: total time when all vCPU were blocked during 229# postcopy live migration. This is only present when the 230# postcopy-blocktime migration capability is enabled. (Since 3.0) 231# 232# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. 233# This is only present when the postcopy-blocktime migration 234# capability is enabled. (Since 3.0) 235# 236# @socket-address: Only used for tcp, to know what the real port is 237# (Since 4.0) 238# 239# @vfio: @VfioStats containing detailed VFIO devices migration 240# statistics, only returned if VFIO device is present, migration 241# is supported by all VFIO devices and status is 'active' or 242# 'completed' (since 5.2) 243# 244# @blocked-reasons: A list of reasons an outgoing migration is 245# blocked. Present and non-empty when migration is blocked. 246# (since 6.0) 247# 248# @dirty-limit-throttle-time-per-round: Maximum throttle time (in 249# microseconds) of virtual CPUs each dirty ring full round, which 250# shows how MigrationCapability dirty-limit affects the guest 251# during live migration. (Since 8.1) 252# 253# @dirty-limit-ring-full-time: Estimated average dirty ring full time 254# (in microseconds) for each dirty ring full round. The value 255# equals the dirty ring memory size divided by the average dirty 256# page rate of the virtual CPU, which can be used to observe the 257# average memory load of the virtual CPU indirectly. Note that 258# zero means guest doesn't dirty memory. (Since 8.1) 259# 260# Since: 0.14 261## 262{ 'struct': 'MigrationInfo', 263 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats', 264 '*vfio': 'VfioStats', 265 '*xbzrle-cache': 'XBZRLECacheStats', 266 '*total-time': 'int', 267 '*expected-downtime': 'int', 268 '*downtime': 'int', 269 '*setup-time': 'int', 270 '*cpu-throttle-percentage': 'int', 271 '*error-desc': 'str', 272 '*blocked-reasons': ['str'], 273 '*postcopy-blocktime': 'uint32', 274 '*postcopy-vcpu-blocktime': ['uint32'], 275 '*socket-address': ['SocketAddress'], 276 '*dirty-limit-throttle-time-per-round': 'uint64', 277 '*dirty-limit-ring-full-time': 'uint64'} } 278 279## 280# @query-migrate: 281# 282# Returns information about current migration process. If migration 283# is active there will be another json-object with RAM migration 284# status. 285# 286# Returns: @MigrationInfo 287# 288# Since: 0.14 289# 290# .. qmp-example:: 291# :title: Before the first migration 292# 293# -> { "execute": "query-migrate" } 294# <- { "return": {} } 295# 296# .. qmp-example:: 297# :title: Migration is done and has succeeded 298# 299# -> { "execute": "query-migrate" } 300# <- { "return": { 301# "status": "completed", 302# "total-time":12345, 303# "setup-time":12345, 304# "downtime":12345, 305# "ram":{ 306# "transferred":123, 307# "remaining":123, 308# "total":246, 309# "duplicate":123, 310# "normal":123, 311# "normal-bytes":123456, 312# "dirty-sync-count":15 313# } 314# } 315# } 316# 317# .. qmp-example:: 318# :title: Migration is done and has failed 319# 320# -> { "execute": "query-migrate" } 321# <- { "return": { "status": "failed" } } 322# 323# .. qmp-example:: 324# :title: Migration is being performed 325# 326# -> { "execute": "query-migrate" } 327# <- { 328# "return":{ 329# "status":"active", 330# "total-time":12345, 331# "setup-time":12345, 332# "expected-downtime":12345, 333# "ram":{ 334# "transferred":123, 335# "remaining":123, 336# "total":246, 337# "duplicate":123, 338# "normal":123, 339# "normal-bytes":123456, 340# "dirty-sync-count":15 341# } 342# } 343# } 344# 345# .. qmp-example:: 346# :title: Migration is being performed and XBZRLE is active 347# 348# -> { "execute": "query-migrate" } 349# <- { 350# "return":{ 351# "status":"active", 352# "total-time":12345, 353# "setup-time":12345, 354# "expected-downtime":12345, 355# "ram":{ 356# "total":1057024, 357# "remaining":1053304, 358# "transferred":3720, 359# "duplicate":10, 360# "normal":3333, 361# "normal-bytes":3412992, 362# "dirty-sync-count":15 363# }, 364# "xbzrle-cache":{ 365# "cache-size":67108864, 366# "bytes":20971520, 367# "pages":2444343, 368# "cache-miss":2244, 369# "cache-miss-rate":0.123, 370# "encoding-rate":80.1, 371# "overflow":34434 372# } 373# } 374# } 375## 376{ 'command': 'query-migrate', 'returns': 'MigrationInfo' } 377 378## 379# @MigrationCapability: 380# 381# Migration capabilities enumeration 382# 383# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length 384# Encoding). This feature allows us to minimize migration traffic 385# for certain work loads, by sending compressed difference of the 386# pages 387# 388# @rdma-pin-all: Controls whether or not the entire VM memory 389# footprint is mlock()'d on demand or all at once. Refer to 390# docs/rdma.txt for usage. Disabled by default. (since 2.0) 391# 392# @zero-blocks: During storage migration encode blocks of zeroes 393# efficiently. This essentially saves 1MB of zeroes per block on 394# the wire. Enabling requires source and target VM to support 395# this feature. To enable it is sufficient to enable the 396# capability on the source VM. The feature is disabled by 397# default. (since 1.6) 398# 399# @events: generate events for each migration state change (since 2.4) 400# 401# @auto-converge: If enabled, QEMU will automatically throttle down 402# the guest to speed up convergence of RAM migration. (since 1.6) 403# 404# @postcopy-ram: Start executing on the migration target before all of 405# RAM has been migrated, pulling the remaining pages along as 406# needed. The capacity must have the same setting on both source 407# and target or migration will not even start. NOTE: If the 408# migration fails during postcopy the VM will fail. (since 2.6) 409# 410# @x-colo: If enabled, migration will never end, and the state of the 411# VM on the primary side will be migrated continuously to the VM 412# on secondary side, this process is called COarse-Grain LOck 413# Stepping (COLO) for Non-stop Service. (since 2.8) 414# 415# @release-ram: if enabled, qemu will free the migrated ram pages on 416# the source during postcopy-ram migration. (since 2.9) 417# 418# @return-path: If enabled, migration will use the return path even 419# for precopy. (since 2.10) 420# 421# @pause-before-switchover: Pause outgoing migration before 422# serialising device state and before disabling block IO (since 423# 2.11) 424# 425# @multifd: Use more than one fd for migration (since 4.0) 426# 427# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps. 428# (since 2.12) 429# 430# @postcopy-blocktime: Calculate downtime for postcopy live migration 431# (since 3.0) 432# 433# @late-block-activate: If enabled, the destination will not activate 434# block devices (and thus take locks) immediately at the end of 435# migration. (since 3.0) 436# 437# @x-ignore-shared: If enabled, QEMU will not migrate shared memory 438# that is accessible on the destination machine. (since 4.0) 439# 440# @validate-uuid: Send the UUID of the source to allow the destination 441# to ensure it is the same. (since 4.2) 442# 443# @background-snapshot: If enabled, the migration stream will be a 444# snapshot of the VM exactly at the point when the migration 445# procedure starts. The VM RAM is saved with running VM. 446# (since 6.0) 447# 448# @zero-copy-send: Controls behavior on sending memory pages on 449# migration. When true, enables a zero-copy mechanism for sending 450# memory pages, if host supports it. Requires that QEMU be 451# permitted to use locked memory for guest RAM pages. (since 7.1) 452# 453# @postcopy-preempt: If enabled, the migration process will allow 454# postcopy requests to preempt precopy stream, so postcopy 455# requests will be handled faster. This is a performance feature 456# and should not affect the correctness of postcopy migration. 457# (since 7.1) 458# 459# @switchover-ack: If enabled, migration will not stop the source VM 460# and complete the migration until an ACK is received from the 461# destination that it's OK to do so. Exactly when this ACK is 462# sent depends on the migrated devices that use this feature. For 463# example, a device can use it to make sure some of its data is 464# sent and loaded in the destination before doing switchover. 465# This can reduce downtime if devices that support this capability 466# are present. 'return-path' capability must be enabled to use 467# it. (since 8.1) 468# 469# @dirty-limit: If enabled, migration will throttle vCPUs as needed to 470# keep their dirty page rate within @vcpu-dirty-limit. This can 471# improve responsiveness of large guests during live migration, 472# and can result in more stable read performance. Requires KVM 473# with accelerator property "dirty-ring-size" set. (Since 8.1) 474# 475# @mapped-ram: Migrate using fixed offsets in the migration file for 476# each RAM page. Requires a migration URI that supports seeking, 477# such as a file. (since 9.0) 478# 479# Features: 480# 481# @unstable: Members @x-colo and @x-ignore-shared are experimental. 482# 483# Since: 1.2 484## 485{ 'enum': 'MigrationCapability', 486 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks', 487 'events', 'postcopy-ram', 488 { 'name': 'x-colo', 'features': [ 'unstable' ] }, 489 'release-ram', 490 'return-path', 'pause-before-switchover', 'multifd', 491 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate', 492 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] }, 493 'validate-uuid', 'background-snapshot', 494 'zero-copy-send', 'postcopy-preempt', 'switchover-ack', 495 'dirty-limit', 'mapped-ram'] } 496 497## 498# @MigrationCapabilityStatus: 499# 500# Migration capability information 501# 502# @capability: capability enum 503# 504# @state: capability state bool 505# 506# Since: 1.2 507## 508{ 'struct': 'MigrationCapabilityStatus', 509 'data': { 'capability': 'MigrationCapability', 'state': 'bool' } } 510 511## 512# @migrate-set-capabilities: 513# 514# Enable/Disable the following migration capabilities (like xbzrle) 515# 516# @capabilities: json array of capability modifications to make 517# 518# Since: 1.2 519# 520# .. qmp-example:: 521# 522# -> { "execute": "migrate-set-capabilities" , "arguments": 523# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } } 524# <- { "return": {} } 525## 526{ 'command': 'migrate-set-capabilities', 527 'data': { 'capabilities': ['MigrationCapabilityStatus'] } } 528 529## 530# @query-migrate-capabilities: 531# 532# Returns information about the current migration capabilities status 533# 534# Returns: @MigrationCapabilityStatus 535# 536# Since: 1.2 537# 538# .. qmp-example:: 539# 540# -> { "execute": "query-migrate-capabilities" } 541# <- { "return": [ 542# {"state": false, "capability": "xbzrle"}, 543# {"state": false, "capability": "rdma-pin-all"}, 544# {"state": false, "capability": "auto-converge"}, 545# {"state": false, "capability": "zero-blocks"}, 546# {"state": true, "capability": "events"}, 547# {"state": false, "capability": "postcopy-ram"}, 548# {"state": false, "capability": "x-colo"} 549# ]} 550## 551{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']} 552 553## 554# @MultiFDCompression: 555# 556# An enumeration of multifd compression methods. 557# 558# @none: no compression. 559# 560# @zlib: use zlib compression method. 561# 562# @zstd: use zstd compression method. 563# 564# @qpl: use qpl compression method. Query Processing Library(qpl) is 565# based on the deflate compression algorithm and use the Intel 566# In-Memory Analytics Accelerator(IAA) accelerated compression and 567# decompression. (Since 9.1) 568# 569# @uadk: use UADK library compression method. (Since 9.1) 570# 571# Since: 5.0 572## 573{ 'enum': 'MultiFDCompression', 574 'prefix': 'MULTIFD_COMPRESSION', 575 'data': [ 'none', 'zlib', 576 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' }, 577 { 'name': 'qpl', 'if': 'CONFIG_QPL' }, 578 { 'name': 'uadk', 'if': 'CONFIG_UADK' } ] } 579 580## 581# @MigMode: 582# 583# @normal: the original form of migration. (since 8.2) 584# 585# @cpr-reboot: The migrate command stops the VM and saves state to the 586# URI. After quitting QEMU, the user resumes by running QEMU 587# -incoming. 588# 589# This mode allows the user to quit QEMU, optionally update and 590# reboot the OS, and restart QEMU. If the user reboots, the URI 591# must persist across the reboot, such as by using a file. 592# 593# Unlike normal mode, the use of certain local storage options 594# does not block the migration, but the user must not modify the 595# contents of guest block devices between the quit and restart. 596# 597# This mode supports VFIO devices provided the user first puts the 598# guest in the suspended runstate, such as by issuing 599# guest-suspend-ram to the QEMU guest agent. 600# 601# Best performance is achieved when the memory backend is shared 602# and the @x-ignore-shared migration capability is set, but this 603# is not required. Further, if the user reboots before restarting 604# such a configuration, the shared memory must persist across the 605# reboot, such as by backing it with a dax device. 606# 607# @cpr-reboot may not be used with postcopy, background-snapshot, 608# or COLO. 609# 610# (since 8.2) 611## 612{ 'enum': 'MigMode', 613 'data': [ 'normal', 'cpr-reboot' ] } 614 615## 616# @ZeroPageDetection: 617# 618# @none: Do not perform zero page checking. 619# 620# @legacy: Perform zero page checking in main migration thread. 621# 622# @multifd: Perform zero page checking in multifd sender thread if 623# multifd migration is enabled, else in the main migration thread 624# as for @legacy. 625# 626# Since: 9.0 627## 628{ 'enum': 'ZeroPageDetection', 629 'data': [ 'none', 'legacy', 'multifd' ] } 630 631## 632# @BitmapMigrationBitmapAliasTransform: 633# 634# @persistent: If present, the bitmap will be made persistent or 635# transient depending on this parameter. 636# 637# Since: 6.0 638## 639{ 'struct': 'BitmapMigrationBitmapAliasTransform', 640 'data': { 641 '*persistent': 'bool' 642 } } 643 644## 645# @BitmapMigrationBitmapAlias: 646# 647# @name: The name of the bitmap. 648# 649# @alias: An alias name for migration (for example the bitmap name on 650# the opposite site). 651# 652# @transform: Allows the modification of the migrated bitmap. (since 653# 6.0) 654# 655# Since: 5.2 656## 657{ 'struct': 'BitmapMigrationBitmapAlias', 658 'data': { 659 'name': 'str', 660 'alias': 'str', 661 '*transform': 'BitmapMigrationBitmapAliasTransform' 662 } } 663 664## 665# @BitmapMigrationNodeAlias: 666# 667# Maps a block node name and the bitmaps it has to aliases for dirty 668# bitmap migration. 669# 670# @node-name: A block node name. 671# 672# @alias: An alias block node name for migration (for example the node 673# name on the opposite site). 674# 675# @bitmaps: Mappings for the bitmaps on this node. 676# 677# Since: 5.2 678## 679{ 'struct': 'BitmapMigrationNodeAlias', 680 'data': { 681 'node-name': 'str', 682 'alias': 'str', 683 'bitmaps': [ 'BitmapMigrationBitmapAlias' ] 684 } } 685 686## 687# @MigrationParameter: 688# 689# Migration parameters enumeration 690# 691# @announce-initial: Initial delay (in milliseconds) before sending 692# the first announce (Since 4.0) 693# 694# @announce-max: Maximum delay (in milliseconds) between packets in 695# the announcement (Since 4.0) 696# 697# @announce-rounds: Number of self-announce packets sent after 698# migration (Since 4.0) 699# 700# @announce-step: Increase in delay (in milliseconds) between 701# subsequent packets in the announcement (Since 4.0) 702# 703# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 704# bytes_xfer_period to trigger throttling. It is expressed as 705# percentage. The default value is 50. (Since 5.0) 706# 707# @cpu-throttle-initial: Initial percentage of time guest cpus are 708# throttled when migration auto-converge is activated. The 709# default value is 20. (Since 2.7) 710# 711# @cpu-throttle-increment: throttle percentage increase each time 712# auto-converge detects that migration is not making progress. 713# The default value is 10. (Since 2.7) 714# 715# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 716# the tail stage of throttling, the Guest is very sensitive to CPU 717# percentage while the @cpu-throttle -increment is excessive 718# usually at tail stage. If this parameter is true, we will 719# compute the ideal CPU percentage used by the Guest, which may 720# exactly make the dirty rate match the dirty rate threshold. 721# Then we will choose a smaller throttle increment between the one 722# specified by @cpu-throttle-increment and the one generated by 723# ideal CPU percentage. Therefore, it is compatible to 724# traditional throttling, meanwhile the throttle increment won't 725# be excessive at tail stage. The default value is false. (Since 726# 5.1) 727# 728# @tls-creds: ID of the 'tls-creds' object that provides credentials 729# for establishing a TLS connection over the migration data 730# channel. On the outgoing side of the migration, the credentials 731# must be for a 'client' endpoint, while for the incoming side the 732# credentials must be for a 'server' endpoint. Setting this to a 733# non-empty string enables TLS for all migrations. An empty 734# string means that QEMU will use plain text mode for migration, 735# rather than TLS. (Since 2.7) 736# 737# @tls-hostname: migration target's hostname for validating the 738# server's x509 certificate identity. If empty, QEMU will use the 739# hostname from the migration URI, if any. A non-empty value is 740# required when using x509 based TLS credentials and the migration 741# URI does not include a hostname, such as fd: or exec: based 742# migration. (Since 2.7) 743# 744# Note: empty value works only since 2.9. 745# 746# @tls-authz: ID of the 'authz' object subclass that provides access 747# control checking of the TLS x509 certificate distinguished name. 748# This object is only resolved at time of use, so can be deleted 749# and recreated on the fly while the migration server is active. 750# If missing, it will default to denying access (Since 4.0) 751# 752# @max-bandwidth: maximum speed for migration, in bytes per second. 753# (Since 2.8) 754# 755# @avail-switchover-bandwidth: to set the available bandwidth that 756# migration can use during switchover phase. NOTE! This does not 757# limit the bandwidth during switchover, but only for calculations 758# when making decisions to switchover. By default, this value is 759# zero, which means QEMU will estimate the bandwidth 760# automatically. This can be set when the estimated value is not 761# accurate, while the user is able to guarantee such bandwidth is 762# available when switching over. When specified correctly, this 763# can make the switchover decision much more accurate. 764# (Since 8.2) 765# 766# @downtime-limit: set maximum tolerated downtime for migration. 767# maximum downtime in milliseconds (Since 2.8) 768# 769# @x-checkpoint-delay: The delay time (in ms) between two COLO 770# checkpoints in periodic mode. (Since 2.8) 771# 772# @multifd-channels: Number of channels used to migrate data in 773# parallel. This is the same number that the number of sockets 774# used for migration. The default value is 2 (since 4.0) 775# 776# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 777# needs to be a multiple of the target page size and a power of 2 778# (Since 2.11) 779# 780# @max-postcopy-bandwidth: Background transfer bandwidth during 781# postcopy. Defaults to 0 (unlimited). In bytes per second. 782# (Since 3.0) 783# 784# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 785# (Since 3.1) 786# 787# @multifd-compression: Which compression method to use. Defaults to 788# none. (Since 5.0) 789# 790# @multifd-zlib-level: Set the compression level to be used in live 791# migration, the compression level is an integer between 0 and 9, 792# where 0 means no compression, 1 means the best compression 793# speed, and 9 means best compression ratio which will consume 794# more CPU. Defaults to 1. (Since 5.0) 795# 796# @multifd-zstd-level: Set the compression level to be used in live 797# migration, the compression level is an integer between 0 and 20, 798# where 0 means no compression, 1 means the best compression 799# speed, and 20 means best compression ratio which will consume 800# more CPU. Defaults to 1. (Since 5.0) 801# 802# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 803# aliases for the purpose of dirty bitmap migration. Such aliases 804# may for example be the corresponding names on the opposite site. 805# The mapping must be one-to-one, but not necessarily complete: On 806# the source, unmapped bitmaps and all bitmaps on unmapped nodes 807# will be ignored. On the destination, encountering an unmapped 808# alias in the incoming migration stream will result in a report, 809# and all further bitmap migration data will then be discarded. 810# Note that the destination does not know about bitmaps it does 811# not receive, so there is no limitation or requirement regarding 812# the number of bitmaps received, or how they are named, or on 813# which nodes they are placed. By default (when this parameter 814# has never been set), bitmap names are mapped to themselves. 815# Nodes are mapped to their block device name if there is one, and 816# to their node name otherwise. (Since 5.2) 817# 818# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 819# limit during live migration. Should be in the range 1 to 820# 1000ms. Defaults to 1000ms. (Since 8.1) 821# 822# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 823# Defaults to 1. (Since 8.1) 824# 825# @mode: Migration mode. See description in @MigMode. Default is 826# 'normal'. (Since 8.2) 827# 828# @zero-page-detection: Whether and how to detect zero pages. 829# See description in @ZeroPageDetection. Default is 'multifd'. 830# (since 9.0) 831# 832# @direct-io: Open migration files with O_DIRECT when possible. This 833# only has effect if the @mapped-ram capability is enabled. 834# (Since 9.1) 835# 836# Features: 837# 838# @unstable: Members @x-checkpoint-delay and 839# @x-vcpu-dirty-limit-period are experimental. 840# 841# Since: 2.4 842## 843{ 'enum': 'MigrationParameter', 844 'data': ['announce-initial', 'announce-max', 845 'announce-rounds', 'announce-step', 846 'throttle-trigger-threshold', 847 'cpu-throttle-initial', 'cpu-throttle-increment', 848 'cpu-throttle-tailslow', 849 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth', 850 'avail-switchover-bandwidth', 'downtime-limit', 851 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] }, 852 'multifd-channels', 853 'xbzrle-cache-size', 'max-postcopy-bandwidth', 854 'max-cpu-throttle', 'multifd-compression', 855 'multifd-zlib-level', 'multifd-zstd-level', 856 'block-bitmap-mapping', 857 { 'name': 'x-vcpu-dirty-limit-period', 'features': ['unstable'] }, 858 'vcpu-dirty-limit', 859 'mode', 860 'zero-page-detection', 861 'direct-io'] } 862 863## 864# @MigrateSetParameters: 865# 866# @announce-initial: Initial delay (in milliseconds) before sending 867# the first announce (Since 4.0) 868# 869# @announce-max: Maximum delay (in milliseconds) between packets in 870# the announcement (Since 4.0) 871# 872# @announce-rounds: Number of self-announce packets sent after 873# migration (Since 4.0) 874# 875# @announce-step: Increase in delay (in milliseconds) between 876# subsequent packets in the announcement (Since 4.0) 877# 878# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 879# bytes_xfer_period to trigger throttling. It is expressed as 880# percentage. The default value is 50. (Since 5.0) 881# 882# @cpu-throttle-initial: Initial percentage of time guest cpus are 883# throttled when migration auto-converge is activated. The 884# default value is 20. (Since 2.7) 885# 886# @cpu-throttle-increment: throttle percentage increase each time 887# auto-converge detects that migration is not making progress. 888# The default value is 10. (Since 2.7) 889# 890# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 891# the tail stage of throttling, the Guest is very sensitive to CPU 892# percentage while the @cpu-throttle -increment is excessive 893# usually at tail stage. If this parameter is true, we will 894# compute the ideal CPU percentage used by the Guest, which may 895# exactly make the dirty rate match the dirty rate threshold. 896# Then we will choose a smaller throttle increment between the one 897# specified by @cpu-throttle-increment and the one generated by 898# ideal CPU percentage. Therefore, it is compatible to 899# traditional throttling, meanwhile the throttle increment won't 900# be excessive at tail stage. The default value is false. (Since 901# 5.1) 902# 903# @tls-creds: ID of the 'tls-creds' object that provides credentials 904# for establishing a TLS connection over the migration data 905# channel. On the outgoing side of the migration, the credentials 906# must be for a 'client' endpoint, while for the incoming side the 907# credentials must be for a 'server' endpoint. Setting this to a 908# non-empty string enables TLS for all migrations. An empty 909# string means that QEMU will use plain text mode for migration, 910# rather than TLS. This is the default. (Since 2.7) 911# 912# @tls-hostname: migration target's hostname for validating the 913# server's x509 certificate identity. If empty, QEMU will use the 914# hostname from the migration URI, if any. A non-empty value is 915# required when using x509 based TLS credentials and the migration 916# URI does not include a hostname, such as fd: or exec: based 917# migration. (Since 2.7) 918# 919# Note: empty value works only since 2.9. 920# 921# @tls-authz: ID of the 'authz' object subclass that provides access 922# control checking of the TLS x509 certificate distinguished name. 923# This object is only resolved at time of use, so can be deleted 924# and recreated on the fly while the migration server is active. 925# If missing, it will default to denying access (Since 4.0) 926# 927# @max-bandwidth: maximum speed for migration, in bytes per second. 928# (Since 2.8) 929# 930# @avail-switchover-bandwidth: to set the available bandwidth that 931# migration can use during switchover phase. NOTE! This does not 932# limit the bandwidth during switchover, but only for calculations 933# when making decisions to switchover. By default, this value is 934# zero, which means QEMU will estimate the bandwidth 935# automatically. This can be set when the estimated value is not 936# accurate, while the user is able to guarantee such bandwidth is 937# available when switching over. When specified correctly, this 938# can make the switchover decision much more accurate. 939# (Since 8.2) 940# 941# @downtime-limit: set maximum tolerated downtime for migration. 942# maximum downtime in milliseconds (Since 2.8) 943# 944# @x-checkpoint-delay: The delay time (in ms) between two COLO 945# checkpoints in periodic mode. (Since 2.8) 946# 947# @multifd-channels: Number of channels used to migrate data in 948# parallel. This is the same number that the number of sockets 949# used for migration. The default value is 2 (since 4.0) 950# 951# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 952# needs to be a multiple of the target page size and a power of 2 953# (Since 2.11) 954# 955# @max-postcopy-bandwidth: Background transfer bandwidth during 956# postcopy. Defaults to 0 (unlimited). In bytes per second. 957# (Since 3.0) 958# 959# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 960# (Since 3.1) 961# 962# @multifd-compression: Which compression method to use. Defaults to 963# none. (Since 5.0) 964# 965# @multifd-zlib-level: Set the compression level to be used in live 966# migration, the compression level is an integer between 0 and 9, 967# where 0 means no compression, 1 means the best compression 968# speed, and 9 means best compression ratio which will consume 969# more CPU. Defaults to 1. (Since 5.0) 970# 971# @multifd-zstd-level: Set the compression level to be used in live 972# migration, the compression level is an integer between 0 and 20, 973# where 0 means no compression, 1 means the best compression 974# speed, and 20 means best compression ratio which will consume 975# more CPU. Defaults to 1. (Since 5.0) 976# 977# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 978# aliases for the purpose of dirty bitmap migration. Such aliases 979# may for example be the corresponding names on the opposite site. 980# The mapping must be one-to-one, but not necessarily complete: On 981# the source, unmapped bitmaps and all bitmaps on unmapped nodes 982# will be ignored. On the destination, encountering an unmapped 983# alias in the incoming migration stream will result in a report, 984# and all further bitmap migration data will then be discarded. 985# Note that the destination does not know about bitmaps it does 986# not receive, so there is no limitation or requirement regarding 987# the number of bitmaps received, or how they are named, or on 988# which nodes they are placed. By default (when this parameter 989# has never been set), bitmap names are mapped to themselves. 990# Nodes are mapped to their block device name if there is one, and 991# to their node name otherwise. (Since 5.2) 992# 993# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 994# limit during live migration. Should be in the range 1 to 995# 1000ms. Defaults to 1000ms. (Since 8.1) 996# 997# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 998# Defaults to 1. (Since 8.1) 999# 1000# @mode: Migration mode. See description in @MigMode. Default is 1001# 'normal'. (Since 8.2) 1002# 1003# @zero-page-detection: Whether and how to detect zero pages. 1004# See description in @ZeroPageDetection. Default is 'multifd'. 1005# (since 9.0) 1006# 1007# @direct-io: Open migration files with O_DIRECT when possible. This 1008# only has effect if the @mapped-ram capability is enabled. 1009# (Since 9.1) 1010# 1011# Features: 1012# 1013# @unstable: Members @x-checkpoint-delay and 1014# @x-vcpu-dirty-limit-period are experimental. 1015# 1016# TODO: either fuse back into MigrationParameters, or make 1017# MigrationParameters members mandatory 1018# 1019# Since: 2.4 1020## 1021{ 'struct': 'MigrateSetParameters', 1022 'data': { '*announce-initial': 'size', 1023 '*announce-max': 'size', 1024 '*announce-rounds': 'size', 1025 '*announce-step': 'size', 1026 '*throttle-trigger-threshold': 'uint8', 1027 '*cpu-throttle-initial': 'uint8', 1028 '*cpu-throttle-increment': 'uint8', 1029 '*cpu-throttle-tailslow': 'bool', 1030 '*tls-creds': 'StrOrNull', 1031 '*tls-hostname': 'StrOrNull', 1032 '*tls-authz': 'StrOrNull', 1033 '*max-bandwidth': 'size', 1034 '*avail-switchover-bandwidth': 'size', 1035 '*downtime-limit': 'uint64', 1036 '*x-checkpoint-delay': { 'type': 'uint32', 1037 'features': [ 'unstable' ] }, 1038 '*multifd-channels': 'uint8', 1039 '*xbzrle-cache-size': 'size', 1040 '*max-postcopy-bandwidth': 'size', 1041 '*max-cpu-throttle': 'uint8', 1042 '*multifd-compression': 'MultiFDCompression', 1043 '*multifd-zlib-level': 'uint8', 1044 '*multifd-zstd-level': 'uint8', 1045 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1046 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1047 'features': [ 'unstable' ] }, 1048 '*vcpu-dirty-limit': 'uint64', 1049 '*mode': 'MigMode', 1050 '*zero-page-detection': 'ZeroPageDetection', 1051 '*direct-io': 'bool' } } 1052 1053## 1054# @migrate-set-parameters: 1055# 1056# Set various migration parameters. 1057# 1058# Since: 2.4 1059# 1060# .. qmp-example:: 1061# 1062# -> { "execute": "migrate-set-parameters" , 1063# "arguments": { "multifd-channels": 5 } } 1064# <- { "return": {} } 1065## 1066{ 'command': 'migrate-set-parameters', 'boxed': true, 1067 'data': 'MigrateSetParameters' } 1068 1069## 1070# @MigrationParameters: 1071# 1072# The optional members aren't actually optional. 1073# 1074# @announce-initial: Initial delay (in milliseconds) before sending 1075# the first announce (Since 4.0) 1076# 1077# @announce-max: Maximum delay (in milliseconds) between packets in 1078# the announcement (Since 4.0) 1079# 1080# @announce-rounds: Number of self-announce packets sent after 1081# migration (Since 4.0) 1082# 1083# @announce-step: Increase in delay (in milliseconds) between 1084# subsequent packets in the announcement (Since 4.0) 1085# 1086# @throttle-trigger-threshold: The ratio of bytes_dirty_period and 1087# bytes_xfer_period to trigger throttling. It is expressed as 1088# percentage. The default value is 50. (Since 5.0) 1089# 1090# @cpu-throttle-initial: Initial percentage of time guest cpus are 1091# throttled when migration auto-converge is activated. (Since 1092# 2.7) 1093# 1094# @cpu-throttle-increment: throttle percentage increase each time 1095# auto-converge detects that migration is not making progress. 1096# (Since 2.7) 1097# 1098# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage At 1099# the tail stage of throttling, the Guest is very sensitive to CPU 1100# percentage while the @cpu-throttle -increment is excessive 1101# usually at tail stage. If this parameter is true, we will 1102# compute the ideal CPU percentage used by the Guest, which may 1103# exactly make the dirty rate match the dirty rate threshold. 1104# Then we will choose a smaller throttle increment between the one 1105# specified by @cpu-throttle-increment and the one generated by 1106# ideal CPU percentage. Therefore, it is compatible to 1107# traditional throttling, meanwhile the throttle increment won't 1108# be excessive at tail stage. The default value is false. (Since 1109# 5.1) 1110# 1111# @tls-creds: ID of the 'tls-creds' object that provides credentials 1112# for establishing a TLS connection over the migration data 1113# channel. On the outgoing side of the migration, the credentials 1114# must be for a 'client' endpoint, while for the incoming side the 1115# credentials must be for a 'server' endpoint. An empty string 1116# means that QEMU will use plain text mode for migration, rather 1117# than TLS. (Since 2.7) 1118# 1119# Note: 2.8 omits empty @tls-creds instead. 1120# 1121# @tls-hostname: migration target's hostname for validating the 1122# server's x509 certificate identity. If empty, QEMU will use the 1123# hostname from the migration URI, if any. (Since 2.7) 1124# 1125# Note: 2.8 omits empty @tls-hostname instead. 1126# 1127# @tls-authz: ID of the 'authz' object subclass that provides access 1128# control checking of the TLS x509 certificate distinguished name. 1129# (Since 4.0) 1130# 1131# @max-bandwidth: maximum speed for migration, in bytes per second. 1132# (Since 2.8) 1133# 1134# @avail-switchover-bandwidth: to set the available bandwidth that 1135# migration can use during switchover phase. NOTE! This does not 1136# limit the bandwidth during switchover, but only for calculations 1137# when making decisions to switchover. By default, this value is 1138# zero, which means QEMU will estimate the bandwidth 1139# automatically. This can be set when the estimated value is not 1140# accurate, while the user is able to guarantee such bandwidth is 1141# available when switching over. When specified correctly, this 1142# can make the switchover decision much more accurate. 1143# (Since 8.2) 1144# 1145# @downtime-limit: set maximum tolerated downtime for migration. 1146# maximum downtime in milliseconds (Since 2.8) 1147# 1148# @x-checkpoint-delay: the delay time between two COLO checkpoints. 1149# (Since 2.8) 1150# 1151# @multifd-channels: Number of channels used to migrate data in 1152# parallel. This is the same number that the number of sockets 1153# used for migration. The default value is 2 (since 4.0) 1154# 1155# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1156# needs to be a multiple of the target page size and a power of 2 1157# (Since 2.11) 1158# 1159# @max-postcopy-bandwidth: Background transfer bandwidth during 1160# postcopy. Defaults to 0 (unlimited). In bytes per second. 1161# (Since 3.0) 1162# 1163# @max-cpu-throttle: maximum cpu throttle percentage. Defaults to 99. 1164# (Since 3.1) 1165# 1166# @multifd-compression: Which compression method to use. Defaults to 1167# none. (Since 5.0) 1168# 1169# @multifd-zlib-level: Set the compression level to be used in live 1170# migration, the compression level is an integer between 0 and 9, 1171# where 0 means no compression, 1 means the best compression 1172# speed, and 9 means best compression ratio which will consume 1173# more CPU. Defaults to 1. (Since 5.0) 1174# 1175# @multifd-zstd-level: Set the compression level to be used in live 1176# migration, the compression level is an integer between 0 and 20, 1177# where 0 means no compression, 1 means the best compression 1178# speed, and 20 means best compression ratio which will consume 1179# more CPU. Defaults to 1. (Since 5.0) 1180# 1181# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1182# aliases for the purpose of dirty bitmap migration. Such aliases 1183# may for example be the corresponding names on the opposite site. 1184# The mapping must be one-to-one, but not necessarily complete: On 1185# the source, unmapped bitmaps and all bitmaps on unmapped nodes 1186# will be ignored. On the destination, encountering an unmapped 1187# alias in the incoming migration stream will result in a report, 1188# and all further bitmap migration data will then be discarded. 1189# Note that the destination does not know about bitmaps it does 1190# not receive, so there is no limitation or requirement regarding 1191# the number of bitmaps received, or how they are named, or on 1192# which nodes they are placed. By default (when this parameter 1193# has never been set), bitmap names are mapped to themselves. 1194# Nodes are mapped to their block device name if there is one, and 1195# to their node name otherwise. (Since 5.2) 1196# 1197# @x-vcpu-dirty-limit-period: Periodic time (in milliseconds) of dirty 1198# limit during live migration. Should be in the range 1 to 1199# 1000ms. Defaults to 1000ms. (Since 8.1) 1200# 1201# @vcpu-dirty-limit: Dirtyrate limit (MB/s) during live migration. 1202# Defaults to 1. (Since 8.1) 1203# 1204# @mode: Migration mode. See description in @MigMode. Default is 1205# 'normal'. (Since 8.2) 1206# 1207# @zero-page-detection: Whether and how to detect zero pages. 1208# See description in @ZeroPageDetection. Default is 'multifd'. 1209# (since 9.0) 1210# 1211# @direct-io: Open migration files with O_DIRECT when possible. This 1212# only has effect if the @mapped-ram capability is enabled. 1213# (Since 9.1) 1214# 1215# Features: 1216# 1217# @unstable: Members @x-checkpoint-delay and 1218# @x-vcpu-dirty-limit-period are experimental. 1219# 1220# Since: 2.4 1221## 1222{ 'struct': 'MigrationParameters', 1223 'data': { '*announce-initial': 'size', 1224 '*announce-max': 'size', 1225 '*announce-rounds': 'size', 1226 '*announce-step': 'size', 1227 '*throttle-trigger-threshold': 'uint8', 1228 '*cpu-throttle-initial': 'uint8', 1229 '*cpu-throttle-increment': 'uint8', 1230 '*cpu-throttle-tailslow': 'bool', 1231 '*tls-creds': 'str', 1232 '*tls-hostname': 'str', 1233 '*tls-authz': 'str', 1234 '*max-bandwidth': 'size', 1235 '*avail-switchover-bandwidth': 'size', 1236 '*downtime-limit': 'uint64', 1237 '*x-checkpoint-delay': { 'type': 'uint32', 1238 'features': [ 'unstable' ] }, 1239 '*multifd-channels': 'uint8', 1240 '*xbzrle-cache-size': 'size', 1241 '*max-postcopy-bandwidth': 'size', 1242 '*max-cpu-throttle': 'uint8', 1243 '*multifd-compression': 'MultiFDCompression', 1244 '*multifd-zlib-level': 'uint8', 1245 '*multifd-zstd-level': 'uint8', 1246 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ], 1247 '*x-vcpu-dirty-limit-period': { 'type': 'uint64', 1248 'features': [ 'unstable' ] }, 1249 '*vcpu-dirty-limit': 'uint64', 1250 '*mode': 'MigMode', 1251 '*zero-page-detection': 'ZeroPageDetection', 1252 '*direct-io': 'bool' } } 1253 1254## 1255# @query-migrate-parameters: 1256# 1257# Returns information about the current migration parameters 1258# 1259# Returns: @MigrationParameters 1260# 1261# Since: 2.4 1262# 1263# .. qmp-example:: 1264# 1265# -> { "execute": "query-migrate-parameters" } 1266# <- { "return": { 1267# "multifd-channels": 2, 1268# "cpu-throttle-increment": 10, 1269# "cpu-throttle-initial": 20, 1270# "max-bandwidth": 33554432, 1271# "downtime-limit": 300 1272# } 1273# } 1274## 1275{ 'command': 'query-migrate-parameters', 1276 'returns': 'MigrationParameters' } 1277 1278## 1279# @migrate-start-postcopy: 1280# 1281# Followup to a migration command to switch the migration to postcopy 1282# mode. The postcopy-ram capability must be set on both source and 1283# destination before the original migration command. 1284# 1285# Since: 2.5 1286# 1287# .. qmp-example:: 1288# 1289# -> { "execute": "migrate-start-postcopy" } 1290# <- { "return": {} } 1291## 1292{ 'command': 'migrate-start-postcopy' } 1293 1294## 1295# @MIGRATION: 1296# 1297# Emitted when a migration event happens 1298# 1299# @status: @MigrationStatus describing the current migration status. 1300# 1301# Since: 2.4 1302# 1303# .. qmp-example:: 1304# 1305# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001}, 1306# "event": "MIGRATION", 1307# "data": {"status": "completed"} } 1308## 1309{ 'event': 'MIGRATION', 1310 'data': {'status': 'MigrationStatus'}} 1311 1312## 1313# @MIGRATION_PASS: 1314# 1315# Emitted from the source side of a migration at the start of each 1316# pass (when it syncs the dirty bitmap) 1317# 1318# @pass: An incrementing count (starting at 1 on the first pass) 1319# 1320# Since: 2.6 1321# 1322# .. qmp-example:: 1323# 1324# <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225}, 1325# "event": "MIGRATION_PASS", "data": {"pass": 2} } 1326## 1327{ 'event': 'MIGRATION_PASS', 1328 'data': { 'pass': 'int' } } 1329 1330## 1331# @COLOMessage: 1332# 1333# The message transmission between Primary side and Secondary side. 1334# 1335# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing 1336# 1337# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for 1338# checkpointing 1339# 1340# @checkpoint-reply: SVM gets PVM's checkpoint request 1341# 1342# @vmstate-send: VM's state will be sent by PVM. 1343# 1344# @vmstate-size: The total size of VMstate. 1345# 1346# @vmstate-received: VM's state has been received by SVM. 1347# 1348# @vmstate-loaded: VM's state has been loaded by SVM. 1349# 1350# Since: 2.8 1351## 1352{ 'enum': 'COLOMessage', 1353 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply', 1354 'vmstate-send', 'vmstate-size', 'vmstate-received', 1355 'vmstate-loaded' ] } 1356 1357## 1358# @COLOMode: 1359# 1360# The COLO current mode. 1361# 1362# @none: COLO is disabled. 1363# 1364# @primary: COLO node in primary side. 1365# 1366# @secondary: COLO node in slave side. 1367# 1368# Since: 2.8 1369## 1370{ 'enum': 'COLOMode', 1371 'data': [ 'none', 'primary', 'secondary'] } 1372 1373## 1374# @FailoverStatus: 1375# 1376# An enumeration of COLO failover status 1377# 1378# @none: no failover has ever happened 1379# 1380# @require: got failover requirement but not handled 1381# 1382# @active: in the process of doing failover 1383# 1384# @completed: finish the process of failover 1385# 1386# @relaunch: restart the failover process, from 'none' -> 'completed' 1387# (Since 2.9) 1388# 1389# Since: 2.8 1390## 1391{ 'enum': 'FailoverStatus', 1392 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] } 1393 1394## 1395# @COLO_EXIT: 1396# 1397# Emitted when VM finishes COLO mode due to some errors happening or 1398# at the request of users. 1399# 1400# @mode: report COLO mode when COLO exited. 1401# 1402# @reason: describes the reason for the COLO exit. 1403# 1404# Since: 3.1 1405# 1406# .. qmp-example:: 1407# 1408# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172}, 1409# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } } 1410## 1411{ 'event': 'COLO_EXIT', 1412 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } } 1413 1414## 1415# @COLOExitReason: 1416# 1417# The reason for a COLO exit. 1418# 1419# @none: failover has never happened. This state does not occur in 1420# the COLO_EXIT event, and is only visible in the result of 1421# query-colo-status. 1422# 1423# @request: COLO exit is due to an external request. 1424# 1425# @error: COLO exit is due to an internal error. 1426# 1427# @processing: COLO is currently handling a failover (since 4.0). 1428# 1429# Since: 3.1 1430## 1431{ 'enum': 'COLOExitReason', 1432 'data': [ 'none', 'request', 'error' , 'processing' ] } 1433 1434## 1435# @x-colo-lost-heartbeat: 1436# 1437# Tell qemu that heartbeat is lost, request it to do takeover 1438# procedures. If this command is sent to the PVM, the Primary side 1439# will exit COLO mode. If sent to the Secondary, the Secondary side 1440# will run failover work, then takes over server operation to become 1441# the service VM. 1442# 1443# Features: 1444# 1445# @unstable: This command is experimental. 1446# 1447# Since: 2.8 1448# 1449# .. qmp-example:: 1450# 1451# -> { "execute": "x-colo-lost-heartbeat" } 1452# <- { "return": {} } 1453## 1454{ 'command': 'x-colo-lost-heartbeat', 1455 'features': [ 'unstable' ], 1456 'if': 'CONFIG_REPLICATION' } 1457 1458## 1459# @migrate_cancel: 1460# 1461# Cancel the current executing migration process. 1462# 1463# .. note:: This command succeeds even if there is no migration 1464# process running. 1465# 1466# Since: 0.14 1467# 1468# .. qmp-example:: 1469# 1470# -> { "execute": "migrate_cancel" } 1471# <- { "return": {} } 1472## 1473{ 'command': 'migrate_cancel' } 1474 1475## 1476# @migrate-continue: 1477# 1478# Continue migration when it's in a paused state. 1479# 1480# @state: The state the migration is currently expected to be in 1481# 1482# Since: 2.11 1483# 1484# .. qmp-example:: 1485# 1486# -> { "execute": "migrate-continue" , "arguments": 1487# { "state": "pre-switchover" } } 1488# <- { "return": {} } 1489## 1490{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} } 1491 1492## 1493# @MigrationAddressType: 1494# 1495# The migration stream transport mechanisms. 1496# 1497# @socket: Migrate via socket. 1498# 1499# @exec: Direct the migration stream to another process. 1500# 1501# @rdma: Migrate via RDMA. 1502# 1503# @file: Direct the migration stream to a file. 1504# 1505# Since: 8.2 1506## 1507{ 'enum': 'MigrationAddressType', 1508 'data': [ 'socket', 'exec', 'rdma', 'file' ] } 1509 1510## 1511# @FileMigrationArgs: 1512# 1513# @filename: The file to receive the migration stream 1514# 1515# @offset: The file offset where the migration stream will start 1516# 1517# Since: 8.2 1518## 1519{ 'struct': 'FileMigrationArgs', 1520 'data': { 'filename': 'str', 1521 'offset': 'uint64' } } 1522 1523## 1524# @MigrationExecCommand: 1525# 1526# @args: command (list head) and arguments to execute. 1527# 1528# Since: 8.2 1529## 1530{ 'struct': 'MigrationExecCommand', 1531 'data': {'args': [ 'str' ] } } 1532 1533## 1534# @MigrationAddress: 1535# 1536# Migration endpoint configuration. 1537# 1538# @transport: The migration stream transport mechanism 1539# 1540# Since: 8.2 1541## 1542{ 'union': 'MigrationAddress', 1543 'base': { 'transport' : 'MigrationAddressType'}, 1544 'discriminator': 'transport', 1545 'data': { 1546 'socket': 'SocketAddress', 1547 'exec': 'MigrationExecCommand', 1548 'rdma': 'InetSocketAddress', 1549 'file': 'FileMigrationArgs' } } 1550 1551## 1552# @MigrationChannelType: 1553# 1554# The migration channel-type request options. 1555# 1556# @main: Main outbound migration channel. 1557# 1558# Since: 8.1 1559## 1560{ 'enum': 'MigrationChannelType', 1561 'data': [ 'main' ] } 1562 1563## 1564# @MigrationChannel: 1565# 1566# Migration stream channel parameters. 1567# 1568# @channel-type: Channel type for transferring packet information. 1569# 1570# @addr: Migration endpoint configuration on destination interface. 1571# 1572# Since: 8.1 1573## 1574{ 'struct': 'MigrationChannel', 1575 'data': { 1576 'channel-type': 'MigrationChannelType', 1577 'addr': 'MigrationAddress' } } 1578 1579## 1580# @migrate: 1581# 1582# Migrates the current running guest to another Virtual Machine. 1583# 1584# @uri: the Uniform Resource Identifier of the destination VM 1585# 1586# @channels: list of migration stream channels with each stream in the 1587# list connected to a destination interface endpoint. 1588# 1589# @detach: this argument exists only for compatibility reasons and is 1590# ignored by QEMU 1591# 1592# @resume: resume one paused migration, default "off". (since 3.0) 1593# 1594# Since: 0.14 1595# 1596# .. admonition:: Notes 1597# 1598# 1. The 'query-migrate' command should be used to check 1599# migration's progress and final result (this information is 1600# provided by the 'status' member). 1601# 1602# 2. All boolean arguments default to false. 1603# 1604# 3. The user Monitor's "detach" argument is invalid in QMP and 1605# should not be used. 1606# 1607# 4. The uri argument should have the Uniform Resource Identifier 1608# of default destination VM. This connection will be bound to 1609# default network. 1610# 1611# 5. For now, number of migration streams is restricted to one, 1612# i.e. number of items in 'channels' list is just 1. 1613# 1614# 6. The 'uri' and 'channels' arguments are mutually exclusive; 1615# exactly one of the two should be present. 1616# 1617# .. qmp-example:: 1618# 1619# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } } 1620# <- { "return": {} } 1621# 1622# -> { "execute": "migrate", 1623# "arguments": { 1624# "channels": [ { "channel-type": "main", 1625# "addr": { "transport": "socket", 1626# "type": "inet", 1627# "host": "10.12.34.9", 1628# "port": "1050" } } ] } } 1629# <- { "return": {} } 1630# 1631# -> { "execute": "migrate", 1632# "arguments": { 1633# "channels": [ { "channel-type": "main", 1634# "addr": { "transport": "exec", 1635# "args": [ "/bin/nc", "-p", "6000", 1636# "/some/sock" ] } } ] } } 1637# <- { "return": {} } 1638# 1639# -> { "execute": "migrate", 1640# "arguments": { 1641# "channels": [ { "channel-type": "main", 1642# "addr": { "transport": "rdma", 1643# "host": "10.12.34.9", 1644# "port": "1050" } } ] } } 1645# <- { "return": {} } 1646# 1647# -> { "execute": "migrate", 1648# "arguments": { 1649# "channels": [ { "channel-type": "main", 1650# "addr": { "transport": "file", 1651# "filename": "/tmp/migfile", 1652# "offset": "0x1000" } } ] } } 1653# <- { "return": {} } 1654## 1655{ 'command': 'migrate', 1656 'data': {'*uri': 'str', 1657 '*channels': [ 'MigrationChannel' ], 1658 '*detach': 'bool', '*resume': 'bool' } } 1659 1660## 1661# @migrate-incoming: 1662# 1663# Start an incoming migration, the qemu must have been started with 1664# -incoming defer 1665# 1666# @uri: The Uniform Resource Identifier identifying the source or 1667# address to listen on 1668# 1669# @channels: list of migration stream channels with each stream in the 1670# list connected to a destination interface endpoint. 1671# 1672# @exit-on-error: Exit on incoming migration failure. Default true. 1673# When set to false, the failure triggers a MIGRATION event, and 1674# error details could be retrieved with query-migrate. 1675# (since 9.1) 1676# 1677# Since: 2.3 1678# 1679# .. admonition:: Notes 1680# 1681# 1. It's a bad idea to use a string for the uri, but it needs to 1682# stay compatible with -incoming and the format of the uri is 1683# already exposed above libvirt. 1684# 1685# 2. QEMU must be started with -incoming defer to allow 1686# migrate-incoming to be used. 1687# 1688# 3. The uri format is the same as for -incoming 1689# 1690# 4. For now, number of migration streams is restricted to one, 1691# i.e. number of items in 'channels' list is just 1. 1692# 1693# 5. The 'uri' and 'channels' arguments are mutually exclusive; 1694# exactly one of the two should be present. 1695# 1696# .. qmp-example:: 1697# 1698# -> { "execute": "migrate-incoming", 1699# "arguments": { "uri": "tcp:0:4446" } } 1700# <- { "return": {} } 1701# 1702# -> { "execute": "migrate-incoming", 1703# "arguments": { 1704# "channels": [ { "channel-type": "main", 1705# "addr": { "transport": "socket", 1706# "type": "inet", 1707# "host": "10.12.34.9", 1708# "port": "1050" } } ] } } 1709# <- { "return": {} } 1710# 1711# -> { "execute": "migrate-incoming", 1712# "arguments": { 1713# "channels": [ { "channel-type": "main", 1714# "addr": { "transport": "exec", 1715# "args": [ "/bin/nc", "-p", "6000", 1716# "/some/sock" ] } } ] } } 1717# <- { "return": {} } 1718# 1719# -> { "execute": "migrate-incoming", 1720# "arguments": { 1721# "channels": [ { "channel-type": "main", 1722# "addr": { "transport": "rdma", 1723# "host": "10.12.34.9", 1724# "port": "1050" } } ] } } 1725# <- { "return": {} } 1726## 1727{ 'command': 'migrate-incoming', 1728 'data': {'*uri': 'str', 1729 '*channels': [ 'MigrationChannel' ], 1730 '*exit-on-error': 'bool' } } 1731 1732## 1733# @xen-save-devices-state: 1734# 1735# Save the state of all devices to file. The RAM and the block 1736# devices of the VM are not saved by this command. 1737# 1738# @filename: the file to save the state of the devices to as binary 1739# data. See xen-save-devices-state.txt for a description of the 1740# binary format. 1741# 1742# @live: Optional argument to ask QEMU to treat this command as part 1743# of a live migration. Default to true. (since 2.11) 1744# 1745# Since: 1.1 1746# 1747# .. qmp-example:: 1748# 1749# -> { "execute": "xen-save-devices-state", 1750# "arguments": { "filename": "/tmp/save" } } 1751# <- { "return": {} } 1752## 1753{ 'command': 'xen-save-devices-state', 1754 'data': {'filename': 'str', '*live':'bool' } } 1755 1756## 1757# @xen-set-global-dirty-log: 1758# 1759# Enable or disable the global dirty log mode. 1760# 1761# @enable: true to enable, false to disable. 1762# 1763# Since: 1.3 1764# 1765# .. qmp-example:: 1766# 1767# -> { "execute": "xen-set-global-dirty-log", 1768# "arguments": { "enable": true } } 1769# <- { "return": {} } 1770## 1771{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1772 1773## 1774# @xen-load-devices-state: 1775# 1776# Load the state of all devices from file. The RAM and the block 1777# devices of the VM are not loaded by this command. 1778# 1779# @filename: the file to load the state of the devices from as binary 1780# data. See xen-save-devices-state.txt for a description of the 1781# binary format. 1782# 1783# Since: 2.7 1784# 1785# .. qmp-example:: 1786# 1787# -> { "execute": "xen-load-devices-state", 1788# "arguments": { "filename": "/tmp/resume" } } 1789# <- { "return": {} } 1790## 1791{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 1792 1793## 1794# @xen-set-replication: 1795# 1796# Enable or disable replication. 1797# 1798# @enable: true to enable, false to disable. 1799# 1800# @primary: true for primary or false for secondary. 1801# 1802# @failover: true to do failover, false to stop. Cannot be specified 1803# if 'enable' is true. Default value is false. 1804# 1805# .. qmp-example:: 1806# 1807# -> { "execute": "xen-set-replication", 1808# "arguments": {"enable": true, "primary": false} } 1809# <- { "return": {} } 1810# 1811# Since: 2.9 1812## 1813{ 'command': 'xen-set-replication', 1814 'data': { 'enable': 'bool', 'primary': 'bool', '*failover': 'bool' }, 1815 'if': 'CONFIG_REPLICATION' } 1816 1817## 1818# @ReplicationStatus: 1819# 1820# The result format for 'query-xen-replication-status'. 1821# 1822# @error: true if an error happened, false if replication is normal. 1823# 1824# @desc: the human readable error description string, when @error is 1825# 'true'. 1826# 1827# Since: 2.9 1828## 1829{ 'struct': 'ReplicationStatus', 1830 'data': { 'error': 'bool', '*desc': 'str' }, 1831 'if': 'CONFIG_REPLICATION' } 1832 1833## 1834# @query-xen-replication-status: 1835# 1836# Query replication status while the vm is running. 1837# 1838# Returns: A @ReplicationStatus object showing the status. 1839# 1840# .. qmp-example:: 1841# 1842# -> { "execute": "query-xen-replication-status" } 1843# <- { "return": { "error": false } } 1844# 1845# Since: 2.9 1846## 1847{ 'command': 'query-xen-replication-status', 1848 'returns': 'ReplicationStatus', 1849 'if': 'CONFIG_REPLICATION' } 1850 1851## 1852# @xen-colo-do-checkpoint: 1853# 1854# Xen uses this command to notify replication to trigger a checkpoint. 1855# 1856# .. qmp-example:: 1857# 1858# -> { "execute": "xen-colo-do-checkpoint" } 1859# <- { "return": {} } 1860# 1861# Since: 2.9 1862## 1863{ 'command': 'xen-colo-do-checkpoint', 1864 'if': 'CONFIG_REPLICATION' } 1865 1866## 1867# @COLOStatus: 1868# 1869# The result format for 'query-colo-status'. 1870# 1871# @mode: COLO running mode. If COLO is running, this field will 1872# return 'primary' or 'secondary'. 1873# 1874# @last-mode: COLO last running mode. If COLO is running, this field 1875# will return same like mode field, after failover we can use this 1876# field to get last colo mode. (since 4.0) 1877# 1878# @reason: describes the reason for the COLO exit. 1879# 1880# Since: 3.1 1881## 1882{ 'struct': 'COLOStatus', 1883 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode', 1884 'reason': 'COLOExitReason' }, 1885 'if': 'CONFIG_REPLICATION' } 1886 1887## 1888# @query-colo-status: 1889# 1890# Query COLO status while the vm is running. 1891# 1892# Returns: A @COLOStatus object showing the status. 1893# 1894# .. qmp-example:: 1895# 1896# -> { "execute": "query-colo-status" } 1897# <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } } 1898# 1899# Since: 3.1 1900## 1901{ 'command': 'query-colo-status', 1902 'returns': 'COLOStatus', 1903 'if': 'CONFIG_REPLICATION' } 1904 1905## 1906# @migrate-recover: 1907# 1908# Provide a recovery migration stream URI. 1909# 1910# @uri: the URI to be used for the recovery of migration stream. 1911# 1912# .. qmp-example:: 1913# 1914# -> { "execute": "migrate-recover", 1915# "arguments": { "uri": "tcp:192.168.1.200:12345" } } 1916# <- { "return": {} } 1917# 1918# Since: 3.0 1919## 1920{ 'command': 'migrate-recover', 1921 'data': { 'uri': 'str' }, 1922 'allow-oob': true } 1923 1924## 1925# @migrate-pause: 1926# 1927# Pause a migration. Currently it only supports postcopy. 1928# 1929# .. qmp-example:: 1930# 1931# -> { "execute": "migrate-pause" } 1932# <- { "return": {} } 1933# 1934# Since: 3.0 1935## 1936{ 'command': 'migrate-pause', 'allow-oob': true } 1937 1938## 1939# @UNPLUG_PRIMARY: 1940# 1941# Emitted from source side of a migration when migration state is 1942# WAIT_UNPLUG. Device was unplugged by guest operating system. 1943# Device resources in QEMU are kept on standby to be able to re-plug 1944# it in case of migration failure. 1945# 1946# @device-id: QEMU device id of the unplugged device 1947# 1948# Since: 4.2 1949# 1950# .. qmp-example:: 1951# 1952# <- { "event": "UNPLUG_PRIMARY", 1953# "data": { "device-id": "hostdev0" }, 1954# "timestamp": { "seconds": 1265044230, "microseconds": 450486 } } 1955## 1956{ 'event': 'UNPLUG_PRIMARY', 1957 'data': { 'device-id': 'str' } } 1958 1959## 1960# @DirtyRateVcpu: 1961# 1962# Dirty rate of vcpu. 1963# 1964# @id: vcpu index. 1965# 1966# @dirty-rate: dirty rate. 1967# 1968# Since: 6.2 1969## 1970{ 'struct': 'DirtyRateVcpu', 1971 'data': { 'id': 'int', 'dirty-rate': 'int64' } } 1972 1973## 1974# @DirtyRateStatus: 1975# 1976# Dirty page rate measurement status. 1977# 1978# @unstarted: measuring thread has not been started yet 1979# 1980# @measuring: measuring thread is running 1981# 1982# @measured: dirty page rate is measured and the results are available 1983# 1984# Since: 5.2 1985## 1986{ 'enum': 'DirtyRateStatus', 1987 'data': [ 'unstarted', 'measuring', 'measured'] } 1988 1989## 1990# @DirtyRateMeasureMode: 1991# 1992# Method used to measure dirty page rate. Differences between 1993# available methods are explained in @calc-dirty-rate. 1994# 1995# @page-sampling: use page sampling 1996# 1997# @dirty-ring: use dirty ring 1998# 1999# @dirty-bitmap: use dirty bitmap 2000# 2001# Since: 6.2 2002## 2003{ 'enum': 'DirtyRateMeasureMode', 2004 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] } 2005 2006## 2007# @TimeUnit: 2008# 2009# Specifies unit in which time-related value is specified. 2010# 2011# @second: value is in seconds 2012# 2013# @millisecond: value is in milliseconds 2014# 2015# Since: 8.2 2016## 2017{ 'enum': 'TimeUnit', 2018 'data': ['second', 'millisecond'] } 2019 2020## 2021# @DirtyRateInfo: 2022# 2023# Information about measured dirty page rate. 2024# 2025# @dirty-rate: an estimate of the dirty page rate of the VM in units 2026# of MiB/s. Value is present only when @status is 'measured'. 2027# 2028# @status: current status of dirty page rate measurements 2029# 2030# @start-time: start time in units of second for calculation 2031# 2032# @calc-time: time period for which dirty page rate was measured, 2033# expressed and rounded down to @calc-time-unit. 2034# 2035# @calc-time-unit: time unit of @calc-time (Since 8.2) 2036# 2037# @sample-pages: number of sampled pages per GiB of guest memory. 2038# Valid only in page-sampling mode (Since 6.1) 2039# 2040# @mode: mode that was used to measure dirty page rate (Since 6.2) 2041# 2042# @vcpu-dirty-rate: dirty rate for each vCPU if dirty-ring mode was 2043# specified (Since 6.2) 2044# 2045# Since: 5.2 2046## 2047{ 'struct': 'DirtyRateInfo', 2048 'data': {'*dirty-rate': 'int64', 2049 'status': 'DirtyRateStatus', 2050 'start-time': 'int64', 2051 'calc-time': 'int64', 2052 'calc-time-unit': 'TimeUnit', 2053 'sample-pages': 'uint64', 2054 'mode': 'DirtyRateMeasureMode', 2055 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } } 2056 2057## 2058# @calc-dirty-rate: 2059# 2060# Start measuring dirty page rate of the VM. Results can be retrieved 2061# with @query-dirty-rate after measurements are completed. 2062# 2063# Dirty page rate is the number of pages changed in a given time 2064# period expressed in MiB/s. The following methods of calculation are 2065# available: 2066# 2067# 1. In page sampling mode, a random subset of pages are selected and 2068# hashed twice: once at the beginning of measurement time period, 2069# and once again at the end. If two hashes for some page are 2070# different, the page is counted as changed. Since this method 2071# relies on sampling and hashing, calculated dirty page rate is 2072# only an estimate of its true value. Increasing @sample-pages 2073# improves estimation quality at the cost of higher computational 2074# overhead. 2075# 2076# 2. Dirty bitmap mode captures writes to memory (for example by 2077# temporarily revoking write access to all pages) and counting page 2078# faults. Information about modified pages is collected into a 2079# bitmap, where each bit corresponds to one guest page. This mode 2080# requires that KVM accelerator property "dirty-ring-size" is *not* 2081# set. 2082# 2083# 3. Dirty ring mode is similar to dirty bitmap mode, but the 2084# information about modified pages is collected into ring buffer. 2085# This mode tracks page modification per each vCPU separately. It 2086# requires that KVM accelerator property "dirty-ring-size" is set. 2087# 2088# @calc-time: time period for which dirty page rate is calculated. By 2089# default it is specified in seconds, but the unit can be set 2090# explicitly with @calc-time-unit. Note that larger @calc-time 2091# values will typically result in smaller dirty page rates because 2092# page dirtying is a one-time event. Once some page is counted as 2093# dirty during @calc-time period, further writes to this page will 2094# not increase dirty page rate anymore. 2095# 2096# @calc-time-unit: time unit in which @calc-time is specified. By 2097# default it is seconds. (Since 8.2) 2098# 2099# @sample-pages: number of sampled pages per each GiB of guest memory. 2100# Default value is 512. For 4KiB guest pages this corresponds to 2101# sampling ratio of 0.2%. This argument is used only in page 2102# sampling mode. (Since 6.1) 2103# 2104# @mode: mechanism for tracking dirty pages. Default value is 2105# 'page-sampling'. Others are 'dirty-bitmap' and 'dirty-ring'. 2106# (Since 6.1) 2107# 2108# Since: 5.2 2109# 2110# .. qmp-example:: 2111# 2112# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1, 2113# "sample-pages": 512} } 2114# <- { "return": {} } 2115# 2116# .. qmp-example:: 2117# :annotated: 2118# 2119# Measure dirty rate using dirty bitmap for 500 milliseconds:: 2120# 2121# -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 500, 2122# "calc-time-unit": "millisecond", "mode": "dirty-bitmap"} } 2123# 2124# <- { "return": {} } 2125## 2126{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64', 2127 '*calc-time-unit': 'TimeUnit', 2128 '*sample-pages': 'int', 2129 '*mode': 'DirtyRateMeasureMode'} } 2130 2131## 2132# @query-dirty-rate: 2133# 2134# Query results of the most recent invocation of @calc-dirty-rate. 2135# 2136# @calc-time-unit: time unit in which to report calculation time. 2137# By default it is reported in seconds. (Since 8.2) 2138# 2139# Since: 5.2 2140# 2141# .. qmp-example:: 2142# :title: Measurement is in progress 2143# 2144# <- {"status": "measuring", "sample-pages": 512, 2145# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2146# "calc-time-unit": "second"} 2147# 2148# .. qmp-example:: 2149# :title: Measurement has been completed 2150# 2151# <- {"status": "measured", "sample-pages": 512, "dirty-rate": 108, 2152# "mode": "page-sampling", "start-time": 1693900454, "calc-time": 10, 2153# "calc-time-unit": "second"} 2154## 2155{ 'command': 'query-dirty-rate', 'data': {'*calc-time-unit': 'TimeUnit' }, 2156 'returns': 'DirtyRateInfo' } 2157 2158## 2159# @DirtyLimitInfo: 2160# 2161# Dirty page rate limit information of a virtual CPU. 2162# 2163# @cpu-index: index of a virtual CPU. 2164# 2165# @limit-rate: upper limit of dirty page rate (MB/s) for a virtual 2166# CPU, 0 means unlimited. 2167# 2168# @current-rate: current dirty page rate (MB/s) for a virtual CPU. 2169# 2170# Since: 7.1 2171## 2172{ 'struct': 'DirtyLimitInfo', 2173 'data': { 'cpu-index': 'int', 2174 'limit-rate': 'uint64', 2175 'current-rate': 'uint64' } } 2176 2177## 2178# @set-vcpu-dirty-limit: 2179# 2180# Set the upper limit of dirty page rate for virtual CPUs. 2181# 2182# Requires KVM with accelerator property "dirty-ring-size" set. A 2183# virtual CPU's dirty page rate is a measure of its memory load. To 2184# observe dirty page rates, use @calc-dirty-rate. 2185# 2186# @cpu-index: index of a virtual CPU, default is all. 2187# 2188# @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs. 2189# 2190# Since: 7.1 2191# 2192# .. qmp-example:: 2193# 2194# -> {"execute": "set-vcpu-dirty-limit"} 2195# "arguments": { "dirty-rate": 200, 2196# "cpu-index": 1 } } 2197# <- { "return": {} } 2198## 2199{ 'command': 'set-vcpu-dirty-limit', 2200 'data': { '*cpu-index': 'int', 2201 'dirty-rate': 'uint64' } } 2202 2203## 2204# @cancel-vcpu-dirty-limit: 2205# 2206# Cancel the upper limit of dirty page rate for virtual CPUs. 2207# 2208# Cancel the dirty page limit for the vCPU which has been set with 2209# set-vcpu-dirty-limit command. Note that this command requires 2210# support from dirty ring, same as the "set-vcpu-dirty-limit". 2211# 2212# @cpu-index: index of a virtual CPU, default is all. 2213# 2214# Since: 7.1 2215# 2216# .. qmp-example:: 2217# 2218# -> {"execute": "cancel-vcpu-dirty-limit"}, 2219# "arguments": { "cpu-index": 1 } } 2220# <- { "return": {} } 2221## 2222{ 'command': 'cancel-vcpu-dirty-limit', 2223 'data': { '*cpu-index': 'int'} } 2224 2225## 2226# @query-vcpu-dirty-limit: 2227# 2228# Returns information about virtual CPU dirty page rate limits, if 2229# any. 2230# 2231# Since: 7.1 2232# 2233# .. qmp-example:: 2234# 2235# -> {"execute": "query-vcpu-dirty-limit"} 2236# <- {"return": [ 2237# { "limit-rate": 60, "current-rate": 3, "cpu-index": 0}, 2238# { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]} 2239## 2240{ 'command': 'query-vcpu-dirty-limit', 2241 'returns': [ 'DirtyLimitInfo' ] } 2242 2243## 2244# @MigrationThreadInfo: 2245# 2246# Information about migrationthreads 2247# 2248# @name: the name of migration thread 2249# 2250# @thread-id: ID of the underlying host thread 2251# 2252# Since: 7.2 2253## 2254{ 'struct': 'MigrationThreadInfo', 2255 'data': {'name': 'str', 2256 'thread-id': 'int'} } 2257 2258## 2259# @query-migrationthreads: 2260# 2261# Returns information of migration threads 2262# 2263# Returns: @MigrationThreadInfo 2264# 2265# Since: 7.2 2266## 2267{ 'command': 'query-migrationthreads', 2268 'returns': ['MigrationThreadInfo'] } 2269 2270## 2271# @snapshot-save: 2272# 2273# Save a VM snapshot 2274# 2275# @job-id: identifier for the newly created job 2276# 2277# @tag: name of the snapshot to create 2278# 2279# @vmstate: block device node name to save vmstate to 2280# 2281# @devices: list of block device node names to save a snapshot to 2282# 2283# Applications should not assume that the snapshot save is complete 2284# when this command returns. The job commands / events must be used 2285# to determine completion and to fetch details of any errors that 2286# arise. 2287# 2288# Note that execution of the guest CPUs may be stopped during the time 2289# it takes to save the snapshot. A future version of QEMU may ensure 2290# CPUs are executing continuously. 2291# 2292# It is strongly recommended that @devices contain all writable block 2293# device nodes if a consistent snapshot is required. 2294# 2295# If @tag already exists, an error will be reported 2296# 2297# .. qmp-example:: 2298# 2299# -> { "execute": "snapshot-save", 2300# "arguments": { 2301# "job-id": "snapsave0", 2302# "tag": "my-snap", 2303# "vmstate": "disk0", 2304# "devices": ["disk0", "disk1"] 2305# } 2306# } 2307# <- { "return": { } } 2308# <- {"event": "JOB_STATUS_CHANGE", 2309# "timestamp": {"seconds": 1432121972, "microseconds": 744001}, 2310# "data": {"status": "created", "id": "snapsave0"}} 2311# <- {"event": "JOB_STATUS_CHANGE", 2312# "timestamp": {"seconds": 1432122172, "microseconds": 744001}, 2313# "data": {"status": "running", "id": "snapsave0"}} 2314# <- {"event": "STOP", 2315# "timestamp": {"seconds": 1432122372, "microseconds": 744001} } 2316# <- {"event": "RESUME", 2317# "timestamp": {"seconds": 1432122572, "microseconds": 744001} } 2318# <- {"event": "JOB_STATUS_CHANGE", 2319# "timestamp": {"seconds": 1432122772, "microseconds": 744001}, 2320# "data": {"status": "waiting", "id": "snapsave0"}} 2321# <- {"event": "JOB_STATUS_CHANGE", 2322# "timestamp": {"seconds": 1432122972, "microseconds": 744001}, 2323# "data": {"status": "pending", "id": "snapsave0"}} 2324# <- {"event": "JOB_STATUS_CHANGE", 2325# "timestamp": {"seconds": 1432123172, "microseconds": 744001}, 2326# "data": {"status": "concluded", "id": "snapsave0"}} 2327# -> {"execute": "query-jobs"} 2328# <- {"return": [{"current-progress": 1, 2329# "status": "concluded", 2330# "total-progress": 1, 2331# "type": "snapshot-save", 2332# "id": "snapsave0"}]} 2333# 2334# Since: 6.0 2335## 2336{ 'command': 'snapshot-save', 2337 'data': { 'job-id': 'str', 2338 'tag': 'str', 2339 'vmstate': 'str', 2340 'devices': ['str'] } } 2341 2342## 2343# @snapshot-load: 2344# 2345# Load a VM snapshot 2346# 2347# @job-id: identifier for the newly created job 2348# 2349# @tag: name of the snapshot to load. 2350# 2351# @vmstate: block device node name to load vmstate from 2352# 2353# @devices: list of block device node names to load a snapshot from 2354# 2355# Applications should not assume that the snapshot load is complete 2356# when this command returns. The job commands / events must be used 2357# to determine completion and to fetch details of any errors that 2358# arise. 2359# 2360# Note that execution of the guest CPUs will be stopped during the 2361# time it takes to load the snapshot. 2362# 2363# It is strongly recommended that @devices contain all writable block 2364# device nodes that can have changed since the original @snapshot-save 2365# command execution. 2366# 2367# .. qmp-example:: 2368# 2369# -> { "execute": "snapshot-load", 2370# "arguments": { 2371# "job-id": "snapload0", 2372# "tag": "my-snap", 2373# "vmstate": "disk0", 2374# "devices": ["disk0", "disk1"] 2375# } 2376# } 2377# <- { "return": { } } 2378# <- {"event": "JOB_STATUS_CHANGE", 2379# "timestamp": {"seconds": 1472124172, "microseconds": 744001}, 2380# "data": {"status": "created", "id": "snapload0"}} 2381# <- {"event": "JOB_STATUS_CHANGE", 2382# "timestamp": {"seconds": 1472125172, "microseconds": 744001}, 2383# "data": {"status": "running", "id": "snapload0"}} 2384# <- {"event": "STOP", 2385# "timestamp": {"seconds": 1472125472, "microseconds": 744001} } 2386# <- {"event": "RESUME", 2387# "timestamp": {"seconds": 1472125872, "microseconds": 744001} } 2388# <- {"event": "JOB_STATUS_CHANGE", 2389# "timestamp": {"seconds": 1472126172, "microseconds": 744001}, 2390# "data": {"status": "waiting", "id": "snapload0"}} 2391# <- {"event": "JOB_STATUS_CHANGE", 2392# "timestamp": {"seconds": 1472127172, "microseconds": 744001}, 2393# "data": {"status": "pending", "id": "snapload0"}} 2394# <- {"event": "JOB_STATUS_CHANGE", 2395# "timestamp": {"seconds": 1472128172, "microseconds": 744001}, 2396# "data": {"status": "concluded", "id": "snapload0"}} 2397# -> {"execute": "query-jobs"} 2398# <- {"return": [{"current-progress": 1, 2399# "status": "concluded", 2400# "total-progress": 1, 2401# "type": "snapshot-load", 2402# "id": "snapload0"}]} 2403# 2404# Since: 6.0 2405## 2406{ 'command': 'snapshot-load', 2407 'data': { 'job-id': 'str', 2408 'tag': 'str', 2409 'vmstate': 'str', 2410 'devices': ['str'] } } 2411 2412## 2413# @snapshot-delete: 2414# 2415# Delete a VM snapshot 2416# 2417# @job-id: identifier for the newly created job 2418# 2419# @tag: name of the snapshot to delete. 2420# 2421# @devices: list of block device node names to delete a snapshot from 2422# 2423# Applications should not assume that the snapshot delete is complete 2424# when this command returns. The job commands / events must be used 2425# to determine completion and to fetch details of any errors that 2426# arise. 2427# 2428# .. qmp-example:: 2429# 2430# -> { "execute": "snapshot-delete", 2431# "arguments": { 2432# "job-id": "snapdelete0", 2433# "tag": "my-snap", 2434# "devices": ["disk0", "disk1"] 2435# } 2436# } 2437# <- { "return": { } } 2438# <- {"event": "JOB_STATUS_CHANGE", 2439# "timestamp": {"seconds": 1442124172, "microseconds": 744001}, 2440# "data": {"status": "created", "id": "snapdelete0"}} 2441# <- {"event": "JOB_STATUS_CHANGE", 2442# "timestamp": {"seconds": 1442125172, "microseconds": 744001}, 2443# "data": {"status": "running", "id": "snapdelete0"}} 2444# <- {"event": "JOB_STATUS_CHANGE", 2445# "timestamp": {"seconds": 1442126172, "microseconds": 744001}, 2446# "data": {"status": "waiting", "id": "snapdelete0"}} 2447# <- {"event": "JOB_STATUS_CHANGE", 2448# "timestamp": {"seconds": 1442127172, "microseconds": 744001}, 2449# "data": {"status": "pending", "id": "snapdelete0"}} 2450# <- {"event": "JOB_STATUS_CHANGE", 2451# "timestamp": {"seconds": 1442128172, "microseconds": 744001}, 2452# "data": {"status": "concluded", "id": "snapdelete0"}} 2453# -> {"execute": "query-jobs"} 2454# <- {"return": [{"current-progress": 1, 2455# "status": "concluded", 2456# "total-progress": 1, 2457# "type": "snapshot-delete", 2458# "id": "snapdelete0"}]} 2459# 2460# Since: 6.0 2461## 2462{ 'command': 'snapshot-delete', 2463 'data': { 'job-id': 'str', 2464 'tag': 'str', 2465 'devices': ['str'] } } 2466