1# -*- Mode: Python -*- 2# vim: filetype=python 3# 4 5## 6# = Migration 7## 8 9{ 'include': 'common.json' } 10{ 'include': 'sockets.json' } 11 12## 13# @MigrationStats: 14# 15# Detailed migration status. 16# 17# @transferred: amount of bytes already transferred to the target VM 18# 19# @remaining: amount of bytes remaining to be transferred to the target VM 20# 21# @total: total amount of bytes involved in the migration process 22# 23# @duplicate: number of duplicate (zero) pages (since 1.2) 24# 25# @skipped: number of skipped zero pages (since 1.5) 26# 27# @normal: number of normal pages (since 1.2) 28# 29# @normal-bytes: number of normal bytes sent (since 1.2) 30# 31# @dirty-pages-rate: number of pages dirtied by second by the 32# guest (since 1.3) 33# 34# @mbps: throughput in megabits/sec. (since 1.6) 35# 36# @dirty-sync-count: number of times that dirty ram was synchronized (since 2.1) 37# 38# @postcopy-requests: The number of page requests received from the destination 39# (since 2.7) 40# 41# @page-size: The number of bytes per page for the various page-based 42# statistics (since 2.10) 43# 44# @multifd-bytes: The number of bytes sent through multifd (since 3.0) 45# 46# @pages-per-second: the number of memory pages transferred per second 47# (Since 4.0) 48# 49# Since: 0.14 50## 51{ 'struct': 'MigrationStats', 52 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' , 53 'duplicate': 'int', 'skipped': 'int', 'normal': 'int', 54 'normal-bytes': 'int', 'dirty-pages-rate' : 'int', 55 'mbps' : 'number', 'dirty-sync-count' : 'int', 56 'postcopy-requests' : 'int', 'page-size' : 'int', 57 'multifd-bytes' : 'uint64', 'pages-per-second' : 'uint64' } } 58 59## 60# @XBZRLECacheStats: 61# 62# Detailed XBZRLE migration cache statistics 63# 64# @cache-size: XBZRLE cache size 65# 66# @bytes: amount of bytes already transferred to the target VM 67# 68# @pages: amount of pages transferred to the target VM 69# 70# @cache-miss: number of cache miss 71# 72# @cache-miss-rate: rate of cache miss (since 2.1) 73# 74# @encoding-rate: rate of encoded bytes (since 5.1) 75# 76# @overflow: number of overflows 77# 78# Since: 1.2 79## 80{ 'struct': 'XBZRLECacheStats', 81 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int', 82 'cache-miss': 'int', 'cache-miss-rate': 'number', 83 'encoding-rate': 'number', 'overflow': 'int' } } 84 85## 86# @CompressionStats: 87# 88# Detailed migration compression statistics 89# 90# @pages: amount of pages compressed and transferred to the target VM 91# 92# @busy: count of times that no free thread was available to compress data 93# 94# @busy-rate: rate of thread busy 95# 96# @compressed-size: amount of bytes after compression 97# 98# @compression-rate: rate of compressed size 99# 100# Since: 3.1 101## 102{ 'struct': 'CompressionStats', 103 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number', 104 'compressed-size': 'int', 'compression-rate': 'number' } } 105 106## 107# @MigrationStatus: 108# 109# An enumeration of migration status. 110# 111# @none: no migration has ever happened. 112# 113# @setup: migration process has been initiated. 114# 115# @cancelling: in the process of cancelling migration. 116# 117# @cancelled: cancelling migration is finished. 118# 119# @active: in the process of doing migration. 120# 121# @postcopy-active: like active, but now in postcopy mode. (since 2.5) 122# 123# @postcopy-paused: during postcopy but paused. (since 3.0) 124# 125# @postcopy-recover: trying to recover from a paused postcopy. (since 3.0) 126# 127# @completed: migration is finished. 128# 129# @failed: some error occurred during migration process. 130# 131# @colo: VM is in the process of fault tolerance, VM can not get into this 132# state unless colo capability is enabled for migration. (since 2.8) 133# 134# @pre-switchover: Paused before device serialisation. (since 2.11) 135# 136# @device: During device serialisation when pause-before-switchover is enabled 137# (since 2.11) 138# 139# @wait-unplug: wait for device unplug request by guest OS to be completed. 140# (since 4.2) 141# 142# Since: 2.3 143# 144## 145{ 'enum': 'MigrationStatus', 146 'data': [ 'none', 'setup', 'cancelling', 'cancelled', 147 'active', 'postcopy-active', 'postcopy-paused', 148 'postcopy-recover', 'completed', 'failed', 'colo', 149 'pre-switchover', 'device', 'wait-unplug' ] } 150## 151# @VfioStats: 152# 153# Detailed VFIO devices migration statistics 154# 155# @transferred: amount of bytes transferred to the target VM by VFIO devices 156# 157# Since: 5.2 158# 159## 160{ 'struct': 'VfioStats', 161 'data': {'transferred': 'int' } } 162 163## 164# @MigrationInfo: 165# 166# Information about current migration process. 167# 168# @status: @MigrationStatus describing the current migration status. 169# If this field is not returned, no migration process 170# has been initiated 171# 172# @ram: @MigrationStats containing detailed migration 173# status, only returned if status is 'active' or 174# 'completed'(since 1.2) 175# 176# @disk: @MigrationStats containing detailed disk migration 177# status, only returned if status is 'active' and it is a block 178# migration 179# 180# @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE 181# migration statistics, only returned if XBZRLE feature is on and 182# status is 'active' or 'completed' (since 1.2) 183# 184# @total-time: total amount of milliseconds since migration started. 185# If migration has ended, it returns the total migration 186# time. (since 1.2) 187# 188# @downtime: only present when migration finishes correctly 189# total downtime in milliseconds for the guest. 190# (since 1.3) 191# 192# @expected-downtime: only present while migration is active 193# expected downtime in milliseconds for the guest in last walk 194# of the dirty bitmap. (since 1.3) 195# 196# @setup-time: amount of setup time in milliseconds *before* the 197# iterations begin but *after* the QMP command is issued. This is designed 198# to provide an accounting of any activities (such as RDMA pinning) which 199# may be expensive, but do not actually occur during the iterative 200# migration rounds themselves. (since 1.6) 201# 202# @cpu-throttle-percentage: percentage of time guest cpus are being 203# throttled during auto-converge. This is only present when auto-converge 204# has started throttling guest cpus. (Since 2.7) 205# 206# @error-desc: the human readable error description string, when 207# @status is 'failed'. Clients should not attempt to parse the 208# error strings. (Since 2.7) 209# 210# @postcopy-blocktime: total time when all vCPU were blocked during postcopy 211# live migration. This is only present when the postcopy-blocktime 212# migration capability is enabled. (Since 3.0) 213# 214# @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. This is 215# only present when the postcopy-blocktime migration capability 216# is enabled. (Since 3.0) 217# 218# @compression: migration compression statistics, only returned if compression 219# feature is on and status is 'active' or 'completed' (Since 3.1) 220# 221# @socket-address: Only used for tcp, to know what the real port is (Since 4.0) 222# 223# @vfio: @VfioStats containing detailed VFIO devices migration statistics, 224# only returned if VFIO device is present, migration is supported by all 225# VFIO devices and status is 'active' or 'completed' (since 5.2) 226# 227# @blocked-reasons: A list of reasons an outgoing migration is blocked. 228# Present and non-empty when migration is blocked. 229# (since 6.0) 230# 231# @blocked: True if outgoing migration is blocked (since 6.0) 232# 233# Features: 234# @deprecated: Member @blocked is deprecated. Use @blocked-reasons instead. 235# 236# Since: 0.14 237## 238{ 'struct': 'MigrationInfo', 239 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats', 240 '*disk': 'MigrationStats', 241 '*vfio': 'VfioStats', 242 '*xbzrle-cache': 'XBZRLECacheStats', 243 '*total-time': 'int', 244 '*expected-downtime': 'int', 245 '*downtime': 'int', 246 '*setup-time': 'int', 247 '*cpu-throttle-percentage': 'int', 248 '*error-desc': 'str', 249 'blocked': { 'type': 'bool', 'features': [ 'deprecated' ] }, 250 '*blocked-reasons': ['str'], 251 '*postcopy-blocktime' : 'uint32', 252 '*postcopy-vcpu-blocktime': ['uint32'], 253 '*compression': 'CompressionStats', 254 '*socket-address': ['SocketAddress'] } } 255 256## 257# @query-migrate: 258# 259# Returns information about current migration process. If migration 260# is active there will be another json-object with RAM migration 261# status and if block migration is active another one with block 262# migration status. 263# 264# Returns: @MigrationInfo 265# 266# Since: 0.14 267# 268# Example: 269# 270# 1. Before the first migration 271# 272# -> { "execute": "query-migrate" } 273# <- { "return": {} } 274# 275# 2. Migration is done and has succeeded 276# 277# -> { "execute": "query-migrate" } 278# <- { "return": { 279# "status": "completed", 280# "total-time":12345, 281# "setup-time":12345, 282# "downtime":12345, 283# "ram":{ 284# "transferred":123, 285# "remaining":123, 286# "total":246, 287# "duplicate":123, 288# "normal":123, 289# "normal-bytes":123456, 290# "dirty-sync-count":15 291# } 292# } 293# } 294# 295# 3. Migration is done and has failed 296# 297# -> { "execute": "query-migrate" } 298# <- { "return": { "status": "failed" } } 299# 300# 4. Migration is being performed and is not a block migration: 301# 302# -> { "execute": "query-migrate" } 303# <- { 304# "return":{ 305# "status":"active", 306# "total-time":12345, 307# "setup-time":12345, 308# "expected-downtime":12345, 309# "ram":{ 310# "transferred":123, 311# "remaining":123, 312# "total":246, 313# "duplicate":123, 314# "normal":123, 315# "normal-bytes":123456, 316# "dirty-sync-count":15 317# } 318# } 319# } 320# 321# 5. Migration is being performed and is a block migration: 322# 323# -> { "execute": "query-migrate" } 324# <- { 325# "return":{ 326# "status":"active", 327# "total-time":12345, 328# "setup-time":12345, 329# "expected-downtime":12345, 330# "ram":{ 331# "total":1057024, 332# "remaining":1053304, 333# "transferred":3720, 334# "duplicate":123, 335# "normal":123, 336# "normal-bytes":123456, 337# "dirty-sync-count":15 338# }, 339# "disk":{ 340# "total":20971520, 341# "remaining":20880384, 342# "transferred":91136 343# } 344# } 345# } 346# 347# 6. Migration is being performed and XBZRLE is active: 348# 349# -> { "execute": "query-migrate" } 350# <- { 351# "return":{ 352# "status":"active", 353# "total-time":12345, 354# "setup-time":12345, 355# "expected-downtime":12345, 356# "ram":{ 357# "total":1057024, 358# "remaining":1053304, 359# "transferred":3720, 360# "duplicate":10, 361# "normal":3333, 362# "normal-bytes":3412992, 363# "dirty-sync-count":15 364# }, 365# "xbzrle-cache":{ 366# "cache-size":67108864, 367# "bytes":20971520, 368# "pages":2444343, 369# "cache-miss":2244, 370# "cache-miss-rate":0.123, 371# "encoding-rate":80.1, 372# "overflow":34434 373# } 374# } 375# } 376# 377## 378{ 'command': 'query-migrate', 'returns': 'MigrationInfo' } 379 380## 381# @MigrationCapability: 382# 383# Migration capabilities enumeration 384# 385# @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length Encoding). 386# This feature allows us to minimize migration traffic for certain work 387# loads, by sending compressed difference of the pages 388# 389# @rdma-pin-all: Controls whether or not the entire VM memory footprint is 390# mlock()'d on demand or all at once. Refer to docs/rdma.txt for usage. 391# Disabled by default. (since 2.0) 392# 393# @zero-blocks: During storage migration encode blocks of zeroes efficiently. This 394# essentially saves 1MB of zeroes per block on the wire. Enabling requires 395# source and target VM to support this feature. To enable it is sufficient 396# to enable the capability on the source VM. The feature is disabled by 397# default. (since 1.6) 398# 399# @compress: Use multiple compression threads to accelerate live migration. 400# This feature can help to reduce the migration traffic, by sending 401# compressed pages. Please note that if compress and xbzrle are both 402# on, compress only takes effect in the ram bulk stage, after that, 403# it will be disabled and only xbzrle takes effect, this can help to 404# minimize migration traffic. The feature is disabled by default. 405# (since 2.4 ) 406# 407# @events: generate events for each migration state change 408# (since 2.4 ) 409# 410# @auto-converge: If enabled, QEMU will automatically throttle down the guest 411# to speed up convergence of RAM migration. (since 1.6) 412# 413# @postcopy-ram: Start executing on the migration target before all of RAM has 414# been migrated, pulling the remaining pages along as needed. The 415# capacity must have the same setting on both source and target 416# or migration will not even start. NOTE: If the migration fails during 417# postcopy the VM will fail. (since 2.6) 418# 419# @x-colo: If enabled, migration will never end, and the state of the VM on the 420# primary side will be migrated continuously to the VM on secondary 421# side, this process is called COarse-Grain LOck Stepping (COLO) for 422# Non-stop Service. (since 2.8) 423# 424# @release-ram: if enabled, qemu will free the migrated ram pages on the source 425# during postcopy-ram migration. (since 2.9) 426# 427# @block: If enabled, QEMU will also migrate the contents of all block 428# devices. Default is disabled. A possible alternative uses 429# mirror jobs to a builtin NBD server on the destination, which 430# offers more flexibility. 431# (Since 2.10) 432# 433# @return-path: If enabled, migration will use the return path even 434# for precopy. (since 2.10) 435# 436# @pause-before-switchover: Pause outgoing migration before serialising device 437# state and before disabling block IO (since 2.11) 438# 439# @multifd: Use more than one fd for migration (since 4.0) 440# 441# @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps. 442# (since 2.12) 443# 444# @postcopy-blocktime: Calculate downtime for postcopy live migration 445# (since 3.0) 446# 447# @late-block-activate: If enabled, the destination will not activate block 448# devices (and thus take locks) immediately at the end of migration. 449# (since 3.0) 450# 451# @x-ignore-shared: If enabled, QEMU will not migrate shared memory (since 4.0) 452# 453# @validate-uuid: Send the UUID of the source to allow the destination 454# to ensure it is the same. (since 4.2) 455# 456# @background-snapshot: If enabled, the migration stream will be a snapshot 457# of the VM exactly at the point when the migration 458# procedure starts. The VM RAM is saved with running VM. 459# (since 6.0) 460# 461# Since: 1.2 462## 463{ 'enum': 'MigrationCapability', 464 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks', 465 'compress', 'events', 'postcopy-ram', 'x-colo', 'release-ram', 466 'block', 'return-path', 'pause-before-switchover', 'multifd', 467 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate', 468 'x-ignore-shared', 'validate-uuid', 'background-snapshot'] } 469 470## 471# @MigrationCapabilityStatus: 472# 473# Migration capability information 474# 475# @capability: capability enum 476# 477# @state: capability state bool 478# 479# Since: 1.2 480## 481{ 'struct': 'MigrationCapabilityStatus', 482 'data': { 'capability' : 'MigrationCapability', 'state' : 'bool' } } 483 484## 485# @migrate-set-capabilities: 486# 487# Enable/Disable the following migration capabilities (like xbzrle) 488# 489# @capabilities: json array of capability modifications to make 490# 491# Since: 1.2 492# 493# Example: 494# 495# -> { "execute": "migrate-set-capabilities" , "arguments": 496# { "capabilities": [ { "capability": "xbzrle", "state": true } ] } } 497# 498## 499{ 'command': 'migrate-set-capabilities', 500 'data': { 'capabilities': ['MigrationCapabilityStatus'] } } 501 502## 503# @query-migrate-capabilities: 504# 505# Returns information about the current migration capabilities status 506# 507# Returns: @MigrationCapabilitiesStatus 508# 509# Since: 1.2 510# 511# Example: 512# 513# -> { "execute": "query-migrate-capabilities" } 514# <- { "return": [ 515# {"state": false, "capability": "xbzrle"}, 516# {"state": false, "capability": "rdma-pin-all"}, 517# {"state": false, "capability": "auto-converge"}, 518# {"state": false, "capability": "zero-blocks"}, 519# {"state": false, "capability": "compress"}, 520# {"state": true, "capability": "events"}, 521# {"state": false, "capability": "postcopy-ram"}, 522# {"state": false, "capability": "x-colo"} 523# ]} 524# 525## 526{ 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']} 527 528## 529# @MultiFDCompression: 530# 531# An enumeration of multifd compression methods. 532# 533# @none: no compression. 534# @zlib: use zlib compression method. 535# @zstd: use zstd compression method. 536# 537# Since: 5.0 538# 539## 540{ 'enum': 'MultiFDCompression', 541 'data': [ 'none', 'zlib', 542 { 'name': 'zstd', 'if': 'defined(CONFIG_ZSTD)' } ] } 543 544## 545# @BitmapMigrationBitmapAliasTransform: 546# 547# @persistent: If present, the bitmap will be made persistent 548# or transient depending on this parameter. 549# 550# Since: 6.0 551## 552{ 'struct': 'BitmapMigrationBitmapAliasTransform', 553 'data': { 554 '*persistent': 'bool' 555 } } 556 557## 558# @BitmapMigrationBitmapAlias: 559# 560# @name: The name of the bitmap. 561# 562# @alias: An alias name for migration (for example the bitmap name on 563# the opposite site). 564# 565# @transform: Allows the modification of the migrated bitmap. 566# (since 6.0) 567# 568# Since: 5.2 569## 570{ 'struct': 'BitmapMigrationBitmapAlias', 571 'data': { 572 'name': 'str', 573 'alias': 'str', 574 '*transform': 'BitmapMigrationBitmapAliasTransform' 575 } } 576 577## 578# @BitmapMigrationNodeAlias: 579# 580# Maps a block node name and the bitmaps it has to aliases for dirty 581# bitmap migration. 582# 583# @node-name: A block node name. 584# 585# @alias: An alias block node name for migration (for example the 586# node name on the opposite site). 587# 588# @bitmaps: Mappings for the bitmaps on this node. 589# 590# Since: 5.2 591## 592{ 'struct': 'BitmapMigrationNodeAlias', 593 'data': { 594 'node-name': 'str', 595 'alias': 'str', 596 'bitmaps': [ 'BitmapMigrationBitmapAlias' ] 597 } } 598 599## 600# @MigrationParameter: 601# 602# Migration parameters enumeration 603# 604# @announce-initial: Initial delay (in milliseconds) before sending the first 605# announce (Since 4.0) 606# 607# @announce-max: Maximum delay (in milliseconds) between packets in the 608# announcement (Since 4.0) 609# 610# @announce-rounds: Number of self-announce packets sent after migration 611# (Since 4.0) 612# 613# @announce-step: Increase in delay (in milliseconds) between subsequent 614# packets in the announcement (Since 4.0) 615# 616# @compress-level: Set the compression level to be used in live migration, 617# the compression level is an integer between 0 and 9, where 0 means 618# no compression, 1 means the best compression speed, and 9 means best 619# compression ratio which will consume more CPU. 620# 621# @compress-threads: Set compression thread count to be used in live migration, 622# the compression thread count is an integer between 1 and 255. 623# 624# @compress-wait-thread: Controls behavior when all compression threads are 625# currently busy. If true (default), wait for a free 626# compression thread to become available; otherwise, 627# send the page uncompressed. (Since 3.1) 628# 629# @decompress-threads: Set decompression thread count to be used in live 630# migration, the decompression thread count is an integer between 1 631# and 255. Usually, decompression is at least 4 times as fast as 632# compression, so set the decompress-threads to the number about 1/4 633# of compress-threads is adequate. 634# 635# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period 636# to trigger throttling. It is expressed as percentage. 637# The default value is 50. (Since 5.0) 638# 639# @cpu-throttle-initial: Initial percentage of time guest cpus are throttled 640# when migration auto-converge is activated. The 641# default value is 20. (Since 2.7) 642# 643# @cpu-throttle-increment: throttle percentage increase each time 644# auto-converge detects that migration is not making 645# progress. The default value is 10. (Since 2.7) 646# 647# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage 648# At the tail stage of throttling, the Guest is very 649# sensitive to CPU percentage while the @cpu-throttle 650# -increment is excessive usually at tail stage. 651# If this parameter is true, we will compute the ideal 652# CPU percentage used by the Guest, which may exactly make 653# the dirty rate match the dirty rate threshold. Then we 654# will choose a smaller throttle increment between the 655# one specified by @cpu-throttle-increment and the one 656# generated by ideal CPU percentage. 657# Therefore, it is compatible to traditional throttling, 658# meanwhile the throttle increment won't be excessive 659# at tail stage. 660# The default value is false. (Since 5.1) 661# 662# @tls-creds: ID of the 'tls-creds' object that provides credentials for 663# establishing a TLS connection over the migration data channel. 664# On the outgoing side of the migration, the credentials must 665# be for a 'client' endpoint, while for the incoming side the 666# credentials must be for a 'server' endpoint. Setting this 667# will enable TLS for all migrations. The default is unset, 668# resulting in unsecured migration at the QEMU level. (Since 2.7) 669# 670# @tls-hostname: hostname of the target host for the migration. This is 671# required when using x509 based TLS credentials and the 672# migration URI does not already include a hostname. For 673# example if using fd: or exec: based migration, the 674# hostname must be provided so that the server's x509 675# certificate identity can be validated. (Since 2.7) 676# 677# @tls-authz: ID of the 'authz' object subclass that provides access control 678# checking of the TLS x509 certificate distinguished name. 679# This object is only resolved at time of use, so can be deleted 680# and recreated on the fly while the migration server is active. 681# If missing, it will default to denying access (Since 4.0) 682# 683# @max-bandwidth: to set maximum speed for migration. maximum speed in 684# bytes per second. (Since 2.8) 685# 686# @downtime-limit: set maximum tolerated downtime for migration. maximum 687# downtime in milliseconds (Since 2.8) 688# 689# @x-checkpoint-delay: The delay time (in ms) between two COLO checkpoints in 690# periodic mode. (Since 2.8) 691# 692# @block-incremental: Affects how much storage is migrated when the 693# block migration capability is enabled. When false, the entire 694# storage backing chain is migrated into a flattened image at 695# the destination; when true, only the active qcow2 layer is 696# migrated and the destination must already have access to the 697# same backing chain as was used on the source. (since 2.10) 698# 699# @multifd-channels: Number of channels used to migrate data in 700# parallel. This is the same number that the 701# number of sockets used for migration. The 702# default value is 2 (since 4.0) 703# 704# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 705# needs to be a multiple of the target page size 706# and a power of 2 707# (Since 2.11) 708# 709# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy. 710# Defaults to 0 (unlimited). In bytes per second. 711# (Since 3.0) 712# 713# @max-cpu-throttle: maximum cpu throttle percentage. 714# Defaults to 99. (Since 3.1) 715# 716# @multifd-compression: Which compression method to use. 717# Defaults to none. (Since 5.0) 718# 719# @multifd-zlib-level: Set the compression level to be used in live 720# migration, the compression level is an integer between 0 721# and 9, where 0 means no compression, 1 means the best 722# compression speed, and 9 means best compression ratio which 723# will consume more CPU. 724# Defaults to 1. (Since 5.0) 725# 726# @multifd-zstd-level: Set the compression level to be used in live 727# migration, the compression level is an integer between 0 728# and 20, where 0 means no compression, 1 means the best 729# compression speed, and 20 means best compression ratio which 730# will consume more CPU. 731# Defaults to 1. (Since 5.0) 732# 733# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 734# aliases for the purpose of dirty bitmap migration. Such 735# aliases may for example be the corresponding names on the 736# opposite site. 737# The mapping must be one-to-one, but not necessarily 738# complete: On the source, unmapped bitmaps and all bitmaps 739# on unmapped nodes will be ignored. On the destination, 740# encountering an unmapped alias in the incoming migration 741# stream will result in a report, and all further bitmap 742# migration data will then be discarded. 743# Note that the destination does not know about bitmaps it 744# does not receive, so there is no limitation or requirement 745# regarding the number of bitmaps received, or how they are 746# named, or on which nodes they are placed. 747# By default (when this parameter has never been set), bitmap 748# names are mapped to themselves. Nodes are mapped to their 749# block device name if there is one, and to their node name 750# otherwise. (Since 5.2) 751# 752# Since: 2.4 753## 754{ 'enum': 'MigrationParameter', 755 'data': ['announce-initial', 'announce-max', 756 'announce-rounds', 'announce-step', 757 'compress-level', 'compress-threads', 'decompress-threads', 758 'compress-wait-thread', 'throttle-trigger-threshold', 759 'cpu-throttle-initial', 'cpu-throttle-increment', 760 'cpu-throttle-tailslow', 761 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth', 762 'downtime-limit', 'x-checkpoint-delay', 'block-incremental', 763 'multifd-channels', 764 'xbzrle-cache-size', 'max-postcopy-bandwidth', 765 'max-cpu-throttle', 'multifd-compression', 766 'multifd-zlib-level' ,'multifd-zstd-level', 767 'block-bitmap-mapping' ] } 768 769## 770# @MigrateSetParameters: 771# 772# @announce-initial: Initial delay (in milliseconds) before sending the first 773# announce (Since 4.0) 774# 775# @announce-max: Maximum delay (in milliseconds) between packets in the 776# announcement (Since 4.0) 777# 778# @announce-rounds: Number of self-announce packets sent after migration 779# (Since 4.0) 780# 781# @announce-step: Increase in delay (in milliseconds) between subsequent 782# packets in the announcement (Since 4.0) 783# 784# @compress-level: compression level 785# 786# @compress-threads: compression thread count 787# 788# @compress-wait-thread: Controls behavior when all compression threads are 789# currently busy. If true (default), wait for a free 790# compression thread to become available; otherwise, 791# send the page uncompressed. (Since 3.1) 792# 793# @decompress-threads: decompression thread count 794# 795# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period 796# to trigger throttling. It is expressed as percentage. 797# The default value is 50. (Since 5.0) 798# 799# @cpu-throttle-initial: Initial percentage of time guest cpus are 800# throttled when migration auto-converge is activated. 801# The default value is 20. (Since 2.7) 802# 803# @cpu-throttle-increment: throttle percentage increase each time 804# auto-converge detects that migration is not making 805# progress. The default value is 10. (Since 2.7) 806# 807# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage 808# At the tail stage of throttling, the Guest is very 809# sensitive to CPU percentage while the @cpu-throttle 810# -increment is excessive usually at tail stage. 811# If this parameter is true, we will compute the ideal 812# CPU percentage used by the Guest, which may exactly make 813# the dirty rate match the dirty rate threshold. Then we 814# will choose a smaller throttle increment between the 815# one specified by @cpu-throttle-increment and the one 816# generated by ideal CPU percentage. 817# Therefore, it is compatible to traditional throttling, 818# meanwhile the throttle increment won't be excessive 819# at tail stage. 820# The default value is false. (Since 5.1) 821# 822# @tls-creds: ID of the 'tls-creds' object that provides credentials 823# for establishing a TLS connection over the migration data 824# channel. On the outgoing side of the migration, the credentials 825# must be for a 'client' endpoint, while for the incoming side the 826# credentials must be for a 'server' endpoint. Setting this 827# to a non-empty string enables TLS for all migrations. 828# An empty string means that QEMU will use plain text mode for 829# migration, rather than TLS (Since 2.9) 830# Previously (since 2.7), this was reported by omitting 831# tls-creds instead. 832# 833# @tls-hostname: hostname of the target host for the migration. This 834# is required when using x509 based TLS credentials and the 835# migration URI does not already include a hostname. For 836# example if using fd: or exec: based migration, the 837# hostname must be provided so that the server's x509 838# certificate identity can be validated. (Since 2.7) 839# An empty string means that QEMU will use the hostname 840# associated with the migration URI, if any. (Since 2.9) 841# Previously (since 2.7), this was reported by omitting 842# tls-hostname instead. 843# 844# @max-bandwidth: to set maximum speed for migration. maximum speed in 845# bytes per second. (Since 2.8) 846# 847# @downtime-limit: set maximum tolerated downtime for migration. maximum 848# downtime in milliseconds (Since 2.8) 849# 850# @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8) 851# 852# @block-incremental: Affects how much storage is migrated when the 853# block migration capability is enabled. When false, the entire 854# storage backing chain is migrated into a flattened image at 855# the destination; when true, only the active qcow2 layer is 856# migrated and the destination must already have access to the 857# same backing chain as was used on the source. (since 2.10) 858# 859# @multifd-channels: Number of channels used to migrate data in 860# parallel. This is the same number that the 861# number of sockets used for migration. The 862# default value is 2 (since 4.0) 863# 864# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 865# needs to be a multiple of the target page size 866# and a power of 2 867# (Since 2.11) 868# 869# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy. 870# Defaults to 0 (unlimited). In bytes per second. 871# (Since 3.0) 872# 873# @max-cpu-throttle: maximum cpu throttle percentage. 874# The default value is 99. (Since 3.1) 875# 876# @multifd-compression: Which compression method to use. 877# Defaults to none. (Since 5.0) 878# 879# @multifd-zlib-level: Set the compression level to be used in live 880# migration, the compression level is an integer between 0 881# and 9, where 0 means no compression, 1 means the best 882# compression speed, and 9 means best compression ratio which 883# will consume more CPU. 884# Defaults to 1. (Since 5.0) 885# 886# @multifd-zstd-level: Set the compression level to be used in live 887# migration, the compression level is an integer between 0 888# and 20, where 0 means no compression, 1 means the best 889# compression speed, and 20 means best compression ratio which 890# will consume more CPU. 891# Defaults to 1. (Since 5.0) 892# 893# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 894# aliases for the purpose of dirty bitmap migration. Such 895# aliases may for example be the corresponding names on the 896# opposite site. 897# The mapping must be one-to-one, but not necessarily 898# complete: On the source, unmapped bitmaps and all bitmaps 899# on unmapped nodes will be ignored. On the destination, 900# encountering an unmapped alias in the incoming migration 901# stream will result in a report, and all further bitmap 902# migration data will then be discarded. 903# Note that the destination does not know about bitmaps it 904# does not receive, so there is no limitation or requirement 905# regarding the number of bitmaps received, or how they are 906# named, or on which nodes they are placed. 907# By default (when this parameter has never been set), bitmap 908# names are mapped to themselves. Nodes are mapped to their 909# block device name if there is one, and to their node name 910# otherwise. (Since 5.2) 911# 912# Since: 2.4 913## 914# TODO either fuse back into MigrationParameters, or make 915# MigrationParameters members mandatory 916{ 'struct': 'MigrateSetParameters', 917 'data': { '*announce-initial': 'size', 918 '*announce-max': 'size', 919 '*announce-rounds': 'size', 920 '*announce-step': 'size', 921 '*compress-level': 'uint8', 922 '*compress-threads': 'uint8', 923 '*compress-wait-thread': 'bool', 924 '*decompress-threads': 'uint8', 925 '*throttle-trigger-threshold': 'uint8', 926 '*cpu-throttle-initial': 'uint8', 927 '*cpu-throttle-increment': 'uint8', 928 '*cpu-throttle-tailslow': 'bool', 929 '*tls-creds': 'StrOrNull', 930 '*tls-hostname': 'StrOrNull', 931 '*tls-authz': 'StrOrNull', 932 '*max-bandwidth': 'size', 933 '*downtime-limit': 'uint64', 934 '*x-checkpoint-delay': 'uint32', 935 '*block-incremental': 'bool', 936 '*multifd-channels': 'uint8', 937 '*xbzrle-cache-size': 'size', 938 '*max-postcopy-bandwidth': 'size', 939 '*max-cpu-throttle': 'uint8', 940 '*multifd-compression': 'MultiFDCompression', 941 '*multifd-zlib-level': 'uint8', 942 '*multifd-zstd-level': 'uint8', 943 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } } 944 945## 946# @migrate-set-parameters: 947# 948# Set various migration parameters. 949# 950# Since: 2.4 951# 952# Example: 953# 954# -> { "execute": "migrate-set-parameters" , 955# "arguments": { "compress-level": 1 } } 956# 957## 958{ 'command': 'migrate-set-parameters', 'boxed': true, 959 'data': 'MigrateSetParameters' } 960 961## 962# @MigrationParameters: 963# 964# The optional members aren't actually optional. 965# 966# @announce-initial: Initial delay (in milliseconds) before sending the 967# first announce (Since 4.0) 968# 969# @announce-max: Maximum delay (in milliseconds) between packets in the 970# announcement (Since 4.0) 971# 972# @announce-rounds: Number of self-announce packets sent after migration 973# (Since 4.0) 974# 975# @announce-step: Increase in delay (in milliseconds) between subsequent 976# packets in the announcement (Since 4.0) 977# 978# @compress-level: compression level 979# 980# @compress-threads: compression thread count 981# 982# @compress-wait-thread: Controls behavior when all compression threads are 983# currently busy. If true (default), wait for a free 984# compression thread to become available; otherwise, 985# send the page uncompressed. (Since 3.1) 986# 987# @decompress-threads: decompression thread count 988# 989# @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period 990# to trigger throttling. It is expressed as percentage. 991# The default value is 50. (Since 5.0) 992# 993# @cpu-throttle-initial: Initial percentage of time guest cpus are 994# throttled when migration auto-converge is activated. 995# (Since 2.7) 996# 997# @cpu-throttle-increment: throttle percentage increase each time 998# auto-converge detects that migration is not making 999# progress. (Since 2.7) 1000# 1001# @cpu-throttle-tailslow: Make CPU throttling slower at tail stage 1002# At the tail stage of throttling, the Guest is very 1003# sensitive to CPU percentage while the @cpu-throttle 1004# -increment is excessive usually at tail stage. 1005# If this parameter is true, we will compute the ideal 1006# CPU percentage used by the Guest, which may exactly make 1007# the dirty rate match the dirty rate threshold. Then we 1008# will choose a smaller throttle increment between the 1009# one specified by @cpu-throttle-increment and the one 1010# generated by ideal CPU percentage. 1011# Therefore, it is compatible to traditional throttling, 1012# meanwhile the throttle increment won't be excessive 1013# at tail stage. 1014# The default value is false. (Since 5.1) 1015# 1016# @tls-creds: ID of the 'tls-creds' object that provides credentials 1017# for establishing a TLS connection over the migration data 1018# channel. On the outgoing side of the migration, the credentials 1019# must be for a 'client' endpoint, while for the incoming side the 1020# credentials must be for a 'server' endpoint. 1021# An empty string means that QEMU will use plain text mode for 1022# migration, rather than TLS (Since 2.7) 1023# Note: 2.8 reports this by omitting tls-creds instead. 1024# 1025# @tls-hostname: hostname of the target host for the migration. This 1026# is required when using x509 based TLS credentials and the 1027# migration URI does not already include a hostname. For 1028# example if using fd: or exec: based migration, the 1029# hostname must be provided so that the server's x509 1030# certificate identity can be validated. (Since 2.7) 1031# An empty string means that QEMU will use the hostname 1032# associated with the migration URI, if any. (Since 2.9) 1033# Note: 2.8 reports this by omitting tls-hostname instead. 1034# 1035# @tls-authz: ID of the 'authz' object subclass that provides access control 1036# checking of the TLS x509 certificate distinguished name. (Since 1037# 4.0) 1038# 1039# @max-bandwidth: to set maximum speed for migration. maximum speed in 1040# bytes per second. (Since 2.8) 1041# 1042# @downtime-limit: set maximum tolerated downtime for migration. maximum 1043# downtime in milliseconds (Since 2.8) 1044# 1045# @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8) 1046# 1047# @block-incremental: Affects how much storage is migrated when the 1048# block migration capability is enabled. When false, the entire 1049# storage backing chain is migrated into a flattened image at 1050# the destination; when true, only the active qcow2 layer is 1051# migrated and the destination must already have access to the 1052# same backing chain as was used on the source. (since 2.10) 1053# 1054# @multifd-channels: Number of channels used to migrate data in 1055# parallel. This is the same number that the 1056# number of sockets used for migration. 1057# The default value is 2 (since 4.0) 1058# 1059# @xbzrle-cache-size: cache size to be used by XBZRLE migration. It 1060# needs to be a multiple of the target page size 1061# and a power of 2 1062# (Since 2.11) 1063# 1064# @max-postcopy-bandwidth: Background transfer bandwidth during postcopy. 1065# Defaults to 0 (unlimited). In bytes per second. 1066# (Since 3.0) 1067# 1068# @max-cpu-throttle: maximum cpu throttle percentage. 1069# Defaults to 99. 1070# (Since 3.1) 1071# 1072# @multifd-compression: Which compression method to use. 1073# Defaults to none. (Since 5.0) 1074# 1075# @multifd-zlib-level: Set the compression level to be used in live 1076# migration, the compression level is an integer between 0 1077# and 9, where 0 means no compression, 1 means the best 1078# compression speed, and 9 means best compression ratio which 1079# will consume more CPU. 1080# Defaults to 1. (Since 5.0) 1081# 1082# @multifd-zstd-level: Set the compression level to be used in live 1083# migration, the compression level is an integer between 0 1084# and 20, where 0 means no compression, 1 means the best 1085# compression speed, and 20 means best compression ratio which 1086# will consume more CPU. 1087# Defaults to 1. (Since 5.0) 1088# 1089# @block-bitmap-mapping: Maps block nodes and bitmaps on them to 1090# aliases for the purpose of dirty bitmap migration. Such 1091# aliases may for example be the corresponding names on the 1092# opposite site. 1093# The mapping must be one-to-one, but not necessarily 1094# complete: On the source, unmapped bitmaps and all bitmaps 1095# on unmapped nodes will be ignored. On the destination, 1096# encountering an unmapped alias in the incoming migration 1097# stream will result in a report, and all further bitmap 1098# migration data will then be discarded. 1099# Note that the destination does not know about bitmaps it 1100# does not receive, so there is no limitation or requirement 1101# regarding the number of bitmaps received, or how they are 1102# named, or on which nodes they are placed. 1103# By default (when this parameter has never been set), bitmap 1104# names are mapped to themselves. Nodes are mapped to their 1105# block device name if there is one, and to their node name 1106# otherwise. (Since 5.2) 1107# 1108# Since: 2.4 1109## 1110{ 'struct': 'MigrationParameters', 1111 'data': { '*announce-initial': 'size', 1112 '*announce-max': 'size', 1113 '*announce-rounds': 'size', 1114 '*announce-step': 'size', 1115 '*compress-level': 'uint8', 1116 '*compress-threads': 'uint8', 1117 '*compress-wait-thread': 'bool', 1118 '*decompress-threads': 'uint8', 1119 '*throttle-trigger-threshold': 'uint8', 1120 '*cpu-throttle-initial': 'uint8', 1121 '*cpu-throttle-increment': 'uint8', 1122 '*cpu-throttle-tailslow': 'bool', 1123 '*tls-creds': 'str', 1124 '*tls-hostname': 'str', 1125 '*tls-authz': 'str', 1126 '*max-bandwidth': 'size', 1127 '*downtime-limit': 'uint64', 1128 '*x-checkpoint-delay': 'uint32', 1129 '*block-incremental': 'bool', 1130 '*multifd-channels': 'uint8', 1131 '*xbzrle-cache-size': 'size', 1132 '*max-postcopy-bandwidth': 'size', 1133 '*max-cpu-throttle': 'uint8', 1134 '*multifd-compression': 'MultiFDCompression', 1135 '*multifd-zlib-level': 'uint8', 1136 '*multifd-zstd-level': 'uint8', 1137 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } } 1138 1139## 1140# @query-migrate-parameters: 1141# 1142# Returns information about the current migration parameters 1143# 1144# Returns: @MigrationParameters 1145# 1146# Since: 2.4 1147# 1148# Example: 1149# 1150# -> { "execute": "query-migrate-parameters" } 1151# <- { "return": { 1152# "decompress-threads": 2, 1153# "cpu-throttle-increment": 10, 1154# "compress-threads": 8, 1155# "compress-level": 1, 1156# "cpu-throttle-initial": 20, 1157# "max-bandwidth": 33554432, 1158# "downtime-limit": 300 1159# } 1160# } 1161# 1162## 1163{ 'command': 'query-migrate-parameters', 1164 'returns': 'MigrationParameters' } 1165 1166## 1167# @client_migrate_info: 1168# 1169# Set migration information for remote display. This makes the server 1170# ask the client to automatically reconnect using the new parameters 1171# once migration finished successfully. Only implemented for SPICE. 1172# 1173# @protocol: must be "spice" 1174# @hostname: migration target hostname 1175# @port: spice tcp port for plaintext channels 1176# @tls-port: spice tcp port for tls-secured channels 1177# @cert-subject: server certificate subject 1178# 1179# Since: 0.14 1180# 1181# Example: 1182# 1183# -> { "execute": "client_migrate_info", 1184# "arguments": { "protocol": "spice", 1185# "hostname": "virt42.lab.kraxel.org", 1186# "port": 1234 } } 1187# <- { "return": {} } 1188# 1189## 1190{ 'command': 'client_migrate_info', 1191 'data': { 'protocol': 'str', 'hostname': 'str', '*port': 'int', 1192 '*tls-port': 'int', '*cert-subject': 'str' } } 1193 1194## 1195# @migrate-start-postcopy: 1196# 1197# Followup to a migration command to switch the migration to postcopy mode. 1198# The postcopy-ram capability must be set on both source and destination 1199# before the original migration command. 1200# 1201# Since: 2.5 1202# 1203# Example: 1204# 1205# -> { "execute": "migrate-start-postcopy" } 1206# <- { "return": {} } 1207# 1208## 1209{ 'command': 'migrate-start-postcopy' } 1210 1211## 1212# @MIGRATION: 1213# 1214# Emitted when a migration event happens 1215# 1216# @status: @MigrationStatus describing the current migration status. 1217# 1218# Since: 2.4 1219# 1220# Example: 1221# 1222# <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001}, 1223# "event": "MIGRATION", 1224# "data": {"status": "completed"} } 1225# 1226## 1227{ 'event': 'MIGRATION', 1228 'data': {'status': 'MigrationStatus'}} 1229 1230## 1231# @MIGRATION_PASS: 1232# 1233# Emitted from the source side of a migration at the start of each pass 1234# (when it syncs the dirty bitmap) 1235# 1236# @pass: An incrementing count (starting at 1 on the first pass) 1237# 1238# Since: 2.6 1239# 1240# Example: 1241# 1242# { "timestamp": {"seconds": 1449669631, "microseconds": 239225}, 1243# "event": "MIGRATION_PASS", "data": {"pass": 2} } 1244# 1245## 1246{ 'event': 'MIGRATION_PASS', 1247 'data': { 'pass': 'int' } } 1248 1249## 1250# @COLOMessage: 1251# 1252# The message transmission between Primary side and Secondary side. 1253# 1254# @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing 1255# 1256# @checkpoint-request: Primary VM (PVM) tells SVM to prepare for checkpointing 1257# 1258# @checkpoint-reply: SVM gets PVM's checkpoint request 1259# 1260# @vmstate-send: VM's state will be sent by PVM. 1261# 1262# @vmstate-size: The total size of VMstate. 1263# 1264# @vmstate-received: VM's state has been received by SVM. 1265# 1266# @vmstate-loaded: VM's state has been loaded by SVM. 1267# 1268# Since: 2.8 1269## 1270{ 'enum': 'COLOMessage', 1271 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply', 1272 'vmstate-send', 'vmstate-size', 'vmstate-received', 1273 'vmstate-loaded' ] } 1274 1275## 1276# @COLOMode: 1277# 1278# The COLO current mode. 1279# 1280# @none: COLO is disabled. 1281# 1282# @primary: COLO node in primary side. 1283# 1284# @secondary: COLO node in slave side. 1285# 1286# Since: 2.8 1287## 1288{ 'enum': 'COLOMode', 1289 'data': [ 'none', 'primary', 'secondary'] } 1290 1291## 1292# @FailoverStatus: 1293# 1294# An enumeration of COLO failover status 1295# 1296# @none: no failover has ever happened 1297# 1298# @require: got failover requirement but not handled 1299# 1300# @active: in the process of doing failover 1301# 1302# @completed: finish the process of failover 1303# 1304# @relaunch: restart the failover process, from 'none' -> 'completed' (Since 2.9) 1305# 1306# Since: 2.8 1307## 1308{ 'enum': 'FailoverStatus', 1309 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] } 1310 1311## 1312# @COLO_EXIT: 1313# 1314# Emitted when VM finishes COLO mode due to some errors happening or 1315# at the request of users. 1316# 1317# @mode: report COLO mode when COLO exited. 1318# 1319# @reason: describes the reason for the COLO exit. 1320# 1321# Since: 3.1 1322# 1323# Example: 1324# 1325# <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172}, 1326# "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } } 1327# 1328## 1329{ 'event': 'COLO_EXIT', 1330 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } } 1331 1332## 1333# @COLOExitReason: 1334# 1335# The reason for a COLO exit. 1336# 1337# @none: failover has never happened. This state does not occur 1338# in the COLO_EXIT event, and is only visible in the result of 1339# query-colo-status. 1340# 1341# @request: COLO exit is due to an external request. 1342# 1343# @error: COLO exit is due to an internal error. 1344# 1345# @processing: COLO is currently handling a failover (since 4.0). 1346# 1347# Since: 3.1 1348## 1349{ 'enum': 'COLOExitReason', 1350 'data': [ 'none', 'request', 'error' , 'processing' ] } 1351 1352## 1353# @x-colo-lost-heartbeat: 1354# 1355# Tell qemu that heartbeat is lost, request it to do takeover procedures. 1356# If this command is sent to the PVM, the Primary side will exit COLO mode. 1357# If sent to the Secondary, the Secondary side will run failover work, 1358# then takes over server operation to become the service VM. 1359# 1360# Since: 2.8 1361# 1362# Example: 1363# 1364# -> { "execute": "x-colo-lost-heartbeat" } 1365# <- { "return": {} } 1366# 1367## 1368{ 'command': 'x-colo-lost-heartbeat' } 1369 1370## 1371# @migrate_cancel: 1372# 1373# Cancel the current executing migration process. 1374# 1375# Returns: nothing on success 1376# 1377# Notes: This command succeeds even if there is no migration process running. 1378# 1379# Since: 0.14 1380# 1381# Example: 1382# 1383# -> { "execute": "migrate_cancel" } 1384# <- { "return": {} } 1385# 1386## 1387{ 'command': 'migrate_cancel' } 1388 1389## 1390# @migrate-continue: 1391# 1392# Continue migration when it's in a paused state. 1393# 1394# @state: The state the migration is currently expected to be in 1395# 1396# Returns: nothing on success 1397# Since: 2.11 1398# Example: 1399# 1400# -> { "execute": "migrate-continue" , "arguments": 1401# { "state": "pre-switchover" } } 1402# <- { "return": {} } 1403## 1404{ 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} } 1405 1406## 1407# @migrate: 1408# 1409# Migrates the current running guest to another Virtual Machine. 1410# 1411# @uri: the Uniform Resource Identifier of the destination VM 1412# 1413# @blk: do block migration (full disk copy) 1414# 1415# @inc: incremental disk copy migration 1416# 1417# @detach: this argument exists only for compatibility reasons and 1418# is ignored by QEMU 1419# 1420# @resume: resume one paused migration, default "off". (since 3.0) 1421# 1422# Returns: nothing on success 1423# 1424# Since: 0.14 1425# 1426# Notes: 1427# 1428# 1. The 'query-migrate' command should be used to check migration's progress 1429# and final result (this information is provided by the 'status' member) 1430# 1431# 2. All boolean arguments default to false 1432# 1433# 3. The user Monitor's "detach" argument is invalid in QMP and should not 1434# be used 1435# 1436# Example: 1437# 1438# -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } } 1439# <- { "return": {} } 1440# 1441## 1442{ 'command': 'migrate', 1443 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool', 1444 '*detach': 'bool', '*resume': 'bool' } } 1445 1446## 1447# @migrate-incoming: 1448# 1449# Start an incoming migration, the qemu must have been started 1450# with -incoming defer 1451# 1452# @uri: The Uniform Resource Identifier identifying the source or 1453# address to listen on 1454# 1455# Returns: nothing on success 1456# 1457# Since: 2.3 1458# 1459# Notes: 1460# 1461# 1. It's a bad idea to use a string for the uri, but it needs to stay 1462# compatible with -incoming and the format of the uri is already exposed 1463# above libvirt. 1464# 1465# 2. QEMU must be started with -incoming defer to allow migrate-incoming to 1466# be used. 1467# 1468# 3. The uri format is the same as for -incoming 1469# 1470# Example: 1471# 1472# -> { "execute": "migrate-incoming", 1473# "arguments": { "uri": "tcp::4446" } } 1474# <- { "return": {} } 1475# 1476## 1477{ 'command': 'migrate-incoming', 'data': {'uri': 'str' } } 1478 1479## 1480# @xen-save-devices-state: 1481# 1482# Save the state of all devices to file. The RAM and the block devices 1483# of the VM are not saved by this command. 1484# 1485# @filename: the file to save the state of the devices to as binary 1486# data. See xen-save-devices-state.txt for a description of the binary 1487# format. 1488# 1489# @live: Optional argument to ask QEMU to treat this command as part of a live 1490# migration. Default to true. (since 2.11) 1491# 1492# Returns: Nothing on success 1493# 1494# Since: 1.1 1495# 1496# Example: 1497# 1498# -> { "execute": "xen-save-devices-state", 1499# "arguments": { "filename": "/tmp/save" } } 1500# <- { "return": {} } 1501# 1502## 1503{ 'command': 'xen-save-devices-state', 1504 'data': {'filename': 'str', '*live':'bool' } } 1505 1506## 1507# @xen-set-global-dirty-log: 1508# 1509# Enable or disable the global dirty log mode. 1510# 1511# @enable: true to enable, false to disable. 1512# 1513# Returns: nothing 1514# 1515# Since: 1.3 1516# 1517# Example: 1518# 1519# -> { "execute": "xen-set-global-dirty-log", 1520# "arguments": { "enable": true } } 1521# <- { "return": {} } 1522# 1523## 1524{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } } 1525 1526## 1527# @xen-load-devices-state: 1528# 1529# Load the state of all devices from file. The RAM and the block devices 1530# of the VM are not loaded by this command. 1531# 1532# @filename: the file to load the state of the devices from as binary 1533# data. See xen-save-devices-state.txt for a description of the binary 1534# format. 1535# 1536# Since: 2.7 1537# 1538# Example: 1539# 1540# -> { "execute": "xen-load-devices-state", 1541# "arguments": { "filename": "/tmp/resume" } } 1542# <- { "return": {} } 1543# 1544## 1545{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} } 1546 1547## 1548# @xen-set-replication: 1549# 1550# Enable or disable replication. 1551# 1552# @enable: true to enable, false to disable. 1553# 1554# @primary: true for primary or false for secondary. 1555# 1556# @failover: true to do failover, false to stop. but cannot be 1557# specified if 'enable' is true. default value is false. 1558# 1559# Returns: nothing. 1560# 1561# Example: 1562# 1563# -> { "execute": "xen-set-replication", 1564# "arguments": {"enable": true, "primary": false} } 1565# <- { "return": {} } 1566# 1567# Since: 2.9 1568## 1569{ 'command': 'xen-set-replication', 1570 'data': { 'enable': 'bool', 'primary': 'bool', '*failover' : 'bool' }, 1571 'if': 'defined(CONFIG_REPLICATION)' } 1572 1573## 1574# @ReplicationStatus: 1575# 1576# The result format for 'query-xen-replication-status'. 1577# 1578# @error: true if an error happened, false if replication is normal. 1579# 1580# @desc: the human readable error description string, when 1581# @error is 'true'. 1582# 1583# Since: 2.9 1584## 1585{ 'struct': 'ReplicationStatus', 1586 'data': { 'error': 'bool', '*desc': 'str' }, 1587 'if': 'defined(CONFIG_REPLICATION)' } 1588 1589## 1590# @query-xen-replication-status: 1591# 1592# Query replication status while the vm is running. 1593# 1594# Returns: A @ReplicationResult object showing the status. 1595# 1596# Example: 1597# 1598# -> { "execute": "query-xen-replication-status" } 1599# <- { "return": { "error": false } } 1600# 1601# Since: 2.9 1602## 1603{ 'command': 'query-xen-replication-status', 1604 'returns': 'ReplicationStatus', 1605 'if': 'defined(CONFIG_REPLICATION)' } 1606 1607## 1608# @xen-colo-do-checkpoint: 1609# 1610# Xen uses this command to notify replication to trigger a checkpoint. 1611# 1612# Returns: nothing. 1613# 1614# Example: 1615# 1616# -> { "execute": "xen-colo-do-checkpoint" } 1617# <- { "return": {} } 1618# 1619# Since: 2.9 1620## 1621{ 'command': 'xen-colo-do-checkpoint', 1622 'if': 'defined(CONFIG_REPLICATION)' } 1623 1624## 1625# @COLOStatus: 1626# 1627# The result format for 'query-colo-status'. 1628# 1629# @mode: COLO running mode. If COLO is running, this field will return 1630# 'primary' or 'secondary'. 1631# 1632# @last-mode: COLO last running mode. If COLO is running, this field 1633# will return same like mode field, after failover we can 1634# use this field to get last colo mode. (since 4.0) 1635# 1636# @reason: describes the reason for the COLO exit. 1637# 1638# Since: 3.1 1639## 1640{ 'struct': 'COLOStatus', 1641 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode', 1642 'reason': 'COLOExitReason' } } 1643 1644## 1645# @query-colo-status: 1646# 1647# Query COLO status while the vm is running. 1648# 1649# Returns: A @COLOStatus object showing the status. 1650# 1651# Example: 1652# 1653# -> { "execute": "query-colo-status" } 1654# <- { "return": { "mode": "primary", "reason": "request" } } 1655# 1656# Since: 3.1 1657## 1658{ 'command': 'query-colo-status', 1659 'returns': 'COLOStatus' } 1660 1661## 1662# @migrate-recover: 1663# 1664# Provide a recovery migration stream URI. 1665# 1666# @uri: the URI to be used for the recovery of migration stream. 1667# 1668# Returns: nothing. 1669# 1670# Example: 1671# 1672# -> { "execute": "migrate-recover", 1673# "arguments": { "uri": "tcp:192.168.1.200:12345" } } 1674# <- { "return": {} } 1675# 1676# Since: 3.0 1677## 1678{ 'command': 'migrate-recover', 1679 'data': { 'uri': 'str' }, 1680 'allow-oob': true } 1681 1682## 1683# @migrate-pause: 1684# 1685# Pause a migration. Currently it only supports postcopy. 1686# 1687# Returns: nothing. 1688# 1689# Example: 1690# 1691# -> { "execute": "migrate-pause" } 1692# <- { "return": {} } 1693# 1694# Since: 3.0 1695## 1696{ 'command': 'migrate-pause', 'allow-oob': true } 1697 1698## 1699# @UNPLUG_PRIMARY: 1700# 1701# Emitted from source side of a migration when migration state is 1702# WAIT_UNPLUG. Device was unplugged by guest operating system. 1703# Device resources in QEMU are kept on standby to be able to re-plug it in case 1704# of migration failure. 1705# 1706# @device-id: QEMU device id of the unplugged device 1707# 1708# Since: 4.2 1709# 1710# Example: 1711# {"event": "UNPLUG_PRIMARY", "data": {"device-id": "hostdev0"} } 1712# 1713## 1714{ 'event': 'UNPLUG_PRIMARY', 1715 'data': { 'device-id': 'str' } } 1716 1717## 1718# @DirtyRateStatus: 1719# 1720# An enumeration of dirtyrate status. 1721# 1722# @unstarted: the dirtyrate thread has not been started. 1723# 1724# @measuring: the dirtyrate thread is measuring. 1725# 1726# @measured: the dirtyrate thread has measured and results are available. 1727# 1728# Since: 5.2 1729# 1730## 1731{ 'enum': 'DirtyRateStatus', 1732 'data': [ 'unstarted', 'measuring', 'measured'] } 1733 1734## 1735# @DirtyRateInfo: 1736# 1737# Information about current dirty page rate of vm. 1738# 1739# @dirty-rate: an estimate of the dirty page rate of the VM in units of 1740# MB/s, present only when estimating the rate has completed. 1741# 1742# @status: status containing dirtyrate query status includes 1743# 'unstarted' or 'measuring' or 'measured' 1744# 1745# @start-time: start time in units of second for calculation 1746# 1747# @calc-time: time in units of second for sample dirty pages 1748# 1749# Since: 5.2 1750# 1751## 1752{ 'struct': 'DirtyRateInfo', 1753 'data': {'*dirty-rate': 'int64', 1754 'status': 'DirtyRateStatus', 1755 'start-time': 'int64', 1756 'calc-time': 'int64'} } 1757 1758## 1759# @calc-dirty-rate: 1760# 1761# start calculating dirty page rate for vm 1762# 1763# @calc-time: time in units of second for sample dirty pages 1764# 1765# Since: 5.2 1766# 1767# Example: 1768# {"command": "calc-dirty-rate", "data": {"calc-time": 1} } 1769# 1770## 1771{ 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64'} } 1772 1773## 1774# @query-dirty-rate: 1775# 1776# query dirty page rate in units of MB/s for vm 1777# 1778# Since: 5.2 1779## 1780{ 'command': 'query-dirty-rate', 'returns': 'DirtyRateInfo' } 1781 1782## 1783# @snapshot-save: 1784# 1785# Save a VM snapshot 1786# 1787# @job-id: identifier for the newly created job 1788# @tag: name of the snapshot to create 1789# @vmstate: block device node name to save vmstate to 1790# @devices: list of block device node names to save a snapshot to 1791# 1792# Applications should not assume that the snapshot save is complete 1793# when this command returns. The job commands / events must be used 1794# to determine completion and to fetch details of any errors that arise. 1795# 1796# Note that execution of the guest CPUs may be stopped during the 1797# time it takes to save the snapshot. A future version of QEMU 1798# may ensure CPUs are executing continuously. 1799# 1800# It is strongly recommended that @devices contain all writable 1801# block device nodes if a consistent snapshot is required. 1802# 1803# If @tag already exists, an error will be reported 1804# 1805# Returns: nothing 1806# 1807# Example: 1808# 1809# -> { "execute": "snapshot-save", 1810# "data": { 1811# "job-id": "snapsave0", 1812# "tag": "my-snap", 1813# "vmstate": "disk0", 1814# "devices": ["disk0", "disk1"] 1815# } 1816# } 1817# <- { "return": { } } 1818# <- {"event": "JOB_STATUS_CHANGE", 1819# "data": {"status": "created", "id": "snapsave0"}} 1820# <- {"event": "JOB_STATUS_CHANGE", 1821# "data": {"status": "running", "id": "snapsave0"}} 1822# <- {"event": "STOP"} 1823# <- {"event": "RESUME"} 1824# <- {"event": "JOB_STATUS_CHANGE", 1825# "data": {"status": "waiting", "id": "snapsave0"}} 1826# <- {"event": "JOB_STATUS_CHANGE", 1827# "data": {"status": "pending", "id": "snapsave0"}} 1828# <- {"event": "JOB_STATUS_CHANGE", 1829# "data": {"status": "concluded", "id": "snapsave0"}} 1830# -> {"execute": "query-jobs"} 1831# <- {"return": [{"current-progress": 1, 1832# "status": "concluded", 1833# "total-progress": 1, 1834# "type": "snapshot-save", 1835# "id": "snapsave0"}]} 1836# 1837# Since: 6.0 1838## 1839{ 'command': 'snapshot-save', 1840 'data': { 'job-id': 'str', 1841 'tag': 'str', 1842 'vmstate': 'str', 1843 'devices': ['str'] } } 1844 1845## 1846# @snapshot-load: 1847# 1848# Load a VM snapshot 1849# 1850# @job-id: identifier for the newly created job 1851# @tag: name of the snapshot to load. 1852# @vmstate: block device node name to load vmstate from 1853# @devices: list of block device node names to load a snapshot from 1854# 1855# Applications should not assume that the snapshot load is complete 1856# when this command returns. The job commands / events must be used 1857# to determine completion and to fetch details of any errors that arise. 1858# 1859# Note that execution of the guest CPUs will be stopped during the 1860# time it takes to load the snapshot. 1861# 1862# It is strongly recommended that @devices contain all writable 1863# block device nodes that can have changed since the original 1864# @snapshot-save command execution. 1865# 1866# Returns: nothing 1867# 1868# Example: 1869# 1870# -> { "execute": "snapshot-load", 1871# "data": { 1872# "job-id": "snapload0", 1873# "tag": "my-snap", 1874# "vmstate": "disk0", 1875# "devices": ["disk0", "disk1"] 1876# } 1877# } 1878# <- { "return": { } } 1879# <- {"event": "JOB_STATUS_CHANGE", 1880# "data": {"status": "created", "id": "snapload0"}} 1881# <- {"event": "JOB_STATUS_CHANGE", 1882# "data": {"status": "running", "id": "snapload0"}} 1883# <- {"event": "STOP"} 1884# <- {"event": "RESUME"} 1885# <- {"event": "JOB_STATUS_CHANGE", 1886# "data": {"status": "waiting", "id": "snapload0"}} 1887# <- {"event": "JOB_STATUS_CHANGE", 1888# "data": {"status": "pending", "id": "snapload0"}} 1889# <- {"event": "JOB_STATUS_CHANGE", 1890# "data": {"status": "concluded", "id": "snapload0"}} 1891# -> {"execute": "query-jobs"} 1892# <- {"return": [{"current-progress": 1, 1893# "status": "concluded", 1894# "total-progress": 1, 1895# "type": "snapshot-load", 1896# "id": "snapload0"}]} 1897# 1898# Since: 6.0 1899## 1900{ 'command': 'snapshot-load', 1901 'data': { 'job-id': 'str', 1902 'tag': 'str', 1903 'vmstate': 'str', 1904 'devices': ['str'] } } 1905 1906## 1907# @snapshot-delete: 1908# 1909# Delete a VM snapshot 1910# 1911# @job-id: identifier for the newly created job 1912# @tag: name of the snapshot to delete. 1913# @devices: list of block device node names to delete a snapshot from 1914# 1915# Applications should not assume that the snapshot delete is complete 1916# when this command returns. The job commands / events must be used 1917# to determine completion and to fetch details of any errors that arise. 1918# 1919# Returns: nothing 1920# 1921# Example: 1922# 1923# -> { "execute": "snapshot-delete", 1924# "data": { 1925# "job-id": "snapdelete0", 1926# "tag": "my-snap", 1927# "devices": ["disk0", "disk1"] 1928# } 1929# } 1930# <- { "return": { } } 1931# <- {"event": "JOB_STATUS_CHANGE", 1932# "data": {"status": "created", "id": "snapdelete0"}} 1933# <- {"event": "JOB_STATUS_CHANGE", 1934# "data": {"status": "running", "id": "snapdelete0"}} 1935# <- {"event": "JOB_STATUS_CHANGE", 1936# "data": {"status": "waiting", "id": "snapdelete0"}} 1937# <- {"event": "JOB_STATUS_CHANGE", 1938# "data": {"status": "pending", "id": "snapdelete0"}} 1939# <- {"event": "JOB_STATUS_CHANGE", 1940# "data": {"status": "concluded", "id": "snapdelete0"}} 1941# -> {"execute": "query-jobs"} 1942# <- {"return": [{"current-progress": 1, 1943# "status": "concluded", 1944# "total-progress": 1, 1945# "type": "snapshot-delete", 1946# "id": "snapdelete0"}]} 1947# 1948# Since: 6.0 1949## 1950{ 'command': 'snapshot-delete', 1951 'data': { 'job-id': 'str', 1952 'tag': 'str', 1953 'devices': ['str'] } } 1954